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Abstract. Predicate encodings are information-theoretic primitives that
can be transformed generically into predicate encryption schemes for a
broad class of predicates (Wee, TCC 2014; Chen, Gay, Wee, EURO-
CRYPT 2015). Starting from the observation that predicate encodings
admit a purely algebraic characterization equivalent to the original no-
tion, we obtain several new results about predicate encodings. First, we
propose two generic optimizations that improve their efficiency. Second,
we propose new transformations for boolean combinations of predicate
encodings. Third, we develop several new predicate encodings for boolean
formulas and arithmetic span programs. In the important case of boolean
formulas, our encodings are more efficient and attribute-hiding; more-
over, they support revocation and delegation. Finally, we implement our
approach and experimentally validate its efficiency gains.

1 Introduction

Predicate Encryption (PE) [11, 23] is a form of public-key encryption that sup-
ports fine-grained access control for encrypted data by associating attributes to
ciphertexts and keys. In predicate encryption, everyone can create ciphertexts
while keys can only be created by the master key owner. Predicate encryption
schemes use predicates to model (potentially complex) access control policies
and attributes are attached to both ciphertexts and secret keys. A predicate
encryption scheme for a predicate P guarantees that decryption of a ciphertext c
with a secret key k is allowed if and only if the attribute x associated to the
ciphertext c and the attribute y associated to the secret key k verify the pred-
icate P, i.e. P(x, y) = 1. Predicate encryption schemes exist for several useful
predicates, such as Zero Inner Product Encryption (ZIPE), where attributes are
vectors x and y and the predicate P(x,y) is defined as x>y = 0. Predicate en-
cryption subsumes several previously defined notions of public-key encryption.
For example, Identity-Based Encryption (IBE) [31] can be obtained by defining
P(x, y) as x = y and Attribute-Based Encryption (ABE) [30] can be obtained
similarly. More concretely, for Key-Policy ABE (KP-ABE), the attribute x is a
boolean vector, the attribute y is a boolean function, and the predicate P(x, y)
is defined as y(x) = 1. For Ciphertext-Policy ABE (CP-ABE), the roles of the
attributes x and y are swapped.
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Modular approaches for PE. In 2014, two independent works by Wee [34] and
Attrapadung [4] proposed generic and unifying frameworks for obtaining effi-
cient fully secure PE schemes for a large class of predicates. Both works use
the dual system techniques introduced by Lewko and Waters [25, 33] and de-
fine a compiler that takes as input a relatively simple symmetric primitive and
produces a fully secure PE construction. Wee introduced so-called predicate en-
codings, an information-theoretic primitive inspired from linear secret sharing.
Attrapadung introduced so-called pair encodings and provides computational
and information-theoretic security notions. These approaches greatly simplify
the construction and analysis of predicate encryption schemes and share several
advantages. First, they provide a good trade-off between expressivity and per-
formance, while the security relies on standard and well studied assumptions.
Second, they unify existing constructions into a single framework, i.e., previ-
ous PE constructions can be seen as instantiations of these new compilers with
certain encodings. Third, building PE schemes by analyzing and building these
simpler encodings is much easier than building PE schemes directly. Compared
to full security for PE, the encodings must verify much weaker security require-
ments. The power of pair and predicate encodings is evidenced by the discovery
of new constructions and efficiency improvements over existing ones. However,
both approaches were designed over composite order bilinear groups. In 2015,
Chen, Gay and Wee [12] and Attrapadung [5] respectively extended the predicate
encoding and pair encoding compiler to the prime order setting. Next, Agrawal
and Chase [1] improved on Attrapadung’s work by relaxing the security require-
ment on pair encodings and thus, capturing new constructions. In addition, their
work also brings both generic approaches closer together, since like [12], the new
compiler relies (in a black-box way) on Dual System Groups (DSG) [13, 14].

Predicate encryption from predicate encodings. A predicate encoding for a pred-
icate P consist of encoding functions sE, rE, and kE used for encryption and key
generation, and decoding functions used for decryption. In the following, we try
to provide some intuition on how predicate encodings are compiled to predicate
encryption schemes by the compiler from [12]. The master keys, ciphertexts and
secret keys have the following form:

msk = gα2 ctx = (gs1, g
s·sEx(w)
1 , e(g1, g2)αs ·m)

mpk = (g1, g
w
1 , g2, g

w
2 , e(g1, g2)α) sky = (gr2, g

α·kEy+r·rEy(w)
2 )

Note that the encrypted messagem ∈ Gt is blinded by a random factor e(g1, g2)αs.
The so-called (restricted) α-reconstruction property of predicate encodings en-
sures that this blinding factor can be recovered for a pair (ctx,sky) if P(x, y) =
1. More concretely, restricted α-reconstruction states that, for all x, y with
P(x, y) = 1, there exist linear decoding functions sDx,y,rDx,y such that for all
vectors w,

sDx,y(sEx(w)) = rDx,y(rEy(w)) ∧ rDx,y(kEy) = 1.
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Since decoding functions are linear, it is possible to evaluate these functions in
the exponent. To see correctness, note that if such functions are known, one can
compute

g
s·sDx,y(sEx(w))
1 and g

rDx,y(α·kEy+r·rEy(w))
2 ,

obtaining gsβ1 and gα+rβ
2 for β = sDx,y(sEx(w)) = rDx,y(rEy(w)). Now, it is

simple to recover e(g1, g2)αs from e(gs1, g
α+rβ
2 ) and e(gsβ1 , gr2). To prove security,

another property of predicate encodings called α-hiding is used together with
decisional assumptions about dual system groups. The α-hiding property states
that given certain values derived from the output of the encoding functions for
random input, α remains information-theortic hidden.

1.1 Our contributions

We pursue the line of investigations on the strength of (predicate) encodings and
establish several general results and new constructions that broaden their scope
and improve their efficiency.

Algebraic characterization and optimizations. Our starting point is the obser-
vation that the information-theoretic definition of predicate encoding admits an
equivalent, purely algebraic, definition. More specifically, we observe that the
information-theoretic indistinguishability property used in [12, 34] for capturing
security of a predicate encoding is equivalent to the existence of a solution of a
linear system of equations. Leveraging this observation, we prove that every triple
of encoding functions implicitly defines a unique predicate for which it is a valid
predicate encoding. This result sheds a different view on predicate encodings
and simplifies the analysis and description of all subsequent results in the paper.
In turn, this result leads us to formulate two generic optimizations of predicate
encodings that can lead to efficiency improvements and reduce the number of
required group elements in keys and ciphertexts. We prove the soundness of the
transformations and validate their benefits experimentally on examples from [12,
34]; we successfully apply these simplifications to reduce the size of keys and ci-
phertexts by up to 50% and to reduce the number of group operations needed
in some of the existing encodings.

Combination of predicate encodings. We propose generic methods for build-
ing boolean combinations of predicate encodings. Given predicate encodings for
two predicates P1 and P2, our results give us valid predicate encodings for the
disjunction predicate P1(x1, y1) ∨ P2(x2, y2) and for the conjunction predicate
P1(x1, y1)∧P2(x2, y2). Furthermore, given a predicate encoding for predicate P,
we can produce a predicate encoding for the negation ¬P(x, y) and the dual pred-
icate P?(y, x) := P(x, y). Moreover, we present a method to flexibly combine the
above transformations on predicate encodings. For example, given predicates P1,
P2 and P3 we can create a predicate encoding for the predicate P1 ./ (P2 ./ P3)
where the placeholders ./∈ {∧,∨} are part of the attribute y, i.e., different keys
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can enforce different boolean structure on the predicates P1, P2 and P3. Addi-
tionally, the transformation to build the dual encoding can be used to convert
any KP-ABE scheme into CP-ABE and vice versa for dually related predicates
and thus, it unifies both notions in the predicate encoding framework.

Applications. Leveraging on these results, we develop several new applications:

• We show how to combine our generic transformations to build Dual-Policy
Attribute-Based Encryption (DP-ABE) [7, 8] from predicate encodings (Sec-
tion 5.4). DP-ABE combines KP-ABE and CP-ABE into a single construc-
tion that allows simultaneously for two access control mechanisms. This
primitive has not been considered before in the predicate encoding frame-
work.

• We show how combining a predicate encoding for broadcast encryption with
another arbitrary predicate encoding is useful to achieve direct revocation of
keys (Section 5.5). The former encoding takes care of revocation, while the
latter encodes the desired access structure. We also perform an experimental
evaluation of the scalability of revocation through this mechanism.

• We extend the attribute-hiding predicate encryption for ZIPE proposed
in [12] to non-monotonic boolean formulas (expressed in Disjunctive Nor-
mal Form), using our combinations on predicate encodings.

• We define a new methodology that is based on our transformations and
optimizations of predicate encodings and that has been successfully applied
to simplify existing predicate encodings from [12], building simpler and more
efficient predicate encodings with new properties (Section 5.1).

• Finally, we show how to enhance any predicate encoding with support for
delegation. In particular, we show how this method can be applied to a
predicate encoding for boolean formulas (Section 5.6).

Implementation and evaluation. We implement1 a general library for predicate
encryption with support for the predicate encoding and pair encoding frame-
works. We perform a comparison between predicate encodings and pair encod-
ings in terms of efficiency and number of group operations. Although predicate
encodings seem to be more efficient, further investigation is required to obtain
a better understanding of these two primitives. Additionally, we implement our
constructions and perform an experimental evaluation of their efficiency. We con-
firm that our improvements on existing predicate encodings have the expected
performance. Our scalability experiments show that predicate encodings can be
used for real applications.

1.2 Prior work

Predicate encodings have been introduced in [34] and we use a refined version
that is defined in [12] as our starting point. Both variants use an information-
theoretic definition of the hiding while we show that there is an equivalent al-
gebraic definition. Another related work is [17], initiating a systematic study

1 source code at https://github.com/miguel-ambrona/abe-relic
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of the communication complexity of the so-called conditional secret disclosure
primitive, which is closely related to predicate encodings.

Other works also optimize existing predicate encryption schemes, for exam-
ple many works focus on going from composite order constructions to the more
efficient prime order ones [5, 12, 24]. In [12] they also propose performance im-
provements on Dual System Groups. We believe our optimizations via predicate
encoding complement other possible enhancements of predicate encryption. Ad-
ditionally, a recent work [19] introduces a new generic framework for modular
design of predicate encryption that improves on the performance of existing
compilers. Their core primitive, tag based encodings is really similar to predi-
cate encodings and we believe our techniques could be also applied in this new
framework.

Boolean combinations of predicates have also been considered in the setting
of pair encodings. Attrapadung [7, 8] proposes generic transformations for con-
junction and for the dual predicate, but neither for negation nor disjunction. To
our best knowledge, we are the first to propose similar constructions for predicate
encodings; additionally, we also deal with negation and disjunction.

The main advantage of DP-ABE is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time. DP-ABE has been considered
by Attrapadung in the pair encoding framework [7, 8]. To the best of our knowl-
edge, we are the first to provide DP-ABE in the predicate encoding framework.

Revocation is a desirable property for PE and ABE schemes that has also
been considered by many works in the literature. Revocation allows to invalidate
a user’s secret key in such a way that it becomes useless, even if its associated
attribute satisfies the policy associated to the ciphertext. Some attempts [29]
propose indirect revocation that requires that the master secret owner period-
ically updates secret keys for non-revoked users. Other attempts achieve direct
revocation [6, 20, 27, 28], but either rely on strong assumptions or provide only
selectively security. Our construction not only allows to achieve revocation in a
fully secure framework, but it allows to add revocation to arbitrary predicate
encodings.

Policy hiding is another property of PE, and ABE in particular, that has
been broadly studied. In this context, policies associated to ciphertexts are not
attached to them and therefore, unauthorized users will only learn the fact that
their key does not satisfy the policy, but nothing else about it. Policy Hiding
has been considered in several works [11, 23]. The security of our construction
improves on earlier works, thanks to the compiler from [12]. Additionally, our
observation extends the expressivity of attribute-hiding predicate encryption for
ZIPE proposed in [12] to support policy-hiding for boolean formulas.

In [12], the authors introduce the notion for spatial encryption predicate
encodings. We generalize this notion and introduce a transformation that makes
delegation possible for every predicate encoding.

Several works evaluate the suitability of ABE for different applications. For
example, ABE has been used and benchmarked to enforce privacy of Electronic
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Sender encoding: sE : X → W → S
Receiver encoding: rE : Y → W → R
Key encoding: kE : Y → R
Sender decoding: sD : X × Y → S → Zp

Receiver decoding: rD : X × Y → R→ Zp

Fig. 1. Predicate encoding functions and their types.

Medical Records (EMR) [2], in a system where healthcare organizations export
EMRs to external storage locations. Other examples are Sieve [32] or Stream-
force [15], systems that provide enforced access control for user data and stream
data in untrusted clouds. In contrast to these works, we are the first to evaluate
predicate encryption and ABE based on modern modular approaches such as
the predicate encoding and pair encoding frameworks. The resulting schemes
also satisfy a stronger security notion (full vs. selective security) compared to
the previously mentioned evaluations. We focus on synthetic case studies, while
other works analyze more realistic settings and integration of ABE into bigger
systems. Combining our methods with these more practical case studies is a very
interesting direction for future work.

2 Background

In this section, we first introduce some mathematical notation and then define
predicate encodings, the symmetric primitive used to build predicate encryption.

2.1 Notation

For finite sets S, we use x
$← S to denote that x is uniformly sampled from S.

For a predicate P : X × Y → {0, 1}, we use (x, y) ∈ P as a shorthand for
P(x, y) = 1. For two functions f : A → A′ and G : B → B′, we define the
cartesian product of f and g as (f × g)(a, b) = (f(a), g(b)). For S ⊆ A and
f : A → A′, we define f(S) = {f(s) | s ∈ S} to denote the image of S under
f . For a finite-dimensional Zp-vector space V, we define lV = dim(V) and use
0V to denote the zero vector in V. We also assume that V = ZlVp unless stated
otherwise. Furthermore, we use the same conventions for matrix-representations
of linear maps on finite-dimensional spaces. We define the transpose >f of such
maps using the transposed matrix for f . We use diag(v) to denote the diagonal
matrix with main diagonal v.

2.2 Predicate Encodings

Predicate encodings are a symmetric primitive introduced in [34] that can be
used to build predicate encryption schemes for different predicates. We use the
refinement of predicate encodings introduced in [12].
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Definition 1 (Predicate encoding). A Zp-bilinear predicate encoding for a
predicate P : X×Y → {0, 1} consists of determistic algorithms (sE, rE, kE, sD, rD)
with the types given in Figure 1 such that W, S, R are finite-dimensional vector
spaces over Zp and the following properties are satisfied:

Linearity: sEx, rEy, sDx,y, and rDx,y are Zp-linear.

Restricted α-reconstruction: For all (x, y) ∈ P,w ∈ W:

sDx,y(sEx(w)) = rDx,y(rEy(w)) and rDx,y(kEy) = 1

α-privacy: For all (x, y) /∈ P, α ∈ Zp, it holds that

w
$←W; return (sEx(w), rEy(w)+α·kEy) ≡ w $←W; return (sEx(w), rEy(w))

where ≡ denotes equality of distributions.

In the remainder of the paper, we say the encoding and decoding functions
of predicate encodings are linear if they satisfy the linearity property. We also
abbreviate the restricted α-reconstruction property with reconstructability and
the α-privacy property with privacy. The reconstructability property allows to
recover α from (x, y, sEx(w), rEy(w) + α · kEy) if (x, y) ∈ P. The α-privacy
property ensures that α is perfectly hidden for such tuples if (x, y) /∈ P.

Example 1 (IBE predicate encoding). Let X = Y = S = R = Zp and let W =
Z2
p. We define the encoding functions as follows:

sEx(w1, w2) = x · w1 + w2 rEy(w1, w2) = y · w1 + w2 kEy = 1

We can equivalently define the encoding functions using matrix notation:

sEx =
(
x 1

)
rEy =

(
y 1

)
kEy =

(
1
)
.

The above is a predicate encoding for identity-based encryption, i.e., for the
predicate P(x, y) := x = y. In the next section, we will see that we can check
this using the implicit predicate of the encoding (see Definition 2)(

0
1

)
/∈
(
x 1
y 1

)
(W)

which is equivalent to x = y. �

3 Properties of predicate encodings

In this section, we present an alternative definition of predicate encodings. In
this new definition, the α-privacy property (which was defined as an indistin-
guishability statement) becomes a purely algebraic statement. This makes it
easy to analyze predicate encodings in a generic way. Furthermore, we unify the
reconstructability and privacy properties and then exploit the unified treatment
to define optimizations for predicate encodings. In the remainder of this section,
we fix attribute sets X and Y, finite-dimensional Zp-vector spacesW, S, and R,
and linear encoding functions pe = (sE, rE, kE) for these types (see Figure 1).
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3.1 Alternative definition of predicate encodings

We first define a predicate that can be inferred from the encoding functions.

Definition 2 (Implicit predicate). The encoding functions pe = (sE, rE, kE)
define the implicit predicate

Predpe(x, y) := (0S , kEy) /∈ (sEx × rEy)(W).

We can relate the implicit predicate to privacy as follows.

Lemma 1 (Alternative definition of privacy). The encoding functions pe =
(sE, rE, kE) satisfy the α-privacy property for all (x, y) /∈ Predpe. We say a func-
tion rW : X × Y → W is a witness for α-privacy if for all (x, y) /∈ Predpe, it
holds that (sEx× rEy)(rWx,y) = (0S , kEy). Such a witness function always exists.

Proof. Remember that for a predicate P, a predicate encoding satisfies α-privacy
if for all (x, y) /∈ P and α ∈ Zp,

w
$←W; return (sEx(w), rEy(w) + α · kEy) ≡ w $←W; return (sEx(w), rEy(w)).

This is equivalent to the existence of a bijection ρx,y,α such that for all w ∈ W,

sEx(w) = sEx(ρx,y,α(w)) and rEy(w) + α · kEy = rEy(ρx,y,α(w)).

By linearity, this can be rewritten as

sEx(ρx,y,α(w)−w) = 0S and α · kEy = rEy(ρx,y,α(w)−w).

Now, the existence of such a bijection is completely equivalent to the existence
of a solution in the following linear system on w∗:

sEx(w∗) = 0S ∧ rEy(w∗) = α · kEy

To see this, note that if ρx,y,α is such a bijection, ρx,y,α(w0)−w0 is a solution
of the system for every w0 ∈ W. On the other hand, if w∗ is a solution of the
system, the bijection ρx,y,α(w) = w + w∗ is a valid one. We have just proved
that α-privacy is equivalent to the existence of a solution of the above linear
system, which at the same time is equivalent to the existence of solution for the
following modified system (independent of α):

sEx(w∗) = 0S ∧ rEy(w∗) = kEy

for every (x, y) /∈ P. This proves that α-privacy is equivalent to the existence
of the witness function rW from the statement of the lemma (defined for every
(x, y) /∈ P). The lemma follows from the observation that the predicate ¬Predpe
is equivalent to the existence of such a witness function as well.

Intuitively, we now prove that we can find decoding functions that work
whenever α-privacy does not hold. More formally, this means that each pair
(x, y), α is either perfectly hidden or can be reconstructed.
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Lemma 2 (Alternative definition of reconstructability). There exist de-
coding functions (sD, rD) for the encoding functions pe = (sE, rE, kE) that achieve
α-reconstruction for all (x, y) ∈ Predpe. Furthermore, (sD, rD) can be efficiently
computed by Gaussian elimination.

Proof. To prove Lemma 2 we will use the following helper lemma [10, Claim 2].

Lemma 3. Let K be a field and let A ∈ Km×n and b ∈ Kn be matrices with
coefficients in K. The following two statements are equivalent:

• ∀a ∈ Zmp it holds that b> 6= a>A

• ∃z ∈ Znp such that z>b = 1 ∧ Az = 0.

For all (x, y) ∈ Predpe, we have

(0S , kEy) /∈ (sEx × rEy)(W)

if and only if for all w ∈ W, it holds that

(0S , kEy) 6= (sEx(w), rEy(w))⇔ (0S , kEy) 6= (−sEx(w), rEy(w))

which is equivalent (by Lemma 3) to the existence of (z1, z2) ∈ S ×R such that

(z1, z2)>(0S , kEy) = 1 ∧ (z1, z2)>(−sEx, rEy) = 0>W

In particular we can define the decoding functions as the linear functions sD :
S → W and rD : R →W defined as sD(s) = z>1 s and rD(r) = z>2 r.
In this context, for all (x, y) ∈ Predpe, w ∈ W:

sDx,y(sEx(w)) = rDx,y(rEy(w)) ∧ rDx,y(kEy) = 1.

Finally, note that sDx,y and rDx,y can be computed by solving a linear system
of equations.

We can now prove an alternative definition of Zp-bilinear predicate encodings
that keeps the decoding functions implicit and uses the implicit predicate.

Theorem 1 (Alternative definition of predicate encodings). For the en-
coding functions pe = (sE, rE, kE), there exist efficient decoding functions sD and
rD such that (sE, rE, kE, sD, rD) is a Zp-bilinear predicate encoding for Predpe.

Proof. The statement immediately follows from Lemma 1 and Lemma 2.

To obtain our results, we often switch between the original definition and our
alternative definition. The advantage of our definition is that we can focus on the
encoding functions and the implicit predicate yields a simple method to check
how modifying the encoding functions affects the predicate. For example, in the
next section, we define optimizations that preserve the implicit predicate. The
advantage of making the decoding functions explicit is that we can check if they
satisfy certain conditions such as independence of x and y, which is important for
attribute-hiding. In some transformations, we also use the witness function rW
for α-privacy.
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3.2 Optimization of predicate encodings

In this section, we present two different methods to simplify predicate encoding
functions pe = (sE, rE, kE). By combining both methods, we can obtain new
predicate encoding functions pe′ = (sE′, rE′, kE′) for types W ′, R′, and S ′.

First, the inputs of sE and rE can be preprocessed using a function σw :W ′ →
W. We define this predicate function transformation as isimpσw(sE, rE, kE) =
(sE◦σw, rE◦σw, kE). Since the same preprocessing function is used to define both
sE and rE, it cannot depend on X or Y. It is easy to see that this transformation
preserves reconstructability, but can destroy privacy.

Second, the outputs of sE, rE, and kE can be postprocessed using functions
σs : X → S → S ′ and σr : Y → R → R′. We define this predicate function
transformation as osimpσs,σr (sE, rE, kE) = (sE′, rE′, kE′) s.t. for all x, sE′x = σsx ◦
sEx and for all y, rE′y = σry ◦ rEy and kE′y = σry(kEy). For such functions, privacy
is obviously preserved, but reconstructability can be destroyed.

These transformations are useful to make predicate encodings simpler and
more efficient in different manners. They can be used to:

• Reduce the size of mpk, ctx and sky. If dim(W ′) < dim(W), the number
of elements in mpk will decrease. This will also improve the performance
of encryption and key generation because both depend directly on mpk.
Additionally, if dim(S ′) < dim(S) or dim(R′) < dim(R), the number of
elements in ctx and sky will also decrease respectively.

• Make matrices corresponding to encoding and decoding functions sparser.
For example, if we consider σs and σr as functions that apply matrix Gaus-
sian elimination to the matrices associated to sE and (rE×kE), many entries
from this matrices will be zero. If many entries are zero, fewer group oper-
ations will be performed during encryption and key generation, improving
the performance.

The above simplifications can be successfully applied to actual predicate en-
codings proposed in [12]. In Sections 5.1 and 5.2 we apply a simplification mecha-
nism to improve the performance of predicate encodings for ABE for monotonic
boolean formulas and predicate encodings for arithmetic span programs.

Lemma 4 (Input simplification). For pe = (sE, rE, kE) and all linear func-
tions σw :W ′ →W s.t. for all (x, y) /∈ P,

(0S , kEy) ∈ (sEx × rEy)(σw(W ′)),

it holds that Predpe = Predpe′ for the simplified predicate encoding functions
pe′ = isimpσw .

Proof. First, note that the predicate encoding functions pe′ are linear since σw

and the functions in pe are linear. The condition on σw yields Predpe′(x, y) ⇒
Predpe(x, y) for all (x, y) ∈ X × Y. The other direction directly follows from
σw(W ′) ⊆ W.
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We can prove a similar result for output postprocessing.

Lemma 5 (Output simplification). For pe = (sE, rE, kE) and for all func-
tions σs : X → S → S ′ and σr : Y → R → R′ s.t. for all (x, y) ∈ P,

(0S′ , σ
r
y(kEy)) /∈ ((σsx ◦ sEx)× (σry ◦ rEy))(W),

it holds that Predpe = Predpe′ for the simplified predicate encoding functions
pe′ = osimpσs,σr .

Proof. First, note that the predicate encoding functions pe′ are linear since σs,
σr, and the functions in pe are linear. The condition on σw yields Predpe(x, y)⇒
Predpe′(x, y) for all (x, y) ∈ X × Y. The other direction directly follows from

(0S , kEy) = (sEx(w), rEy(w))⇒ (0S′ , σ
r
y(kEy)) = (σsx(sEx(w)), σry(rEy(w)))

since linearity of σsx implies σsx(0S) = 0S′ .

4 Combining predicates

Using the new characterization of predicate encodings from the previous section,
we define transformations to combine predicate encodings into new predicate en-
codings for more complex predicates. More formally, given predicate encodings
pe1 and pe2 for the predicates P1 and P2 and a binary operator �, we define
a predicate encoding transformation ptrans� that yields a new predicate encod-
ing ptrans�(pe

1, pe2) for P where P((x1, x2), (y1, y2)) := P1(x1, y1) � P2(x2, y2).
Similarly, we define predicate encoding transformations for unary operators. We
first define transformers for disjunction, conjunction, and negation. Then we
define a transformer for flexible combination where the receiver can choose be-
tween disjunction and conjunction when he performs the encoding. Finally, we
define a transformer for the dual predicate. These combinations are useful to
create interesting schemes that gather different properties from the more basic
building blocks. In Section 5 we propose several constructions that rely on these
transformations.

In the remainder of this section, we fix linear predicate encoding functions
pe1 = (sE1, rE1, kE1) for types X1,Y1,W1,S1,R1 and pe2 = (sE2, rE2, kE2) for
types X2,Y2,W2,S2,R2. Using these encoding functions as inputs for the trans-
formations, the result types of our transformations are given in Figure 2.

4.1 Boolean combinations

We first give the transformation for disjunction. Next, we give the transformation
for conjunction which requires only a small change to the transformation for
disjunction. Finally, we give the transformation for negation, which uses different
techniques than the first two transformations.
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X Y W S R
ptrans∨ X1 ×X2 Y1 × Y2 W1 ×W2 S1 × S2 R1 ×R2

ptrans∧ X1 ×X2 Y1 × Y2 W1 ×W2 × Zp S1 × S2 R1 ×R2

ptrans¬ X1 Y1 S1 ×W1 ×R1 W1 W1 × Zp

ptrans./ X1 ×X2 Y1 × Y2 × {∨,∧} W1 ×W2 × Zp S1 × S2 R1 ×R2

ptrans? Y1 X1 W1 × Zp R1 S1 × Zp

Fig. 2. Result types for predicate transformers with input types X1, X2, . . . .

Disjunction. Disjunction of predicates can be obtained generically from a pair
of predicate encryption schemes by defining the master keys as the concatena-
tions of the original keys and defining the ciphertext (resp. the secret key) for
pairs of attributes as the concatenation of the ciphertexts (resp. the secret keys)
where the first attribute is used with the first scheme and the second attribute
is used with the second scheme. Given a valid secret key for one of the schemes,
it is possible to decrypt the corresponding ciphertext in the concatenation. In
contrast to the generic approach, we define transformations on the level of pred-
icate encodings. The advantage is that for some transformations, no generic
solution is known and the generic disjunction transformation is not compatible
with subsequent transformations defined only for predicate encodings. Further-
more, applying the compiler from predicate encodings to predicate encryption
only once at the end results in sharing of elements in keys and ciphertexts that
would be duplicated with generic approaches.

Definition 3 (Disjunction of predicate encodings). We define the predi-
cate encoding ptrans∨(pe1, pe2) = (sE, rE, kE) as

sE(x1,x2)(w1,w2) = (sE1
x1

(w1), sE2
x2

(w2))

rE(y1,y2)(w1,w2) = (rE1
y1(w1), rE2

y2(w2))

kE(y1,y2) = (kE1
y1 , kE

2
y2).

Theorem 2 (Correctness of disjunction). For all (x1, y1) ∈ X1 × Y1 and
(x2, y2) ∈ X2 × Y2, it holds that

Predptrans∨(pe1,pe2)((x1, x2), (y1, y2))⇔ Predpe1(x1, y1) ∨ Predpe2(x2, y2).

Proof. For all (x1, y1) ∈ X1×Y1, and (x2, y2) ∈ X2×Y2 such that Predpe1(x1, y1)∨
Predpe2(x2, y2), by Lemma 2, if Predpe1(x1, y1), there exist decoding functions

sD1
x1,y1 , rD1

x1,y1 for pe1. Otherwise, Predpe2(x2, y2) holds and there exists decod-

ing functions sD2
x2,y2 , rD2

x2,y2 for pe2. It can be easily checked that the following
are valid decoding functions for ptrans∨(pe1, pe2):

sD(x1,x2),(y1,y2)(s1, s2) =

{
sD1

x1,y1(s1) if Predpe1(x1, y1)

sD2
x2,y2(s2) otherwise
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rD(x1,x2),(y1,y2)(r1, r2) =

{
rD1

x1,y1(r1) if Predpe1(x1, y1)

rD2
x2,y2(r2) otherwise.

For all (x1, y1) ∈ X1 × Y1, and (x2, y2) ∈ X2 × Y2 such that ¬(Predpe1(x1, y1)
∨Predpe2(x2, y2)), it holds ¬Predpe1(x1, y1) ∧ ¬Predpe2(x2, y2) and by Lemma 1

there exist valid privacy witnesses rW1
x1,y1 , rW2

x2,y2 for pe1 and pe2 respectively.
It can be easily verified that this is a valid privacy witness for pe1 ∨ pe2:

rW(x1,x2),(y1,y2) =
(
rW1

x1,y1 , rW
2
x2,y2

)
Note that it is possible to obtain sharing between attributes, e.g., for X as

follows. If X1 = X2 and the sender uses only the subset {(x1, x1) | x1 ∈ X1} of X ,
then we obtain an encoding for P(x1, (y1, y2)) := Predpe1(x1, y1)∨Predpe2(x1, y2).

Conjunction. In contrast to disjunction, we cannot use the naive solution
that just concatenates secret keys for conjunction. Given keys for attribute pairs
(y1, y2) and (y′1, y

′
2), it would be otherwise possible to recombine the components

and obtain a key for (y1, y
′
2) leading to collusion attacks. The predicate encoding

transformation deals with this problem by “tying” the two components together
with additional randomness.

Definition 4 (Conjunction of predicate encodings). We define the predi-
cate encoding ptrans∧(pe1, pe2) = (sE, rE, kE) as

sE(x1,x2)(w1,w2, w) = (sE1
x1

(w1), sE2
x2

(w2))

rE(y1,y2)(w1,w2, w) = (rE1
y1(w1) + w · kE1

y1 , rE
2
y2(w2)− w · kE2

y2)

kE(y1,y2) = (kE1
y1 , kE

2
y2).

Theorem 3 (Correctness of conjunction). For all (x1, y1) ∈ X1 × Y1, and
(x2, y2) ∈ X2 × Y2, it holds that

Predptrans∧(pe1,pe2)((x1, x2), (y1, y2))⇔ Predpe1(x1, y1) ∧ Predpe2(x2, y2).

Proof. For all (x1, y1) ∈ X1×Y1, and (x2, y2) ∈ X2×Y2 such that Predpe1(x1, y1)∧
Predpe2(x2, y2), by Lemma 2, there exist decoding functions sD1

x1,y1 , rD1
x1,y1 and

sD2
x2,y2 , rD2

x2,y2 for pe1 and pe2 respectively. It can be easily checked that the
following are valid decoding functions for ptrans∧(pe1, pe2):

sD(x1,x2),(y1,y2)(s1, s2) =
1

2
sD1

x1,y1(s1) +
1

2
sD2

x2,y2(s2)

rD(x1,x2),(y1,y2)(r1, r2) =
1

2
rD1

x1,y1(r1) +
1

2
rD2

x2,y2(r2)

For all (x1, y1) ∈ X1 × Y1, and (x2, y2) ∈ X2 × Y2 such that ¬(Predpe1(x1, y1)
∧Predpe2(x2, y2)), if ¬Predpe1(x1, y1), by Lemma 1 there exists a valid pri-

vacy witness rW1
x1,y1 for pe1, otherwise there exists a valid privacy witness

rW2
x2,y2 for pe2. It can be easily verified that this is a valid privacy witness

for ptrans∧(pe1, pe2):

rW(x1,x2),(y1,y2) =

{
(2 rW1

x1,y1 , 0W2
, −1) if ¬Predpe1(x1, y1)

(0W1 , 2 rW2
x2,y2 , +1) otherwise.
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Negation. To obtain a functionally complete set of boolean predicate encoding
transformers, we now define a transformation for negation. This is interesting
because it unifies negated predicates like Non-zero Inner Product Encryption
(NIPE) and Zero Inner Product Encryption (ZIPE). In Section 5.1 we use this
transformation to build optimized predicate encodings. The technique works
for predicate encodings where the negation transformation yields a predicate
encoding that can be further simplified (using our methods from Section 3.2).

Definition 5 (Negation of predicate encodings). We define the predicate
encoding ptrans¬(pe1) = (sE, rE, kE) as

sEx1
(w′,w′′,w′′′) =

>
sE1
x1

(w′)−w′′

rEy1(w′,w′′,w′′′) = (
>
rE1
y1(w′′′) +w′′, kE>y1w

′′′)

kEy1 = (0W1
, 1).

Theorem 4 (Correctness of negation). For all (x, y) ∈ X ×Y, it holds that

Predptrans¬(pe1)(x, y)⇔ ¬Predpe1(x, y).

Proof. For all (x1, y1) ∈ X1×Y1, such that ¬Predpe1(x1, y1) by Lemma 1, there

exists a valid privacy witness rW1
x1,y1 for pe1. It can be easily checked that the

following are valid decoding functions for ptrans¬(pe1):

sDx1,y1 = rW1
x1,y1

rDx1,y1 =
(
−rW1

x1,y1 | 1
)

For all (x1, y1) ∈ X1 × Y1, such that Predpe1(x1, y1), by Lemma 2 there exist

decoding functions sD1
x1,y1 , rD1

x1,y1 for pe1. It can be easily verified that this is
a valid privacy witness for ptrans¬(pe1):

rWx1,y1 =
(
−sD1

x1,y1 ,−
>
sE1
x1

(sD1
x1,y1), rD1

x1,y1

)

4.2 Flexible boolean combinations

We note that the boolean combinations of predicate encodings can be applied
dynamically. This is, instead of combining two predicates statically, with the
conjunction for example P ∧ P′, we can combine them by leaving placeholders
P ./ P′ that will be chosen during encryption or key generation. The following
theorem shows how to dynamically combine two predicates making the combi-
nator part of the secret key sky. Thanks to this dynamic combination, we can
create predicate encodings for boolean formulas where the leaves are predicates
instead of attributes. The only drawback is that the structure of the boolean
formula has to be fixed.
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Fig. 3. Example of fixed structure for inequalities

Definition 6 (Flexible combination of predicate encodings). We define
the predicate encoding ptrans./(pe

1, pe2) = (sE, rE, kE) as

sE(x1,x2)(w1,w2, w) = (sE1
x1

(w1), sE2
x2

(w2))

rE(y1,y2,./)(w1,w2, w) = (rE1
y1(w1) + f./(w) · kE1

y1 , rE
2
y2(w2)− f./(w) · kE2

y2)

kE(y1,y2,./) = (kE1
y1 , kE

2
y2).

where f./(w) is defined as w if ./ = ∧ and 0 if ./= ∨.

Theorem 5 (Correctness of the flexible combination). For all (x1, y1) ∈
X1 × Y1, and (x2, y2) ∈ X2 × Y2, it holds that

Predptrans./(pe1,pe2)((x1, x2), (y1, y2, ./))⇔ Predpe1(x1, y1) ./ Predpe2(x2, y2).

Proof. This Theorem follows straightforwardly from Theorems 2 and 3.

Note that our Theorem 6 gives us an equivalent version of the above the-
orem, where the placeholder is part of the ciphertext ctx. Figure 3 presents a
possible application of a flexible fixed-structure combination of boolean opera-
tors. It encodes the predicate P(x, y) = 1 iff x ≥ y, where X = Y = {0, 1}4
(4-bit strings). Note that the leaf nodes are IBE predicate encodings (one of the
simplest predicate encodings).

4.3 Dual predicate

In the literature, the notions of KP-ABE and CP-ABE are considered sepa-
rately. In fact, many works are only valid for one of the two versions of At-
tribute Based Encryption. Our transformation unifies the notion of KP-ABE and
CP-ABE in the framework of predicate encodings. In this context they should
not be considered separately or, in other words, our transformation provides a
Ciphertext-Policy predicate encoding from any Key-Policy predicate encoding
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and vice versa. Note also that this transformation barely modifies the size of the
encoding. New ciphertexts have as many elements as secret keys had whereas
the size of new secret keys is just one group element (one row in the matrix)
bigger that earlier ciphertexts.

Definition 7 (Dual predicate encodings). We define the predicate encoding
ptrans?(pe

1) = (sE, rE, kE) as

sEy1(w, w) = rE1
y1(w) + w · kEy1

rEx1
(w, w) = (sE1

x1
(w), w)

kEx1
= (0S1 , 1).

Theorem 6 (Correctness of dual). For all (x, y) ∈ X × Y, it holds that

Predptrans?(pe1)(y, x)⇔ Predpe1(x, y).

Proof. For all (x1, y1) ∈ X1 × Y1, such that Predpe1(x1, y1) by Lemma 1, there

exist decoding functions sD1
x1,y1 , rD1

x1,y1 for pe1. It can be easily checked that
the following are valid decoding functions for ptrans?(pe

1):

sDy1,x1
(s) = rD1

x1,y1(s)

rDy1,x1(r, r) = sD1
x1,y1(r) + r

For all (x1, y1) ∈ X1 × Y1, such that ¬Predpe1(x1, y1), by Lemma 2 there exists

a valid privacy witness rW1
x1,y1 for pe1. It can be easily verified that this is a

valid privacy witness for ptrans¬(pe1):

rWy1,x1
=
(
−rW1

x1,y1 , 1
)

5 Constructions

We provide new instances of predicate encodings to achieve predicate encryption
schemes with new properties or better performance.

5.1 Boolean Formulas

In this section and the following we use a common methodology that is useful
to simplify existing predicate encodings. Our technique is based on applying
Theorem 4 first, to create a predicate encoding for the negation and then ap-
ply Lemmas 4 and 5 to simplify the resulting encoding. For some particular
predicates, the negated version of the encoding can be simplified into a simpler
encoding than the original one. Note that the predicate associated to the new
encoding is negated, however if inputs are also negated, the predicate is equiv-
alent to the original one. On the left side of Figure 4 there is an example of
a boolean formula KP-ABE for 4 attributes {a, b, c, d}, where the predicate is
P(x, y) := x(y) = 1. On the right side, we show how secret keys and policies can
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P P̄

attributes = {a, b, c, d} attributes = {ā, b̄, c̄, d̄}
x = (a ∧ c) ∨ d x = (ā ∨ c̄) ∧ d̄

y = {a, c} y = {c̄, d̄}
P(x, y) := x(y) P̄(x, y) := ¬x(y)

Fig. 4. Equivalent encodings of a policy using P (CP-ABE) on the left and P̄ (negated
CP-ABE) on the right.

be modified in the negated version to make it equivalent. First, the attribute
universe is formed by the negated version of all the attributes in the original
universe. Second, secret keys are formed by all the attributes (in negated form)
that were not part of the original secret key. Finally, policies are the negated
original policies expressed in Negation Normal Form.

In [12], the authors propose two predicate encoding (KP and CP versions)
for monotonic boolean formulas. In particular, access structures are represented
by a linear secret sharing (LSS) scheme.

Definition 8 (Linear Secret Sharing [21]). A linear secret sharing scheme
is a pair (M,ρ) where M is a matrix of size l1× l2 with entries in Zp and ρ is a
mapping from [l1] to a universe of attributes U . Given x = (x1, . . . , xn) ∈ {0, 1}n,
we say that

x satisfies (M,ρ) iff 1> ∈ row
span 〈Mx〉

where 1> = (1, 0, . . . , 0) ∈ Zl2p is a row vector and Mx denotes the matrix formed
by rows {Mj : xρ(j) = 1}.

LSS can be used to encode the information of monotonic boolean formulas. In
fact, Lewko and Waters proposed an algorithm to efficiently convert any mono-
tonic boolean formula to LSS matrices [26]. Roughly, this algorithm produces a
matrix whose number of rows is equal to the number of leaf nodes in the formula
and whose number of columns is equal to the number of and-gates plus one.

The predicate encoding proposed in [12] needs to fix the dimensions of this
matrix a priori and thus, the size of boolean formulas that can be handled is
bounded. In order to achieve α-privacy, the authors need to impose the restriction
that ρ is a permutation, this is, l1 = n. This implies that every attribute can be
only used once in the policy (one could overcome this limitation by duplicating
every attribute several times). Therefore, the number of elements in secret keys
and ciphertexts is always maximal, it equals the number of (possibly duplicated)
attributes, even for small policies. Furthermore, the number of and-gates must
be fixed a priori too (because it is related the the number of columns in the
matrix). The predicate encoding for key-policy monotonic boolean formulas in
[12] is the following:

X = {0, 1}n, Y = Zn×l2p , S = Znp , R = Znp , W = Znp × Zl2−1
p
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sEx =
(
diag(x) 0

)
rEM =

(
In M{2,...,l2}

)
kEM =

(
M{1}

)
Here, M{1} denotes the first column of matrix M , whereas M{2,...,l2} represents
the rest of the matrix. We propose the following predicate encoding for (negated)
key-policy monotonic boolean formulas, which is an equivalent predicate if in-
stantiated with negated inputs:

X = {0, 1}n, Y = Zn×l2p , S = Znp , R = Zl2p , W = Znp

sEx = In − diag(x) rEM = M> kEM = (1, 0, . . . , 0)>

Since the number of columns has been reduced up to half (being half when
the bound on the number of and-gates is maximal), the new encoding is simpler.
Furthermore, it has an additional property: the size of secret keys is proportional
to the complexity of the policies. In particular, it is equal to the number of
and-gates in policy (or equivalently, the number of or-gates in the non-negated
version). Note that our improvement also works in the ciphertext-policy case.

5.2 Arithmetic span programs.

In [18], Ishai and Wee show how to relate Arithmetic Branching Programs (ABP)
with Arithmetic Span Programs. Roughly speaking, an ABP over a finite field
Fp, is an algorithm that computes a function f : Fnp → Fp defined by using
addition and multiplication over the field.

Definition 9 (Arithmetic Span Program [22]). An arithmetic span pro-
gram (V, ρ) is a collection of vectors V = {(yj , zj) : j ∈ [l]} ∈ Zl′p and ρ : [l] →
[n]. We say that

x ∈ Znp satisfies (V, ρ) iff
(
1, 0, . . . , 0

)
∈ row

span
〈
xρ(j)y

T
j + zTj

〉
.

Given an ABP for f , Ishai and Wee present an efficient method to construct
an arithmetic span program (V, ρ) such that x ∈ Fnp satisfies (V, ρ) iff f(x) =
0. They also show that with a small modification on (V, ρ), they can achieve
the negated version of the previous predicate, i.e., x ∈ Fnp satisfies (V, ρ) iff
f(x) 6= 0. This means that a predicate encoding for arithmetic span programs
is a predicate encoding for the predicate P(x, f) := f(x) = 0 or the predicate
P(x, f) := f(x) 6= 0 (where f is an arbitrary polynomial function defined over
the field).

The original predicate encoding for arithmetic span programs proposed in
[12] is:

X = Znp , Y = Zn×l
′

p , S = Znp , R = Znp × Znp , W = Znp × Znp × Zl
′−1
p

sEx =
(
diag(x) In 0

)
rEV =

(
In 0 Y{2,...,l}
0 In Z{2,...,l}

)
kEV =

(
Y{1}
Z{1}

)
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where Y (resp. Z) is a matrix formed by concatenating all vectors yj (resp. zj)
as rows, j ∈ [n]. Note that this encoding introduces a one-use restriction, this is
the encoding is defined for n = l (from Definition 9). By using our technique we
construct a more efficient encoding for arithmetic span programs:

X = Znp , Y = Zn×l
′

p , S = Znp , R = Zl
′

p , W = Znp × Znp

sEx =
(
diag(x) −In

)
rEV =

(
ZT Y T

)
kEV = (1, 0, . . . , 0)>.

In the conversion proposed in [18], n ≈ l′, so we can say that this new encoding
will reduce the size of secret keys by half, whereas the size of ciphertexts remains
the same. On the other hand, setup, encryption and key generation will need
2/3 as much time as the original encoding.

5.3 Attribute-Hiding

Chen et al. proposed an extension of the compiler in [12] to build weakly attribute-
hiding predicate encryption schemes [11, 23]. In a weakly attribute-hiding scheme,
the ciphertext attribute x remains secret for unauthorized users, the only thing
they learn is the fact that their secret keys are not valid to decrypt but nothing
else, even if the collude. This new compiler has to be instantiated with predicate
encodings satisfying additional properties. The following is the original definition
of attribute-hiding encodings:

Definition 10 (Attribute-Hiding Encodings). A Zp-bilinear predicate en-
coding for predicate P : X × Y → {0, 1} is attribute-hiding if it verifies the
following additional requirements:

x-oblivious α-reconstruction: sDx,y and rDx,y are independent of x.

Attribute-hiding: For all (x, y) /∈ P, it holds that

w
$←W; return (sEx(w), rEy(w)) ≡ s $← S; r

$← R; return (s, r)

where ≡ denotes equality of distributions.

The following lemma relates these two properties with our alternative defi-
nition of predicate encodings:

Lemma 6 (Attribute-Hiding). The attribute-hiding property from Defini-
tion 10 is equivalent to the following statement:

For all (x, y) /∈ P, dim(sEx × rEy) = dim(S) + dim(R).

Proof. Given (s, r) ∈ S ×R, we define Ωs,r = {w : sEx(w) = s ∧ rEy(w) = r}.
If dim(sEx × rEy) = dim(S) + dim(R), the cardinality of Ωs,r is independent of
s, r. In particular, #Ωs,r = pdim(W)−(dim(S)+dim(R)). This implies that the two
distributions are identical.
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We note that the conjunction and disjunction combinations defined in Sec-
tion 4.1 preserve this notion of attribute-hiding, i.e., if the two original predicates
are attribute-hiding, the resulting one will have this property too. However, in
the case of disjunction, the user has to guess which of the predicates holds. This
is because decryption is defined in terms of x, which is hidden in this case. A
consequence is that performance during decryption decreases.

We propose a Policy-Hiding ABE scheme for non-monotonic boolean for-
mulas expressed in DNF (Disjunctive Normal Form). It comes from the simple
observation that the inner-product can be used to encode conjunctions. Let
y ∈ {0, 1}n ⊆ Znp . If we establish that the i-th attribute ai appears in a secret
key for y iff yi = 1, we can encode conjunctions as follows:
Let S, S̄ ⊆ {ai}ni=1 such that S ∩ S̄ = ∅:∧

a∈S
a ∧

∧
a∈S̄

ā

can be encoded as x>y = |S|, where ∀i ∈ [n],xi is defined as

xi =

 1 if ai ∈ S
−1 if ai ∈ S̄
0 otherwise

See Appendix A.1 for an attribute-hiding predicate encoding for the predicate
P((x, γ),y) := x>y = γ.

In this context, a disjunction of k predicate encodings like the former allows to
encode boolean formulas whose representation has at most k disjunction terms.
Additionally, decryption will need k tries in the worst case. This is because since
x is unknown, the decryptor has to guess which of the disjunctions his key does
satisfy (if any).

5.4 Dual-Policy ABE

Dual-Policy Attribute Based Encryption [7, 8] is an interesting primitive that
has already been considered in the pair encodings framework. It combines KP-
ABE and CP-ABE into a single construction that simultaneously allows two
access control mechanisms. The main advantage is the possibility of considering
policies over objective attributes (associated to data) and policies over subjective
attributes (associated to user credentials) at the same time.

Given an arbitrary predicate encoding for P, applying Theorem 6 we can get
a predicate encoding for the dual predicate P?. Now, by combining the two with
Theorem 3, we get dual policy predicate encoding, for the predicate

P(x1, y1) ∧ P?(y2, x2)

The same construction has been considered and built in the same way in the
framework of pair encodings [7, 8]. As far as we know, our approach is the first
that considers this primitive based on predicate encodings.
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Fig. 5. Scalability of the predicate encoding for revocation

5.5 Revocation

Another application of our techniques is predicate encryption with revocation.
Our idea is to combine a boolean formula predicate encoding with a broadcast
encryption predicate encoding. The former is used to encode the actual policy
of the scheme, while the latter takes care of the revocation part.

Broadcast encryption has been considered in the literature to approach re-
vocation [16, 20, 27]. In broadcast encryption, a broadcasting authority encrypts
a message in such a way that only authorized users will be able to decrypt it.
This can be expressed with the following predicate:

X = {0, 1}n,Y = [n] and P(x, y)⇔ xy = 1

Note that the number of users in the system, n, has to be fixed and polynomial
size. Figure 5 shows that this method can be applied to implement full direct re-
vocation predicate encryption schemes. The system supports thousands of users
in reasonable time.

5.6 Delegation

Delegation of keys is a desirable property for every predicate encryption scheme.
Roughly, it allows the owner of a secret key to weaken his key and create a new
one that is less powerful than the original one. This property can be used to
achieve forward secrecy, where past sessions are protected from the compromise
of future secret keys. To achieve this goal, users can periodically weaken their
secret keys and destroy the more powerful ones. In this way, past ciphertexts
cannot be decrypted any more and thus, they are protected against the theft of
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Let U = {a, b, c} be the set of attributes. Using the predicate encoding for monotonic
boolean formulas from [12]:

X = {0, 1}3, Y = Z3×2
p , S = Z3

p, R = Z3
p, W = Z3

p × Z1
p

sEx =
(
diag(x) 0

)
rEM =

(
I3 M{2}

)
kEM =

(
M{1}

)
The following,

rEM =


1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

0 0 0 0 1

 kEM =


1
0
1

0


is a predicate encoding key for the formula (a∨ c)∧ b. Let’s assume we want to weaken
this key to one for the formula a ∧ b ∧ c. Note that in this case we want to make an
update of the matrix M :

M =

 1 1
0 1
1 1

 −→M ′ =

 1 1 1
0 1 1
1 1 0


That can be done by multiplying RM from the left by A

1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

A

·


1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

0 0 0 0 1


︸ ︷︷ ︸

rEM

=


1 0 0 1 1
0 1 0 1 1
0 0 1 1 0

0 0 0 0 0

 kEM =


1
0
1

0



Fig. 6. Example of delegation of keys for monotonic boolean formulas. Since A is a
linear function, it can be computed in the exponent from the given key.

future keys. Delegation is also required for Hierarchical Identity Based Encryp-
tion (HIBE).

More formally, we say that a predicate P(x, y), x ∈ X , y ∈ Y supports
delegation if there is a partial ordering ≤ on Y such that for every x ∈ X the
predicate P(x, ·) is monotone, this is

(y ≤ y′) ∧ P(x, y) = 1 ⇒ P(x, y′) = 1

Delegation has been considered in [12] as the property of some predicate encod-
ings. In this section we propose a generic method to convert any predicate en-
coding into one supporting delegation. The underlying idea is that, as evidenced
by Theorem 1, the power of secret keys in every predicate encoding relies on the
row span of Ry. Therefore, performing row operations and removing some rows
from this matrix produces less powerful keys. Our idea is to add a dummy part
to the predicate encoding matrix Ry that does not affect the actual scheme, but
can be used to weaken the row span of Ry in the desired way.
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Theorem 7 (Delegation). Let (sE1, rE1, kE1) be a predicate encoding for P.
The following is also a valid predicate encoding for P:

sEx1
(w,w′) = sE1

x1
(w)

rEy1(w,w′) = (rE1
y1(w),w′)

kEy1 = (kE1
y1 ,0Zk

p
)

where S = S1, R = R1 × Zkp and W =W1 × Zkp for arbitrary k ∈ N.

Proof. For all (x1, y1) ∈ X1 × Y1, such that P(x1, y1), Lemma 1 ensures that
there exist decoding functions sD1

x1,y1 , rD1
x1,y1 for pe1. The following are valid

decoding functions for pe:

sDx1,y1(s) = sD1
x1,y1(s)

rDx1,y1(r1, r2) = rD1
x1,y1(r1)

For all (x1, y1) ∈ X1 × Y1, such that ¬P(x1, y1), Lemma 2 ensures that there
exists a valid privacy witness rW1

x1,y1 for pe1. The following is a valid privacy
witness for pe:

rWx1,y1 =
(
rW1

x1,y1 ,0Zk
p

)
The additional set of not-null rows in rEy can be used to weaken the linear

span of rE1
y. In particular, this method works really well for monotonic boolean

formulas. (See Figure 6 for an example).

6 Implementation

We have implemented and evaluated our results for different policy sizes. All
the experiments were executed on a 8-core machine with 2.40GHz Intel Core i7-
3630QM CPU and 8GB of RAM. Our tool is written in Ocaml, using the Relic-
Toolkit [3] for pairings. We use a 256-bits Barreto-Naehrig Elliptic Curve [9].

6.1 Comparison with existing predicate encodings

We first compare our improved version of predicate encodings (see Sections 5.1
and 5.2) with earlier constructions. To this end, we generate random boolean
formulas for different sizes, starting from a random set of leaf nodes and com-
bining them with boolean operators ∨ and ∧. Our tables report on the average
time.

In Figure 7 we confirm that our new encoding needs 50% less time than the
original algorithms for setup, encryption and key generation. For decryption the
performance is similar, as explained in Section 3.2. We note that in terms of
secret key size, our encoding is smaller. Our simplification lemmas cannot be
applied to the old encoding, therefore the size of secret keys using the older
encoding is constant (it is equal to the number of attributes in the system).
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Fig. 7. Improved predicate encoding for boolean formulas vs original encoding

However, in our encoding, the size of secret keys is given by the number of or-
gates in the policy2 and thus, simple policies require smaller keys. In the worst
case, key size is equal to the old encoding (the number of gates cannot be larger
than the number of attributes).

Figure 8 shows the performance of our new encoding for KP-ABE for Arith-
metic Span Programs compared to the original encoding from [12]. As we ex-
pected, our encoding needs 66% of the time required for the original encoding
for setup, encryption and key generation. Additionally, secret key size is halved
with our encoding.

6.2 Pair Encodings

As a contribution of independent interest, we implement pair encodings in the
prime order version of [1] (pair encodings). Then we compare the CP-ABE pred-

2 Note that rEM (w) = M>w. If we consider Lewko and Waters’ algorithm to build
M from boolean formulas [26], the number of non-zero columns in M is given by
the number of and-gates in the formula. This is, the number of non-zero rows of
M> and also the number of elements in the secret key. In practice, as described in
Section 5.1, our simpler encoding works with negated policies and thus, instead of
the number of and-gates, secret keys sizes will be given by the number of or-gates.
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Fig. 8. Improved predicate encoding for ASP vs original encoding

icate encoding for monotonic boolean formulas from [12] and the CP-ABE pair
encoding for monotonic boolean formulas (and constant ciphertexts) from [1]. In
Figure 9, we show the computation time and operations needed for setup, en-
cryption, key generation and decryption algorithms in ABE supporting attribute
universes of different size. Note that, for convenience, vertical axis of key gener-
ation and decryption are in log scale. For the setup algorithm we consider the
time and the number of random samples needed. For encryption and key gener-
ation we measure time and the number of group additions and multiplications
in G1 and G2 respectively. For decryption we consider time and the number of
pairing operation count. Note that the compiler from [12] (pair encodings) needs
a constant number of pairing operations (two pairings), while for the compilers
from [5, 1] (pair encodings) the number of pairings grows with the size of the
constructions (in particular, the number of pairings needed during decryption is
the product of the key size and the ciphertext size). This comparison suggests
that predicate encodings have better performance, but further investigation is re-
quired to obtain a better understanding about this two independent primitives.
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Fig. 9. Comparison between predicate encodings and pair encodings
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A Appendix

A.1 Predicate encoding for γ-inner product

The following is a valid predicate encoding for the predicate: P((x, γ),y) =
x>y = γ, where

X = Znp × Zp, Y = Znp , S = Znp × Zp, R = Z1
p, W = Zp × Znp × Zp

sEx =

(
x In 0
γ 0> 1

)
rEy =

(
0 y> −1

)
kEy =

(
1
)

This encoding is attribute-hiding. In particular, valid decryption vectors are

sDx,y =

(
y
−1

)
rDx,y =

(
1
)

(the do not depend on x).

A.2 Generalized predicate encoding for broadcast encryption

We generalize the predicate encoding for broadcast encryption from [12]. Let
X = Znp , Y = [n]× Zp, we consider the predicate

P(x, (i, γ))⇔ xi = γ.

As in [12], it is convenient to express the above predicate as follows:
X = (Znp/t)t, Y = [t]× [n/t]× Zp and

P((x1, . . . ,xt), (i1, i2, γ))⇔ x>i1ei2 = γ

where (i1, i2) is the unique pair of integers satisfying i = (i1 − 1) · n/t+ i2 and

0 < i2 ≤ n/t. Also, (e1, . . . , en/t) is the standard basis of Zn/tp . The following is
a valid predicate encoding for the above predicate:

S = Ztp, R = Zn/tp , W = Ztp × Zn/tp
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sEx =

(
It

x1 . . . xt

)>
rE(i1,i2,γ) =

(
0 ei2 0 | γ · I(n/t)
↑
i1

)
kE(i1,i2,γ) =

(
ei2
)
.

This encoding can be used to perform 2-dimensional broadcast encryption. This
is, users are divided in n groups and every user i has a unique identifier γi.
Encryption can be done in such a way that at most one user from every group
will be able to decrypt.


