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Abstract. A fuzzy extractor (Dodis et al., Eurocrypt 2004) is a pair of procedures that turns a noisy
secret into a uniformly distributed key R. To eliminate noise, the generation procedure takes as input an
enrollment value ω and outputsR and a helper string P that enables further reproduction ofR from some
close reading ω′.
Boyen immediately highlighted the need for reusable fuzzy extractors (CCS 2004) that remain secure
even when numerous calls to the generation procedure are made on a user’s noisy secret. Boyen proved
that any information-theoretically secure reusable fuzzy extractor is subject to strong limitations. In sub-
sequent work, Simoens et al. (IEEE S&P, 2009) showed that reusability was indeed a practical vulner-
ability. More recently, Canetti et al. (Eurocrypt 2016) proposed moving to computational security and
constructed a computationally secure reusable fuzzy extractor for the Hamming metric that corrects a
sublinear fraction of errors.
We propose a generic approach to building reusable fuzzy extractors where the main idea is to separate
the reusability property from the key recovery. To do so, we define a new primitive called a reusable
pseudoentropic isometry that projects an input metric space in a distance-and-entropy-preserving manner
even if applied multiple times. Generation of multiple randomized secrets Ωs via such a tool does not
reveal information about the original fuzzy secret ω and can be used to “decorrelate” noisy versions of ω.
We show that building a reusable fuzzy extractor from a reusable pseudoentropic isometry is straightfor-
ward by 1) randomizing the noisy secret ω into Ω and 2) applying a traditional fuzzy extractor to derive
a secret key from Ω.
To show the promise of our framework, we propose instantiations that handle the set difference and Ham-
ming metrics. The first one is an original construction based on composable digital lockers (Canetti and
Dakdouk, Eurocrypt 2008) yielding the first reusable fuzzy extractor that corrects a linear fraction of
errors. For the second one, we show that Construction 2 proposed by Canetti et al. in Eurocrypt 2016
(Section 5.1) can be seen as an instantiation of our framework. In both cases, the pseudoentropic isome-
try’s reusability requires noisy secrets distributions to have entropy in each symbol of the alphabet.
At last, we describe two practical solutions that reap benefits of our results while dealing with the afore-
mentioned limitation.

1 Introduction

Cryptography relies on uniformly distributed and reproducible long-term secrets to perform au-
thentication or derive keys. Numerous high entropy randomness sources exist, such as biometrics
and human-generated data [20,33], Physically Unclonable Functions (PUFs) [46] and quantum in-
formation [8]. Both PUFs and biometrics demonstrate errors that prevent stable cryptographic key
generation.
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Randomness sources A PUF is a physical entity that is easy to evaluate but hard to predict. Unique
by manufacturing process, PUFs are used to implement challenge-response authentication. Re-
cently, researchers have attacked PUFs, creating software models for the PUF behavior [48,49].
These attacks can be avoided by first deriving stable cryptographic key from the PUF output and
then creating a challenge response protocol using a function of this key.

Biometrics are unique characteristics of individuals based on either biological or behavioral
characteristics. Biometrics are evaluated by their uniqueness, collectability and permanence [32].
Unlike passwords, biometrics suffer inevitable but minor variations. These variations are assumed
to correspond to a bounded distance between repeated readings according to some metric. Dodis et
al. [22] stated that Hamming distance looks like the "most natural metric to consider" [16,22,34].
However, with the exception of iris [14], set distance better suits concrete cases such as biometric
matchers (e.g. digital fingerprints) or even the more exotic movie lover’s problem [33]. Typical
systems create a template reading from an initial reading; subsequent readings are directly compared
to this initial template. These templates have privacy concerns [47,51], in the worst case a matching
biometric can be reverse engineered from the template [27].

1.1 Fuzzy Extractors

Information reconciliation [8] enables retrieving identical values from noisy data. Privacy amplifi-
cation [8] converts values with entropy into uniform random strings. Fuzzy Extractors (FEs) [22]4,
are a pair of non-interactive algorithms (Gen, Rep) that simultaneously perform information rec-
onciliation and privacy amplification. The algorithm Gen, used at enrollment, takes input ω from
an entropy source and outputs a uniformly distributed key R and some public helper string P . The
algorithm Rep takes P and ω′ and reproduces the secret key R as long as ω′ is close enough to
ω relatively to the distance metric, say d(ω, ω′) ≤ t. FEs exist with security against information-
theoretic [21] or computational adversaries [26].

Metrics Dodis et al. proposed FE constructions for the Hamming, set difference and edit metrics
drawing on prior work [34,33]. We focus on the set difference metric: inputs ω are subsets of size
s of a universe U whose cardinality is n. For this metric, Dodis et al. distinguished two settings,
referred to as the small and large universe settings. Let s be some security parameter. In the former
case, we have that n = poly(s) while in the latter one n is superpolynomial in s. The large universe
setting occurs in practice. For example, consider a list of book titles or a list of movies (movie
lover’s problem due to [33]). The small universe setting benefits from a reduction to the Hamming
metric, referred to as the bin-set equivalence (described in Section 2). We concentrate on the large
universe setting where this transform is not applicable.

Reusability Boyen stated the need for reusable fuzzy extractors [13] for which numerous helper
strings P j from a user’s fuzzy secret do not impact user’s security. Boyen showed that information-
theoretic FEs must leak substantial information about ω when numerous calls to Gen are made.
On the positive side, Boyen demonstrated reusable security when the exclusive OR of the user’s
fuzzy secrets reveal no sensitive information. This is a restrictive class of correlations; we have no
evidence that practical sources obey this condition. Subsequent works showed that existing FEs are
not reusable in practice [10,50].

4 In the following, we will refer to the journal version [21].
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Recently, Canetti et al. [16] constructed a reusable fuzzy extractor (RFE) that makes no assump-
tion about how repeating readings are correlated. It works for the Hamming distance and provides
security against computationally bounded adversaries. It uses a strong form of symmetric encryp-
tion, called digital lockers [15] (our construction also uses digital lockers but in a different way).

Their construction is secure for distributions with high entropy samples instead of global min-
entropy. This is in contrast to traditional constructions that only assume the source has min-entropy.
Their main binary construction can be extended through bin-set equivalence to an FE in the set
difference metric but only in the small universe setting. Their scheme only allows an error rate (t/n)
sublinear in n. Plus, Apon et al. [6] turned the learning-with-errors based FE of Fuller et al. [26]
into an RFE. Hence, their work inherits the relative inefficiency of the latter construction [26]; in
particular, it only corrects a sublinear number of errors.

Prior to this work, there were no known RFE correcting a linear error rate for any common
metric for arbitrary correlation between enrollments. Most biometrics demonstrate an error rate
between 10− 30%.

1.2 Strong Mobile Authentication

Companies are moving to multi-factor authentication (also called strong authentication), with fac-
tors falling in at least two of the following categories: knowledge ("what you know"), possession
("what you own") and inherence ("what you are") [3]. Mobile applications usually use possession
and knowledge factors to achieve strong authentication:

– Possession The ownership of the mobile device is often proved via a One Time Password (OTP)
sent by SMS. Once having received the OTP, the user enters it on the authentication web page
to prove that she indeed has the device in her possession.

– Knowledge A password chosen by the user.

Both of these means are subject to strong limitations. The SMS OTP is vulnerable to numerous
attacks (see [42] and references therein) and the SMS channel has been deprecated by authorities
such as NIST, which recommend to move to more secure means of authentication [45]. Human
memorable passwords do not achieve sufficient entropy, indeed, recent estimates place the password
entropy at 34 bits [35].

Alternative methods of authentication have emerged such as biometrics and PUFs, which could
respectively fulfill inherence and possession proofs. While these solutions have received attention in
the authentication literature, they rely on dedicated hardware sensors and components and, as such,
cannot be implemented using only software. This is problematic in the case of mobile authentication
as the availability of hardware components (e.g. biometric sensors) varies greatly between devices.
For example, a fingerprint reader can be available on some devices while on others its usage is
restricted to the operating system or even totally absent. All the above makes the design of a generic
authentication solution difficult.

1.3 New Trends for Mobile Authentication

With the goal of generality on mobile devices, the only solution seems to be harvesting software
collectable data. This line of research was initiated by Eckersley [23] who showed how to create
a fingerprint from characteristics of a web browser (user agent, list of fonts, list of plug-ins,. . . ).
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Servers use this data to detect returning browsers even when features have changed over time. Sub-
sequent studies [11,41,43,4] show such a system is deployable for personal computers. This research
naturally led to studying the practicability of using similar fingerprints on mobile devices.

While early mobile solutions were insufficient [38,18,19,54], recent work of Kurtz et al. pro-
vides a comprehensive analysis in the mobile setting [36]. On Apple’s iOS, they show how to
compute a device fingerprint using 29 different configuration features. Using a dataset of 13,000
fingerprints, they show that fingerprints are unique and allow detection of returning devices with an
accuracy of 97%. In their work, the list of installed applications and the top 50 songs are among the
most identifying values present on a device. These fingerprints are candidates to be an inherent au-
thentication factor. Many of these device fingerprints draw on features coming from large universes
with variation according to the set difference metric (e.g. songs, applications, . . . ).

The usage of device fingerprints and behavioral fingerprints, respectively as possession (of the
mobile device) and inherence factors enable strong authentication of a user. Device fingerprints can
be constructed from the following values:

– IMEI (International Mobile Equipment Identity) [53] This value is 15 digits long, the first ones
identifying the manufacturer while the 6 last digits are randomly chosen to produce a serial
number that identifies the device. The IMEI then carries more than 6 × log(10) ≈ 20 bits of
entropy.

– IMSI (International Mobile Subscriber Identity) [24] The IMSI’s first digits are specific to the
country and the mobile network, while the remaining 8 digits are randomly chosen. Based on
the latter, we can assume that the IMSI carries more than 8× log(10) ≈ 26 bits of entropy.

– AndroidID [28] The AndroidID is a 64 bits random number which used to be generated at the
device’s first boot and remain constant throughout its lifetime, enabling its identification. As of
Android 8, it is specific to an application and randomly generated at its installation.

This list is far from being exhaustive, other values could also be used such as the device’s
Wifi and Bluetooth MAC addresses, the battery’s serial number, etc. While these values are static,
looking ahead, in our solution we seek to tie the possession and inherence factors, necessitating
noise tolerance even if we use some static values. Behavioral sources include the following:

– Apps The user’s applications list [5,36].
– Music The user’s most listened to songs [5,36].
– Contacts The user’s favorite contacts. The most common first name in the United States is

‘James’ [2] with a frequency of 3.318% which yields an approximate min-entropy of− log(3.318×
10−2) ≈ 5 bits. The first name of the top 20 contacts list has a min-entropy of around 100 bits.

– TopNetworks The Wi-Fi networks with the strongest signal at given time and given location.
More precisely, the n strongest networks -whose main identifiers are the service set identifiers
(SSIDs) and the basic service set identifiers (BSSIDs) define a kind of trusted place (e.g. the
user’s home or workplace). Alternatively we also consider RegSSID, the SSIDs of Wifi networks
already registered on the device.

Discussion These authentication factors do not require user interaction, contrary to passwords and
SMS OTP. This improves user experience which is critical in some use cases (e.g. mobile payment
applications).

However, some of these values may require specific permissions to be available. Other appli-
cations may ask for the same permissions, hence, malevolent ones may gain access to some of the
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above mentioned values. Yet, such applications are steadily and more and more efficiently hunted
and removed from the Play Store [29]. Users are more and more conscious of permissions and
privacy issues and grant permissions sparingly [37].

1.4 Our contributions

Secure sketches [21], which will be introduced later, are often used to build FEs. Both FEs and
secure sketches are meant to recover a secret value from noisy inputs, the recovered value being
either the noisy secret itself or an extracted cryptographic key. In both cases, noise elimination is
performed using some helper data which leaks information.

FEs are mainly based on information-theoretic secure sketches and as such, prone to reusability
issues [50,10]. Fuller et al. showed that computationally secure sketches are subject to many of
the same limitations [26, Theorem 3.6]. To circumvent these negative results, we propose a new
framework to achieve FE reusability. The main idea is to separate the task of reusability from the
task of noise elimination. Our contributions are as follows:

1. We define a formal framework to turn any traditional fuzzy extractor into a reusable one:

(a) We introduce a randomization stage captured by a new primitive we call a pseudoentropic
isometry (PI). Informally, a PI pseudorandomly projects fuzzy secrets while maintaining
distances between two noisy readings and entropy of the original secret. To be reusable, a
PI must generate ρ uncorrelated values Ω1, . . . , Ωρ from ρ enrollments values ω1, . . . , ωρ

drawn from the fuzzy secret ω. The reusability property is then defined as long as each Ωj0

carries sufficient entropy even in presence of other Ωjs (j0 6= j). Reusable pseudoentropic
isometries (RPIs), contrary to both FEs and secure sketches, do not perform any form of
error correction and are not subject to many bounds from coding theory.

(b) We show that combining an RPI and a traditional FE yields an RFE.

2. We propose two instantiations of our framework. The first one is an original construction with
an RPI based on digital lockers [15]. This RPI allows us to design the first reusable FE for linear
error rates. This construction applies for the set difference metric in the large universe setting
and proceeds as follows for each element of the input set:
(a) We sample a random point in a new metric space,
(b) We lock the random point using the element of the input set as the key,
When Rep is run, the fraction of unlockable points is the same as the overlap between the sets.
This construction does no error-correction, it projects “randomly” while preserving distance,
the actual fuzzy extractor is applied afterward. We also show that Construction 2 of Canetti et
al. [16, Section 5.1] based on Hamming distance does fit our framework. Both instantiations
require sources with superlogarithmic entropy (in each alphabet symbol) to achieve reusability.

3. Based on the widespread availability of entropy on mobile devices (Subsection 1.3), we describe
two applications to securely instantiate our set-difference RFE.

2 Preliminaries

Notation log denotes the base 2 logarithm. GF (n) denotes the finite field of n elements. x← f(.)
denotes that x is an output of a function f . If f is randomized, we use the semicolon to make the
randomness explicit. f(x;µ) is the result of f computed on x with randomness µ.
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For any entity E , we denote by E(z) the fact that E has knowledge of z. U` denotes the uniformly
distributed random variable on {0, 1}l. For a distinguisher D (or a class of distinguishers D), we
write the computational distance between X and Y as δD(X,Y ) = |E[D(X)] − E[D(Y )]|. Dssec

denotes the class of randomized circuits which output a single bit and have size at most ssec. Let
λ denote a security parameter. We denote the following security parameters l = l(λ), κ = κ(λ),
m = m(λ), m1 = m1(λ),m2 = m2(λ), ssec = poly(λ) and εsec = negl(λ).

A metric space is a finite set M equipped with a distance d : M ×M → N fulfilling the
properties of symmetry, triangle inequality and zero distance between equal points.

2.1 Background

Set Difference Metric LetM consist of all subsets of a universe U whose cardinality is n. For two

sets ω and ω′ belonging toM, their symmetric difference is defined as ω∆ω′
def
= {x ∈ ω ∪ ω′|x /∈

ω ∩ ω′}. Symmetric difference is a metric that we denote by d.
Dodis et al. [22] noted the bin-set equivalence: if ω denotes a set, it can be viewed a binary

vector in {0, 1}n, with 1 at position x if x ∈ ω, and 0 otherwise. Viewed in this way, set difference
can be expressed as Hamming distance between these associated vectors. This transform is not
efficient when the universe size n is superpolynomial.

Entropy Notions Entropy specifies the amount of information contained in some data. In security-
related contexts, we care about how well an adversary can guess the value of a random variable.
In the information-theoretic case, we rely on the notion of min-entropy. A random variable A has
min-entropy m, denoted H∞(A) = m, if A has predictability 2−m i.e. maxa Pr [A = a] = 2−m.

Put another way, we have H∞(A)
def
= − log(maxa∈A P [A = a]). The average min-entropy of A

given B is:
H̃∞(A|B) def

= − log(Eb∈BmaxaPr[A = a|B = b]).

HILL entropy is a commonly used computational notion of entropy [30]. It was extended to the
conditional case by Hsiao, Lu, and Reyzin [31].

Definition 1. Let (W,S) be a pair of random variables.W has HILL entropy at least k conditioned
on S, denoted HHILL

εsec,ssec
(W |S) ≥ k if there exists a collection of distributions Xs giving rise to joint

distribution (X,S), such that H̃∞(X|S) ≥ k and δDssec ((W,S), (X,S)) ≤ εsec.

Fuzzy Extractors The original definition of FEs, due to Dodis et al. [21], was information-theory
based. We focus on the computational definition introduced by Fuller et al. [26]. They extend their
definition to an explicit family of distributions and we adopt this convention.

Definition 2 (Fuzzy Extractor). A pair of randomized procedures "generate" (Gen) and "repro-
duce" (Rep) is a (M,W, l, t, δ)-computational fuzzy extractor that is (εsec, ssec)-hard if Gen and
Rep satisfy the following properties:

– Gen on input ω ∈M outputs an extracted string R ∈ {0, 1}l and a helper string P ∈ {0, 1}∗.
– Rep takes an element ω′ ∈M and a bit string P ∈ {0, 1}∗ as inputs.
– Correctness: if d(ω, ω′) ≤ t and (R,P )← Gen(ω), then Pr[Rep(ω′, P ) = R] ≥ 1− δ where

the probability is over the coins of Gen and Rep.
– Security: for any W ∈ W onM, R|P is pseudorandom i.e. δssec((R,P ), (Ul, P )) ≤ εsec.
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Dodis et al. also define average-case FEs for which the security property requires that for any auxil-
iary variable I , ((R,P, I), (Ul, P, I)) appear indistinguishable. We also consider FEs that are secure
for all distributions of (average) min-entropy m, in this case we replaceW with the parameter m.

Dodis et al. designed FEs based on three different metrics which are Hamming, set difference
and edit distances. All their constructions rely on secure sketches. Such a primitive is a pair of
procedures (SS, Rec) where, the “sketch” procedure SS takes in ω and outputs a public string
P . Later given ω′ and P , procedure Rec recovers ω as long as ω′ is close to ω. Coupled with an
average-case extractor, Dodis et al. design FEs out of such a primitive. Since P enables to recover
ω from ω′, it necessarily leads to what the authors define as entropy loss.

Reusable Fuzzy Extractor RFEs [13] allow multiple calls to Gen on the noisy readings of ω
while retaining security. Consider ρ readings ω1, . . . , ωρ of the same fuzzy secret from which the
user will be enrolled on ρ different authentication servers. Gen independently generates ρ pairs
(R1, P 1), . . . , (Rρ, P ρ) where (Rj , P j) ← Gen(ωj). Canetti et al. [16] proposed a security model
where a given Rj0 is secure even if all P j and all other Rjs (for j 6= j0) are given to an adversary.

Definition 3 (Reusable Fuzzy Extractor [16]). Let (Gen,Rep) be a (M,W, l, t)-FE that is (εsec,
ssec)-hard and W 1,W 2, . . . ,W ρ be ρ correlated random variables overM where W j ∈ W for all
1 ≤ j ≤ ρ. Let D be an adversary. Define the following game for all j = 1, . . . , ρ:

– Sampling The challenger C samples ωj ←W j for all j and η $← {0, 1}l.
– Generation C computes (Rj , P j)← Gen(ωj) for all j.
– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(R1, . . . , Rρ, {P j}16j6ρ) = 1]

−Pr[D(R1, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P j}16j6ρ) = 1]

(Gen,Rep) is (εsec, ρ, ssec)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, Adv(D) ≤ εsec.

2.2 Tools

Digital Lockers Digital lockers are secure symmetric encryption schemes that retain security even
when used multiple times with correlated and nonuniform keys [17]. An incorrect key can also
be recognized with high probability. We use notation c = lock(key, val) for the algorithm that
performs the locking of the value val using key, and unlock(key, c) for the algorithm that performs
the unlocking (which will output val if key is correct and ⊥ with high probability otherwise).

Digital lockers can be easily constructed in the random oracle (see Lynn, Prabhakaran, and
Sahai [39, Section 4]). Bitansky and Canetti [9], building on the work of [15,17], show how to obtain
composable digital lockers based on a strong version of the Decisional Diffie-Hellman assumption
without random oracles.

The security of digital lockers is defined via virtual-grey-box simulatability [9], a simulator is al-
lowed unbounded running time but only a bounded number of queries to an ideal locker. Intuitively,
the definition says if the keys to the ideal locker are hard to guess, the simulator will not be able to
unlock the ideal locker and thus neither will the real adversary. Formally, let idealUnlock(key, val)
be the oracle that returns val when given key, and ⊥ otherwise.

Definition 4 (Digital Lockers). The pair of algorithm (lock, unlock) with security parameter λ is
an `-composable secure digital locker with error γ if the following hold:
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– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1 − γ. Furthermore,
for any key′ 6= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1− γ.

– Security For every PPT adversary A and every positive polynomial p, there exists a (possi-
bly inefficient) simulator S and a polynomial q(λ) such that for any sufficiently large s, any
polynomially-long sequence of values (vali, keyi) for i = 1, . . . , `, and any auxiliary input
z ∈ {0, 1}∗,∣∣∣Pr [A(z, {lock (keyi, vali)}`i=1

)
= 1
]
− Pr

[
S
(
z, {|keyi|, |vali|}

`
i=1

)
= 1
]∣∣∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi, vali)}`i=1 .

Point Functions Canetti et al.’s construction for large alphabets [16, Section 5.1] uses a weaker
primitive called an obfuscated point function. This primitive can be viewed as a digital locker with-
out a plaintext: it outputs 1 if the key is correct, 0 otherwise. Such a function can be constructed
from the above mentioned digital locker with a single possible plaintext, or from a strong ver-
sion of the Decisional Diffie-Hellman assumption [14]. We use notation c = lockPoint(key) and
unlockPoint(key, c). Point functions security is defined the same way as for digital lockers with a
fixed plaintext.

3 Reusability Framework

In this section, we present a new and generic way to address reusability. Reusable fuzzy extractors
combine entropy extraction and error-correction with reusability property, we propose addressing
them separately. The key idea is to randomize the fuzzy secrets before applying a nonreusable FE
(that will do key recovery and error correction) on the unrelated projected values, hence handling
the reusability property beforehand. We note that splitting entropy extraction and error-correction
already exists for fuzzy extractors, with a secure sketch performing error correction and a random-
ness extractor [44] performing entropy extraction.

This randomization stage is performed by a pseudoentropic isometry (Def 5), a new primitive
projecting fuzzy secrets while maintaining distances and entropy of the original noisy secret. To
be reusable, a PI must be able to generate ρ uncorrelated values Ω1, . . . , Ωρ from ρ enrollments
values ω1, . . . , ωρ drawn from the fuzzy secret ω. The reusability property (Def 6) says that each
Ωj0 carries sufficient entropy with respect to an adversary who knows Ωjs (j0 6= j). Following
this randomization stage, we can apply a traditional FE on the uncorrelated randomized values Ωjs.
This idea is depicted in Figure 1.

Within this framework, the FE is always applied on unrelated values Ωjs. Even when re-
enrolling a fingerprint ω, the generated helper values P js only yield information on the decorrelated
values Ωjs and not on the original noisy secret. Thus, the combination of an RPI with a traditional,
nonreusable, FE yields an RFE.

3.1 Definitions

Pseudoentropic Isometries A PI is a pair (RPIGen, RPIRep) defined as follows.

Definition 5 (Pseudoentropic isometry). Let (M1, d1) and (M2, d2) be two metric spaces. A
(M1,M2,W,m2, εsec, ssec, δ)-pseudoentropic isometry is a pair of randomized procedures (RPI-
Gen, RPIRep) with the following properties:
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Fig. 1. Overview of reusability framework

1. RPIGen on ω ∈M1 outputs Ω ∈M2 and F ∈ {0, 1}∗.
2. RPIRep takes an element ω′ ∈M1 and a bit string F ∈ {0, 1}∗ as inputs to output Ω′ ∈M2.
3. Correctness: if (Ω,F ) ← RPIGen(ω), then Pr[d2(Ω,Ω

′) ≤ d1(ω, ω
′)] ≥ 1 − δ. where the

probability is over the randomness of (RPIGen, RPIRep).
4. Security: for any distribution W ∈ W , for (U, V ) ← RPIGen(W ) we have HHILL

εsec,ssec
(U |V ) >

m2.

Security implies that HHILL(W |V ) > m2 with a slight loss in parameters as any adversary that can
recover W can use RPIRep to recover U .

Relation to other fuzzy extractor primitives This notion is related to biometric embeddings used
in [21]. A biometric embedding projects any fingerprint value into a metric space where an FE
exists while loosely maintaining distances. Furthermore, every (computational) secure sketch and
fuzzy extractor is a pseudoentropic isometry. This verifies the intuition that this object is weaker
than either a secure sketch or a fuzzy extractor.

On their own PIs are not novel (the identity function is a PI). A reusable pseudoentropic isometry
or RPI is the key to our approach. In an RPI the knowledge of previous derived values does not help
D to distinguish a random value from a newly derived projection obtained via RPIGen. Drawing
on the definition of reusability for FEs (Definition 3), we define an RPI as follows.

Definition 6 (RPI). Let W ∗ ∈ W be a distribution. Let W 1,W 2, . . . ,W ρ be ρ correlated random
variables overM1. Let D be an adversary. Using notation of Definition 5, we define the following
game for all j = 1, . . . , ρ:

– Sampling The challenger C jointly samples ωj ←W j . Then independently samples ω∗ $←W ∗.
– Generation C generates (Ωj , F j)← RPIGen(ωj) and (Ω∗, F ∗)← RPIGen(ω∗).
– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

−Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ) = 1]
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Generation procedure Gen
Input: ω ∈M1.
1. (Ω,F )← RPIGen(ω).
2. (R,Q)← Gen’(Ω).
3. Set P = (F,Q).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: ω′ ∈M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F,Q)
2. Ω′ ← RPIRep(ω′, F ).
3. R← Rep’(Ω′, Q).
4. Return R.

Fig. 2. A generic reusable FE

(RPIGen, RPIRep) is said to be ρ-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, the
advantage Adv(D) ≤ εsec.

Relation to other fuzzy extractor primitives Any (computational) reusable fuzzy extractor is a
reusable pseudoentropic isometry, confirming the intuition that this primitive is weaker. Reusable
secure sketches are defined with only the values F being available to the adversary (and not any
of Ωi). Thus, a reusable secure sketch does not imply a reusable pseudoentropic isometry. Fur-
thermore, the reusable secure sketch of Boyen [13] is not an RPI. Thus, these two notions seem
incomparable.

3.2 RPIs imply reusable fuzzy extractors

Let (Gen’, Rep’) denote a (average-case) nonreusable FE. The generation procedure Gen’ implic-
itly draws a ball B(ω, t) centered on its input ω where the radius t is the error tolerance of the FE.
Whenever a noisy reading ω′ is given to procedure Rep’, the secret key will be recovered as long as
ω′ belongs to B(ω, t).

To address reusability, we randomly project the ρ fuzzy versions of ω onto unrelated values
so that each of these latter retains original entropy independently of others. By using a ρ-RPI, the
user gets unrelated values Ω1, . . . , Ωρ that will be each enrolled once, respectively toward servers
1, . . . , ρ. Now whenever she wants to authenticate herself toward server j from ω′, the user uses the
aforesaid RPI to get Ω′j (where d(Ωj , Ω′j) ≤ d(ω, ω′)).

Let (RPIGen, RPIRep) be a ρ-RPI fromM1 toM2. Let (Gen’, Rep’) be an average-case FE
over M2 correcting t errors. The generation procedure Gen will first call RPIGen to randomize
the input ω into Ω. The nonreusable FE is then applied on Ω. The RPI ensures that d2(Ω,Ω′) ≤
d1(ω, ω

′) while the correctness of the underlying nonreusable FE ensures that Rep’ recoversR from
Ω′ and the associated helper string as long as d2(Ω,Ω′) 6 t. Overall this leads to recovering R as
long as d1(ω, ω′) 6 t.

Theorem 1. Let (RPIGen, RPIRep) be a (M1,M2,W,m2, εRPI, sRPI, δRPI)-RPI that is ρ-reusable
and (Gen’, Rep’) be an average-case (M2,m2, l, t, δFE)-FE that is (εFE, sFE)-hard. Then Figure 2
defines a (M1,W, l, t, δRPI + δFE)-FE that is (ρ, εsec, ssec)-reusable for εsec = 4εRPI + εFE and
ssec = min{sRPI − |Gen′|, sFE}.

Proof. The correctness is straightforward and follows from aforesaid explanations. To ensure secu-
rity, we first show that R appears pseudorandom even in presence of P and then treat reusability.

Under notation of Definition 5, we have thatΩ and F respectively come from distribution U and
V such as HHILL

εRPI,sRPI
(U |V ) > m2. We first show that FEs work on distributions with HILL entropy.

The proof is delayed until Appendix A.
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Lemma 1. Let U, V be a joint distribution where HHILL
εRPI,sRPI

(U |V ) > m2 and let (Gen’, Rep’) be
an average-case (M2,m2, l, t)-FE that is (εFE, sFE)-hard. Define R,P ← Gen′(U), then

δDs((R,P, V ), (Ul, P, V )) 6 ε.

for ε = 2εRPI + εFE and s = min{sRPI, sFE}.

Lemma 1 allows us to conclude that δDs((R,Q, F ), (Ul, Q, F )) 6 ε. That is,

δDs((R,P ), (Ul, P )) 6 ε

for P = (F,Q), and aforesaid parameters ε = 2εRPI + εFE, s = min{sRPI, sFE}.

Reusability Let W 1, . . . ,W ρ be correlated distributions overM1, where W j ∈ W for all j. The
following games consist in a challenger C trying to fool D for some distinguished i0:

G0 C honestly samples values as prescribed in Definition 3 and sends

(R1, F 1, Q1), . . . , (Ri0 , F i0 , Qi0), . . . , (Rρ, F ρ, Qρ)

to D.
G1 In this game, there is one change compared to the previous one. C:

1. Samples the ωjs and then uses RPIGen to obtain (Ω1, F 1), . . . , (Ωρ, F ρ).
2. Replaces ωi0 with random ω∗ ←W ∗ (where W ∗ as prescribed in Definition 6).
3. Computes (Ω∗, F ∗)← RPIGen(ω∗) and (R∗, Q∗)← Gen’(Ω∗).
4. Sets P ∗ = (F i0 , Q∗).
5. Gives D the actual Rjs and P js except for j = i0 for which he receives (R∗, P ∗).

If D can distinguish this game from the previous one, he would then be able to distinguish the
distribution with Ωi0 from the one with Ω∗. This breaks the reusability of the RPI. That is, G1
appears indistinguishable from G0 for ε = εRPI and s = sRPI − |Gen′|.

G2 In this game, after computing (R∗, Q∗) ← Gen’(Ω∗), C discards the value R∗ and replaces it

with some η $← {0, 1}l randomly sampled. SinceHHILL
εRPI,sRPI

(Ω∗|F ∗) ≥ m2 thenHHILL
εRPI,sRPI

(Ω∗|F i0)
≥ m2. Thus by Lemma 1, (Ul, P ∗) and (R∗, P ∗) are computationally indistinguishable. Hence,
this game is indistinguishable from the previous one for ε = 2εRPI+εFE and s = min{sRPI, sFE}.

G3 In the previous game,D was given (R1, F 1, Q1), . . . , (η, F i0 , Q∗), . . . , (Rρ, F ρ, Qρ) where η is
random and does not depend on P ∗. In this game, C sends the actualQi0 (obtained via computed
Gen’(Ωi0) instead of Q∗.
If D can distinguish that Qi0 has been given instead of Q∗ (obtained via computed Gen′(Ω∗),
he can in particular distinguish Ωi0 from Ω∗. Hence, he can distinguish

(Ω1, . . . , Ωi0 , . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ)

from
(Ω1, . . . , Ωi0−1, Ω∗, Ωi0+1, . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ).

This contradicts the reusability of the RPI. Thus, G3 is indistinguishable from G2 for ε = εRPI
and s = sRPI − |Gen′|.

In G3, D is given (R1, P 1), . . . , (η, P i0), . . . , (Rρ, P ρ) where η is randomly sampled. By transitiv-
ity, this latter game is indistinguishable from G0 . Indistinguishability between G0 and G3 satisfies
the requirements of Definition 3.
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4 Instantiating the framework

We propose two instantiations of the above mentioned framework, the first one for the set difference
metric and the second one for the Hamming distance.

4.1 Set Difference-based Instantiation

Environment and Notation Set difference based FEs in [21] take as inputs subsets of a universe U
with n = |U|. We denote (MU , d), the metric spaceMU consisting of all the subsets of U with the
set difference metric d. LetMU ,s denote the restriction ofMU to s-elements subsets.Mκ denotes
(GF (2κ), d) equipped with the set difference metric d. SimilarlyMκ,s denotes the restriction to sets
of sizes s. Let W be a probability distribution over U with min-entropy m. We use digital lockers
to construct our set difference-based RPI. Our construction, presented in Figure 3, randomizes each
set element using a digital locker.

Algorithm RPIGen
Input: ω = {ω1, . . . , ωs},

∀1 6 i 6 s, ωi ∈ U .
1. For i = 1 . . . s,

xi
$←Mκ.

ci = lock(ωi, xi).
2. Set Ω = {x1, . . . , xs}

and c = c1, . . . , cs.
3. Return (c,Ω).

Algorithm RPIRep
Inputs: ω′ = {ω′1, . . . , ω′s},

c = c1, ..., cs.
1. n = s,
2. For i = 1 . . . s,

For j = 1 . . . n,
a. x′i ← unlock(ω′i, cj).

b. if x′i =⊥ ∧ j = n: x′i
$←Mκ.

c. else if x′i =⊥ ∧ j 6= n: continue.
d. else: remove cj ; n- -; break.

3. Set Ω′ = {x′1, . . . , x′s′}.
4. Return Ω′.

Fig. 3. A set difference-based RPI

It is possible to have a collision in step 2.a. of Algorithm RPIGen, however this occurs with
negligible probability (κ must be super-logarithmic for security). Step 2.b. of Algorithm RPIRep
adds additional elements to ensure that the output set is of size s. This step can be triggered if
there was a collision in RPIGen or if unlock outputs ⊥ in Step 2.a. The only time this makes
d(Ω,Ω′) ≥ d(ω, ω′) is when unlock outputs ⊥ when the two values actually match. Considering
the worst case scenario, where ω and ω′ are disjoint sets, we end up with s2 calls to the unlock
function. This construction is secure when each element of the input set has superlogarithmic min-
entropy.

Theorem 2. Let λ be a security parameter and let κ = ω(log λ). Let W be the set of all joint
distributions W1,W2, . . .Ws where, for any i 6 s, H(Wi) ≥ m. Let (lock, unlock) be a (s · ρ)-
composable digital locker with error δ. Then for any ssec = poly(λ) there exists a εsec = ngl(λ)
such that Figure 3 defines a (MU ,s,Mκ,W, s · κ, εsec, ssec, s

2 · δ)-RPI for the set difference metric
where m2 = κ · s for ε = q(q + 1)2−κ + q2−m2 = ngl(λ).

Our proof is similar in spirit to the proof of Canetti et al. [16]. We first prove a simpler proposition
that the construction is a PI and then consider reusability.
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Proposition 1. Let λ be a security parameter and let κ = ω(log λ). LetW be the set of all joint dis-
tributionsW1,W2, . . .Ws where, for any i 6 s,H(Wi) ≥ m. Let (lock, unlock) be a s-composable
digital locker with error δ. Then for any ssec = poly(λ) there exists a εsec = ngl(λ) such that Fig-
ure 3 defines a (MU ,s,Mκ,W, s · κ, εsec, ssec, s

2 · δ)-PI for the set difference metric.

Proof. We have to prove both isometric and security properties.
Isometry property. Ω is of size s. For any ωi = ω′i, if no digital locker outputs ⊥ then xi = x′i

and the total number of calls to function unlock is . Thus,

Pr[d(Ω,Ω′) ≤ d(ω, ω′)] ≥ 1− s2δ.

Security. Our goal is to show that for all ssec = poly(λ) there exists εsec = ngl(λ) such that
δDssec ((R,P ), (U,P )) ≤ εsec. Fix some polynomial ssec and let D be a distinguisher of size at
most ssec. We want to bound

|E[D(Ω,P )]− E[D(UMκ , P )]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negligible. That is, suppose that

there is some polynomial p(·) such that for all λ0 there exists some λ > λ0 such that

|E[D(Ω,P )]− E[D(UMκ , P )]| > 1/p(λ).

Note that λ is a function of λ0 but we omit this notation for the remainder of the proof. By the
security of digital lockers (Definition 4), there is a polynomial q and an unbounded time simulator
S (making at most q(λ) queries to the oracles {idealUnlock(ωi, xi)}si=1) such that∣∣∣E[D(Ω,C1, ..., Cs)]− E

[
S{idealUnlock(ωi,xi)}

s
i=1 (Ω, κ)

]∣∣∣ ≤ 1

3p(λ)
. (1)

The same is true if we replaced Ω above by an independent uniform random variable U overMκ.
We now prove the following lemma, which shows that S cannot distinguish between Ω and UMκ .

Lemma 2. Let U denote the uniform distribution overMκ. Then∣∣∣E [S{idealUnlock(ωi,xi)}si=1 (R, κ)
]
− E

[
S{idealUnlock(ωi,xi)}

s
i=1 (UMκ , κ)

] ∣∣∣ ≤ q(q + 1)

2m
≤ 1

3p(λ)
,

(2)

where q is the maximum number of queries S can make.

Proof. Fix any u ∈ Mκ (the lemma will follow by averaging over all u). Let Ω∗ be the correct
value of Ω. The only information that S can learn about whether the value is Ω∗ or u is through the
query responses. First, modify S slightly to quit immediately if it gets a response not equal to⊥ (we
assume such as soon as S gets back a non-⊥ response it distinguishes with probability 1). There are
q + 1 possible values for the view of S on a given input (q of those views consist of some number
of ⊥ responses followed by the first non-⊥ response, and one view has all q responses equal to ⊥).
By [21, Lemma 2.2b], H̃∞(Vi|V iew(S), {jik}) ≥ H̃∞(Vj |{jik})− log(q + 1) ≥ m− log(q + 1).
Therefore, at each query, the probability that S gets a non-⊥ answer is at most (q + 1)2−m. Since
there are q queries of S, the overall probability is at most q(q + 1)/2m. Then since 2m is ngl(λ),
there exists some λ such that for all λ > λ0, q(q + 1)/2m ≤ 1/(3p(λ)). This completes the proof
of Lemma 2.
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Adding together Equation 1, Equation 2, and Equation 1 in which Ω is replaced with UMκ , we
obtain that

δD((Ω,P ), (UMκ , P )) ≤
1

p(λ)
.

This is a contradiction and completes the proof of Proposition 1.

Reusability Reusability follows from the security of digital lockers. For each i ∈ {1, ..., ρ}, we
can treat the outputs Ω1, . . . , Ωi−1, Ωi+1, . . . , Ωρ as auxiliary input to the digital locker adversary.
The result follows by simulatability of this adversary, but requires additional composability from
the digital locker.

Corollary 1. Let λ be a security parameter and suppose there exists (lock, unlock) with that is `
composable for any ` = poly(λ) with error δ = ngl(λ). Using the RPI defined in Figure 3 for the
family W defined above one can construct a reusable FE for any ssec = poly(λ), ρ = poly(λ)
such that εsec = ngl(λ) and where t = Θ(n).

Discussion Our instantiation of an RPI for the set difference metric (large universe) allows construc-
tion of the first RFE correcting a linear error rate that makes no assumption about how individual
readings are correlated. The previous work of Boyen [13] assumed that the exclusive OR of two
repeated enrollments leaked no information. The recent work of Canetti et al. [16] only achieves a
sublinear error rate (and works for Hamming or set difference in the small universe setting).

The efficiency of our construction is bounded by the efficiency of digital lockers, we do not
expect the use of information-theoretic FEs to be a roadblock to practical efficiency. For example,
natural candidates to embed in our framework can be found in [21, Subsections 6.2, 6.3].

It is easy to adapt this construction to handle variable sizes. To do so, the RPIGen algorithm
needs to pad with random elements up to a maximal set size to hide the actual number of elements
in ω. If ω′ is not the same size as ω it suffices to loop over the size of ω′ in step 2 of RPIRep. Then,
one could couple this RPI with any nonreusable FE that can handle sets of variable sizes (see [21,
Subsection 6.3]) to obtain such an RFE.

4.2 Hamming Distance Instantiation

The work of Canetti et al. [16] presents three constructions of fuzzy extractors. They only claim
reusability for Construction 1. However, under certain conditions Construction 2 is reusable. Fur-
thermore, it implicitly uses the RPI framework, it first computes a map that preserves distance then
applies an error-correcting code.5

Adapted construction of Canetti et al. Let Z be an alphabet and let W = W1, ...,Ws be a distri-
bution over Zs. Let C ⊂ {0, 1}s a (t, δcode) Hamming error correcting code that corrects t errors.
Let (lockPoint, unlockPoint) be an s-composable secure obfuscated point function with error δ (for
keys over Z). The algorithms Gen,Rep are defined in Figure 4.

The construction in Figure 4 does not produce a uniformly random r, it is necessary to apply
a randomness extractor (technically, an average-case computational randomness extractor) to r, see
[16, Section 5] for more information.

5 We change the construction of Canetti et al. slightly to illustrate the connection to RPI but our construction is secure
under the same conditions.
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Algorithm Gen
Input: w = w1, ..., ws
1. Sample c← C, r ← Us.
2. For j = 1, ..., s:

a. If rj = 0: Let pj = lockPoint(wj).
b. Else:

tj
$← Z .

Let pj = lockPoint(tj).
3. Output (c, p), where p = p1 . . . ps, o = r ⊕ c.

Algorithm Rep
Input: (w′, p)
1. For j = 1, ..., s:

a. If unlockPoint(w′j , pj) = 1: set r′j = 0.
b. Else: set r′j = 1.

2. Set c = Decode(o⊕ r′).
3. Output c⊕ r.

Fig. 4. A Hamming distance-based RPI

In the work of Canetti et al. [16], this construction is not presented as reusable because not
all symbols wi are assumed to have entropy. If each symbol wi individually has entropy (there is
requirement on the correlation between symbols), the construction leaks no information: the string
r is uniformly random from the adversaries points of view. The only information about r is revealed
by c ⊕ r because c is chosen from a code. The digital locker is an RPI mapping w to a uniformly
random point r in the output space. In Rep, the computed string d(r, r′) ≤ d(w,w′) ≤ t (assuming
the locker never has an error). The string c is functioning as a secure sketch (specifically, the code-
offset secure sketch). Thus, this construction is actually a combination of a RPI and a (non-reusable)
secure sketch.

5 Use cases

As previously mentioned, the industry standard is multifactor authentication. In the mobile world,
this is often achieved through the combination of a password and an SMS OTP (respectively as
knowledge and possession proofs), both being subject to strong limitations (see Subsection 1.2).
Our use cases both consider a bank authenticating a user on their Android device 6. For practical
use cases, we consider a security level of 100 bits to be sufficient.

5.1 Use Case 1

We now construct a multifactor authentication system that proves possession of a phone and in-
herence of the user. For the first authentication factor, we use a source derived from hardware and
software identifiers. For the second authentication factor, we replace the weak entropy password
with alternative software fingerprints of an individual [36,12,5].

Notation and examples We denote ωP and ωI respectively as sources intended to prove possession
and inherence. We will consider ωI as a source that varies according to the set difference metric in
the large universe setting. An example ωP is described in Figure 5. An example ωI is the first name
of the user’s top 20 contacts.

Both ωP and ωI individually carry enough entropy for strong authentication purposes (see re-
spectively Figure 5 and Subsection 1.3). However, while the value ωP is static, ωI is a noisy secret
that fits set difference metric. At first glance, we could use our reusable FE construction on just ωI .
However, each element of ωI has little entropy so it does not fulfill the condition of Theorem 2 for
reusability.

6 Similar solutions could also be deployed for iOS devices [36].
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Data Estimated Entropy
IMEI 20 bits
IMSI 26 bits

AndroidID 64 bits
ωP = IMEI‖IMSI‖AndroidID 110 bits

Fig. 5. Device fingerprint’s entropy

To solve this problem, we propose to concatenate ωP to each element ωI . We denote this aug-
mented source as ω̃i = ωP ||ωI,i. This augmented source has min-entropy which is the sum of the
individual sources. Furthermore, it ties together the two sources in a cryptographic way. Recall that
our RPI instantiation (Figure 3) is built from digital lockers which only require min-entropy for
security. Let (Gen,Rep) be the RFE from Theorem 1.Then we describe the instantiation of a fuzzy
extractor for ωP and ωI in Figure 6.

Generation procedure Gen
Input: ωP , ωI = {ωI,1, . . . , ωI,s}.
1. For i = 1 . . . s:

Set ω̃i = ωP ‖ωI,i.
2. Set ω̃ = {ω̃1, . . . , ω̃s}.
3. (R,P )← Gen(ω̃).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: ω′P , ω

′
I , P

1. For i = 1 . . . s:
Set ω̃′i = ω′P ‖ω′I,i.

2. Set ω̃′ = {ω̃′1, . . . , ω̃′s}.
3. R← Rep(ω̃′, P ).
4. Return R.

Fig. 6. A practical use case for set difference based metric

Security Considering a normal utilization of the device, ωP remains the same whereas ωI can be
subject to changes. Therefore, ω′P = ωP and ω̃′i = ωP ‖ω′I,i. As a result, d(ωI , ω′I) = d(ω̃, ω̃′)
and the correctness of the underlying RFE (Gen,Rep) ensures the correctness of use case 1. The
designed fingerprint enables to apply Theorem 2.

5.2 Use Case 2

Our second use case uses identifying data that leads to distributions under the set difference metric
with sufficient entropy for security. This construction can be seen as an extension of use case 1. We
use the following sources of data:

– ωhard, a device fingerprint based on the device’s hardware elements (e.g. IMEI, MAC ad-
dresses).

– ωsoft, a software fingerprint relying on the device’s software components.
– ωuser, a user fingerprint based on the user’s personal information.
– ωRegSSID, a fingerprint based on the SSIDs registered on the device (see subsection 1.3).
– ωmisc, a fingerprint that can be based on miscellaneous data.

Some of these sources may not directly achieve sufficient entropy (e.g. ωuser). In this case,
we augment the sources by using AndroidID in the same way as in the last use case. Potential
instantiations of these sources are proposed in Figure 7.
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Fingerprint Description
ωhard IMEI‖IMSI‖WifiMAC‖BluetoothMAC‖BatterySerialNumber
ωsoft AndroidID‖HashOfLibraries‖ . . . ‖OS version
ωuser LastName‖FirstName‖BirthDate‖ . . . ‖PhoneNumber‖UserPreferences

ωRegSSID SSID1‖ . . . ‖SSIDn
ωmisc1 -
ωmisc2 -

Fig. 7. Potential fingeprints

Potential Fingerprints for ωmisc We propose some behavioral fingerprints as potential candidates
for ωmisc. The idea would be to apply an FE on a noisy secret ω̃ and use the resulting secret R̃ as
the value for ωmisc. These potential fingerprints include, but are not limited to those introduced in
Subsection 1.3:

– ω̃Ctcs, a top contacts fingerprint based on the user’s n1 favorite contacts.
– ω̃Song, a top songs fingerprint based on the user’s n2 most listened to songs.
– ω̃Apps, a top applications fingerprint based on the user’s n3 most used applications.

Setting n1, n2, n3 accordingly should enable to fulfill the targeted security level (e.g. n1 = 20).

Security Policy Based on these sources, we assume a server that authenticates a user only if a few
ones have changed. This policy’s threshold corresponds here to the RFE correction capacity t.

We then define the noisy secret ω = {ωhard, ωsoft, ωuser, ωRegSSID, ωmisc1, ωmisc2} for which
ωhard and ωuser should be static while the others are prone to changes. Here, the authentication
server could set t = 2, 3.

Security As long as the number of errors remains inferior or equal to t, the correctness of the
underlying RFE ensures the correctness of the construction. Each element of ω has sufficient entropy
for our set difference instantiation to be reusable (see Theorem 2).

5.3 Discussion

In the case of HCE-based payment [1], major payment schemes [40,52,7] require the usage of device
fingerprinting for authentication purposes. However, new regulations, such as GDPR (General Data
Protection Regulation) in the European Union [25], will soon strictly regulate the usage of such data
and limit their sharing with a server. Our use cases cope with these restrictions by executing on the
mobile device a security policy decided by the server and thus avoiding the latter collecting the data.
As mentioned in Subsection 1.3, the usage of software accessible fingerprints which do not require
user interactions can be seen as a strong asset in mobile payment applications such as HCE-based
ones.

6 Conclusion and Future Works

We present a reusability framework in which we propose to randomize fuzzy secrets before ap-
plying fuzzy extractors. Since fuzzy secrets may come from correlated distributions, the idea is to
decorrelate them while preserving entropy and distances: we introduced the concept of Reusable
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Pseudoentropic Isometries (RPIs) for such a purpose. We show how to build reusable fuzzy extrac-
tors out of any efficient nonreusable fuzzy extractors and RPIs.

Relying on this new framework, we use digital lockers to construct an RPI and design the first
reusable fuzzy extractor for the set difference metric. Our construction is also the first reusable
fuzzy extractor handling a linear error rate that makes no assumption about how repeated readings
are correlated. We also show that the framework can be applied to the Hamming distance through
the example of Canetti et al.’s second construction.

In the last section, we propose two practical use cases for our set difference instantiation, that
reap benefits from the numerous device and behavioral fingerprints available on mobile phones.
These use cases show the applicability of our RPI construction in the context of industrial mobile
authentication.
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A Proof of Lemma 1

Proof (Proof of Lemma 1). Suppose not, that is suppose that there exists some D of size at most
s such that δs((R,P, V ), (Ul, P, V )) > ε. Let Xv be a set of distributions giving rise to a joint
distribution such that H̃∞(X|V ) ≥ m2. Consider a D1 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Output D(γ, ν, β).

Also consider a D2 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Sample random string u← U`.
4. Output D(u, ν, β).

Denote R′, P ′ ← Gen′(X). By the triangle inequality we have the following:

δD1((U, V ), (X,V )) + δD2((U, V ), (X,V ))

= δD((R,P, V ), (R′, P ′, V )) + δD((U`, P, V ), (U`, P
′, V ))

≥ δD((R,P, V ), (U`, P, V ))− δD((U`, P ′, V ), (R′, P ′, V ))

≥ ε− εFE = 2εRPI

Thus, either D1 or D2 distinguishes U, V from X,V with advantage at least εRPI . Either of these
distinguishers contradict the HILL entropy of U, V . This completes the proof of Lemma 1.
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