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ABSTRACT
Fuzzy extractors (Dodis et al., Eurocrypt 2004) turn a noisy secret
into a stable, uniformly distributed key. Reusable fuzzy extractors
remain secure when multiple keys are produced from a single noisy
secret (Boyen, CCS 2004). Boyen proved that any information-
theoretically secure reusable fuzzy extractor is subject to strong
limitations. Simoens et al. (IEEE S&P, 2009) then showed deployed
constructions suffer severe security breaks when reused. Canetti et al.
(Eurocrypt 2016) proposed using computational security to sidestep
this problem. They constructed a computationally secure reusable
fuzzy extractor for the Hamming metric that corrects a sublinear
fraction of errors.

We introduce a generic approach to constructing reusable fuzzy
extractors. We define a new primitive called a reusable pseudoen-
tropic isometry that projects an input metric space to an output metric
space. This projection preserves distance and entropy even if the
same input is mapped to multiple output metric spaces. A reusable
pseudoentropy isometry yields a reusable fuzzy extractor by 1) ran-
domizing the noisy secret using the isometry and 2) applying a
traditional fuzzy extractor to derive a secret key.

We propose reusable pseudoentropic isometries for the set differ-
ence and Hamming metrics. The set difference construction is built
from composable digital lockers (Canetti and Dakdouk, Eurocrypt
2008) yielding the first reusable fuzzy extractor that corrects a linear
fraction of errors. For the Hamming metric, we show that the second
construction of Canetti et al. (Eurocrypt 2016) can be seen as an
instantiation of our framework. In both cases, the pseudoentropic
isometry’s reusability requires noisy secrets distributions to have
entropy in each symbol of the alphabet.

Lastly, we implement our set difference solution and describe two
use cases.
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1 INTRODUCTION
Cryptography relies on uniformly distributed and reproducible long-
term secrets to perform authentication or derive keys. Numerous high
entropy randomness sources exist, such as biometrics and human-
generated data [20, 36], physically unclonable functions (PUFs) [50]
and quantum information [8]. Many of these sources exhibit errors
when read multiple times, preventing stable cryptographic key gen-
eration. The errors of each physical phenomena implicitly define a
metric space.

Dodis et al. [23] stated that Hamming distance looks like the
"most natural metric to consider" [16, 23, 37]. Set distance better
suits some biometric matchers such as human and digital fingerprints
and the exotic movie lover’s problem [36]. Typical systems create
a template reading from an initial reading; subsequent readings are
directly compared to this initial template. A subsequent reading is
accepted if the two readings are “close” according to the distance
metric. Plaintext templates have privacy concerns [51, 54]. In the
worst case, a matching biometric can be reverse engineered from the
template [28].

Information reconciliation [8] enables retrieving identical values
from noisy data. Privacy amplification [8] converts values with
entropy into uniform random strings. Fuzzy Extractors [22, 23], are
a pair of non-interactive algorithms (Gen, Rep) that simultaneously
perform information reconciliation and privacy amplification. The
algorithm Gen, used at enrollment, takes input ω from an entropy
source and outputs a uniformly distributed key R and a public helper
string P . The algorithm Rep takes P andω ′ and reproduces the secret
key R as long as ω ′ is close enough to ω, specifically d(ω,ω ′) ≤ t
for a fixed parameter t . Fuzzy extractors exist with security against
information-theoretic [22] or computational adversaries [27].

Dodis et al. proposed fuzzy extractor constructions for the Ham-
ming, set difference and edit metrics adapting prior work [36, 37].
We focus on the set difference metric: inputs ω are subsets of size
s of a universe U whose cardinality is n. For this metric, Dodis
et al. distinguished two settings, referred to as the small and large
universe settings. Let λ be some security parameter. In the former
case, we have that n = poly(λ) while in the latter one n is super-
polynomial in s. The large universe setting occurs in practice. For
example, consider a list of book titles or a list of movies (movie
lover’s problem due to [36]). The small universe setting benefits
from a reduction to the Hamming metric, referred to as the bin-set
equivalence (described in Section 2). We concentrate on the large
universe setting where this transform is not applicable.
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Reusability. Boyen introduced reusable fuzzy extractors for which
numerous helper strings P j from a user’s fuzzy secret do not impact
user’s security [13]. Boyen showed that information-theoretic fuzzy
extractors must leak substantial information about ω when numerous
calls to Gen are made. On the positive side, Boyen demonstrated
reusable security when the exclusive OR of pairs of enrolled val-
ues reveals no sensitive information. This is a restrictive class of
correlations; we have no evidence that practical sources obey this
condition. We call this type of construction weakly reusable. Subse-
quent work showed that existing fuzzy extractors are not reusable in
practice [10, 52]. Apon et al. [6] added reusability to the learning-
with-errors based fuzzy extractor of Fuller et al. [27]. Their work
inherits the small error tolerance of the latter construction [27]; it
only corrects a logarithmic fraction of errors, that is, for input ω,
t = O(log |ω |).

Recently, Canetti et al. [16] constructed a reusable fuzzy extractor
that makes no assumption about how repeating readings are corre-
lated. We call this type of construction strongly reusable. It works for
the Hamming distance and provides security against computationally
bounded adversaries. It uses a strong form of symmetric encryption,
called digital lockers [15] (our construction also uses digital lockers
but in a different way).

Their construction is secure for distributions with high entropy
samples instead of global min-entropy. This is in contrast to tradi-
tional constructions that only assume the source has min-entropy.
Their main Hamming construction can be extended through bin-set
equivalence to a small set universe set difference fuzzy extractor.
Their scheme allows an error rate t = o(|ω |).

Prior to this work, there were no known strongly reusable fuzzy
extractors correcting a linear error rate for any common metric.

1.1 Our contributions
Most upper bounds on the security of information-theoretic (reusable)
fuzzy extractors are due to strong connections to the field of coding
theory (see for example [21]). The best security of a information-
theoretic fuzzy extractor allowing t errors is connected to the code
with the most keywords correcting t errors. Coding theory has a long
history with established bounds on the best codes.

To circumvent these results, we propose a new framework to
achieve reusability. The main idea is to separate the task of reusabil-
ity from the task of noise elimination. Our contributions are as
follows:

(1) We introduce a randomization stage captured by a new prim-
itive we call a pseudoentropic isometry. Informally, a pseu-
doentropic isometry projects fuzzy secrets while maintaining
distances between two noisy readings and entropy of the
original secret. To be reusable, a pseudoentropic isometry
must generate “uncorrelated” values Ωi from correlated noisy
enrollments values of the same secret. The reusability prop-
erty is that each Ωi has sufficient entropy conditioned on
knowledge of the other Ωj , j , i. Reusable pseudoentropic
isometries (RPIs) do not perform any form of error correction.
We do not believe they are subject to bounds from coding
theory. First passing the input through an RPI makes a fuzzy
extractor reusable.

(2) We propose two reusable pseudoentropic isometries. The first
one is an original construction with an RPI based on digital
lockers [15]. This construction is in the set difference metric
with a large universe. Roughly for each element of the set
the construction samples a point in the new metric space and
locks this point using the set element as the key.
We then show that Construction 2 of Canetti et al. [16, Sec-
tion 5.1] fits our framework in the Hamming metric. Both
instantiations require sources with superlogarithmic entropy
(in each alphabet symbol) to achieve reusability. We compare
these constructions with previous reusable fuzzy extractors in
Table 1.

(3) We provide an implementation of our set difference RPI and
describe two use cases suited to our constructions.

Notes: To the best of our knowledge all computational fuzzy ex-
tractors information-theoretically determine the key. That is, it is
possible for an unbounded adversary to search through possible in-
put values and exclude them based on the public value P . However,
this does not break security as a computationally bounded adversary
can only check a polynomial number of values. This is in contrast to
information-theoretic fuzzy extractors that do not confirm correct-
ness of a guess (information-theoretic constructions ensure that ω
has high entropy conditioned on P). We are not aware of any con-
structions are both secure against information-theoretic adversaries
and provide additional security against computational adversaries
(such as reusability, better key length).

Digital lockers are a strong cryptographic tool1 and our construc-
tion requires substantial structure on the input source ω. Reusable
fuzzy extractors are notoriously difficult to construct. Reducing the
required assumption to build an RPI is the primary future direction
of this work.

2 PRELIMINARIES
Notation. log denotes the base 2 logarithm. GF(n) denotes the

finite field of n elements. x ← f (.) denotes that x is an output of
a function f . If f is randomized, we use the semicolon to make
the randomness explicit. f (x ; µ) is the result of f computed on x
with randomness µ. Uℓ denotes the uniformly distributed random
variable on {0, 1}l . For a distinguisher D (or a class of distinguish-
ers D), we write the computational distance between X and Y as
δD (X ,Y ) = |E[D(X )]−E[D(Y )]|.Dssec denotes the class of random-
ized circuits which output a single bit and have size at most ssec. We
write δDssec (X ,Y ) ≤ ϵ if this is true for all D ∈ Dssec .

A metric space is a finite setM equipped with a distance d :M×
M → N fulfilling the properties of symmetry, triangle inequality
and zero distance between equal points.

Set Difference Metric. LetM consist of all subsets of a universe
U whose cardinality is n. For two sets ω and ω ′ belonging toM,

their symmetric difference is defined as ω∆ω ′
def
= {x ∈ ω ∪ ω ′ |x <

ω ∩ ω ′}. Symmetric difference is a metric that we denote by d.
Dodis et al. [23] noted the bin-set equivalence: if ω denotes a

set, it can be viewed a binary vector in {0, 1}n , with 1 at position
x if x ∈ ω, and 0 otherwise. Viewed in this way, set difference

1They require a strong assumption on the underlying cryptographic primitives. However,
they can be efficiently implemented using Diffie-Hellman groups or hash functions.
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Scheme Reusability Error Tolerance Metric
RPI + Fuzz. Ext. (this work) Set difference/Hamming Strong Θ(|w |)
Sample-then-lock [16] Hamming Strong o(|w |)
Code Offset [13] Hamming Weak Θ(log |w |)
LWE Decoding [6] Hamming Weak Θ(|w |)

Table 1: Recent constructions of reusable fuzzy extractors. The code offset and LWE decoding schemes are weakly reusable. They
may leak information about the difference between repeated readings wi ,w j .

can be expressed as Hamming distance between these associated
vectors. This transform is not efficient when the universe size n is
superpolynomial.

Entropy Notions. Entropy specifies the amount of information
contained in some data. In security-related contexts, we care about
how well an adversary can guess the value of a random variable. In
the information-theoretic case, we rely on the notion of min-entropy.
A random variable A has min-entropym, denoted H∞(A) =m, if

H∞(A)
def
= − log(max

a∈A
P[A = a]).

The average min-entropy of A given B is:

H̃∞(A|B)
def
= − log(Eb ∈BmaxaPr[A = a |B = b]).

HILL entropy is a commonly used computational notion of entropy
[34]. It was extended to the conditional case by Hsiao, Lu, and
Reyzin [35].

Definition 2.1. Let (W , S) be a pair of random variables.W has
HILL entropy at least k conditioned on S , denoted HHILL

ϵsec,ssec
(W |S) ≥

k if there exists a collection of distributions Xs (defined for each
value s in the support of S) giving rise to a joint distribution (X , S),
such that H̃∞(X |S) ≥ k and

δDssec ((W , S), (X , S)) ≤ ϵsec.

Fuzzy Extractors. The original definition of fuzzy extractors pro-
vides information-theoretic security. We state the computational
definition introduced by Fuller et al. [27].

Definition 2.2 (Fuzzy Extractor). A pair of randomized proce-
dures "generate" (Gen) and "reproduce" (Rep) is a (M,W, ℓ, t ,γ )-
(computational) fuzzy extractor that is (ϵsec, ssec)-hard if Gen and
Rep satisfy the following properties:
• Gen on input ω ∈ M outputs an extracted string R ∈ {0, 1}ℓ

and a helper string P ∈ {0, 1}∗.
• Rep takes an element ω ′ ∈ M and a bit string P ∈ {0, 1}∗ as

inputs.
• Correctness: for all ω,ω ′ where d(ω,ω ′) ≤ t ,

Pr[Rep(ω ′, P) = R : (R, P) ← Gen(ω)] ≥ 1 − γ

where the probability is over the coins of Gen and Rep.
• Security: for each distributionW ∈ W,

δssec ((R, P), (Uℓ , P)) ≤ ϵsec.

This definition can be naturally extended to support auxiliary input
I : the security property then requires that δssec ((R, P , I ), (Uℓ , P , I )) ≤
ϵsec appear indistinguishable.

In prior definitions, the family of distributions W was all dis-
tributions with a given amount of entropy, known computational

constructions require additional structure on the source beyond en-
tropy. When we consider fuzzy extractors that are secure for all
distributions of (average) min-entropy m, we replaceW with the
parameterm.

Dodis et al. designed FEs based on three different metrics which
are Hamming, set difference and edit distances. All their construc-
tions rely on secure sketches.

Definition 2.3. An (M,W,m̃, t ,γ )-secure sketch is a pair of ran-
domized procedures:

(1) The sketching procedure SS on input ω ∈ M returns a bit
string s ∈ {0, 1}∗.

(2) The recovery procedure Rec takes an element ω ′ ∈ M and a
bit string s ∈ {0, 1}∗.

(3) Correctness guarantees that if d(ω,ω ′) ≤ t , then

Pr[Rec(ω ′,SS(ω)) = ω] ≥ 1 − γ

where the probability is taken over the coins of SS and Rec.
(4) Security: for any distributionW ∈ W, H̃∞(W |SS(W )) ≥ m̃.

Roughly, a secure sketch performs error correction without leak-
ing information while a fuzzy extractor also yields a uniform value.
The sketch-then-extract construction [23] combines a secure sketch
and an average-case extractor [48] to build a fuzzy extractor.

Reusable Fuzzy Extractor. Reusability allow multiple calls to
Gen on the noisy readings of ω while retaining security [13]. Con-
sider ρ readingsω1, . . . ,ωρ of the same fuzzy source from which the
user will be enrolled on ρ different authentication servers. Gen inde-
pendently generates ρ pairs (R1, P1), . . . , (Rρ , Pρ ) where (R j , P j ) ←
Gen(ω j ).

Definition 2.4 (Reusable Fuzzy Extractor [16]). Let (Gen,Rep)
be a (M,W, l , t ,γ )-fuzzy extractor that is (ϵsec, ssec)-hard. LetW 1,
W 2, . . . ,W ρ be ρ arbitrarily correlated random variables where
W j ∈ W for all 1 ≤ j ≤ ρ. Define the random variables (Ri , P i ) ←
Gen(W i ). (Gen,Rep) is (ϵsec, ssec,ρ )-reusable if for all D ∈ Dssec

and for all j = 1, . . . , ρ:

Pr[D(R1, . . . ,Rρ , {P j }16j6ρ ) = 1]

− Pr[D(R1, . . . ,R j−1,Uℓ ,R
j+1, . . . ,Rρ , {P j }16j6ρ ) = 1] ≤ ϵsec.

2.1 Tools
Digital Lockers. Digital lockers are secure symmetric encryption

schemes that retain security even when used multiple times with
correlated and nonuniform keys [17]. Furthermore, an incorrect
key can also be recognized with high probability. We use notation
c = lock(key, val) for the algorithm that performs the locking of
the value val using key, and unlock(key, c) for the algorithm that
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performs the unlocking (which will output val if key is correct and
⊥ with high probability otherwise).

Digital lockers can be constructed in the random oracle (see Lynn,
Prabhakaran, and Sahai [42, Section 4]). Bitansky and Canetti [9],
building on the work of [15, 17], show how to obtain composable
digital lockers based on a version of the Decisional Diffie-Hellman
assumption without random oracles. Furthermore, it is possible that
cryptographic hash functions satisfy the required functionality with-
out resorting to the random oracle model.

We consider security via virtual-grey-box simulatability [9], a
simulator is allowed unbounded running time but only a bounded
number of queries to an ideal locker. Intuitively, the definition says
if the keys to the ideal locker are hard to guess, the simulator will
not be able to unlock the ideal locker and thus neither will the
real adversary. Formally, let idealUnlock(key, val) be the oracle that
returns val when given key, and ⊥ otherwise.

Definition 2.5 (Digital Lockers). The pair (lock, unlock) with
security parameter λ is an ℓ-composable secure digital locker with
error γ if the following hold:
• Correctness For all key and val,

Pr[unlock(key, lock(key, val)) = val] ≥ 1 − γ .

• Wrong key detection For any key′ , key,

Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1 − γ .

• Security For every PPT adversary A and every positive poly-
nomial p, there exists a (possibly inefficient) simulator S
and a polynomial q(λ) such that for any sufficiently large
s, any polynomially-long sequence of values (vali , keyi ) for
i = 1, . . . , ℓ, and any auxiliary input z ∈ {0, 1}∗,�� Pr [A (
z,
{
lock

(
keyi , vali

)}ℓ
i=1

)
= 1

]
− Pr

[
S {idealUnlock(keyi ,vali )}

ℓ
i=1

(
z,
{
|keyi |, |vali |

}ℓ
i=1

)
= 1

] �� ≤ 1
p(s)

where S is allowed q(λ) oracle queries.

Obfuscated Point Functions. Canetti et al.’s construction for large
alphabets [16, Section 5.1] uses a weaker primitive called an ob-
fuscated point function. This primitive can be viewed as a digital
locker without a plaintext: it outputs 1 if the key is correct, 0 other-
wise. Such a function can be constructed from the above mentioned
digital locker with a single possible plaintext, or from a version
of the Decisional Diffie-Hellman assumption [14]. We use nota-
tion c = lockP(key) and unlockP(key, c). Point functions security is
defined the same way as for digital lockers with a fixed plaintext.

3 REUSABILITY PSEUDOENTROPIC
ISOMETRIES

Reusable fuzzy extractors combine entropy extraction and error-
correction without leaking information to achieve reusability. Our
approach is to separate reusability from entropy extraction and error-
correction. The idea is to randomly project the fuzzy secrets into a
new metric space before applying a nonreusable fuzzy extractor. If
we can build a randomized projection that creates unrelated values, a
standard fuzzy extractor should not leak information across projected
values. We call this randomization stage a pseudoentropic isometry:

Definition 3.1 (Pseudoentropic isometry). Let (M1,d1), (M2,d2)
be two metric spaces. A (M1,M2,W,m2, ϵsec, ssec,γ )-pseudoentropic
isometry is a pair of randomized procedures (RPIGen, RPIRep)
with the following properties:

(1) RPIGen on ω ∈ M1 outputs Ω ∈ M2 and f ∈ {0, 1}∗.
(2) RPIRep takes an element ω ′ ∈ M1 and a bit string f ∈
{0, 1}∗ as inputs to output Ω′ ∈ M2.

(3) Correctness: if (Ω, F ) ← RPIGen(ω), then Pr[d2(Ω,Ω′) =
d1(ω,ω ′)] ≥ 1 − γ . where the probability is over the random-
ness of (RPIGen, RPIRep).

(4) Security: for any W ∈ W, for (R, F ) ← RPIGen(W ) we
have HHILL

ϵsec,ssec
(R |F ) ≥ m2.

Note: Security implies that HHILL(W |V ) ≥ m2 with a slight loss
in parameters as any adversary that can recoverW can use RPIRep
to recover U .

On their own pseudoentropic isometries are not novel (the identity
function is a pseudoentropic isometry). A reusable pseudoentropic
isometry or RPI is the key to our approach. To be reusable, a pseu-
doentropic isometry generates ρ uncorrelated values Ω1, . . . ,Ωρ

from ρ enrollments values ω1, . . . ,ωρ drawn from the fuzzy secret
ω.

Definition 3.2 (RPI). Let W ∗ ∈ W be some distribution. Let
W 1,W 2, . . . ,W ρ be ρ arbitrarily correlated random variables over
M1 where eachW i ∈ W. Define the random variables (Ωi , F i ) ←
RPIGen(W i ) and (Ω∗, F ∗) ← RPIGen(W ∗). (RPIGen,RPIRep) is
(ϵsec, ssec,ρ )-reusable if for all j = 1, . . . , ρ:

δDssec ((Ω1, . . . ,Ωρ , F 1, . . . , F ρ ),

(Ω1, . . . ,Ωj−1,Ω∗,Ωj+1, . . . ,Ωρ , F 1, . . . , F ρ )) ≤ ϵsec

Following this randomization stage, we can apply a traditional
fuzzy extractor on the uncorrelated randomized values Ωj s. This
idea is depicted in Figure 1.

Within this framework, the FE is always applied on unrelated
values Ωj s. Even when re-enrolling a fingerprint ω, the generated
helper values P j s only yield information on the decorrelated values
Ωj s and not on the original noisy secret. Thus, the combination of an
RPI with a traditional, nonreusable, fuzzy extractor yields an RFE.

Relation to other fuzzy extractor primitives. A pseudoentropic
isometry is related to biometric embeddings used in [22]. A bio-
metric embedding projects any fingerprint value into a metric space
where a fuzzy extractor exists while loosely maintaining distances.

If we consider a slightly different primitive that is allowed to
reduced distances d2(Ω,Ω′) ≤ d1(ω,ω ′), this primitive can be con-
structed using either a fuzzy extractor or a secure sketch. However,
the connection is not clear when distance must be maintained pre-
cisely.

3.1 RPIs imply reusable fuzzy extractors
Let (Gen’, Rep’) denote a (average-case) nonreusable fuzzy extrac-
tor. The generation procedure Gen’ implicitly draws a ball B(ω, t)
centered on its input ω where the radius t is the error tolerance of
the fuzzy extractor. Whenever a noisy reading ω ′ is given to proce-
dure Rep’, the secret key will be recovered as long as ω ′ belongs to
B(ω, t).
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Figure 1: Overview of reusability framework

Generation procedure Gen
Input: ω ∈ M1.

1. (Ω, F ) ← RPIGen(ω).
2. (R,Q) ← Gen’(Ω).
3. Set P = (F ,Q).
4. Return (R, P).

Reproduction procedure Rep
Inputs: ω′ ∈ M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F ,Q)
2. Ω′ ← RPIRep(ω ′, F ).
3. R ← Rep’(Ω′,Q).
4. Return R.

Figure 2: A generic reusable FE

To address reusability, we randomly project the ρ fuzzy versions
of ω onto unrelated values so that each of these retains original
entropy independently of others. By using a ρ-RPI, the user gets
unrelated values Ω1, . . . ,Ωρ that will be each enrolled once, respec-
tively toward servers 1, . . . , ρ.

Let (RPIGen, RPIRep) be a ρ-RPI fromM1 toM2. Let (Gen’,
Rep’) be an average-case FE over M2 correcting t errors. The
generation procedure Gen will first call RPIGen to randomize
the input ω into Ω. The nonreusable FE is then applied on Ω. The
RPI ensures that d2(Ω,Ω′) = d1(ω,ω ′) while the correctness of the
underlying nonreusable FE ensures that Rep’ recovers R from Ω′

and the associated helper string as long as d2(Ω,Ω′) 6 t . Overall
this leads to recovering R as long as d1(ω,ω ′) 6 t .

THEOREM 3.3. Suppose that (RPIGen, RPIRep) is a (M1,
M2,W,m2, ϵRPI, sRPI,γRPI)-RPI that is ρ-reusable and (Gen’, Rep’)
be an average-case (M2,m2, ℓ, t ,γFE)-fuzzy extractor that is (ϵFE, sFE)-
hard.

Figure 2 defines a (M1,W, l , t ,γRPI+γFE)-fuzzy extractor that is
(ρ, ϵsec, ssec)-reusable for ϵsec = 4ϵRPI + ϵFE and ssec = min{sRPI −

|Gen′ |, sFE}.

PROOF. The correctness is straightforward and follows from
aforesaid explanations. To ensure security, we first show that R
is pseudorandom knowing P and then treat reusability.

Under notation of Definition 3.1, we HHILL
ϵRPI,sRPI

(Ω |F ) > m2. We
first show that fuzzy extractors work on distributions with HILL en-
tropy. The proof is straightforward and delayed until Appendix A.1.

LEMMA 3.4. Suppose that U ,V are a joint distribution where
HHILL
ϵRPI,sRPI

(U |V ) ≥ m2 and let (Gen’, Rep’) be an average-case

(M2,m2, l , t)-fuzzy extractor that is (ϵFE, sFE)-hard. Define (R, P) ←
Gen′(U ), then

δDs ((R, P ,V ), (Ul , P ,V )) 6 ϵ .

for ϵ = 2ϵRPI + ϵFE and s = min{sRPI, sFE}.

Lemma 3.4 allows us to conclude that δDs ((R,Q, F ), (Ul ,Q, F )) 6 ϵ .
That is,

δDs ((R, P), (Ul , P)) 6 ϵ

for P = (F ,Q), and aforesaid parameters ϵ = 2ϵRPI + ϵFE, s =
min{sRPI, sFE}. That is, Figure 2 describes a fuzzy extractor.

Reusability. LetW 1, . . . ,W ρ be correlated distributions overM1,
whereW j ∈ W for all j. The following games are between a chal-
lenger C and D for some fixed i0:
G0 C honestly samples values as prescribed in Definition 2.4 and

sends

(R1, F 1,Q1), . . . , (Ri0 , F i0 ,Qi0 ), . . . , (Rρ , F ρ ,Qρ )

to D.
G1 C now does the following:

(1) Samples eachω j s and uses RPIGen to obtain (Ω1, F 1), . . . ,
(Ωρ , F ρ ).

(2) Replaces ωi0 with ω∗ ←W ∗.
(3) Computes (Ω∗, F ∗) ← RPIGen(ω∗), (R∗,Q∗) ← Gen’(Ω∗).
(4) Sets P∗ = (F i0 ,Q∗).
(5) Gives D R j s and P j s except for j = i0 for which he receives
(R∗, P∗).

If D can distinguish this game from the previous one, he
would then be able to distinguish the distribution with Ωi0

from the one with Ω∗. This breaks the reusability of the RPI.
That is, G1 appears indistinguishable from G0 for ϵ = ϵRPI
and s = sRPI − |Gen′ |.

G2 In this game, after computing (R∗,Q∗) ← Gen’(Ω∗), C dis-

cards R∗ and replaces it with randomly sampled η
$
← {0, 1}ℓ

randomly sampled. Since HHILL
ϵRPI,sRPI

(Ω∗ |F ∗) ≥ m2 then

HHILL
ϵRPI,sRPI

(Ω∗ |F i0 ) ≥ m2.
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Thus by Lemma 3.4, (Ul , P∗) and (R∗, P∗) are computationally
indistinguishable. Hence, this game is indistinguishable from
the previous one for ϵ = 2ϵRPI + ϵFE and s = min{sRPI, sFE}.

G3 In the previous game, D is given (R1, F 1,Q1), . . . , (η, F i0 ,Q∗),
. . . , (Rρ , F ρ ,Qρ ) where η is random and does not depend
on P∗. In this game, C sends the actual Qi0 (obtained via
computed Gen’(Ωi0 ) instead of Q∗.
If D can distinguish that Qi0 has been given instead of Q∗

(obtained via computed Gen′(Ω∗), he can in particular dis-
tinguish Ωi0 from Ω∗. Hence, he can distinguish

(Ω1, . . . ,Ωi0 , . . . ,Ωρ , F 1, . . . , F i0 , . . . , F ρ )

from

(Ω1, . . . ,Ωi0−1,Ω∗,Ωi0+1, . . . ,Ωρ , F 1, . . . , F i0 , . . . , F ρ ).

This contradicts the reusability of the RPI. Thus, G3 is indis-
tinguishable from G2 for ϵ = ϵRPI and s = sRPI − |Gen′ |.

In G3, D is given (R1, P1), . . . , (η, P i0 ), . . . , (Rρ , Pρ ) where η is ran-
domly sampled. By transitivity, this latter game is indistinguishable
from G0 . Indistinguishability between G0 and G3 satisfies the re-
quirements of Definition 2.4. �

4 INSTANTIATING THE FRAMEWORK
We propose two instantiations of the above mentioned framework,
the first one for the set difference metric and the second one for the
Hamming distance.

4.1 Set Difference-based Instantiation
Environment and Notation. Set difference based FEs in [22] take

as inputs subsets of a universeU with n = |U|. We denote (MU ,d),
the metric spaceMU consisting of all the subsets of U with the
set difference metric d. LetMU,s denote the restriction ofMU to
s-elements subsets.Mκ denotes (GF(2κ ),d) equipped with the set
difference metric d . SimilarlyMκ,s denotes the restriction to sets of
sizes s. LetW be a probability distribution overU with min-entropy
m. We use digital lockers to construct our set difference-based RPI.
Our construction, presented in Figure 3, randomizes each set element
using a digital locker.

Algorithm RPIGen
Input: ω = {ω1, . . . , ωs },

∀1 6 i 6 s, ωi ∈ U.
1. For i = 1 . . . s,

xi
$
←Mκ .

ci = lock(ωi ,xi ).
2. Set Ω = {x1, . . . ,xs }

and c = c1, . . . , cs .
3. Return (c,Ω).

Algorithm RPIRep
Inputs: ω′ = {ω′1, . . . , ω

′
s },

c = c1, ..., cs .
1. n = s,
2. For i = 1 . . . s,

For j = 1 . . .n,
a. x ′i ← unlock(ω ′i , c j ).

b. if x ′i =⊥ ∧ j = n: x ′i
$
←Mκ .

c. else if x ′i =⊥ ∧ j , n: continue.
d. else: remove c j ; n- -; break.

3. Set Ω′ = {x ′1, . . . ,x
′
s ′}.

4. Return Ω′.
Figure 3: A set difference-based RPI

It is possible to have a collision between xi s in Algorithm RPIGen,
however this occurs with negligible probability (κ must be super-
logarithmic for security). This could be addressed by using rejection
sampling to ensure all output points are unique.

RPIRep adds additional elements to ensure that the output set
is of size s. This step can be triggered if there was a collision in
RPIGen or if unlock outputs ⊥ in Step 2.a. This is the only time
where d(Ω,Ω′) ≥ d(ω,ω ′) is when unlock outputs ⊥ when the two
values actually match. Considering the worst case scenario, where
ω and ω ′ are disjoint sets, we end up with s2 calls to the unlock
function. This construction is secure when each element of the input
set has superlogarithmic min-entropy.

THEOREM 4.1. Let λ be a security parameter and let κ =
ω(log λ). LetW be the set of all joint distributionsW1,W2, . . .Ws
where, for any i 6 s, H (Wi ) ≥ κ. Let (lock, unlock) be a (s · ρ)-
composable digital locker with error γ . Then for any ssec = poly(λ)
there exists a ϵsec such that Figure 3 defines a (MU,s ,Mκ ,W, s ·
κ, ϵsec, ssec,γ

′)-RPI for the set difference metric for
• ϵsec = q(q + 1)2−κ + q2−s ·κ = ngl(λ),
• γ ′ = s2 · γ + (1 − e−s

2/ |Mκ |).

Our proof is similar to the proof of Canetti et al. [16]. We first
prove a present proposition that the construction is a PI and then
consider reusability. The proof of this proposition is delayed until
Appendix A.2.

PROPOSITION 4.2. Let λ be a security parameter and let κ =
ω(log λ). LetW be the set of all joint distributionsW1,W2, . . .Ws
where, for any i 6 s,H (Wi ) ≥ κ. Let (lock, unlock) be a s-composable
digital locker with error γ . Then for any ssec = poly(λ) there exists
a ϵsec = ngl(λ) such that Figure 3 defines a (MU,s ,Mκ ,W, s ·
κ, ϵsec, ssec,γ

′)-pseudoentropic isometry for the set difference metric
for γ ′ = s2 · γ + (1 − e−s

2/ |Mκ |).

Reusability. Reusability follows from the security of digital lock-
ers. For each i ∈ {1, ..., ρ}, we can treat the outputs

Ω1, . . . ,Ωi−1,Ωi+1, . . . ,Ωρ

as auxiliary input to the digital locker adversary. The result follows
by simulatability of this adversary, but requires additional compos-
ability from the digital locker.

COROLLARY 4.3. Let λ be a security parameter and suppose
there exists (lock, unlock) with that is ℓ composable for any ℓ =
poly(λ) with error δ = ngl(λ). Using the RPI defined in Figure 3
for the familyW defined above one can construct a reusable FE for
any ssec = poly(λ), ρ = poly(λ) such that ϵsec = ngl(λ) and where
t = Θ(n).

Discussion. Our instantiation of an RPI for the set difference
metric (large universe) allows construction of the first reusable fuzzy
extractor correcting a linear error rate that makes no assumption
about how individual readings are correlated. The previous work of
Boyen [13] assumed that the exclusive OR of two repeated enroll-
ments leaked no information. Canetti et al. [16] achieves a sublinear
error rate (and works for Hamming or set difference in the small
universe setting).

Looking ahead, we efficiently implement this RPI and there exist
fast implementations of fuzzy extractors for the set difference metric
(c.f. Section 5).

It is easy to adapt this construction to handle variable sizes. To
do so, the RPIGen algorithm needs to pad with random elements
up to a maximal set size to hide the actual number of elements in
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ω. If ω ′ is not the same size as ω it suffices to loop over the size of
ω ′ in step 2 of RPIRep. Then, one could couple this RPI with any
nonreusable fuzzy extractor that can handle sets of variable sizes
(see [22, Subsection 6.3]) to add reusability.

4.2 Hamming Distance Instantiation
The work of Canetti et al. [16] presents three constructions of fuzzy
extractors. They only claim reusability for Construction 1. However,
under certain conditions Construction 2 is reusable. Furthermore,
it implicitly uses the RPI framework, it first computes a map that
preserves distance then applies an error-correcting code.2

Adapted construction of Canetti et al. LetZ be an alphabet and
letW =W1, ...,Ws be a distribution overZs . LetC ⊂ {0, 1}s a Ham-
ming error correcting code that corrects t errors. Let (lockP, unlockP)
be an s-composable secure obfuscated point function with error
γ (for keys over Z). The algorithms Gen,Rep are defined in Fig-
ure 4.

Algorithm RPIGen
Input: ω = ω1, ...,ωs
1. Sample c ← C, r ←Us .
2. For j = 1, ..., s:

a. If r j = 0: pj = lockP(ωj ).
b. Else:

tj
$
←Z.

Let pj = lockP(tj ).
3. Output (c,p), where
p = p1 . . .ps ,o = r ⊕ c.

Algorithm RPIRep
Input: (ω ′,p)
1. For j = 1, ..., s:

a. If unlockP(ω ′j ,pj ) = 1:
set r ′j = 0.
b. Else: set r ′j = 1.

2. Set c = Decode(o ⊕ r ′).
3. Output c ⊕ r .

Figure 4: A Hamming distance-based RPI

The construction in Figure 4 does not produce a uniformly random
r , it is necessary to apply a randomness extractor (technically, an
average-case computational randomness extractor) to r , see [16,
Section 5] for more information.

In the work of Canetti et al. [16], this construction is not presented
as reusable because not all symbols wi are assumed to have entropy.
If each symbol wi individually has entropy (there is requirement on
the correlation between symbols), the construction leaks no infor-
mation. The only information about r is revealed by c ⊕ r because c
is chosen from a code. The digital locker is an RPI mapping w to r .
In Rep, the computed string d(r , r ′) ≤ d(w,w ′) ≤ t (assuming the
locker never has an error). The string c is functioning as a secure
sketch (specifically, the code-offset secure sketch). Thus, this con-
struction is actually a combination of a RPI and a (non-reusable)
secure sketch.

5 IMPLEMENTATION
Here we describe a basic prototype implementation of our set differ-
ence based RPI in Python. The construction can be found in Figure 5.
Our construction assumes that SHA512 can be used to construct a
digital locker as follows: Let H be SHA512. The locking algorithm
lock(key, val) outputs the pair nonce,H (nonce, key) ⊕ (0256 | |val),
where nonce is a nonce and | | denotes concatenation.

2We change the construction of Canetti et al. slightly to illustrate the connection to RPI
but our construction is secure under the same conditions.

def RPIGen (w, hash= sha512 ) :
omega = [ ]
c = [ ]
l e n g t h = hash ( ) . d i g e s t _ s i z e
f o r wi in w:

x i = g e n e r a t e _ r a n d o m ( l e n g t h / 2 )
s eed = g e n e r a t e _ r a n d o m ( 1 6 )
z e r o s = bytearray ( [ 0 f o r x in range ( l e n g t h / 2 ) ] )
l o c k = bytearray ( hmac . new ( seed , wi , hash ) . d i g e s t ( ) )
c i = xor ( lock , ( z e r o s + x i ) )
c . append ( ( c i , s eed ) )
omega . append ( x i )

re turn c , omega

def RPIRep (w, c , hash= sha512 ) :
l e n g t h = hash ( ) . d i g e s t _ s i z e
n = s = l e n (w)
omega = [ ]
f o r i in range ( s ) :

f o r j in range ( n ) :
c j , s eed = c [ j ]
h = bytearray ( hmac . new ( seed , w[ i ] , hash ) . d i g e s t ( ) )
x i = xor ( c j , h )
r e s = c h e c k _ r e s u l t ( x i )
i f ( not r e s and j ==(n −1 ) ) :

omega . append ( g e n e r a t e _ r a n d o m ( l e n g t h / 2 ) )
e l i f ( not r e s and j != ( n −1 ) ) :

c o n t in u e
e l s e :

c . pop ( j )
n −= 1
omega . append ( x i [ l e n ( x i ) / 2 : ] )
break

return omega

def xor ( b1 , b2 ) :
re turn bytearray ( [ x ^ y f o r x , y in z i p ( b1 , b2 ) ] )

def g e n e r a t e _ r a n d o m ( l e n g t h ) :
re turn bytearray ( [ random . SystemRandom ( ) . r a n d i n t ( 0 , 255) \

f o r x in range ( l e n g t h ) ] )

def c h e c k _ r e s u l t ( r e s ) :
re turn a l l ( v ==0 f o r v in r e s [ : l e n ( r e s ) / 2 ] )

Figure 5: Python implementation of set difference RPI (imple-
menting Figure 3). We assume that a keyed hash function acts
as a digital locker.

We stress our construction is only a construction of an RPI, not
a full fuzzy extractor. In practice, we feed our function into the
improved Juels-Sudan [36] implementation due to Harmon, Johnson
and Reyzin [33].

6 USE CASES
Many companies now prefer multi-factor authentication (also called
strong authentication), with factors falling in at least two of the fol-
lowing categories: knowledge ("what you know"), possession ("what
you own") and inherence ("what you are") [3]. Mobile applications
usually use possession and knowledge factors to achieve strong
authentication:
• Possession The ownership of the mobile device is often proved

via a One Time Password (OTP) sent by SMS. Once having
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received the OTP, the user enters it on the authentication web
page to prove that she indeed has the device in her possession.
• Knowledge A password chosen by the user.

Both of these means are subject to strong limitations. The SMS
OTP is vulnerable to numerous attacks (see [46] and references
therein) and the SMS channel has been deprecated by authorities
such as NIST, which recommend to move to more secure means of
authentication [49]. Human memorable passwords do not achieve
sufficient entropy, recent estimates place the password entropy at 34
bits [38].

6.1 New Trends for Mobile Authentication
Alternative methods of authentication have emerged such as bio-
metrics and PUFs, which could respectively fulfill inherence and
possession proofs. While these solutions have received attention in
the authentication literature, they rely on dedicated hardware sen-
sors and components. This is problematic in the case of mobile
authentication as the availability of such hardware components (e.g.
biometric sensors) varies greatly between devices.

In the same vein, some hardware components (SIM cards [53],
dedicated Secure Element [29, 44], TEE [30]) are used as possession
proofs. Such solutions present several drawbacks and are not widely
deployed. While SIM cards and a TEE are widespread, their usage
by third party applications remains marginal. As the security com-
ponent is owned by either the mobile operator (for SIM card-based
solutions) or its manufacturer (for SE/TEE-based solutions), a third
party application will need to be granted access rights. This leads
to additional costs and makes the design of such an authentication
solution much more complicated.

As a result, mobile applications are often left using purely soft-
ware implementations, even critical applications such as banking. To
address this limitation, such applications integrate numerous layers
of protection including white-box cryptography, tamper-resistance
mechanisms and code obfuscation.

In the specific case of HCE-based payment [1], major payment
schemes [7, 43, 55] require use of device fingerprinting [24, 39]. In
addition, new regulations, such as GDPR (General Data Protection
Regulation) in the European Union [26], will soon strictly regulate
the usage of personal data and limit their sharing with a server.

Eckersley showed how to create a fingerprint from characteristics
of a web browser (user agent, list of fonts, list of plug-ins,. . . ) [24].
Subsequent studies deployed similar systems for personal comput-
ers [4, 11, 45, 47]. This research naturally led to studying the practi-
cability of fingerprints on mobile devices.

While early mobile solutions were insufficient [18, 19, 41, 57],
recently Kurtz et al. provided a comprehensive analysis in the mobile
setting [39]. In their work, the list of installed applications and
the top 50 songs are among the most identifying values present
on a device. These fingerprints reflect the user’s behavior and are
candidates to be an inherence authentication factor. Many of these
device fingerprints draw on features coming from large universes
with variation according to the set difference metric (e.g. songs and
applications).

The usage of device and behavioral fingerprints, respectively as
possession (of the mobile device) and inherence factors can enable

strong authentication software only authentication of a user. Device
fingerprints can be constructed from the following values:
• IMEI (International Mobile Equipment Identity) [56] This

value is 15 digits long, the first ones identifying the manufac-
turer while the 6 last digits are randomly chosen to produce
a serial number that identifies the device. The IMEI carries
roughly 6 × log(10) ≈ 20 bits of entropy.
• IMSI (International Mobile Subscriber Identity) [25] The

IMSI’s first digits are specific to the country and the mobile
network, while the remaining 8 digits are randomly chosen.
Based on the latter, we can assume that the IMSI carries more
than 8 × log(10) ≈ 26 bits of entropy.
• AndroidID [31] The AndroidID is a 64 bits random number

which originally was generated at the device’s first boot and
remained constant throughout its lifetime, enabling its identi-
fication. As of Android 8, it is specific to an application and
randomly generated at its installation.

This list is far from being exhaustive, other values could also be
used such as the device’s Wifi and Bluetooth MAC addresses, the
battery’s serial number, etc.
Behavioral sources include the following:
• Apps The user’s applications list [5, 39].
• Music The user’s most listened to songs [5, 39].
• Contacts The user’s favorite contacts. The most common

first name in the United States is ‘James’ [2] with a fre-
quency of 3.318% which yields an approximate min-entropy
of − log(3.318 × 10−2) ≈ 5 bits. The first name of the top 20
contacts list should exhibit min-entropy of around 100 bits.
• TopNetworks The Wi-Fi networks with the strongest signal at

given time and given location. More precisely, the n strongest
networks -whose main identifiers are the service set identifiers
(SSIDs) and the basic service set identifiers (BSSIDs) define
a kind of trusted place (e.g. the user’s home or workplace).
Alternatively we also consider RegSSID, the SSIDs of Wifi
networks already registered on the device.

Discussion. These authentication factors do not require user in-
teraction, contrary to passwords and SMS OTP. This improves user
experience which is critical in some use cases (e.g. mobile payment
applications). However, some of these values may require specific
permissions to be available. Other applications may ask for the same
permissions, hence, malevolent ones may gain access to some of the
above mentioned values. Yet, such applications are steadily and more
and more efficiently hunted and removed from the Play Store [32].
Users are also more and more conscious of permissions and privacy
issues and grant permissions sparingly [40].

Our use cases both consider a bank authenticating a user on their
Android device 3 using software collectible fingerprints to construct
possession and inherence authentication factors. We consider a secu-
rity level of 100 bits to be sufficient.

6.2 Use Case 1
Our first construction uses a source that combines hardware and
software identifiers to prove possession of the phone. Alternative

3Similar solutions could also be deployed for iOS devices [39].
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Data Estimated Entropy
IMEI 20 bits
IMSI 26 bits

AndroidID 64 bits
ωP = IMEI∥IMSI∥AndroidID 110 bits

Figure 6: Device fingerprint’s entropy

software fingerprints that reflect the user’s behavior are used for the
inherence factor [5, 12, 39].

Notation and examples. We denote ωP and ωI respectively as
sources intended to prove possession and inherence. We will consider
ωI as a source that varies according to the set difference metric in
the large universe setting. An example of ωP is described in Figure 6.
An example of ωI is the first name of the user’s top 20 contacts.

Both ωP and ωI individually carry enough entropy for strong au-
thentication purposes (see respectively Figure 6 and Subsection 6.1).
However, while the value ωP is static, ωI is a noisy secret that fits
set difference metric. At first glance, we could use our reusable FE
construction on just ωI . However, each element of ωI individually
lacks entropy to fulfill the condition of Theorem 4.1 for reusability.

To solve this problem, we propose to concatenate ωP to each
element ωI . We denote this augmented source as ω̃i = ωP | |ωI,i .
This augmented source has min-entropy which is the sum of the
individual sources. Furthermore, it ties together the two sources in
a cryptographic way. Recall that our RPI instantiation (Figure 3) is
built from digital lockers which only require min-entropy for security.
Let (Gen,Rep) be the RFE from Theorem 3.3.Then we describe
the instantiation of a fuzzy extractor for ωP and ωI in Figure 7.

RPIGen
Input: ωP ,ωI = {ωI,1, . . . ,ωI,s }.
1. For i = 1 . . . s:

Set ω̃i = ωP ∥ωI,i .
2. Set ω̃ = {ω̃1, . . . , ω̃s }.
3. (R, P) ← Gen(ω̃).
4. Return (R, P).

RPIRep
Inputs: ω ′P ,ω

′
I , P

1. For i = 1 . . . s:
Set ω̃ ′i = ω ′P ∥ω

′
I,i .

2. Set ω̃ ′ = {ω̃ ′1, . . . , ω̃
′
s }.

3. R ← Rep(ω̃ ′, P).
4. Return R.

Figure 7: A practical use case for set difference based metric

Security. ωP remains the same whereas ωI can be subject to
changes. Therefore, ω ′P = ωP and ω̃ ′i = ωP ∥ω

′
I,i . As a result,

d(ωI ,ω
′
I ) = d(ω̃, ω̃ ′) and the correctness of the underlying RFE

(Gen,Rep) ensures the correctness of use case 1. The designed fin-
gerprint enables application of Theorem 3.3.

6.3 Use Case 2
Our second use case uses identifying data that leads to distributions
under the set difference metric with sufficient entropy for security.
This construction can be seen as an extension of use case 1. We use
the following sources of data:
• ωhard , a device fingerprint based on the device’s hardware

elements (e.g. IMEI, MAC addresses).
• ωsof t , a software fingerprint relying on the device’s software

components.

• ωuser , a user fingerprint based on the user’s personal infor-
mation.
• ωr eдSSID , a fingerprint based on the SSIDs registered on the

device (see subsection 6.1).
• ωmisc , a fingerprint that can be based on miscellaneous data.

Some of these sources may not achieve sufficient entropy (e.g.
ωuser or ωsof t ). In this case, we augment the sources by using
AndroidID in the same way as in the last use case.

Potential Fingerprints for ωmisc . We propose some behavioral
fingerprints as candidates for ωmisc . The idea would be to extract R̃
from the noisy ω̃ and use the output value as ωmisc . These potential
fingerprints include:
• ω̃ctcs , a top contacts fingerprint based on the user’s n1 fa-

vorite contacts.
• ω̃sonдs , a top songs fingerprint based on the user’s n2 most

listened to songs.
• ω̃apps , a top applications fingerprint based on the user’s n3

most used applications.
Setting n1, n2, n3 accordingly should enable to fulfill the targeted

security level (e.g. n1 = 20).

Security Policy. Based on these sources, we assume a server that
authenticates a user only if a few ones have changed. This policy’s
threshold corresponds here to the RFE correction capacity t .

We then define the noisy secret

ω = {ωhard ,ωsof t ,ωuser ,ωReдSSID ,ωmisc1,ωmisc2}

for which ωhard and ωuser should be static while the others are
prone to changes. Here, the authentication server could set t = 2, 3.

Security. As long as the number of errors remains inferior or equal
to t , the correctness of the underlying RFE ensures the correctness
of the construction. Each element of ω has sufficient entropy for our
set difference instantiation to be reusable (see Theorem 3.3).

Discussion. As mentioned in Subsection 6.1, new regulations
such as GDPR will enforce restrictions concerning the collect and
processing of personal data. Our use cases cope with these restric-
tions by executing on the mobile device a security policy decided by
the server and thus avoiding the latter collecting the data. Moreover,
the usage of software accessible fingerprints which do not require
user interactions can be seen as a strong asset in mobile payment
applications such as HCE-based ones.

7 CONCLUSION AND FUTURE WORKS
We present a framework for constructing reusable fuzzy extractors
by using a randomization step called a reusable pseudoentropic
isometry. Since multiple readings of a fuzzy secret may be correlated,
the RPI decorrelates them while preserving entropy and distances.
We show how to build reusable fuzzy extractors out of any efficient
nonreusable fuzzy extractors and RPIs.

Relying on this new framework, we use digital lockers to con-
struct an RPI and design the first reusable fuzzy extractor for the set
difference metric. Our construction is also the first reusable fuzzy
extractor handling a linear error rate that makes no assumption about
how repeated readings are correlated. We also show that the frame-
work can be applied to the Hamming distance through the example
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of Canetti et al.’s second construction. We then propose a Python
implementation of our set difference metric RPI construction.

In the two last sections, we described a prototype implementation
of our set difference instantiation and two use cases for our set
difference instantiation. These use cases show the applicability of our
RPI construction in the context of industrial mobile authentication.

Future works. The major open question is designing new RPI
instantiations, especially those that weaken the cryptographic as-
sumption or the required structure on the noisy secret. Another
complementary path could be to focus on constructing a fuzzy ex-
tractor directly reusable. From a more practical point of view, an
extensive study of mobile devices’ fingerprints would allow accurate
assessment of their entropy and their variation over time. These two
points will improve our RPI framework.
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A PROOFS
A.1 Proof of Lemma 3.4

PROOF OF LEMMA 3.4. Suppose not, that is suppose that there
exists some D of size at most s such that δs ((R, P ,V ), (Ul , P ,V )) > ϵ .
Let Xv be a collection of distributions (defined for each v ∈ V )
giving rise to a joint distribution such that H̃∞(X |V ) ≥ m2. Consider
a D1 that does the following:

(1) Receive input α , β .
(2) Run γ ,ν ← Gen′(α).
(3) Output D(γ ,ν , β).

Also consider a D2 that does the following:

(1) Receive input α , β .
(2) Run γ ,ν ← Gen′(α).
(3) Sample random string u ← Uℓ .
(4) Output D(u,ν , β).

Denote R′, P ′ ← Gen′(X ). By the triangle inequality we have the
following:

δD1 ((U ,V ), (X ,V )) + δD2 ((U ,V ), (X ,V ))

= δD ((R, P ,V ), (R′, P ′,V )) + δD ((Uℓ , P ,V ), (Uℓ , P
′,V ))

≥ δD ((R, P ,V ), (Uℓ , P ,V )) − δ
D ((Uℓ , P

′,V ), (R′, P ′,V ))

≥ ϵ − ϵF E = 2ϵRPI

Thus, either D1 or D2 distinguishes U ,V from X ,V with advantage
at least ϵRPI . Either of these distinguishers contradict the HILL
entropy of U ,V . This completes the proof of Lemma 3.4. �

A.2 Proof of Proposition 4.2
PROOF OF PROPOSITION 4.2. We have to prove both isometric

and security properties.
Isometry property. Ω is of size s. By a birthday bound calculation,

the probability of any collision in the xi s is 1 − e−s
2/ |Mκ | . For any

ωi = ω ′i , if no digital locker outputs ⊥ then xi = x ′i and the total

number of calls to function unlock is s2. Thus,

Pr[d(Ω,Ω′) = d(ω,ω ′)] ≥ 1 − s2γ − (1 − e−s
2/ |Mκ |).

Security. Our goal is to show that for all ssec = poly(λ) there
exists ϵsec = ngl(λ) such that δDssec ((R, P), (U , P)) ≤ ϵsec . Fix
some polynomial ssec and let D be a distinguisher of size at most
ssec . We want to bound

| E[D(Ω, P)] − E[D(UMκ , P)]|

by a negligible function.
We proceed by contradiction: suppose this difference is not negli-

gible. That is, suppose that there is some polynomial p(·) such that
for all λ0 there exists some λ > λ0 such that

| E[D(Ω, P)] − E[D(UMκ , P)]| > 1/p(λ).

Note that λ is a function of λ0 but we omit this notation for
the remainder of the proof. By the security of digital lockers (Def-
inition 2.5), there is a polynomial q and an unbounded time simulator
S (making at mostq(λ) queries to the oracles {idealUnlock(ωi ,xi )}si=1)
such that���E[D(Ω,C1, ...,Cs )] − E

[
S {idealUnlock(ωi ,xi )}

s
i=1 (Ω,κ)

] ��� ≤ 1
3p(λ)

.

(1)

The same is true if we replaced Ω above by an independent uniform
random variable U overMκ . We now prove the following lemma,
which shows that S cannot distinguish between Ω and UMκ .

LEMMA A.1. Let U denote the uniform distribution overMκ .
Then ���E [S {idealUnlock(ωi ,xi )}si=1 (R,κ)] (2)

−E
[
S {idealUnlock(ωi ,xi )}

s
i=1

(
UMκ ,κ

) ] ��� (3)

≤
q(q + 1)

2m
≤

1
3p(λ)

, (4)

where q is the maximum number of queries S can make.

PROOF. Fix any u ∈ Mκ (the lemma will follow by averaging
over all u). Let Ω∗ be the correct value of Ω. The only information
that S can learn about whether the value is Ω∗ or u is through the
query responses. First, modify S slightly to quit immediately if it gets
a response not equal to ⊥ (we assume such as soon as S gets back a
non-⊥ response it distinguishes with probability 1). There are q + 1
possible values for the view of S on a given input (q of those views
consist of some number of ⊥ responses followed by the first non-
⊥ response, and one view has all q responses equal to ⊥). By [22,
Lemma 2.2b], H̃∞(Vi |View(S), {jik }) ≥ H̃∞(Vj |{jik })−log(q+1) ≥
m − log(q + 1). Therefore, at each query, the probability that S gets a
non-⊥ answer is at most (q+1)2−m . Since there are q queries of S , the
overall probability is at most q(q + 1)/2m . Then since 2m is ngl(λ),
there exists some λ such that for all λ > λ0, q(q+1)/2m ≤ 1/(3p(λ)).
This completes the proof of Lemma A.1. �

Adding together Equation 1, Equation 4, and Equation 1 in which Ω
is replaced with UMκ , we obtain that

δD ((Ω, P), (UMκ , P)) ≤
1

p(λ)
.
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This is a contradiction and completes the proof of Proposition 4.2.
�
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