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Abstract. A fuzzy extractor (Dodis et al., Eurocrypt 2004) is a pair of procedures that turns a noisy
secret into a uniformly distributed key R. To eliminate noise, the generation procedure takes as input an
enrollment value ω and outputsR and a helper string P that enables further reproduction ofR from some
close reading ω′.
Boyen highlighted the need for reusable fuzzy extractors (CCS 2004) that remain secure even when
numerous calls to the generation procedure are made on a user’s noisy secret. Boyen proved that any
information-theoretically secure reusable fuzzy extractor is subject to strong limitations. In subsequent
work, Simoens et al. (IEEE S&P, 2009) showed this is a practical vulnerability. Canetti et al. (Eurocrypt
2016) recently proposed moving to computational security and constructed a computationally secure
reusable fuzzy extractor for the Hamming metric that corrects a sublinear fraction of errors.
In this work, we propose a different and generic approach: the idea is to separate the reusability property
from key recovery. We define a new primitive called a reusable pseudoentropic isometry that projects an
input metric space in a distance and entropy preserving manner even if applied multiple times. Generation
of multiple randomized secrets Ωs via a reusable pseudoentropic isometry does not reveal information
about the original fuzzy secret ω and can be used to “decorrelate” noisy versions of ω.
Given a reusable pseudoentropic isometric building a reusable fuzzy extractor is easy by 1) randomizing
the noisy secret ω into Ω and 2) using a traditional fuzzy extractor to derive a secret key from Ω.
To show the promise of our framework, we construct a reusable pseudoentropic isometry for the set differ-
ence metric using composable digital lockers (Canetti and Dakdouk, Eurocrypt 2008). This construction
allows us to build the first reusable fuzzy extractor that corrects a linear fraction of errors.
Lastly, we propose browser and device fingerprints as new authentication sources. These fingerprints are
a list of features with entropy that undergo deeper variation over time than biometrics. However, they
still enable user identification (Eckersley, PETS 2010). Extending reusable fuzzy extractors, we define
adaptive fuzzy extractors to handle such sources. An adaptive fuzzy extractor enables recovery ofR from
ω′ as long as ω′ has naturally drifted from ω. We construct adaptive fuzzy extractors from reusable fuzzy
extractors.

1 Introduction

Cryptography relies on uniformly distributed and reproducible long-term secrets to perform au-
thentication or derive keys. Numerous high entropy randomness sources exist, such as biometrics
and human-generated data [14,23], Physically Unclonable Functions (PUFs) [30] and quantum in-
formation [4]. Both PUFs and biometrics suffer the common issue of errors that prevent stable
cryptographic key generation.
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Randomness sources A PUF is a physical entity that is easy to evaluate but hard to predict. Unique
by manufacturing process, PUFs are used to implement challenge-response authentication. Re-
cently, researchers have attacked PUFs, creating software models for the PUF behavior [32,33].
These attacks can be avoided by first deriving stable cryptographic key from the PUF output and
then creating a challenge response protocol using a function of this key.

Biometrics are unique characteristics of individuals based on either biological or behavioral
characteristics. Biometrics are evaluated by their uniqueness, collectability and permanence [22]
where this last characteristic represents the period in which those traits are stable. Unlike passwords,
biometrics suffer inevitable but minor variations. These variations are assumed to correspond to a
bounded distance between repeated readings according to some metric. Dodis et al. [16] stated that
Hamming distance looks like the "most natural metric to consider" [10,16,24]. However,with the
exception of iris [14], set distance better suits concrete cases such as biometric matchers (e.g. digital
fingerprints) or even the more exotic lover’s problem [30,22,15,24,37]. Typical systems create a
template reading from an initial reading; subsequent readings are directly compared to this initial
template. These templates have privacy concerns [31,35], in the worst case a legitimate looking
biometric can be reverse engineered from the template [19].

1.1 Fuzzy Extractors

Information reconciliation [4] enables retrieving identical values from noisy data. Privacy amplifi-
cation [4] converts values with entropy into uniform random strings. Fuzzy Extractors (FEs) [16]4,
are a pair of non-interactive algorithms (Gen, Rep) that simultaneously perform information rec-
onciliation and privacy amplification. The algorithm Gen, used at enrollment, takes input ω from
an entropy source and outputs a uniformly distributed key R and some public helper string P . The
algorithm Rep takes the helper string P and ω′ and reproduces the secret key R as long as ω′ is
close enough to ω relative to the distance metric, say d(ω, ω′) ≤ t. FEs exist with security against
information-theoretic [15] or computational adversaries [18].

Metrics Dodis et al. proposed FE constructions for the Hamming, set difference and edit metrics
drawing on prior work [24,23]. We focus on the set difference metric: inputs ω are subsets of size
s of a universe U whose cardinality is n. For this metric, Dodis et al. distinguished two settings,
referred as the small and large universe settings. Let s be some security parameter. In the former
case, we have that n = poly(s) while in the latter one n is superpolynomial in s. The large universe
setting occurs in practice. For example, consider a list of book titles or a list of movies (movie
lover’s problem due to [23]). The small universe setting benefits from a reduction to the Hamming
metric, referred as the bin-set equivalence (described in Section 2). We concentrate on the large
universe setting where this transform is not applicable.

Reusability Boyen stated the need for reusable fuzzy extractors [8] for which numerous helper
strings P j from a user’s fuzzy secret do not impact user’s security. Boyen showed that information-
theoretic FEs must leak substantial information about ω when numerous calls to Gen are made.
On the positive side, Boyen demonstrated reusable security when the exclusive OR of the user’s
fuzzy secrets reveal no sensitive information. This is a restrictive class of correlations; we have no

4 In the following, we will refer to the journal version [15].
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evidence that practical sources obey this condition. Subsequent works showed that existing FEs are
not reusable in practice [6,34].

Recent work of Canetti et al. [10] constructs the first reusable fuzzy extractor (RFE) that makes
no assumption about how repeating readings are correlated. It works for the Hamming distance and
provides security against computationally bounded adversaries. It uses a strong form of symmetric
encryption, called digital lockers [9] (Our construction will also use digital lockers but in a different
way.) Their construction is secure for distributions with high entropy samples instead of global min-
entropy. This is in contrast to traditional constructions that only assume the source has min-entropy.
Their main binary construction can be extended through bin-set equivalence to a FE in the set
difference based metric but only in the small universe setting. Their scheme only allows an error
rate (t/n) sublinear in n. Prior to this work, there were no known RFE correcting a linear error rate
for any common metric. One should note that most biometrics demonstrate an error rate between
10-30%.

1.2 Authenticating with browser fingerprints

Industrial authentication solutions must make due with using software and available sensors (e.g.
HCE payment [1]). While biometrics and PUFs have received attention in the authentication liter-
ature, these solutions can not be implemented using only software. The need for a pure software
solution demands new authentication factors, we propose browser fingerprints as a new authentica-
tion factor.

Eckersley [17] showed how to create a fingerprint from characteristics of a web browser (user
agent, list of fonts, list of plug-ins,. . . ). Servers use this data to detect returning browsers even when
features have changed over time. Subsequent studies [7,28,29,2] show such a system is deployable
for personal computers. While early mobile solutions were insufficient [26,12,13,37], recent work of
Kurtz et al. provides a comprehensive analysis in the mobile setting [25]. On Apple’s iOS, they show
how to compute a device fingerprint using 29 different configuration features. Using a dataset of
13,000 fingerprints, they show that fingerprints are unique and allow detection of returning devices
with an accuracy of 97%. In their work, the list of installed applications and the top 50 songs are
among the most identifying values present on a device. These fingerprints appear credible as a factor
in designing a strong authentication protocol. Many of these device/browser fingerprints draw on
features coming with large universes (e.g. songs, applications, plug-ins, . . . ).

Physiological biometrics undergo minor differences: if we consider an enrollment value ω, it is
likely that any new reading ω′ will stay within a certain distance. Browser fingerprints are different:
even though they are identifying, they undergo deep variations over time. It is reasonable to expect
each repeated reading to be close, that is, d(ωj , ωj+1) ≤ t. However, ωj will drift over time and
d(ω, ωj) > t.

To fairly identify users, current solutions have to handle variability of browser fingerprints.
Some behavioral biometrics also suffer from a shorter permanence period. Adaptive biometric sys-
tems are designed to solve this problem [36]. In an adaptive biometric system, the template database
is updated whenever a successful authentication occurs. Here, the goal is to decide if a given profile
is a former one that has undergone variations or is a new one [17,2,25].
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1.3 Our contributions

Secure sketches [15], which will be introduced later, are often used to build FEs. Both FEs and
secure sketches are meant to recover a secret value from noisy inputs, the recovered value being
either the noisy secret itself or an extracted cryptographic key. In both cases, noise elimination is
performed using a helper data which leaks information.

FEs are mainly based on information-theoretic secure sketches and as such, prone to reusability
issues [34,6]. Fuller et al. showed that computationally secure sketches are subject to many of the
same limitations as information theoretic secure sketches [18, Theorem 3.6]. To avoid these negative
results, we separate the task of reusability from the task of noise elimination. Our contributions are
as follows.

1. We introduce a randomization stage captured by a new primitive we call a pseudoentropic isom-
etry (PI). Informally, a PI pseudorandomly projects fuzzy secrets while maintaining distances
between two noisy readings and entropy of the original secret. To be reusable, a PI must gen-
erate ρ uncorrelated values Ω1, . . . , Ωρ from ρ enrollments values ω1, . . . , ωρ drawn from the
fuzzy secret ω. The reusability property is then defined as long as each Ωj0 carries sufficient
entropy even in presence of other Ωjs (j0 6= j). Reusable pseudoentropic isometries (RPIs),
contrary to both FEs and secure sketches, do not perform any form of error correction and are
not subject to many bounds from coding theory. These Ωj can be used once by any nonreusable
FE. If a user wants to authenticate herself toward provider j from a noisy reading ω′, the RPI
will generate Ωj′ where the distance between Ωj′ and Ωj is the same as between ωj and ωj′.

2. We show that combining a RPI and a traditional FE yields a RFE.
3. We instantiate a RPI for the set difference metric using digital lockers [9]. This RPI allows us to

design the first reusable FE for linear error rates. Our construction applies for the set difference
metric in the large universe setting. Our construction proceeds as follows for each element of
the input set:
(a) We sample a random point in a new metric space,
(b) We lock the random point using the element of the input set as the key,
When Rep is run, the fraction of unlockable points is the same as the overlap between the sets.
This construction does no error-correction, it projects “randomly” while preserving distance.

4. Working with device fingerprints led to us define Adaptive Fuzzy Extractors (AFEs) that recover
a stable key R from noisy readings that naturally drift over time. In addition to primitives Gen
and Rep, an update primitive Upd is introduced. The reproduction algorithm outputs R even if
the authentication value ωi is not close to the enrolled ω as long as ωi has drifted from ω and
Upd has been run regularly. We show how to design an AFE out of a RFE and a symmetric
encryption scheme. The idea is to keep a long-term key that is decrypted using the current
reading of ω and reencrypted using the new reading to account for long-term drift.

2 Preliminaries

Notation log denotes the base 2 logarithm. GF (n) denotes the finite field of n elements. x← f(.)
denotes that x is an output of a function f . If f is randomized, we use the semicolon to make the
randomness explicit. f(x;µ) is the result of f computed on x with randomness µ.

For any entity E , we denote by E(z) the fact that E has knowledge of z. U` denotes the uniformly
distributed random variable on {0, 1}l. For a distinguisher D (or a class of distinguishers D), we
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write the computational distance between X and Y as δD(X,Y ) = |E[D(X)] − E[D(Y )]|. Dssec

denotes the class of randomized circuits which output a single bit and have size at most ssec. Let
λ denote a security parameter. Except stated otherwise, we have l = l(λ), κ = κ(λ), m = m(λ),
m1 = m1(λ),m2 = m2(λ), ssec = poly(λ) and εsec = negl(λ). A metric space is a finite setM
equipped with a distance d :M×M→ N fulfilling the properties of symmetry, triangle inequality
and zero distance between equal points.

2.1 Background

Set Difference Metric LetM consist of all subsets of a universe U . For two sets ω and ω′ belonging

to M, their symmetric difference is defined as ω∆ω′
def
= {x ∈ ω ∪ ω′|x /∈ ω ∩ ω′}. Symmetric

difference is a metric that we denote by d.
Dodis et al. [16] noted the bin-set equivalence: if ω denotes a set, it can be viewed a binary

vector in {0, 1}n, with 1 at position x if x ∈ w, and 0 otherwise. Viewed in this way, set difference
can be expressed as Hamming distance between these associated vectors. This transform is not
efficient when the universe size n is superpolynomial.

Entropy Notions Entropy specifies the amount of information contained in some data. In security-
related contexts, we care about how well an adversary can guess the value of a random variable.
In the information-theoretic case, we rely on the notion of min-entropy. A random variable A has
min-entropy m, denoted H∞(A) = m, if A has predictability 2−m i.e. maxa Pr [A = a] = 2−m.

Put another way, we have H∞(A)
def
= − log(maxa∈A P [A = a]). The average min-entropy of A

given B is:

H̃∞(A|B) def
= − log(Eb∈BmaxaPr[A = a|B = b]).

HILL entropy is a commonly used computational notion of entropy [20]. It was extended to the
conditional case by Hsiao, Lu, and Reyzin [21].

Definition 1. Let (W,S) be a pair of random variables.W has HILL entropy at least k conditioned
on S, denoted HHILL

εsec,ssec
(W |S) ≥ k if there exists a collection of distributions Xs giving rise to joint

distribution (X,S), such that H̃∞(X|S) ≥ k and δDssec ((W,S), (X,S)) ≤ εsec.

Fuzzy Extractors The original definition of FEs, due to Dodis et al. [15], was information theory-
based. We focus on the computational definition introduced by Fuller et al. [18]. They extend their
definition to an explicit family of distributions and we adopt this convention.

Definition 2 (Fuzzy Extractor). A pair of randomized procedures "generate" (Gen) and "repro-
duce" (Rep) is a (M,W, l, t, δ)-computational fuzzy extractor that is (εsec, ssec)-hard if Gen and
Rep satisfy the following properties:

– Gen on input ω ∈M outputs an extracted string R ∈ {0, 1}l and a helper string P ∈ {0, 1}∗.
– Rep takes an element ω′ ∈M and a bit string P ∈ {0, 1}∗ as inputs.
– Correctness: if d(ω, ω′) 6 t and (R,P )← Gen(ω), then Pr[Rep(ω′, P ) = R] ≥ 1− δ where

the probability is over the coins of Gen and Rep.
– Security: for any W ∈ W onM, R|P is pseudorandom i.e. δssec((R,P ), (Ul, P )) 6 εsec.
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Dodis et al. also define average-case FEs for which the security property requires that for any
auxiliary variable I , ((R,P, I), (Ul, P, I)) appear indistinguishable. We also consider FEs that are
secure for all distributions of (average) min-entropym, in this case we replaceW with the parameter
m.

Dodis et al. have designed FEs based on three different metrics which are Hamming, set differ-
ence and edit distances. All their constructions rely on secure sketches. Such a primitive is a pair
of procedures (SS, Rec) where, the “sketch” procedure SS takes in ω and outputs a public string
P . Later given ω′ and P , procedure Rec recovers ω as long as ω′ is close to ω. Coupled with an
average-case extractor, Dodis et al. design FEs out of such a primitive. Since P enables to recover
ω from ω′, it necessarily leads to what the authors define as entropy loss.

Reusable Fuzzy Extractor RFEs [8] allow multiple calls to Gen on the noisy readings of ω while re-
taining security. Consider ρ readings ω1, . . . , ωρ of the same fuzzy secret from which the user will be
enrolled on ρ different authentication servers. Gen independently generates ρ pairs (R1, P 1), . . . , (Rρ, P ρ)
where (Rj , P j)← Gen(ωj). Canetti et al. [10] proposed a security model where a given Rj0 is se-
cure even if all P j and all other Rjs (for j 6= j0) are given to an adversary.

Definition 3 (Reusable Fuzzy Extractor [10]). Let (Gen,Rep) be a (M,W, l, t)-FE that is (εsec,
ssec)-hard and W 1,W 2, . . . ,W ρ be ρ correlated random variables overM where W j ∈ W for all
1 ≤ j ≤ ρ. Let D be an adversary. Define the following game for all j = 1, . . . , ρ:

– Sampling The challenger C samples ωj ←W j for all j and η $← {0, 1}l.
– Generation C computes (Rj , P j)← Gen(ωj) for all j.
– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(R1, . . . , Rρ, {P j}16j6ρ) = 1]

−Pr[D(R1, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P j}16j6ρ) = 1]

(Gen,Rep) is (εsec, ρ, ssec)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, Adv(D) ≤ εsec.

2.2 Tools

Digital Lockers Digital lockers are computationally secure symmetric encryption schemes that re-
tain security even when used multiple times with correlated and weak (i.e., nonuniform) keys [11].
They have the additional feature that the wrong key can be recognized as such (with high probabil-
ity). We use notation c = lock(key, val) for the algorithm that performs the locking of the value val
using key, and unlock(key, c) for the algorithm that performs the unlocking (which will output val
if key is correct and ⊥ with high probability otherwise).

Digital lockers can be easily constructed in the random oracle (see Lynn, Prabhakaran, and
Sahai [27, Section 4]). Bitansky and Canetti [5], building on the work of [9,11], show how to obtain
composable digital lockers based on a strong version of the Decisional Diffie-Hellman assumption
without random oracles.

The security of digital lockers is defined via virtual-grey-box simulatability [5], a simulator is al-
lowed unbounded running time but only a bounded number of queries to an ideal locker. Intuitively,
the definition says if the keys to the ideal locker are hard to guess, the simulator will not be able to
unlock the ideal locker and thus neither will the real adversary. Formally, let idealUnlock(key, val)
be the oracle that returns val when given key, and ⊥ otherwise.
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Definition 4. The pair of algorithm (lock, unlock) with security parameter λ is an `-composable
secure digital locker with error γ if the following hold:

– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1 − γ. Furthermore,
for any key′ 6= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.

– Security For every PPT adversary A and every positive polynomial p, there exists a (possi-
bly inefficient) simulator S and a polynomial q(λ) such that for any sufficiently large s, any
polynomially-long sequence of values (vali, keyi) for i = 1, . . . , `, and any auxiliary input
z ∈ {0, 1}∗,∣∣∣Pr [A(z, {lock (keyi, vali)}`i=1

)
= 1
]
− Pr

[
S
(
z, {|keyi|, |vali|}

`
i=1

)
= 1
]∣∣∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi, vali)}`i=1 .

Pseudoentropic Isometries We propose a new paradigm for designing reusable FEs. Given a fuzzy
secret ω, a PI derives a random Ω that retains the entropy of ω and the distances between inputs.
More precisely, a PI is a pair (RPIGen, RPIRep) defined as follows.

Definition 5 (Pseudoentropic isometry). Let (M1, d1) and (M2, d2) be two metric spaces. A
(M1,M2,W,m2, εsec, ssec, δ)-pseudoentropic isometry is a pair of randomized procedures (RPI-
Gen, RPIRep) with the following properties:

1. RPIGen on ω ∈M1 outputs Ω ∈M2 and F ∈ {0, 1}∗.
2. RPIRep takes an element ω′ ∈M1 and a bit string F ∈ {0, 1}∗ as inputs to output Ω′ ∈M2.
3. Correctness: if (Ω,F ) ← RPIGen(ω), then Pr[d2(Ω,Ω

′) ≤ d1(ω, ω
′)] ≥ 1 − δ. where the

probability is over the randomness of (RPIGen, RPIRep).
4. Security: for any distribution W ∈ W , for (U, V ) ← RPIGen(W ) we have HHILL

εsec,ssec
(U |V ) >

m2.

Security implies that HHILL(W |V ) > m2 with a slight loss in parameters as the adversary can run
RPIRep if they recover W .

This notion is related to biometric embeddings used in [15]. A biometric embedding projects
any fingerprint value into a metric space where a FE exists while loosely maintaining distances. On
their own PIs are not novel (the identity function is a PI). A reusable pseudoentropic isometry or
RPI is the key to our approach. In an RPI the knowledge of previous derived values does not help
D to distinguish a random value from a newly derived projection obtained via RPIGen. Drawing
on the definition of reusability for FEs (Definition 3), we define a RPI as follows.

Definition 6 (RPI).
Let W ∗ ∈ W be a distribution. Let W 1,W 2, . . . ,W ρ be ρ correlated random variables over

M1. Let D an adversary. Using notation of Definition 5, we define the following game for all
j = 1, . . . , ρ:

– Sampling The challenger C jointly samples ωj ←W j . Then independently samples ω∗ $←W ∗.
– Generation C generates (Ωj , F j)← RPIGen(ωj) and (Ω∗, F ∗)← RPIGen(ω∗).
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Fig. 1. Overview of reusability via RPI randomization

– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

−Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

(RPIGen, RPIRep) is said to be ρ-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, the
advantage Adv(D) ≤ εsec.

3 From nonreusable to reusable Fuzzy Extractors

In this section, we introduce a new and generic way to address reusability. The idea is to first use a
RPI to randomize fuzzy secrets and then apply a nonreusable FE on the unrelated projected values.

3.1 Approach

Let (Gen’, Rep’) denote a (average-case) nonreusable FE. The generation procedure Gen’ implic-
itly draws a ball B(ω, t) centered on its input ω where the radius t consists in the error tolerance of
the FE. Whenever a noisy reading ω′ is given to procedure Rep’, the secret key will be recovered as
long as ω′ belongs to B(ω, t).

To address reusability, we randomly project the ρ fuzzy versions of ω onto unrelated values
so that each of these latter retains original entropy independently of others. By using a ρ-RPI, the
user gets unrelated values Ω1, . . . , Ωρ that will be each enrolled once, respectively toward servers
1, . . . , ρ. Now whenever she wants to authenticate herself toward server j from ω′, the user uses the
aforesaid RPI to get Ω′j (where d(Ωj , Ω′j) ≤ d(ω, ω′)). This idea is illustrated in Figure 1.

Let (RPIGen, RPIRep) be a ρ-RPI fromM1 toM2. Let (Gen’, Rep’) be an average-case FE
over M2 correcting t errors. The generation procedure Gen will first call RPIGen to randomize
the input ω into Ω. The nonreusable FE is then applied on Ω. The RPI ensures that d2(Ω,Ω′) ≤
d1(ω, ω

′) while the correctness of the underlying nonreusable FE ensures that Rep’ recoversR from
Ω′ and the associated helper string as long as d2(Ω,Ω′) 6 t. Overall this leads to recovering R as
long as d1(ω, ω′) 6 t.
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Generation procedure Gen
Input: ω ∈M1.
1. (Ω,F )← RPIGen(ω).
2. (R,Q)← Gen’(Ω).
3. Set P = (F,Q).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: ω′ ∈M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F,Q)
2. Ω′ ← RPIRep(ω′, F ).
3. R← Rep’(Ω′, Q).
4. Return R.

Fig. 2. A generic reusable FE

Theorem 1. Let (RPIGen, RPIRep) be a (M1,M2,W,m2, εRPI, sRPI, δRPI)-RPI that is ρ-reusable
and (Gen’, Rep’) be an average-case (M2,m2, l, t, δFE)-FE that is (εFE, sFE)-hard. Then Figure 2
defines a (M1,W, l, t, δRPI + δFE)-FE that is (ρ, εsec, ssec)-reusable for εsec = 4εRPI + εFE and
ssec = min{sRPI − |Gen′|, sFE}.

Proof. The correctness is straightforward and follows from aforesaid explanations. To ensure secu-
rity, we first show that R appears pseudorandom even in presence of P and then treat reusability.

Under notation of Definition 5, we have thatΩ and F respectively come from distribution U and
V such as HHILL

εRPI,sRPI
(U |V ) > m2. We first show that FEs work on distributions with HILL entropy.

The proof is delayed until Appendix A.

Lemma 1. Let U, V be a joint distribution where HHILL
εRPI,sRPI

(U |V ) > m2 and let (Gen’, Rep’) be
an average-case (M2,m2, l, t)-FE that is (εFE, sFE)-hard. Define R,P ← Gen′(U), then

δDs((R,P, V ), (Ul, P, V )) 6 ε.

for ε = 2εRPI + εFE and s = min{sRPI, sFE}.

Lemma 1 allows us to conclude that δDs((R,Q, F ), (Ul, Q, F )) 6 ε. That is,

δDs((R,P ), (Ul, P )) 6 ε

for P = (F,Q), and aforesaid parameters ε = 2εRPI + εFE, s = min{sRPI, sFE}.

Reusability Let W 1, . . . ,W ρ be correlated distributions overM1, where W j ∈ W for all j. The
following games consist in a challenger C trying to fool D for some distinguished i0:

G0 C honestly samples values as prescribed in Definition 3 and sends

(R1, F 1, Q1), . . . , (Ri0 , F i0 , Qi0), . . . , (Rρ, F ρ, Qρ)

to D.
G1 In this game, there is one change compared to the previous one. C:

1. Samples the ωjs and then uses RPIGen to obtain (Ω1, F 1), . . . , (Ωρ, F ρ).
2. Replaces ωi0 with random ω∗ ←W ∗ (where W ∗ as prescribed in Definition 6).
3. Computes (Ω∗, F ∗)← RPIGen(ω∗) and (R∗, Q∗)← Gen’(Ω∗).
4. Sets P ∗ = (F i0 , Q∗).
5. Gives D the actual Rjs and P js except for j = i0 for which he receives (R∗, P ∗).
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If D can distinguish this game from the previous one, he would then be able to distinguish the
distribution with Ωi0 from the one with Ω∗. This breaks the reusability of the RPI. That is, G1
appears indistinguishable from G0 for ε = εRPI and s = sRPI − |Gen′|.

G2 In this game, after computing (R∗, Q∗) ← Gen’(Ω∗), C discards the value R∗ and replaces it

with some η $← {0, 1}l randomly sampled. SinceHHILL
εRPI,sRPI

(Ω∗|F ∗) ≥ m2 thenHHILL
εRPI,sRPI

(Ω∗|F i0)
≥ m2. Thus by Lemma 1, (Ul, P ∗) and (R∗, P ∗) are computationally indistinguishable. Hence,
this game is indistinguishable from the previous one for ε = 2εRPI+εFE and s = min{sRPI, sFE}.

G3 In the previous game,D was given (R1, F 1, Q1), . . . , (η, F i0 , Q∗), . . . , (Rρ, F ρ, Qρ) where η is
random and does not depend on P ∗. In this game, C sends the actualQi0 (obtained via computed
Gen’(Ωi0) instead of Q∗.
If D can distinguish that Qi0 has been given instead of Q∗ (obtained via computed Gen′(Ω∗),
he can in particular distinguish Ωi0 from Ω∗. Hence, he can distinguish

(Ω1, . . . , Ωi0 , . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ)

from
(Ω1, . . . , Ωi0−1, Ω∗, Ωi0+1, . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ).

This contradicts the reusability of the RPI. Thus, G3 is indistinguishable from G2 for ε = εRPI
and s = sRPI − |Gen′|.

In G3, D is given (R1, P 1), . . . , (η, P i0), . . . , (Rρ, P ρ) where η is randomly sampled. By tran-
sitivity, this latter game is indistinguishable from G0 . This latter indistinguishability is exactly the
one required by Definition 3.

3.2 A Set Difference-based RPI

In this subsection, we present a set difference-based RPI that will enable us to instantiate our
methodology described in previous subsection.

Environment and Notation Set difference based FEs in [15] take as inputs subsets of a universe U
with n = |U|. We denote (MU , d), the metric spaceMU consisting of all the subsets of U with the
set difference metric d. LetMU ,s denote the restriction ofMU to s-elements subsets.Mκ denotes
(GF (2κ), d) equipped with the set difference metric d. SimilarlyMκ,s denotes the restriction to sets
of sizes s. Let W be a probability distribution over U with min-entropy m. We use digital lockers
to construct our set difference-based RPI. Our construction, presented in Figure 3, randomizes each
set element using a digital locker.

It is possible to have a collision in step 2 of Algorithm RPIGen, however by choosing κ big
enough this occurs with negligible probability. Step 3 of Algorithm RPIRep adds additional ele-
ments to ensure that the output set is of size s. This step can be triggered if there was a collision
in RPIGen or if unlock outputs ⊥. The only time this step makes d(Ω,Ω′) ≥ d(ω, ω′) is when
unlock outputs ⊥ when the two values actually match. The condition we require on distributions is
that each set has superlogarithmic min-entropy.

Theorem 2. Let λ be a security parameter and let κ = ω(log λ). Let W be the set of all joint
distributions W1,W2, . . .Ws where, for any i 6 s, H(Wi) ≥ m. Let (lock, unlock) be a (s · ρ)-
composable digital locker with error δ. Then for any ssec = poly(λ) there exists a εsec = ngl(λ)
such that Figure 3 defines a (MU ,s,Mκ,W, s · κ, εsec, ssec, s · δ)-RPI for the set difference metric
where m2 = κ · s for ε = q(q + 1)2−κ + q2−m2 = ngl(λ).
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Algorithm RPIGen
Input: ω = {ω1, . . . , ωs},

∀1 6 i 6 s, ωi ∈ U .
1. For i = 1 . . . s,

xi
$←Mκ.

ci = lock(ωi, xi).
2. Set Ω = {x1, . . . , xs}

and c = c1, . . . , cs.
3. Return (c,Ω).

Algorithm RPIRep
Inputs: ω′ = {ω′1, . . . , ω′s},

c = c1, ..., cs.
1. For i = 1 . . . s,

x′i ← unlock(ω′i, ci).
2. Set Ω′ = {x′1, . . . , x′s′} \ {⊥}.
3. While |Ω′| < s,

z
$←Mκ.

Ω′ ∪ {z}.
4. Return Ω′.

Fig. 3. A set difference-based RPI

Our proof is similar in spirit to the proof of Canetti et al. [10]. We first prove a simpler proposition
that the construction is a PI and then consider reusability.

Proposition 1. Let λ be a security parameter and let κ = ω(log λ). LetW be the set of all joint dis-
tributionsW1,W2, . . .Ws where, for any i 6 s,H(Wi) ≥ m. Let (lock, unlock) be a s-composable
digital locker with error δ. Then for any ssec = poly(λ) there exists a εsec = ngl(λ) such that Fig-
ure 3 defines a (MU ,s,Mκ,W, s · κ, εsec, ssec, s · δ)-PI for the set difference metric.

Proof. We have to prove both isometric and security properties.
Isometry property. Ω is of size s. For any ωi = ω′i, if no digital locker outputs ⊥ then xi = x′i.

Thus,
Pr[d(Ω,Ω′) ≤ d(ω, ω′)] ≥ 1− sδ.

Security. Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ) such that
δDssec ((R,P ), (U,P )) ≤ εsec. Fix some polynomial ssec and let D be a distinguisher of size at
most ssec. We want to bound

|E[D(Ω,P )]− E[D(UMκ , P )]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That is, suppose that

there is some polynomial p(·) such that for all λ0 there exists some λ > λ0 such that

|E[D(Ω,P )]− E[D(UMκ , P )]| > 1/p(λ).

Note that λ is a function of λ0 but we omit this notation for the remainder of the proof. By the
security of digital lockers (Definition 4), there is a polynomial q and an unbounded time simulator
S (making at most q(λ) queries to the oracles {idealUnlock(ωi, xi)}si=1) such that∣∣∣E[D(Ω,C1, ..., Cs)]− E

[
S{idealUnlock(ωi,xi)}

s
i=1 (Ω, κ)

]∣∣∣ ≤ 1

3p(λ)
. (1)

The same is true if we replaced Ω above by an independent uniform random variable U overMκ.
We now prove the following lemma, which shows that S cannot distinguish between Ω and UMκ .

Lemma 2. Let U denote the uniform distribution overMκ. Then∣∣∣E [S{idealUnlock(ωi,xi)}si=1 (R, κ)
]
− E

[
S{idealUnlock(ωi,xi)}

s
i=1 (UMκ , κ)

] ∣∣∣ ≤ q(q + 1)

2m
≤ 1

3p(λ)
,

(2)

where q is the maximum number of queries S can make.
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Proof. Fix any u ∈ Mκ (the lemma will follow by averaging over all u). Let Ω∗ be the correct
value of Ω. The only information that S can learn about whether the value is Ω∗ or u is through the
query responses. First, modify S slightly to quit immediately if it gets a response not equal to⊥ (we
assume such as soon as S gets back a non-⊥ response it distinguishes with probability 1). There are
q + 1 possible values for the view of S on a given input (q of those views consist of some number
of ⊥ responses followed by the first non-⊥ response, and one view has all q responses equal to ⊥).
By [15, Lemma 2.2b], H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q + 1) ≥ m− log(q + 1).
Therefore, at each query, the probability that S gets a non-⊥ answer is at most (q + 1)2−m. Since
there are q queries of S, the overall probability is at most q(q + 1)/2m. Then since 2m is ngl(λ),
there exists some λ such that for all λ > λ0, q(q + 1)/2m ≤ 1/(3p(λ)). This completes the proof
of Lemma 2.

Adding together Equation 1, Equation 2, and Equation 1 in which Ω is replaced with UMκ , we
obtain that

δD((Ω,P ), (UMκ , P )) ≤
1

p(λ)
.

This is a contradiction and completes the proof of Proposition 1.

Reusability Reusability follows from the security of digital lockers. For each i ∈ {1, ..., ρ}, we
can treat the outputs Ω1, . . . , Ωi−1, Ωi+1, . . . , Ωρ as auxiliary input to the digital locker adversary.
The result follows by simulatability of this adversary, but requires additional composability from
the digital locker.

Corollary 1. Let λ be a security parameter and suppose there exists (lock, unlock) with that is `
composable for any ` = poly(λ) with error δ = ngl(λ). Using the RPI defined in Figure 3 for the
family W defined above one can construct a reusable FE for any ssec = poly(λ), ρ = poly(λ)
such that εsec = ngl(λ) and where t = Θ(n).

Discussion Our instantiation of an RPI for the set difference metric (large universe) allows construc-
tion of the first RFE correcting a linear error rate that makes no assumption about how individual
readings are correlated. The previous work of Boyen [8] assumed that the exclusive OR of two re-
peated enrollments leaked no information. The recent work of Canetti et al. [10] only achieves a
sublinear error rate (and works for Hamming or set difference in the small universe setting).

The efficiency of our construction is bounded by the efficiency of digital lockers, we do not
expect the use of information-theoretic FEs to be a roadblock to practical efficiency.

It is also worth noting that Figure 3 defines a RPI that could handle sets of variable sizes; if ω′

is such as |ω′| = s′ 6= s, it suffices to replace s by s′ in while loop (step 3 of RPIRep). Then, one
could couple this RPI with any nonreusable FE that can handle sets of variable sizes (see [15]) to
obtain such a RFE.

4 Adaptive Fuzzy Extractors

As discussed in the Introduction we seek to use browser and device fingerprints [17,2,25] as au-
thentication sources. Browser fingerprints naturally evolve over time leading to drift of values. We
define Adaptive Fuzzy Extractors to address this problem.
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Given a fingerprint value ω′, the goal is to decide if this fingerprint value is a new user or a previ-
ously encountered one that has undergone variations. In the latter case, the user has to be recognized
and a new profile should not be created. Recent works have shown this can be accomplished using
matching techniques [2,17,25]. Considered in the context of authentication, it is a natural question
if a stable key can be derived from these values. In our context, this amounts to creating a FE that
can recover the actual key R even if the authentication value ω′ and the enrollment one ω present
more than t errors. The idea is to say that ω′ should have naturally drifted from ω.

Definition 7. Let (M, d) a metric space. Let ω1, . . . , ωφ elements of M and an integer u. We
say that (M, ω1, ωφ, u) is a u-drift of length φ on M if for all i = 1, . . . , φ − 1, we have that
d(ωi, ωi+1) 6 u.

Since this definition is a first attempt to capture fingerprinting drift, alternative definitions may
be better suited for other settings.

A naive answer to the fingerprint drift issue could be frequent re-enrollments. In practice, en-
rollment sessions constitute critical sessions that organizations want to avoid. FEs were designed to
enable the use of long term secrets; frequent re-enrollment sessions annihilate their primary goal.

4.1 High Level Overview

We define Adaptive Fuzzy Extractors (AFEs) that add a third primitive Upd to classic FEs. Without
re-enrolling herself, a user should be able reproduce the same secret R as the one computed by
Gen as long as variations between the enrollment value ω and the authentication one ω′ follow an
expected u-drift (Definition 7). In other words, an AFE must recover the actual R as long as ω′

has somewhat naturally drifted from ω although ω′ does not belong to B(ω, t). Given parameters
0 6 u 6 t, we define AFEs to work according to two zones:

– Updating Zone. It can update the helper string value P before too many errors occur i.e. while
ω′ is still close enough to ω (d(ω, ω′) 6 u).

– Recovering Zone. ω′ is close enough to ω to enable key recovery but too far away to enable any
helper string update (u < d(ω, ω′) 6 t).

An AFE can recover R as long as the fuzzy values define an u-drift (if an update is performed
for each ωi). Without representing updating zones for the sake of clarity, the philosophy of AFEs is
depicted in Figure 4.

4.2 Definition and Security Model

Definition 8 (Adaptive Fuzzy Extractor). A triple of randomized procedures "generate" (Gen),
"update" (Upd), "reproduce" (Rep) is an (M,W, l, u, t, δ, φ)-adaptive fuzzy extractor that is (εsec, ssec)
hard if the following holds:

1. On input ω ∈M, Gen outputs an extracted string R ∈ {0, 1}l and helper string P ∈ {0, 1}∗.
2. On input ω′ ∈M and P ∈ {0, 1}∗, if either:

(a) (R,P )← Gen(ω) and d(ω, ω′) 6 u;
(b) there exists (ω∗, P ∗) such that P ← Upd(ω∗, P ∗), R← Rep(ω∗, P ∗) and (ω∗, ω′) 6 u,
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Fig. 4. Philosophy of Adaptive Fuzzy Extractors.

then Upd outputs an updated helper string P ′.
3. The reproduction procedure Rep takes as inputs ω′ ∈ M and a bit string P ∈ {0, 1}∗. The

correctness guarantees that if either of conditions is satisfied:
(a) (R,P )← Gen(ω) and d(ω, ω′) 6 t;
(b) there exists (ω∗, P ∗) such that P ← Upd(ω∗, P ∗), R← Rep(ω∗, P ∗) and (ω∗, ω′) 6 t,
then

Pr[Rep(ω′, P ) = R] ≥ 1− δ.

In any other case, no guarantee is provided about the output of Rep.
4. The security property guarantees that for correlated distributions W 1, . . . ,W φ on M where
W i ∈ W , the string R is pseudorandom even for those whose observe the P is for i = 1 . . . φ,

generated through Gen or Upd from ωi
$←W i. That is,

δDssec ((R, {P i}φi=1), (Ul, {P
i}φi=1)) ≤ εsec.

Security Model We now define reusability of AFEs. By taking the previous scenario where a user
subscribes to ρ providers, this user should now be able to update φ times its profile on each server to
handle variations. Adapting reusability definition of [10] (Definition 3), we propose the following
definition for security of reusable AFEs.

Definition 9. Let (W 1,1,W 2,1, . . . ,W φ,ρ) be potentially correlated random variables overMwhere
each W i,j ∈ W . Let (Gen, Upd, Rep) be a (M,W, `, u, t, δ, φ)-AFE that is (εsec, ssec) hard. Let
D an adversary. Let the following game for all 1 6 j 6 ρ:

– Sampling The challenger jointly samples ω1,k ←W 1,k for 1 ≤ k ≤ ρ, η ∈ {0, 1}l .
– Helper string Generation and Drifting The challenger computes helper strings via "generation"

and "update" procedures.
• (Rk, P 1,k)← Gen(ω1,k)
• for 2 6 i 6 φ : P i,k ← Upd(ωi,k, P i−1,k).

– Distinguishing The advantage of D is

Adv(D) = Pr[D(R1, . . . , Rρ, {P i,k}i6φ,k6ρ) = 1]

− Pr[D(R0, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P i,k}i6φ,k6φ) = 1]
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(Gen, Upd, Rep) is ρ-reusable if for all D ∈ Dssec , the advantage is at most εsec.

Taking φ = 1 leads to the reusability game of classic FEs (Definition 3) while taking ρ = 1 leads to
the adaptive fuzzy extractor game (Definition 8).

5 From reusable Fuzzy Extractors to reusable Adaptive Fuzzy Extractors

To obtain a reusable AFE, the computed helper strings should not leak information about the user’s
fuzzy secret(s). To address this we use a RFE (that may be instantiated using an RPI). Most FEs
recover an extracted R from ω′ as long as this latter is close enough to the enrollment value ω. To
continuously recover a key in spite of fingerprint derivation, the key idea is to generate a random
stable key R that will be locked under keys with shorter lifespan. The temporary keys will be the
ones outputted by the (non adaptive) RFE.

We use a symmetric encryption scheme (Enc, Dec). The notion of security we require is the
"find-then-guess" chosen plaintext attack (FTG-CPA) security due to Bellare et al. [3]. This notion
is analogous to public key CPA security and defines an encryption oracle (Oencrypt) since one cannot
encrypt messages on its own in the private key paradigm.
Let a challenger C with secret key k. Adversary D queries
encryptions of its choice to Oencrypt. At some point, he sends
m0,m1 to C that will encrypt mb. D is asked to recover b.
(Enc, Dec) is said to be (εCPA, sCPA)-hard if for all D ∈
DsCPA , AdvFTG-CPA

C,D (λ)
def
= Pr[D(ExpFTG-CPA-1

C,D (λ)) = 1] −
Pr[D(ExpFTG-CPA-0

C,D (λ)) = 1] 6 εCPA.

Experiment ExpFTG-CPA-b
C,D (λ)

1.(m0,m1)← D(Oencrypt(k,.))
2.cb ← Enc(k,mb)

3.b′ ← D(cb : Oencrypt(k,.))
4.Return b′.

Let Enc, Dec be a (εCPA, sCPA)-FTG-CPA secure and let (Gen′u,Rep
′
u) be a (M,W, `, u, δFE)-

RFE that is (2ρ · φ, εFE , sFE) reusable. We assume that Gen′ can be instantiated with distance u
or t and this does not effect reusability. Figure 5 depicts how to design a reusable AFE out of these
tools.

5.1 Generation procedure

Given an enrollment value ω, Gen’u of the RFE correcting u errors will then be applied to produce
Ku and Gen’t to produce Kt. The key Ku will be used to detect if a fingerprint still belongs to the
updating zone while the second one will be used to lock the randomly generated stable key R. In
addition to helper strings, the overall helper string of our AFE contains encryptions of “1” and of
R, respectively under Ku and Kt.

5.2 Update procedure

The update procedure takes as inputs a fuzzy version ω′ and some helper data P ∈ {0, 1}∗ to be
updated into P ′. The first step rederivesKu andKt. Successful decryption of cu underKu indicates
that ω′ is within distance u. If so, R can be unlocked. Gen’ then computes new temporary keys K ′u
and K ′t along with new helper strings. R is finally re-encrypted under K ′t.
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Generation procedure Gen
Input: ω ∈M1.

1. Use a reusable FE
(Ku, Qu)← Gen′u(ω).
(Kt, Qt)← Gen′t(ω).

2. Generate Key

R
$← {0, 1}l.

3. Generate Helper Data
cu = Enc(Ku, 1),
ct = Enc(Kt, R),

Set P = (Qu, cu), (Qt, ct).
Return (R,P ).

Update procedure Upd
Inputs: ω′ ∈M1, P ∈ {0, 1}∗.

1. Check Fingerprint
Parse P = (Qu, cu), (Qt, ct).
Ku ← Rep’(ω′, Qu).
Kt ← Rep’(ω′, Qt).
b← Dec(Ku, cu)

If b 6= 1, return ⊥.
R← Dec(Kt, ct).

2. Regenerate Helper Data
(K′u, Q

′
u)← Gen′u(ω

′).
(K′t, Q

′
t)← Gen′t(ω

′).
c′u = Enc(K′u, 1),
c′t = Enc(K′t, R).

3. Set P ′ = (Q′u, c
′
u), (Q

′
t, c
′
t).

Return P ′.

Reproduction Procedure Rep
Inputs: ω′ ∈M1, P ∈ {0, 1}∗.

1. Parse Helper Data
Parse P = (Pu, cu), (Pt, ct).

2. Reproduce Key
Kt ← Rep’(ω′, Pt).
R← Dec(Kt, ct).

Return R.

Fig. 5. Generation, Update, and Reproduce procedures

5.3 Reproduction procedure

The reproduction procedure is straightforward. Taking as inputs ω′ and some P , Rep’t recovers Kt

which enables to finally unlock R. We defer analysis to Appendix B.

Theorem 3. Figure 5 defines a (M1,W, `, u, t, φ, δ)-AFE that is (εsec, ssec) hard and ρ-reusable
for ε = 2φ(εCPA + εFE), ssec = min{sCPA, sFE}, δ = 2ρδFE .

Remark 1. 2.ρ.φ reusability for a RPI means that there exists 2.ρ.φ balls of radius t that lead (or
have led during a certain period of time) to a successful authentication. Parameters have to be chosen
so that such values remain very unlikely to be randomly predicted by any adversary. Recall that each
of these balls is usually of exponential size in the distance parameter (either u or t).

6 Conclusion and Future Works

We show the first reusable fuzzy extractor for the set difference metric. Our construction is also
the first reusable fuzzy extractor handling a linear error rate that makes no assumption about how
repeated readings are correlated.

Our set difference-based solution is an instantiation of a general framework in which we propose
to randomize fuzzy secrets before applying fuzzy extractors. Since fuzzy secrets may come from
correlated distributions, the idea is to decorrelate them while preserving entropy and distances: we
introduced the concept of Reusable Pseudoentropic Isometries (RPIs) for such a purpose. We then
designed Reusable Fuzzy Extractors out of any efficient nonreusable Fuzzy Extractors and RPIs.
We use digital lockers to construct a RPI for the set difference metric.

We also propose the notion of Adaptive Fuzzy Extractors, which make sense for sources that
drift over time including device and browser fingerprints. Device fingerprinting is an expanding
field for which values (e.g. favorite songs, installed applications, plug-ins, general settings, fonts,
. . . ) often appear in the form of lists with elements coming from a big universe. Adaptive Fuzzy
Extractors are meant to capture these variations while still enabling generation of a long-term stable
key. We also construct a set difference adaptive fuzzy extractor out of a reusable fuzzy extractor and
a symmetric encryption scheme.
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A Proof of Lemma 1

Proof (Proof of Lemma 1). Suppose not, that is suppose that there exists some D of size at most
s such that δs((R,P, V ), (Ul, P, V )) > ε. Let Xv be a set of distributions giving rise to a joint
distribution such that H̃∞(X|V ) ≥ m2. Consider a D1 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Output D(γ, ν, β).

Also consider a D2 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Sample random string u← U`.
4. Output D(u, ν, β).

Denote R′, P ′ ← Gen′(X). By the triangle inequality we have the following:

δD1((U, V ), (X,V )) + δD2((U, V ), (X,V ))

= δD((R,P, V ), (R′, P ′, V )) + δD((U`, P, V ), (U`, P
′, V ))

≥ δD((R,P, V ), (U`, P, V ))− δD((U`, P ′, V ), (R′, P ′, V ))

≥ ε− εFE = 2εRPI
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Thus, either D1 or D2 distinguishes U, V from X,V with advantage at least εRPI . Either of these
distinguishers contradict the HILL entropy of U, V . This completes the proof of Lemma 1.

B Proof of Theorem 3

Proof. Correctness is straightforward. Once again, we separate pseudorandomness and reusability
to deal with security. We begin by recalling that FTG-CPA security ensures that an adversary with
an encryption oracle cannot distinguish between encryptions of two chosen messages.

Pseudorandomness As exhibited by following games, pseudrandomness of R comes from security
of the encryption scheme (Enc,Dec).

G0 C samples ω $← W where W is a distribution fromW . He then generates (R,P ) ← Gen(w)
as prescribed in Figure 5. C gives (R,P ) to D.

G1 In the previous game,D is givenR and P = (Qu, cu, Qt, ct). The only parts of P that are related

to R are ct and Qt. Now, C samples some µ $← {0, 1}l and computes c∗ = Enc(Kt, µ). C sets
P ∗ = (Qu, cu, Qt, c

∗) and sends (R,P ∗). IfD can distinguish this game from the previous one,
he can in particular distinguish (R, c∗t = Enc(Kt, R)) from (R, c∗ = Enc(Kt, µ)). By Lemma
1,Kt is εFE close to uniform. By FTG-CPA security of (Enc, Dec), G1 is indistinguishable from
G0 for ε = εFE + εCPA and s = min{sCPA, sFE}.

G2 In the previous game, D is given R and P ∗ = (Qu, cu, Qt, c
∗). In this game C samples η $←

{0, 1}l and gives (η, P ∗) to D. Since R and P ∗ are independent, this game is the same as the
previous one to D’s view.

G3 In the previous game, D was given η and P ∗ = (Qu, cu, Qt, c
∗). C now replaces c∗ with the

actual values, independent of η, by the same reasoning as in G1. This indistinguishability holds
for ε = εFE + εCPA and s = min{sCPA, sFE}.

By transitivity, G4 is indistinguishable from G0 which leads to the indistinguishability required by
Definition 8 for ε = 2(εFE + εCPA) and s = min{sCPA, sFE}.

Reusability In the previous argument we first replaced the ciphertext, the key R, and reverted back
the ciphertext. Our strategy here is the same but it involves a hybrid argument where each update
for a single enrollment has those values replaced. This leads to slightly worse parameters but the
same overall structure.

Let W 1,1, . . . ,W φ,1,W 1,2, . . . ,W φ,ρ be correlated distributions over M1, where W i,k ∈ W
for all i, k. Consider some fixed 1 ≤ j ≤ ρ. The following games consists in a challenger C trying
to fool D.

G0 C honestly samples values as prescribed in Definition 3 and sends

(R1, P 1,1, . . . , P φ,1), . . . , (Rj , P 1,j , . . . , P φ,j), . . . , (Rρ, P 1,ρ, . . . , P φ,ρ)

to D. Throughout this argument we will not modify Ri or P k,i for any i 6= j. Thus, we write
this expression (reordering variables) as

(R−j , P−j , Rj , P 1,j , ..., P φ,j).

For all i, k, P i,k can be written P i,k = (Qi,ku , ci,ku , Qi,kt , ci,kt ) as specified in Figure 5.
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G1,...,φ At this point we replace the encrypted value c∗,i,j one by one with random values. As in the
pseudorandomness argument each game is indistinguishable for ε = εCPA + εFE and s =
min{sCPA, sFE}.

Gφ+1 The key R is now replaced with a random η. Since R and the modified P are independent this
game is statistically identical to the previous game.

Gφ+2,...,2φ+1 In each of these games a single value c∗,i,jt is replaced with the actual values which are in-
dependent of η. Each game is indistinguishable from the previous for ε = εCPA + εFE and
s = min{sCPA, sFE}.

By transitivity, this last game G2φ+1 is indistinguishable from G0 for εsec = 2φ(εCPA + εFE) and
s = min{sCPA, sFE}.
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