
Generic Transformations of Predicate Encodings:
Constructions and Applications

Miguel Ambrona1,2, Gilles Barthe1, and Benedikt Schmidt3

1IMDEA Software Institute, Madrid, Spain
{miguel.ambrona,gilles.barthe}@imdea.org

2Universidad Politécnica de Madrid
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Abstract. Predicate encodings (Wee, TCC 2014; Chen, Gay, Wee, EU-
ROCRYPT 2015), are symmetric primitives that can be used for building
predicate encryption schemes. We give an algebraic characterization of
the notion of privacy from predicate encodings, and explore several of
its consequences. Specifically, we propose more efficient predicate encod-
ings for boolean formulae and arithmetic span programs, and generic
optimizations of predicate encodings. We define new constructions to
build boolean combination of predicate encodings. We formalize the rela-
tionship between predicate encodings and pair encodings (Attrapadung,
EUROCRYPT 2014), another primitive that can be transformed gener-
ically into predicate encryption schemes, and compare our constructions
for boolean combinations of pair encodings with existing similar con-
structions from pair encodings. Finally, we demonstrate that our results
carry to tag-based encodings (Kim, Susilo, Guo, and Au, SCN 2016).

1 Introduction

Predicate Encryption (PE) [13, 25] is a form of public-key encryption that sup-
ports fine-grained access control for encrypted data. In predicate encryption,
everyone can create ciphertexts while keys can only be created by the master
key owner. Predicate encryption schemes use predicates to model (potentially
complex) access control policies, and attributes are attached to both ciphertexts
and secret keys. A predicate encryption scheme for a predicate P guarantees
that decryption of a ciphertext ctx with a secret key sky is allowed if and only if
the attribute x associated to the ciphertext ct and the attribute y associated to
the secret key sk verify the predicate P, i.e. P(x, y) = 1. Predicate encryption
schemes exist for several useful predicates, such as Zero Inner Product Encryp-
tion (ZIPE), where attributes are vectors x and y and the predicate P(x,y)
is defined as x>y = 0. Predicate encryption subsumes several previously de-
fined notions of public-key encryption. For example, Identity-Based Encryption
(IBE) [34] can be obtained by defining P(x, y) as x = y and Attribute-Based En-
cryption (ABE) [33] can be obtained similarly. More concretely, for Key-Policy
ABE (KP-ABE), the attribute x is a boolean vector, the attribute y is a boolean
function, and the predicate P(x, y) is defined as y(x) = 1. For Ciphertext-Policy
ABE (CP-ABE), the roles of the attributes x and y are swapped.
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Modular approaches for PE. In 2014, two independent works by Wee [37] and
Attrapadung [6] proposed generic and unifying frameworks for obtaining effi-
cient fully secure PE schemes for a large class of predicates. Both works use
the dual system methodology introduced by Lewko and Waters [27, 36] and de-
fine a compiler that takes as input a relatively simple symmetric primitive and
produces a fully secure PE construction. Wee introduced so-called predicate en-
codings, an information-theoretic primitive inspired from linear secret sharing.
Attrapadung introduced so-called pair encodings and provided computational
and information-theoretic security notions. These approaches greatly simplify
the construction and analysis of predicate encryption schemes and share several
advantages. First, they provide a good trade-off between expressivity and per-
formance, while the security relies on standard and well studied assumptions.
Second, they unify existing constructions into a single framework, i.e., previ-
ous PE constructions can be seen as instantiations of these new compilers with
certain encodings. Third, building PE schemes by analyzing and building these
simpler encodings is much easier than building PE schemes directly. Compared
to full security for PE, the encodings must verify much weaker security require-
ments. The power of pair and predicate encodings is evidenced by the discovery
of new constructions and efficiency improvements over existing ones. However,
both approaches were designed over composite order bilinear groups. In 2015,
Chen, Gay and Wee [15] and Attrapadung [7] respectively extended the predicate
encoding and pair encoding compiler to the prime order setting. Next, Agrawal
and Chase [1] improved on Attrapadung’s work by relaxing the security require-
ment on pair encodings and thus, capturing new constructions. In addition, their
work also brings both generic approaches closer together, because like in [15], the
new compiler relies (in a black-box way) on Dual System Groups (DSG) [16, 17].
Additionally, Kim, Susilo, Guo, and Au [22] recently introduced a new generic
framework for modular design of predicate encryption that improves on the per-
formance of existing compilers. Their core primitive, tag-based encodings, is very
similar to predicate encodings.

1.1 Our contributions

We pursue the study of predicate encodings and establish several general results
and new constructions that broaden their scope and improve their efficiency. We
also compare predicate encodings to pair and tag-based encodings.

Predicate encodings. We show that the information-theoretic definition of α-
privacy used in [15, 37] is equivalent to an algebraic statement (furthermore
independent of α) about the existence of solutions for a linear system of equa-
tions. Leveraging this result, we prove a representation theorem for predicate
encodings: every triple of encoding functions implicitly defines a unique pred-
icate for which it is a valid predicate encoding. Conversely, every predicate P
that admits a predicate encoding is logically equivalent to the implicit predicate
induced by its encoding functions. Moreover, our algebraic definition of privacy
simplifies all subsequent results in the paper.



3

First, we define a generic optimization of predicate encodings that often leads
to efficiency improvements and reduce the number of required group elements
in keys and ciphertexts. We prove the soundness of the transformations and
validate their benefits experimentally on examples from [15, 37]; we successfully
apply these simplifications to reduce the size of keys and ciphertexts by up to
50% and to reduce the number of group operations needed in some of the existing
encodings.

Second, we define generic methods for combining predicate encodings. We
provide encoding transformations for the disjunction, conjunction and negation
of predicates, and for the dual predicate.

Tag-based encodings. We show that our results on predicate encodings generalize
to tag-based encodings. In particular, we give a purely algebraic characteriza-
tion of the hiding property of tag-based encodings. Moreover, we demonstrate
that the hiding property can be strengthened without any loss of generality, by
requiring equality rather than statistical closeness of distributions.

Comparison of encodings. We compare the expressivity of the three core primi-
tives (predicate encodings, pair encodings and tag-based encodings) correspond-
ing to the three different modular frameworks. We provide an embedding that
produces an information-theoretical pair encoding from every predicate encod-
ing. Then, we use this encoding to compare our constructions to build boolean
combination of predicate encodings with similar constructions for pair encodings
that were introduced by [6].

In addition, we provide a transformation1 from tag-based encodings into
predicate encodings.

New constructions. We develop several new constructions of predicate encodings
and predicate encryption:

• Combining predicates. We show how to combine our results to build Dual-
Policy Attribute-Based Encryption (DP-ABE) [9, 10] in the frameworks of
predicate encodings and tag-based encodings (Section 6.1). Additionally, we
consider the idea of combining arbitrary encodings with a broadcast encryp-
tion encoding to achieve direct revocation of keys. The former encoding takes
care of revocation, while the latter encodes the desired access structure.

• Improved predicate encodings. We provide new instances of predicate
encodings that improve on best known predicate encodings proposed in [15]
and have additional properties. (Section 6.2).

• Extra features. Finally, we show how to construct a weakly attribute-
hiding predicate encoding for boolean formulas and how to enhance any
predicate encoding with support for delegation. (Section 6.3).

1 this transformation has side conditions, thus it is not universal, but all existing
tag-based encodings (except one) satisfy these side conditions
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Implementation and evaluation. We implement a general library for predicate en-
cryption with support for the predicate encoding and pair encoding frameworks.
Our library uses the Relic-Toolkit [5] for pairings with a 256-bits Barreto-Naehrig
Curve [11]. We use our library for validating our constructions; experimental re-
sults are presented in the relevant sections. All the experiments were executed on
a 8-core machine with 2.40GHz Intel Core i7-3630QM CPU and 8GB of RAM.
Our scalability experiments show that predicate encodings can be used for real
applications. The code is publicly available and open source2.

1.2 Prior work

Predicate encodings have been introduced in [37] and we use a refined version
that is defined in [15] as our starting point. Both variants use an information-
theoretic definition of the hiding while we show that there is an equivalent al-
gebraic definition. Another related work is [20], initiating a systematic study
of the communication complexity of the so-called conditional secret disclosure
primitive, which is closely related to predicate encodings.

Other works also optimize existing predicate encryption schemes, for exam-
ple many works focus on going from composite order constructions to the more
efficient prime order ones [7, 15, 26]. In [15] they also propose performance im-
provements on dual system groups. We believe our optimizations via predicate
encodings complement other possible enhancements of predicate encryption.

Boolean combinations of predicates have also been considered in the setting
of pair encodings. Attrapadung [9, 10] proposes generic transformations for con-
junction and for the dual predicate, but neither for negation nor disjunction.
We propose new transformations for conjunction and dual in the framework of
predicate encodings and we also deal with negation and disjunction.

The main advantage of DP-ABE is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time. DP-ABE has been consid-
ered by Attrapadung in the pair encoding framework [9, 10]. To the best of our
knowledge, we are the first to provide DP-ABE in the predicate encoding and
tag-based encoding frameworks.

Revocation is a desirable property for PE and ABE schemes that has also
been considered by many works in the literature. Revocation allows to invalidate
a user’s secret key in such a way that it becomes useless, even if its associated
attribute satisfies the policy associated to the ciphertext. Some attempts [32]
propose indirect revocation that requires that the master secret owner period-
ically updates secret keys for non-revoked users. Other attempts achieve direct
revocation [8, 23, 30, 31], but either rely on strong assumptions or provide only
selectively security. Our construction not only allows to achieve revocation in a
fully secure framework, but it allows to add revocation to arbitrary predicate
encodings.

2 source code at https://github.com/miguel-ambrona/abe-relic
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Policy hiding is another property of PE, and ABE in particular, that has
been broadly studied. In this context, policies associated to ciphertexts are not
attached to them and therefore, unauthorized users will only learn the fact that
their key does not satisfy the policy, but nothing else. Policy Hiding has been
considered in several works [13, 25]. The security of our construction improves
on earlier works, thanks to the compiler from [15]. Our observation extends the
expressivity of attribute-hiding predicate encryption for ZIPE proposed in [15]
to support policy-hiding for boolean formulas.

In [15], the authors introduce the notion of spatial encryption predicate en-
codings. We generalize this notion and introduce a transformation that makes
delegation possible for every predicate encoding.

Several works evaluate the suitability of ABE for different applications. For
example, ABE has been used and benchmarked to enforce privacy of Electronic
Medical Records (EMR) [3], in a system where healthcare organizations export
EMRs to external storage locations. Other examples are Sieve [35] or Stream-
force [18], systems that provide enforced access control for user data and stream
data in untrusted clouds. In contrast to these works, we are the first to evaluate
predicate encryption and ABE based on modern modular approaches such as
the predicate encoding and pair encoding frameworks. The resulting schemes
also satisfy a stronger security notion (full vs. selective security) compared to
the previously mentioned evaluations. We focus on synthetic case studies, while
other works analyze more realistic settings and integration of ABE into bigger
systems. Combining our methods with these more practical case studies is a very
interesting direction for future work.

1.3 Comparison with Agrawal and Chase (EUROCRYPT 2017)

Concurrently and independently, Agrawal and Chase [2] introduce a new secu-
rity notion, which they call symbolic property, for pair encodings. They adapt
previous generic frameworks [1, 7] to define a compiler that takes pair encodings
satisfying the symbolic property and produces fully secure predicate encryp-
tion schemes under the q-ratio assumption—a new assumption that is implied
by some q-type assumptions proposed in [6, 29]. Moreover, they introduce the
notion of tivially broken pair encoding and show that any not trivially broken
pair encoding must satisfy their symbolic property. Their definitions of symbolic
property and trivially broken for pair encodings are closely related to our alge-
braic characterization of privacy of predicate encodings. However, the two results
are incomparable: although pair encodings are more general than predicate en-
codings (see Section 5.1 for a more detailed comparison), their results rely of
q-type assumption, whereas our results build on previous frameworks that rely
on weaker assumptions (Matrix-DH or k-LIN).

2 Background

In this section, we first introduce some mathematical notation and then define
predicate encodings, tag-based encodings and pair encodings the three primitives
used in the three different modular frameworks for predicate encryption.
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2.1 Notation

For finite sets S, we use x
$← S to denote that x is uniformly sampled from S.

We define [n] as the range {1, . . . , n} for an arbitrary n ∈ N. For a predicate
P : X ×Y → {0, 1}, we use (x, y) ∈ P as a shorthand for P(x, y) = 1. We use the
same conventions for matrix-representations of linear maps on finite-dimensional
spaces. We define vectors v ∈ Fn as column matrices and denote the transpose
of a matrix A by A>. We use diag(v) to denote the diagonal matrix with main
diagonal v. We denote the identity matrix of dimension n by In, a zero vector
of length n by 0n and a zero matrix of m rows and n columns by 0m,n. Let
S be a set of indices and A be a matrix. AS denotes the matrix formed from
the set of columns of A with indices is in S. We define the colspan of a matrix
M ∈ Fm×n as the set of all possible linear combinations columns of M . That

is col
span 〈M〉 = {Mv : v ∈ Fn} ⊆ Fm. We analogously define the rowspan of a

matrix. We consider prime order bilinear groups G = (G1,G2,Gt, e : G1×G2 →
Gt) and use g1, g2, gt to denote their respective generators. The map e satisfies
e(ga1 , g

b
2) = gabt for every a, b ∈ N. A bilinear group is said to be symmetric if

G1 = G2, otherwise it is called asymmetric. We abuse of notation and write gv

to denote (gv1 , . . . , gvn) for a group element g and a vector v ∈ Znp .

2.2 Predicate Encodings

Predicate encodings are information-theoretic primitives that can be used for
building predicate encryption schemes [37]. We adopt the definition from [15],
but prefer to use matrix notation.

Definition 1 (Predicate encoding). Let P : X ×Y → {0, 1} be a binary pred-
icate over finite sets X and Y. Given a prime p ∈ N, and s, r, w ∈ N, a (s, r, w)-
predicate encoding for P consists of five deterministic algorithms (sE, rE, kE,
sD, rD): the sender encoding algorithm sE maps x ∈ X into a matrix sEx ∈ Zs×wp ,
the receiver encoding algorithm rE maps y ∈ Y into a matrix rEy ∈ Zr×wp , the key
encoding algorithm kE maps y ∈ Y into a vector kEy ∈ Zrp, while the sender and
receiver decoding algorithms, respectively sD and rD, map a pair (x, y) ∈ X ×Y
into vectors sDx,y ∈ Zsp and rDx,y ∈ Zrp respectively. We require that the following
properties are satisfied:

reconstructability: for all (x, y) ∈ P, sD>x,ysEx = rD>x,yrEy and rD>x,ykEy = 1;

α-privacy: for all (x, y) /∈ P, α ∈ Zp,

w
$← Zwp ; return (sExw, rEyw + α · kEy) ≡ w

$← Zwp ; return (sExw, rEyw)

where ≡ denotes equality of distributions.

Reconstructability allows to recover α from (x, y, sExw, rEyw+α·kEy) if (x, y) ∈
P. Privacy ensures that α is perfectly hidden for such tuples if (x, y) /∈ P.
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Example 1 (IBE predicate encoding). Let X = Y = Zp and let s = r = 1, w = 2.
We define the encoding functions as follows:

sEx =
(
x 1

)
sDx,y =

(
1
)

rEy =
(
y 1

)
rDx,y =

(
1
)

kEy =
(

1
)

The above is a predicate encoding for identity-based encryption, i.e., for the
predicate P(x, y) = 1 iff x = y. Note that

(
x 1

)
=
(
y 1

)
when x = y, so

reconstructability is satisfied. On the other hand, α-privacy follows from the
fact that if x 6= y, x · w1 + w2 and y · w1 + w2 are pair-wise independent. �

Predicate encryption from predicate encodings. We try to provide some intuition
on how predicate encodings are compiled to predicate encryption schemes by the
compiler from [15]. We consider a simplified compiler (see explanations below).
The master keys, ciphertexts and secret keys have the following form:

msk = gα2 ctx = (gs1, g
s·sExw
1 , e(g1, g2)αs ·m)

mpk = (g1, g
w
1 , g2, g

w
2 , e(g1, g2)α) sky = (gr2, g

α·kEy+r·rEyw
2 )

The encrypted message m ∈ Gt is blinded by a random factor e(g1, g2)αs. The so-
called reconstruction property of predicate encodings ensures that this blinding
factor can be recovered for a pair (ctx,sky) if P(x, y) = 1. More concretely, for all
pairs (x, y) such that P(x, y) = 1, because multiplying by matrices sDx,y,rDx,y is
a linear operation, it is possible operate in the exponent and compute

g
s·sD>x,ysExw

1 and g
rD>x,y(α·kEy+r·rEyw)

2 ,

obtaining gsβ1 and gα+rβ
2 for β = sD>x,ysExw = rD>x,yrEyw (note that knowing

the value of β is not necessary). Now, it is simple to recover e(g1, g2)αs from

e(gs1, g
α+rβ
2 ) and e(gsβ1 , gr2). Security is ensured by the α-privacy property of

the encoding together with decisional assumptions about dual system groups.
Intuitively, the α-privacy property states that given certain values derived from
the output of the encoding functions for random input, α remains information-
theoretic hidden.

Note that the following is a simplification of their compiler, where we avoid
DSG for simplicity. The real scheme produced by their compiler would have twice
as many group elements (under SXDH) or three times as many (under DLIN).

2.3 Tag-based encodings

Tag-based encodings is a new primitive defined in a very recent work [22] that
defines a new generic framework (using prime order groups) for modular design
of predicate encryption.



8

Definition 2 (Tag-based encoding). Let P : X × Y → {0, 1} be a binary
predicate over finite sets X and Y. Given a prime p ∈ N, and c, k, h ∈ N, a
(c, k, h)-tag-based encoding encoding for P consists of two deterministic algo-
rithms (cE, kE): the ciphertext encoding algorithm cE maps x ∈ X into a matrix
cEx ∈ Zc×hp and the key encoding algorithm kE maps y ∈ Y into a matrix

kEy ∈ Zk×hp . We require that the following properties are satisfied:

reconstructability: for all (x, y) ∈ P, there exists an efficient algorithm that
on input (x, y) computes vectors mc ∈ Zcp, mk ∈ Zkp such that

m>c cEx = m>k kEy 6= 0>h

h-hiding: for all (x, y) /∈ P,

h
$← Zhp ; return (cExh, kEyh) ≈s h,h′

$← Zhp ; return (cExh, kEyh
′)

where ≈s denotes negligible statistical distance between distributions.

The compiler proposed in [22] uses similar ideas to the one for predicate en-
codings. However, it does not rely on dual system groups and can be instantiated
with symmetric bilinear maps. The message is blinded and ciphertexts and keys
contain a set of group elements that are enough to recover the blinding factor
only when the predicate is true. This compiler has the advantage that some
elements of ciphertexts and keys are Zp values and not group elements, which
reduces the storage size.

2.4 Pair Encodings

Attrapadung [6, 7] proposes an independent modular framework for predicate
encryption, based on a primitive called pair encoding. For our purposes, it suffices
to consider a more restrictive, information-theoretic, notion of pair encodings.

Definition 3 (Information-theoretic pair encoding). Let P : X × Y →
{0, 1} be a binary predicate over finite sets X and Y. Given a prime p ∈ N, and
c, k, l,m, n ∈ N, let h = (h1, . . . , hn), s = (s0, s1, . . . , sl) and r = (α, r1, . . . , rm)
be sets of variables. An information-theoretic (c, k, n)-pair encoding scheme for
P consists of three deterministic algorithms (Enc1,Enc2,Pair): the ciphertext
encoding algorithm Enc1 maps a value x ∈ X into a list of polynomials cx ∈
Zp[s,h]c, the key encoding algorithm Enc2 maps a value y ∈ Y into a list
of polynomials ky ∈ Zp[r,h]k and the decoding algorithm Pair maps a pair
(x, y) ∈ X×Y into a matrix Ex,y ∈ Zc×kp . We require that the following properties
are satisfied:

polynomial constraints:
• For every x ∈ X and every f ∈ Enc1(x), f = f(s,h) only contains

monomials of the form si or sihj, i ∈ [0, l], j ∈ [n].
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• For every y ∈ Y and every f ∈ Enc2(y), f = f(r,h) only contains
monomials of the form α, ri or rihj, i ∈ [m], j ∈ [n].

reconstructability: for all (x, y) ∈ P and all cx ← Enc1(x), ky ← Enc2(y),
Ex,y ← Pair(x, y), the following polynomial equality holds c>x Ex,yky = αs0.

perfect security: for all (x, y) /∈ P and all cx ← Enc1(x), ky ← Enc2(y),

h
$← Znp ; r

$← (Z∗p)m; s
$← Zl+1

p ; return (cx(s,h), ky(0, r,h)) ≡

h
$← Znp ; r

$← (Z∗p)m; s
$← Zl+1

p ;α
$← Zp; return (cx(s,h), ky(α, r,h))

where ≡ denotes equality of distributions.

The compiler from pair encodings follows similar ideas to the other compilers.
The message is blinded by a random factor and ciphertexts and keys contain all
the information necessary to recover this blinded factor, only when the predicate
holds. The compiler from pair encodings requires to compute a polynomial num-
ber of pairings during decryption, unlike the compilers for predicate encodings
and tag-based encodings that need3 6 and 8 pairings respectively.

3 Predicate encodings: properties and consequences

In this section, we present a purely algebraic (and independent of α) characteri-
zation of the α-privacy property. It simplifies both the analysis and the construc-
tion of predicate encodings. In particular, we use our characterization to define
and prove a new optimization of predicate encodings, i.e., a transformation that
makes the encoding functions smaller while preserving the predicate. Addition-
ally, we unify the reconstructability and privacy properties and show that they
are mutually exclusive and complementary, i.e., for every (x, y) ∈ X × Y, one
and only one of the two conditions holds. This unified treatment facilitates the
construction and study of predicate encodings.

3.1 Algebraic properties of predicate encodings

The following theorem captures two essential properties of predicate encodings:
first, privacy admits a purely algebraic characterization (furthermore indepen-
dent of α) given in terms of existence of solutions of a linear system of equations.
Second, reconstructability and privacy, when viewed as properties of a single pair
(x, y), negate each other; i.e. a pair (x, y) always satisfies exactly one of the two
properties.

Theorem 1 (Algebraic characterization of privacy). Let p ∈ N be a prime,
let s, r, w ∈ N and let S ∈ Zs×wp , R ∈ Zr×wp , k ∈ Zrp. The following are equivalent:

3 decryption in the framework of predicate encodings needs 4 pairings under SXDH
assumption or 6 under DLIN, in the framework of tag-based encodings decryption
requires 8 pairings and the assumption is DLIN
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• α-privacy For every α ∈ Zp,

w
$← Zwp ; return (Sw, Rw + α · k) ≡ w

$← Zwp ; return (Sw, Rw)

• (algebraic) privacy There exists w ∈ Zwp such that Sw = 0s and Rw = k
• non-reconstructability For every s ∈ Zsp and r ∈ Zrp, either s>S 6= r>R

or r>k 6= 1.

Proof. We first prove that α-privacy is equivalent to algebraic privacy. Note that
the fact that ∀α ∈ Zp,

w
$← Zwp ; return (Sw, Rw + α · k) ≡ w

$← Zwp ; return (Sw, Rw)

is equivalent to the existence of a bijection ρα such that for all w ∈ Zwp , Sw =
S · ρα(w) ∧ Rw + α · k = R · ρα(w). By linearity, it can be rewritten as

S(ρα(w)−w) = 0s ∧ α · k = R(ρα(w)−w)

Now, the existence of such a bijection is equivalent to the existence of a solution
for the following (parametric in α) linear system on w: Sw = 0s ∧ Rw = α ·k.
To see this, note that if ρα is such a bijection, ρα(w0)−w0 is a solution of the
system for every w0 ∈ Zwp . On the other hand, if w∗ is a solution of the system,
the bijection ρα(w) = w+w∗ satisfies the required identities. To conclude, note
that the above system has a solution iff the following (independent of α) does:

Sw = 0s ∧ Rw = k

Next, we prove the equivalence between algebraic privacy and non-recons-
tructability. We use the following helping lemma from [12, Claim 2]: for every
field F, let A ∈ Fm×n and b ∈ Fn be matrices with coefficients in F, the following
two statements are equivalent:

• for every a ∈ Fm, b> 6= a>A;
• there exists z ∈ Fn such that z>b = 1 and Az = 0m.

Assume that algebraic privacy does not hold, i.e., for every w ∈ Zwp , either
Sw 6= 0s or Rw 6= k. Equivalently, for every w ∈ Zwp(

0s
k

)
6=
(
−S
R

)
w

which is equivalent (by our helping lemma) to the existence of (z1, z2) ∈ Zsp×Zrp
such that (

z>1 z
>
2

)(0s
k

)
= 1 ∧

(
z>1 z

>
2

)( −S
R

)
= 0>w

That is, there exists z1 ∈ Zsp, z2 ∈ Zrp such that z>1 S = z>2 R ∧ z>2 k = 1, which
is exactly reconstructability. The proof follows from the fact all the steps are
equivalences. �
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Our next result is a representation theorem. It is based on the notion of partial
encoding; informally, a partial encoding consists of the first three algorithms of
a predicate encoding; it is not attached to any specific predicate, nor is required
to satisfy any property.

Definition 4 (Partial encoding). Let X and Y be finite sets. Let p ∈ N be a
prime and s, r, w ∈ N. A (s, r, w)-partial encoding is given by three deterministic
algorithms (sE, rE, kE): sE maps x ∈ X into a matrix sEx ∈ Zs×wp , and rE, kE
map y ∈ Y into a matrix rEy ∈ Zr×wp and a vector kEy ∈ Zrp respectively.

The representation theorem shows that there exists an embedding from partial
encodings to predicate encodings, and that every predicate encoding lies the
image of the embedding.

Theorem 2 (Representation theorem). Let X and Y be finite sets. Let p ∈
N be a prime and s, r, w ∈ N. Every (s, r, w)-partial encoding (sE, rE, kE) for X
and Y induces a predicate encoding (sE, rE, kE, sD, rD) for the following predicate
(henceforth coined implicit predicate):

Pred(x, y) , ∀w ∈ Zwp , sExw 6= 0s ∨ rEyw 6= kEy

Moreover, if (sE, rE, kE, sD, rD) is a predicate encoding for P, then for every
(x, y) ∈ X × Y, P(x, y)⇔ Pred(x, y).

Example 2 (Implicit predicate of IBE predicate encoding). If we consider the
following partial encoding functions corresponding to the encoding presented in
Example 1:

sEx =
(
x 1

)
rEy =

(
y 1

)
kEy =

(
1
)

our Theorem 2 guarantees that it is a valid predicate encoding for the implicit
predicate:

Pred(x, y) = 1 iff ∀(w1, w2) ∈ Z2
p, x · w1 + w2 6= 0 ∨ y · w1 + w2 6= 1

A simple analysis shows that the above predicate is equivalent to x = y. �

A consequence of Theorem 2 is that a predicate P over X and Y can be instan-
tiated by a (s, r, w)-predicate encoding iff there exist X -indexed and Y-indexed
matrices Sx ∈ Zs×wp and Ry ∈ Zr×wp and Y-indexed vectors ky ∈ Zrp such that:

P(x, y) = 1 iff

(
0s
ky

)
/∈ col
span

〈
Sx
Ry

〉
That is helpful to analyze the expressivity of predicate encodings of certain size.

Example 3. Let X and Y be finite sets, let n ∈ N, we will characterize all the
predicates that can be achieved from a (1, 1, n)-partial encoding, say (sE, rE, kE).
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Note that for every pair (x, y), sEx and rEy are vectors of length n, while kEy is
a single element. Say,

sEx = (f1(x), . . . , fn(x)) rEy = (g1(y), . . . , gn(y)) kEy = h(y)

for certain functions fi : X → Zp, gi, h : Y → Zp for every i ∈ [n]. Theorem 2
guarantees that the above is a valid predicate encoding for the predicate

P(x, y) = 1 iff h(y) 6= 0 ∧
(
∃β ∈ Zp :

∧
i∈[n]

fi(x) = βgi(y)
)

It can be shown that the predicate P((x1, x2), y) = 1 iff (x1 = y) ∨ (x2 = y)
cannot be captured by (1, 1, n)-predicate encodings, while on the contrary, the
predicate P((x1, x2), y) = 1 iff (x1 = y) ∧ (x2 = y) could be instantiated. �

3.2 Optimizing predicate encodings

In this section, we show that the efficiency of predicate encodings can be im-
proved by pre- and post-processing. Specifically, we show that an (s, r, w)-encoding
(sE, rE, kE, sD, rD) for a predicate P can be transformed into a (s′, r′, w′)-encoding
(sE′, rE′, kE′, sD′, rD′) for the same predicate, by applying a linear transformation
to the matrices induced by sE, rE, kE.

More precisely, if we define sE′x = AsEx, rE′y = BrEy and kE′y = BkEy
for two matrices A and B, the privacy of the encoding will be preserved, but
reconstructability may be destroyed. On the contrary, when we consider the
partial encoding sE′x = sExC, rE′y = rEyC and kE′y = kEy for a matrix C,
reconstructability is automatically guaranteed, but privacy could not hold (for
the same predicate). Intuitively, this occurs because reconstructability depends
on the rowspan of the matrices sEx, rEy, while privacy depends on their colspan.
Our following theorem imposes conditions on these matrices A, B and C so that
the resulting predicate encoding is equivalent to the original one.

Theorem 3. Let X and Y be finite sets. Let p ∈ N be a prime, s, r, w, s′,
r′, w′ ∈ N, and let (sE, rE, kE, sD, rD) be a (s, r, w)-predicate encoding for P :
X × Y → {0, 1}. Let A be a function that maps every element x ∈ X into
a matrix Ax ∈ Zs′×sp , B be a function that maps y ∈ Y into a matrix By ∈
Zr′×rp and let C ∈ Zw×w′p be a matrix. There exists a (s′, r′, w′)-partial encoding

(sE′, rE′, kE′, sD′, rD′) for P, where

sE′x = AxsExC rE′y = ByrEyC kE′y = BykEy

provided the following conditions hold:

• For all (x, y) ∈ P, sD>x,y ∈ row
span 〈Ax〉 and rD>x,y ∈ row

span 〈By〉;
• For all (x, y) /∈ P, there exists w ∈ col

span 〈C〉 s.t. sExw = 0s and rEyw = kEy.
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This transformation is useful to make predicate encodings simpler and more
efficient in different manners. For instance, it can be used to make the matrices
corresponding to encoding and decoding functions become sparser. That is, if
we consider A and B as functions that apply matrix Gaussian elimination4 to
the matrices associated to sE and rE, kE, many entries from these matrices will
be zero. Hence, fewer group operations will be performed during encryption and
key generation, improving the performance. Moreover, the transformation can
be used to reduce the size of mpk, ctx and sky. If w′ < w, the number of elements
in mpk will decrease. This will also improve the performance of encryption and
key generation (both depend directly on mpk). Additionally, if s′ < s or r′ < r,
the number of elements in ctx and sky will also decrease respectively.

Note that a simplification from the right (multiplying by C) changes the
structure of the encoding and may open the possibility of left-simplifications
that were not available before and vice versa. Example 4 illustrates this idea.
We optimize a predicate encoding that corresponds to the result of applying
our negation transformation (from next section, Theorem 6) to the predicate
encoding from Example 1.

Example 4. Let X = Y = Zp and consider the (2, 3, 4)-predicate encoding
(sE, rE, kE, sD, rD) for P(x, y) = 1 iff x 6= y, defined as

sEx =

(
x −1 0 0
1 0 −1 0

)
rEy =

0 1 0 y
0 0 1 1
0 0 0 1

 kEy =

0
0
1


sD>x,y =

(
−1
x−y

x
x−y
)

rD>x,y =
(

1
x−y

−x
x−y 1

)
Note that for every pair (x, y) /∈ P, i.e. x = y, the single solution of the system
sExw = 02 ∧ rEyw = kEy is w> =

(
−1 −y −1 1

)
, thus the matrix

C =

(
−1 0 −1 1
0 1 0 0

)>
satisfies the conditions of Theorem 3. Therefore, the (2, 3, 2)-partial encoding
(sE′, rE′, kE′), where

sE′x = sExC =

(
−x −1
0 0

)
rE′y = rEyC =

y 1
0 0
1 0

 kE′y = kEy =

0
0
1


induces a predicate encoding for the same predicate. The previous simplification,
opens the possibility of applying again the theorem, with matrices Ax and By,
obtaining a (1, 2, 2)-predicate encoding for P(x, y) = 1 iff x 6= y. Concretely,

Ax =
(
−1 0

)
sE′′x =

(
x 1

)
rE′′y =

(
y 1
1 0

)
rE′′y =

(
0
1

)
By =

(
1 0 0
0 0 1

)
sD′′

>
x,y =

(
1
x−y
)

rD′′
>
x,y =

(
1
x−y 1

)
�

4 note that if matrices Ax, By or C are invertible, they always satisfy their respective
requirements
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The above simplifications can be successfully applied to actual predicate en-
codings proposed in [15]. In Section 6.2 we propose improved predicate encodings
for monotonic boolean formulas and arithmetic span programs.

3.3 Combining predicates

Using the new characterization of predicate encodings from the previous section,
we define transformations to combine predicate encodings into new predicate en-
codings for more complex predicates. In particular, we define predicate encoding
transformations for disjunction, conjunction, negation and the dual predicate.
These combinations are useful to create new schemes that inherit different prop-
erties from the more basic building blocks. In Section 6, we propose several
constructions that rely on these transformations.

Disjunction. We present a method to build a predicate encoding for the dis-
junction of P1 and P2 from predicate encodings for P1 and P2. Observe that
the predicate encryption scheme obtained from the resulting predicate encoding
is more efficient than the predicate encryption scheme obtained by compiling
the predicate encodings of P1 and P2 separately, and then applying a generic
transformation that builds predicate encryption schemes for a disjunction from
predicate encryption schemes of its disjuncts.

Theorem 4 (Disjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2×Y2 → {0, 1},
there exists a (s1 + s2, r1 + r2, w1 +w2)-predicate encoding (sE, rE, kE, sD, rD) for
the predicate P : (X1,X2)× (Y1,Y2)→ {0, 1} such that:

P((x1, x2), (y1, y2))⇔ P1(x1, y1) ∨ P2(x2, y2)

Concretely,

sE(x1,x2) =

(
sE1
x1

0s1,w2

0s2,w1
sE2
x2

)
rE(y1,y2) =

(
rE1
y1 0r1,w2

0r2,w1
rE2
y2

)
kE(y1,y2) =

(
kE1

y1

kE2
y2

)

sD>(x1,x2),(y1,y2) = if P1(x1, y1) then
(
sD1>

x1,y1 0>s2
)

else
(
0>s1 sD2>

x2,y2

)
rD>(x1,x2),(y1,y2) = if P1(x1, y1) then

(
rD1>

x1,y1 0>r2
)

else
(
0>r1 rD2>

x2,y2

)

Note that it is possible to obtain sharing between attributes, e.g., if X1 = X2

and the sender uses only the subset {(x, x) | x ∈ X1} of X1 × X2, the predicate
becomes P(x, (y1, y2)) = 1 iff P1(x, y1) ∨ P2(x, y2).
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Conjunction. In contrast to disjunction, the naive solution that just concate-
nates secret keys fails. Given keys for attribute pairs (y1, y2) and (y′1, y

′
2), it would

be possible to recombine the components and obtain a key for (y1, y
′
2) leading to

collusion attacks. Our predicate encoding transformation deals with this problem
by “tying” the two components together with additional randomness.

Theorem 5 (Conjunction of predicate encodings). For every (s1, r1, w1)-
predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1} and every
(s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2×Y2 → {0, 1},
there exists a (s1 +s2, r1 +r2, w1 +w2 +1)-predicate encoding (sE, rE, kE, sD, rD)
for the predicate P : (X1,X2)× (Y1,Y2)→ {0, 1} such that:

P((x1, x2), (y1, y2))⇔ P1(x1, y1) ∧ P2(x2, y2)

Concretely,

sE(x1,x2) =

(
sE1
x1

0s1,w2
0s1

0s2,w1
sE2
x2

0s2

)
sD(x1,x2),(y1,y2) =

1

2

(
sD1

x1,y1

sD2
x2,y2

)
rE(y1,y2) =

(
rE1
y1 0r1,w2

kE1
y1

0r2,w1
rE2
y2 −kE2

y2

)
rD(x1,x2),(y1,y2) =

1

2

(
rD1

x1,y1

rD2
x2,y2

)
kE(y1,y2) =

(
kE1

y1

kE2
y2

)
Note that it is possible to combine Theorems 4 and 5 to create a predicate

encoding for P1 ./ P2, where the placeholder ./∈ {∨,∧} can be part of keys or
ciphertexts. See Appendix B for more details about this encoding.

Negation. To obtain a functionally complete set of boolean predicate encoding
transformers, we now define a transformation for negation. Our transformation
unifies negated predicates like Non-zero Inner Product Encryption (NIPE) and
Zero Inner Product Encryption (ZIPE). In Section 6.2 we use this transforma-
tion to build optimized predicate encodings. The technique works for predicate
encodings where the negation transformation yields a predicate encoding that
can be further simplified (using our method from Section 3.2).

Theorem 6 (Negation of predicate encodings). For every (s, r, w)-predicate
encoding (sE, rE, kE, sD, rD) for P : X×Y → {0, 1} there exists a (w,w+1, s+w+
r)-predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate P′ : X ×Y → {0, 1}
such that P′(x, y)⇔ ¬P(x, y). Concretely,

sE′x =
(
sE>x −Iw 0w,r

)
rE′y =

(
0w,s Iw rE>y
0>s 0>w kE>y

)
kE′y =

(
0w
1

)

sD′x,y = wx,y rD′x,y =

(
−wx,y

1

)
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where for a pair (x, y) ∈ X × Y such that P(x, y) = 0, wx,y is defined as the
witness for algebraic privacy, i.e., a vector such that

sExwx,y = 0s ∧ rEywx,y = kEy

Note that such a vector always exists when P(x, y) = 0. Moreover, sD and rD do
not need to be defined when P′(x, y) is not 1, that is, when P(x, y) is not 0.

A similar construction has been considered in a posterior work [4] to this
work. Specifically, they show how to transform a conditional disclosure of secrets
(CDS) for f into a CDS for f̄ (the complement of f).

Dual. In the literature, the notions of KP-ABE and CP-ABE are considered sep-
arately. In fact, many works are only valid for one of the two versions of Attribute
Based Encryption. Our transformation unifies the notion of KP-ABE and CP-
ABE in the framework of predicate encodings. In this context they should not be
considered separately, because our transformation provides a Ciphertext-Policy
predicate encoding from any Key-Policy predicate encoding and vice versa.

Theorem 7 (Dual predicate encoding). For every (s, r, w)-predicate encod-
ing (sE, rE, kE, sD, rD) for P : X × Y → {0, 1} there exists a (r, s + 1, w + 1)-
predicate encoding (sE′, rE′, kE′, sD′, rD′) for the predicate P′ : Y × X → {0, 1}
such that P′(y, x)⇔ P(x, y). Concretely,

sE′y =
(
rEy kEy

)
rE′x =

(
sEx 0s
0>w 1

)
kE′x =

(
0s
1

)

sD′y,x = rDx,y rD′y,x =

(
sDx,y

1

)

4 Tag-based Encodings

We show that our techniques for predicate encodings can be extended to the
framework of tag-based encodings. In particular, we show a similar result to our
Theorem 1, which establishes that h-hiding and reconstructability are mutually
exclusive and complementary.

Theorem 8. Let p ∈ N be a prime, let k, c, h ∈ N and let C ∈ Zc×hp , K ∈ Zk×hp .
The following are equivalent:

• h-hiding: h
$← Zhp ; return (Ch, Kh) ≡ h,h′

$← Zhp ; return (Ch, Kh′)
• non-reconstructability For every mc ∈ Zcp and very mk ∈ Zkp, either

m>c C 6= m>kK or m>c C = 0>h .

where ≡ denotes equality of distributions.
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A consequence of Theorem 8 is that every valid tag-based encoding is per-
fectly hiding, or equivalently, there cannot exist a tag-based encoding where the
two distributions from h-hiding are negligibly close but not identical.

Thanks to the above theorem, it is possible to define disjunction and con-
junction transformations for tag-based encodings along the lines of predicate
encodings. We were not able to design a negation transformation for tag-based
encodings and leave it for future work. On the other hand, the dual transfor-
mation is straightforward in this framework, as mentioned in [22], because the
encoding primitives are completely symmetric.

Expressivity of tag-based encodings vs predicate encodings We try to improve
our understanding of the differences between these two primitives by providing
a transformation that produces valid predicate encodings from valid tag-based
encodings for the same predicate.

Theorem 9. Given a (c, 1, h)-tag-based encoding (cE, kE) for P : X × Y →
{0, 1}, the (c, 1, h)-partial predicate encoding (sE′, rE′, kE′) defined as sE′x = cEx,
rE′y = kEy, kE′y =

(
1
)
, induces a predicate encoding for P.

Note that because of the symmetry of tag-based encodings, Theorem 9 can
be also applied to (1, k, h)-tag-based encodings. All the tag-based encodings
proposed in [22] (except one) have either c = 1 or k = 1, so the above theorem
can be applied to them.

5 Pair Encodings

In this section we provide an embedding that transforms every predicate en-
coding into an information-theoretic pair encoding. Consequently, we can see
predicate encodings as a subclass of pair encodings. This opens the possibility of
reusing the conjunction and dual transformation proposed by Attrapadung [9,
10] for pair encodings, to create combinations of predicate encodings via our em-
bedding. We show that this alternative method is fundamentally different from
our direct conjunction and dual transformations on predicate encodings, where
our combinations produce more efficient encodings.

5.1 Embedding Predicate Encodings into Pair Encodings

In this section we provide an embedding that produces a valid information-
theoretic pair encoding from every valid predicate encoding (see Definitions 1
and 3 for predicate encodings and pair encodings respectively).

Definition 5 (Embedding to Pair Encodings). Given a (s, r, w)-predicate
encoding pe = (sE, rE, kE, sD, rD), we define the embedding Emb(pe) = (Enc1pe,
Enc2pe,Pairpe) as follows:

• Enc1pe(x) = (c0, c), where c0(s0,h) = s0, c(s0,h) = s0 · sExh
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• Enc2pe(y) = (k0,k), where k0(α, r1,h) = r1, k(α, r1,h) = α · kEy + r1 · rEyh

• Pairpe(x, y) =

(
0 rD>x,y

−sDx,y 0s,r

)
All variables s = (s0) and r = (r1) appear in the clear in the Enc1 and Enc2 poly-
nomials respectively. This simplifies the pair encoding’s information-theoretical
security notion into one equivalent to the privacy of the predicate encoding (see
proof of Theorem 10).

Theorem 10 (Correctness of the embedding). If pe = (sE, rE, kE, sD, rD)
is a valid (s, r, w)-predicate encoding for P, then Emb(pe) is a valid information
theoretic (s+ 1, r + 1, w)-pair encoding for P.

Our embedding shows that every predicate encoding can be transformed into
a perfectly secure pair encoding. In fact, after applying the compiler from [1] to
the embedding of a predicate encoding, we get the same predicate encryption
scheme that the one provided by the compiler from [15].

We conclude that predicate encodings can be transformed into a very special
class of pair encodings: encodings that allow decryption with 2 pairings and
have only one element of randomness in both, ciphertexts and secret keys (what
makes them very efficient).

5.2 Comparison between encoding transformations

Attrapadung proposed generic transformations of pair encodings [9, 10]. In par-
ticular, he proposed the conjunction and dual transformations. In this section
we compare these transformations with the ones proposed in this work. For this,
we compare the conjunction of two pair encodings, (embedded from predicate
encodings) with the embedding of the conjunction of a (s1, r1, w1)-predicate
encoding pe1 = (sD1, rE1, kE1, sD1, rD1) and a (s2, r2, w2)-predicate encoding
pe2 = (sD2, rE2, kE2, sD2, rD2), i.e.,

Emb(pe1 ∧pred pe2) vs Emb(pe1) ∧pair Emb(pe2)

where ∧pred and ∧pair are the conjunction of predicate encodings and pair en-
codings respectively. Note that ∧pred corresponds to the transformation from
our Theorem 5. On the other hand, for ∧pair we use the conjunction proposed
in [10].

Emb(pe1 ∧pred pe2) =

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1,k2)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h0,h1,h2) and

c0(s0,h) = s0

c1(s0,h) = s0 · sE1
x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, r1,h) = r1

k1(α, r1,h) = (α+ h0) · kE1
y1 + r1 · rE1

y1h1

k2(α, r1,h) = (α− h0) · kE2
y2 + r1 · rE2

y2h2
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E(x1,x2),(y1,y2) =
1

2

 0 rD1>
x1,y1 rD2>

x2,y2

−sD1
x1,y1 0s1,r1 0s1,r2

−sD2
x2,y2 0s2,r1 0s2,r2



Emb(pe1) ∧pair Emb(pe2) =

Enc1((x1, x2)) = (c0, c1, c2)
Enc2((y1, y2)) = (k0,k1, k2,k3)
Pair((x1, x2), (y1, y2)) = E(x1,x2),(y1,y2)

where h = (h1,h2) and

c0(s0,h) = s0

c1(s0,h) = s0 · sE1
x1
h1

c2(s0,h) = s0 · sE2
x2
h2

k0(α, (r1, r2, r3),h) = r1

k1(α, (r1, r2, r3),h) = r3 · kE1
y1 + r1 · rE1

y1h1

k2(α, (r1, r2, r3),h) = r2

k3(α, (r1, r2, r3),h) = (α− r3) · kE2
y2 + r2 · rE2

y2h2

E(x1,x2),(y1,y2) =

 0 rD1>
x1,y1 0 rD2>

x2,y2

−sD1
x1,y1 0s1,r1 0s1 0s1,r2

0s2 0s2,r1 −sD2
x2,y2 0s2,r2


The resulting pair encodings are different. The first one (result of our conjunc-

tion) does not introduce new random variables and does not increase the number
of pairings for decryption. On the other hand, the second conjunction adds new
random variables to key generation and increases the number of pairings needed
during decryption. This overhead will be amplified if nested conjunctions are
used. We include a detailed comparison between the dual transformations in
Appendix C.

6 Constructions

We provide new instances of predicate encodings to achieve predicate encryption
schemes with new properties or better performance.

6.1 Combining predicates

Dual-Policy ABE Dual-Policy Attribute Based Encryption [9, 10] has already
been considered in the pair encodings framework. It combines KP-ABE and CP-
ABE into a single construction that simultaneously allows two access control
mechanisms. The main advantage is the possibility of considering policies over
objective attributes (associated to data) and policies over subjective attributes
(associated to user credentials) at the same time.

Our combinations of predicate encodings allow us to create predicate en-
cryption constructions for Dual-Policy ABE in the framework of pair encodings
and tag-based encodings. In particular, given an arbitrary predicate encoding
for P : X × Y → {0, 1}, applying Theorems 7 and 5 we get an encoding for
DP-ABE, i.e., for the predicate P? : (X × Y)× (Y × X )→ {0, 1} defined as

P?((x, y), (y′, x′)) = 1 iff P(x, y) ∧ P(y′, x′)
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Revocation Another application of our combinations is predicate encryption
with revocation, by combining a boolean formula predicate encoding with a broad-
cast encryption predicate encoding. The former is used to encode the actual poli-
cy of the scheme, while the latter takes care of revocation.
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Fig. 1. Scalability of the PE for revocation

Broadcast encryption has
been considered in the literature
to approach revocation [19, 23,
30]. In broadcast encryption, a
broadcasting authority encrypts
a message in such a way that
only authorized users will be
able to decrypt it. This can
be expressed with the predicate
P(x, i) = 1 if and only if xi = 1,
where x ∈ X = {0, 1}n and
i ∈ Y = [n]. A drawback is that
the number of users in the sys-
tem, n, is polynomial size. Figu-
re 1 shows the performance of
predicate encryption built from
a predicate encoding that combines boolean formulas with broadcast encryption.
The system supports thousands of users in reasonable time.

6.2 Improved predicate encodings

In this section we propose new predicate encodings that are more efficient than
some of the encodings proposed previously in [15]. Our encodings are built by ap-
plying Theorem 6 to obtain negated encodings and observing that, in some cases,
Theorem 3 can be applied to simplify the negated version into a more efficient
encoding than the original one. The predicate associated to this new encoding
is negated, but if inputs are also negated, the predicate will be equivalent. Fig-
ure 2 illustrates this idea. On the left, there is a boolean formula CP-ABE for 4
attributes {a, b, c, d}. On the right side, secret keys and policies are modified so
that the negated version is equivalent. The attribute universe is formed by the
negated attributes, secret keys are formed by all negated attributes do not appear
in the original key as normal attributes, policies are negated and expressed in
NNF (Negation Normal Form).

Boolean formulas In [15], the authors propose two predicate encoding (KP
and CP versions) for monotonic boolean formulas. The predicate they consider
is a particular case of a Linear Secret Sharing scheme [24]. Let X = {0, 1}n,Y =
Zn×kp for some n, k ∈ N,

P(x,M) = 1 iff
(

1 0 k−1. . . 0
)
∈ row

span 〈Mx〉
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P P̄

attributes = {a, b, c, d} attributes = {ā, b̄, c̄, d̄}
x = (a ∧ c) ∨ d x = (ā ∨ c̄) ∧ d̄
y = {a, c} y = {b̄, d̄}

P(x, y) = 1 iff x(y) P̄(x, y) = 1 iff ¬x(y)

Fig. 2. Equivalent encodings of a policy using P (CP-ABE) on the left and P̄ (negated
CP-ABE) on the right.

where Mx denotes the matrix M filtered by x, i.e., Mx includes the i-th row of
M iff xi = 1.

It has been shown [28] that for every5 monotonic boolean formula f with
attributes from X there exists a matrix M ∈ Y such that for every x ∈ X ,
f(x)⇔ P(x,M). The key-policy predicate encoding from [15] is the following,

sEx =
(
diag(x) 0n,k−1

)
rEM =

(
In M{2,...,k}

)
kEM =

(
M{1}

)
where M{1} denotes the first column of matrix M , M{2,...,k} represents the rest
of the matrix. We do not include explicit decryption functions sD and rD, but
they can be computed efficiently by Gaussian elimination.

In the above encoding, the number of elements in secret keys and ciphertexts
is always maximal, it equals the number of (possibly duplicated) attributes, even
for small policies. Furthermore, the maximum number of and-gates in a policy
must be fixed a priori (because it is related the the number of columns in the
matrix).

We propose the following improved predicate encoding for (negated) key-
policy monotonic boolean formulas6, which is an equivalent predicate if instantia-
ted with negated inputs. Let X = {0, 1}n and Y = Zn×kp ,

sEx = In − diag(x) rEM = M> kEM =
(

1 0 k−1. . . 0
)>

In our encoding, the number of columns has been reduced up to half7. Further-
more, the size of secret keys is proportional to the complexity of policies. In
particular, it is equal to the number of and-gates in the policy (or equivalently,
the number of or-gates in the non-negated version). Note that our improvement
also works in the ciphertext-policy case.

In Figure 3 we present a comparison between our improved encoding for key-
policy monotonic boolean formulas and the original one. To this end, we generate
random boolean formulas for different sizes, starting from a random set of leaf
nodes and combining them with boolean operators ∨ and ∧. Our tables report
on the average time for each algorithm. Our encoding needs 50% less time than

5 where every attribute appears at most once and the number of and-gates is lower than
k (one could overcome the one-use restriction by considering duplicated attributes)

6 see Appendix D for more details about how we obtained this encoding
7 being half when the bound on the number of and-gates is maximal
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Fig. 3. Improved predicate encoding for boolean formulas vs original encoding

the original algorithms for setup, encryption and key generation. For decryption
the performance is similar. All the analyzed schemes were instantiated with the
same compiler, therefore all achieve the same level of security (under SXDH
assumption). In terms of secret key size, our encoding is smaller in general (in
the worst case, when all the gates in the policy are or-gates, key sizes are equal).

Arithmetic span programs. Chen et al. proposed in [15] a predicate encoding
for Arithmetic Span Programs (ASP). That is, an encoding for the predicate P
defined as follows. Let X = Znp , Y = Zn×kp × Zn×kp , for some n, k ∈ N; for every
x ∈ X and every (Y,Z) ∈ Y,

P(x, (Y,Z)) = 1 iff
(

1 0 k−1. . . 0
)
∈ row

span 〈diag(x)Y + Z〉

In [21], Ishai and Wee show how to relate Arithmetic Span Programs com-
putations of polynomial functions over a finite field F, i.e., functions f : Fn → F
that only use addition and multiplication over the field. Therefore, the above
predicate can be seen as f(x) = 0, where f is the polynomial function induced
by (Y,Z). Let X = Znp , Y = Zn×kp × Zn×kp , the original predicate encoding for
arithmetic span programs proposed in [15] is the following:

sEx =
(
diag(x) In 0n,k−1

)
rE(Y,Z) =

(
In 0n,n Y{2,...,l}

0n,n In Z{2,...,l}

)
kE(Y,Z) =

(
Y{1}
Z{1}

)
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Fig. 4. Improved predicate encoding for ASP vs original encoding

We present a more efficient encoding for (negated8) arithmetic span programs:

sEx =
(
diag(x) −In

)
rE(Y,Z) =

(
Z> Y >

)
kE(Y,Z) =

(
1 0 k−1. . . 0

)>
Figure 4 shows the performance of our new encoding for KP-ABE for Arith-

metic Span Programs compared to the original encoding from [15]. As we ex-
pected, our encoding needs 66% of the time required for the original encoding
for setup, encryption and key generation. Additionally, secret key size is halved
with our encoding.

6.3 Extra features

In this section we consider new theoretical results that can be proved thanks
to our algebraic characterization of α-privacy and can be used to produce new
predicate encodings enhanced with extra properties.

Attribute-hiding for boolean formulas. Chen et al. proposed an extension
of the compiler in [15] to build weakly attribute-hiding predicate encryption

8 in [21] there is a modification of their algorithm that produces matrices (Y,Z) such
that the predicate associated is f(x) 6= 0 (the double negation will cancel out)



24

schemes [13, 25]. In a weakly attribute-hiding scheme, the ciphertext attribute
x remains secret for unauthorized users, that only learn the fact that their se-
cret keys are not valid. This additional compiler needs to be instantiated with
predicate encodings satisfying additional properties. The following is a definition
from [15].

Definition 6 (Attribute-Hiding Encodings). A (s, r, w)-predicate encoding,
(sE, rE, kE, sD, rD) for P : X × Y → {0, 1} is attribute-hiding if it verifies the
additional requirements:

x-oblivious reconstruction: sDx,y and rDx,y are independent of x.

attribute-hiding: for all (x, y) /∈ P,

w
$← Zwp ; return (sExw, rEyw) ≡ s

$← Zsp; r
$← Zrp; return (s, r)

where ≡ denotes equality of distributions.

The following theorem relates the second property with our alternative definition
of predicate encodings:

Theorem 11 (Algebraic characterization of attribute-hiding). Let p ∈ N
be a prime, let s, r, w ∈ N and let S ∈ Zs×wp , R ∈ Zr×wp , k ∈ Zrp. The following
are equivalent:

• w
$← Zwp ; return (Sw, Rw) ≡ s

$← Zsp; r
$← Zrp; return (s, r)

• rank

(
S
R

)
= s+ r

Note that for every (s, r, w)-predicate encoding (sE, rE, kE, sD, rD) that is
attribute-hiding, there exists an equivalent (s, 1, w)-predicate encoding. This is
because rD is independent from x and thus, we can apply our optimization The-
orem 3 with matrices By = rD>x,y ∈ Z1×w

p , Ax = Is, C = Iw. Therefore, the class
of predicates that can be built from attribute-hiding encodings is included in the
class of predicates achieved from (s, 1, w)-predicate encodings.

Further, note that our disjunction and conjunction combinations for predi-
cate encodings (Theorems 4 and 5 respectively) preserve the notion of attribute-
hiding9. Exploiting this fact, we propose a Policy-Hiding ABE scheme for non-
monotonic boolean formulas expressed in DNF (Disjunctive Normal Form). The
inner product can be used to encode conjunctions [25]. More concretely, let
y ∈ {0, 1}n ⊆ Znp . We establish that the i-th attribute ai appears in a secret key

for y iff yi = 1. Let S, S̄ ⊆ {ai}ni=1 be sets such that S ∩ S̄ = ∅,

∧
a∈S

a ∧
∧
a∈S̄

ā ⇔10 x>y = |S| where ∀i ∈ [n], xi =

 1 if ai ∈ S
−1 if ai ∈ S̄
0 otherwise

9 conjunction also preserves x-oblivious reconstruction, while disjunction does not
10 this equivalence holds when |S| < p, but in practice p is a large prime
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Let U = {a, b, c} be the set of attributes. We consider the predicate encoding for
monotonic boolean formulas from [15]. Let X = {0, 1}3,Y = Z3×2

p ,

sEx =
(
diag(x) 03,2

)
rEM =

(
I3 M{2}

)
kEM =

(
M{1}

)
The following is the encoding of a key for the formula (a∨c)∧b, enhanced for delegation
according to Theorem 12 (with k = 1),

rEM =

 1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

0 0 0 0 1

 kEM =

 1
0
1

0


Let’s assume we want to weaken this key to one for the formula a∧ b∧ c. Note that in
this case we want to make an update of the matrix M :

M =

(
1 1
0 1
1 1

)
encodes (a ∨ c) ∧ b M ′ =

(
1 1 1
0 1 1
1 1 0

)
encodes a ∧ b ∧ c

It can be done by multiplying rEM from the left by A

rE′M =

 1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

A

·

 1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1


︸ ︷︷ ︸

rEM

=

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0
0 0 0 0 0

 kE′M = A · kEM =

 1
0
1
0



Fig. 5. Example of delegation of keys for monotonic boolean formulas. Since A is a
linear function, it can be computed in the exponent from the given key.

Observe that the ZIPE predicate encoding from [15, Appendix A.1] can
be modified into an attribute-hiding encoding for the predicate P((x, γ),y) =
1 iff x>y = γ (see Appendix E.1).

Therefore, with a disjunction of k predicate encodings like the former we can
encode boolean formulas that have at most k disjuncts. Note that the result-
ing encoding is attribute-hiding but it is not x-oblivious. However, without the
knowledge of the policy x, one can guess for the disjunct his secret key satis-
fies (if any). In this way, a valid key will be enough to decrypt after at most k
decryption tries (one for every disjunct).

Delegation Delegation of keys is a desirable property for every predicate en-
cryption scheme. Roughly, it allows the owner of a secret key to weaken his key
creating a new one that is less powerful than the original one. This property
can be used to achieve forward secrecy (see [14] for an application to ABE that
supports delegation), where past sessions are protected from the compromise of
future secret keys. To achieve this goal, users can periodically weaken their secret
keys and destroy the more powerful ones. In this way, past ciphertexts cannot be
decrypted any more and thus, they are protected against the theft of future keys.
Delegation is also required for Hierarchical Identity Based Encryption (HIBE).
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More formally, we say that a predicate P : X × Y → {0, 1} supports delegation
if there is a partial ordering � on Y such that for every x ∈ X , if P(x, y) = 1
and (y � y′), then P(x, y′) = 1.

Delegation has been considered in [15] as the property of some predicate
encodings. We propose a generic method to convert any predicate encoding into
one supporting delegation.

Theorem 12 (Delegation). For every (s, r, w)-predicate encoding (sE, rE, kE,
sD, rD) for P : X × Y → {0, 1}, for every k ∈ N, (sE′, rE′, kE′, sD′, rD′) defined
below is a valid (s, r + k,w + k)-predicate encoding for P.

sE′x =
(
sEx 0s,k

)
rE′y =

(
rEy 0r,k
0k,w Ik

)
kE′y =

(
kEy
0k

)
sD′x,y = sDx,y rD′x,y =

(
rDx,y
0k

)
The additional set of not-null rows in rE′y can be used to weaken the linear

span of rEy, what directly modifies the predicate. In particular, this method
works really well for monotonic boolean formulas (see Figure 5 for an example).
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A Proofs from main body

Proof (Of Theorem 2). The proof follows from Theorem 1 and the observation
that reconstructability of predicate encodings is equivalent to Pred, while privacy
of predicate encodings is equivalent to ¬Pred. �
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Proof (Of Theorem 3). To see correctness of the new encoding, note that for all
(x, y) ∈ P, since

sD>x,y ∈ row
span 〈Ax〉 ∧ rD>x,y ∈ row

span 〈By〉

there exist sD′
>
x,y and rD′

>
x,y such that

sD>x,y = sD′
>
x,yAx ∧ rD>x,y = rD′

>
x,yBy

Therefore,

sD′
>
x,y(AxsExC) = (sD>x,ysEx)C = (rD>x,yrEy)C = rD′

>
x,y(ByrEyC)

rD′
>
x,y(BykEy) = rD>x,ykEy = 1

To see privacy, note that for every (x, y) /∈ P, there exists w ∈ col
span 〈C〉 such

that sExw = 0s ∧ rEyw = kEy. Therefore, there also exists w′ ∈ Zw′p such that
w = Cw′. Note that,

sE′xw
′ = (AxsExC)w′ = AxsExw = Ax0s = 0s′

rE′yw
′ = (ByrEyC)w′ = ByrEyw = BykEy = kE′y

so algebraic privacy is satisfied. �

Proof (Of Theorem 4). Reconstructability can be seen by a simple check based
on the reconstructability of the original encodings.
To see privacy, note that P1(x1, y1) ∨ P2(x2, y2) = 0 implies P1(x1, y1) = 0
and P2(x2, y2) = 0 implies. Let w1 and w2 be witnesses of privacy of predicate
encodings 1 and 2 respectively. It is easy to check that w> =

(
w>1 w>2

)
is a

witness of privacy of the transformed encoding. �

Proof (Of Theorem 5). A simple check shows reconstructability. To see privacy,
P1(x1, y1) ∧ P2(x2, y2) = 0 implies P1(x1, y1) = 0 or P2(x2, y2) = 0. If the
first holds, let w1 be a witness of privacy of the first encoding. Then, w> =(

2w>1 0>w2
−1
)

is a witness of the algebraic privacy of the transformed encoding.
If the second holds, let w2 be a witness of privacy of the second encoding. A
valid witness now is w> =

(
0>w2

2w>2 1
)
. �

Proof (Of Theorem 6). It is not difficult to check reconstructability. Privacy
holds because when P(x, y) = 1, we can definew> =

(
−sD>x,y −sD>x,ysEx rD>x,y

)
which can be checked to be a witness of the algebraic privacy of the transformed
predicate encoding. �

Proof (Of Theorem 7). A simple check is enough to verify reconstructability. For
privacy, note that when P′(y, x) = 0, we have P(x, y) = 0. Let w be a witness

of the algebraic privacy of the original encoding. Now, w′
>

=
(
−w> 1

)
is a

witness of the dual predicate encoding. �
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Proof (Of Theorem 8). The proof follows directly from the following lemma and
the observation that i) is equivalent to h-hiding, while iii) is non-reconstructa-
bility (take A = C and B = K). �

Lemma 1. Let A ∈ Zm×np and B ∈ Zl×np be matrices. Let C ∈ Z(m+l)×n
p be the

concatenation of A and B by rows. The following three statements are equivalent:

i) ∀a ∈ Zmp ,∀b ∈ Zlp, Pr
x

$←Zn
p

[Ax = a |Bx = b] = Pr
x

$←Zn
p

[Ax = a]

ii) rank(C) = rank(A) + rank(B)

iii) ∀a ∈ Zmp ,∀b ∈ Zlp, a>A 6= b>B ∨ a>A = 0>n

Proof (Of the Lemma). Note that i) holds for every a ∈ Zmp , b ∈ Zlp such that

Ax = a or Bx = b have no solution. Let a ∈ Zmp , b ∈ Zlp be such that the
systems Ax = a and Bx = b have individually at least one solution (note that
such a and b always exist). We define the sets ΩA = {x ∈ Znp : Ax = a},
ΩB = {x ∈ Znp : Bx = b}, ΩAB = {x ∈ Znp : Ax = a ∧ Bx = b}. By the
Rouché-Capelli Theorem,

|ΩA| = pn−rank(A) |ΩB | = pn−rank(B) |ΩAB | = pn−rank(C)

Note that i) can be expressed as |ΩAB |
pn = |ΩA|

pn ·
|ΩB |
pn which is equivalent to the

equation pn · |ΩAB | = |ΩA| · |ΩB |, and therefore, pn · pn−rank(C) = pn−rank(A) ·
pn−rank(B) if and only if rank(C) = rank(A) + rank(B) which is ii).

Now, note that rank(C) = rank(A) + rank(B) if and only if there is not
a non-zero linear combination of rows of A that can be expressed as a linear
combination of rows of B, which is equivalent to statement iii). �

Proof (Of Theorem 9). According to our Theorem 2, the partial encoding (sE′,
rE′, kE′) induces a predicate encoding for the predicate Pred(x, y) = 1 iff ∃s ∈
Zcp, r ∈ Z1

p s.t. s>sE′x = r·rE′y and r·kE′y = 1, or equivalently, ∃s ∈ Zcp s.t. s>cEx =
kEy, which is equivalent to the reconstructability of the tag-based encoding
(cE, kE). According to Theorem 8 it is also equivalent to the predicate P. �

Proof (Of Theorem 10). Verifying correctness of the pair encoding is a simple
check. For perfect security we need to check that, when (x, y) /∈ P, the following
two distributions are identical:

α, s0
$← Zp; r1

$← Z∗p; h
$← Zwp ; return (s0, s0 · sExh, r1, r1 · rEyh) ≡

s0
$← Zp; r1

$← Z∗p; h
$← Zwp ; return (s0, s0 · sExh, r1, r1 · rEyh+ α · kEy)

Since both distributions provide s0 and r1 in the clear, the above checking is
equivalent to the following:

h
$← Zwp ; return (sExh, rEyh) ≡

α
$← Zp; r1

$← Z∗p; h
$← Zwp ; return (sExh, rEyh+ α/r1 · kEy)
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but those distributions are identical due to the α-privacy of the predicate en-
coding11. �

Proof (Of Theorem 11). Given (s, r) ∈ Zsp × Zrp, we define Ωs,r = {w ∈ Zwp :
Sw = s ∧ Rw = r}. The condition on the second bullet holds iff w− s− r ≥ 0
and the cardinality of Ωs,r is pw−s−r. Additionally, |Ωs,r| is independent from r
and s iff the two distributions from the first bullet are identical. �

Proof (Of Theorem 12). Correctness can be easily checked. For privacy, let
(x, y) /∈ P and let w ∈ Zwp be such that sExw = 0s and rEyw = kEy. Note

that w′> =
(
w> 0>k

)
is a witness of privacy for (sE′, rE′, kE′, sD′, rD′). �

B Flexible boolean combinations

Boolean combinations of predicate encodings can be applied dynamically. That
is, we can combine them by leaving placeholders P ./ P′ that will be chosen
during encryption or key generation. The following theorem shows how to dy-
namically combine two predicates making the combinator part of the secret key
sky. Thanks to this dynamic combination, we can create predicate encodings for
boolean formulas where the leaves are predicates instead of attributes. The only
drawback is that the structure of the boolean formula has to be fixed.

Theorem 13 (Flexible combination of predicate encodings). For every
(s1, r1, w1)-predicate encoding (sE1, rE1, kE1, sD1, rD1) for P1 : X1 × Y1 → {0, 1}
and every (s2, r2, w2)-predicate encoding (sE2, rE2, kE2, sD2, rD2) for P2 : X2 ×
Y2 → {0, 1}, there exists a (s1 + s2, r1 + r2, w1 + w2 + 1)-predicate encoding
(sE, rE, kE, sD, rD) for the predicate P : (X1,X2)× (Y1,Y2, {∨,∧})→ {0, 1} such
that:

P((x1, x2), (y1, y2, ./))⇔ P1(x1, y1) ./ P2(x2, y2)

Concretely,

sE(x1,x2) =

(
sE1
x1

0s1,w2
0s1

0s2,w1 sE2
x2

0s2

)
sD(x1,x2),(y1,y2,./) =

1

2

(
sD1

x1,y1

sD2
x2,y2

)
rE(y1,y2,./) =

(
rE1
y1 0r1,w2 f./ · kE1

y1

0r2,w1
rE2
y2 −f./ · kE

2
y2

)
rD(x1,x2),(y1,y2,./) =

1

2

(
rD1

x1,y1

rD2
x2,y2

)
kE(y1,y2,./) =

(
kE1

y1

kE2
y2

)
where f./ is defined as 1 if ./= ∧ and 0 if ./= ∨.

Proof. This Theorem follows straightforwardly from Theorems 4 and 5.

Note that our Theorem 7 gives us an equivalent version of the above the-
orem, where the placeholder is part of the ciphertext ctx. Figure 6 presents a

11 note that α
$← Zp, r1

$← Z∗p and therefore, α/r1 distributes uniformly over Zp, so we
can apply the α-privacy property from the predicate encoding
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Fig. 6. Example of fixed structure for inequalities

possible application of a flexible fixed-structure combination of boolean opera-
tors. It encodes the predicate P(x, y) = 1 iff x ≥ y, where X = Y = {0, 1}4
(4-bit strings). Note that the leaf nodes are IBE predicate encodings (one of the
simplest predicate encodings).

C Comparison between dual transformations

Let pe = (sD, rE, kE, sD, rD) be a (s, r, w)-predicate encoding. We compare

Emb(Dualpred(pe)) vs Dualpair(Emb(pe))

where Dualpair(·) represents the dual conversion for pair encodings proposed in
[10, Section 4], while Dualpred(·) corresponds to the transformation from our
Theorem 7.

Emb(Dualpred(pe)) =

Enc1(y) = (c0, c1)
Enc2(x) = (k0, k1,k2)
Pair(y, x) = Ey,x

where h = (h0,h1) and

c0(s0,h) = s0

c1(s0,h) = h0 · s0 · kEy + s0rEyh1

k0(α, r1,h) = α+ h0 · r1

k1(α, r1,h) = r1

k2(α, r1,h) = r1 · sExh1

Ey,x =

(
1 0 sD>x,y
0r −rDx,y 0r,s

)

Emb(Dualpair(pe)) =

Enc1(y) = (c0, c1, c2)
Enc2(x) = (k0, k1,k2)
Pair(y, x) = Ey,x
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where h = (h0,h1) and

c0((s0, s1),h) = s0

c1((s0, s1),h) = s1

c2((s0, s1),h) = h0 · s0 · kEy + s1rEyh1

k0(α, r1,h) = α+ h0 · r1

k1(α, r1,h) = r1

k2(α, r1,h) = r1 · sExh1

Ey,x =

 1 0 0>s
0 0 sD>x,y
0r −rDx,y 0r,s



D Obtaining more efficient encodings

We recall the encoding from [15], KP-ABE for monotonic boolean formulas (men-
tioned in out Section 6.2). Let X = {0, 1}n,Y = Zn×kp for some n, k ∈ N,

P(x,M) = 1 iff
(

1 0 k−1. . . 0
)
∈ row

span 〈Mx〉

where Mx denotes the matrix M filtered by x, i.e., Mx includes the i-th row of
M iff xi = 1.

sEx =
(
diag(x) 0n,k−1

)
rEM =

(
In M{2,...,k}

)
kEM =

(
M{1}

)
where M{1} denotes the first column of matrix M , M{2,...,k} represents the rest of
the matrix. We can directly apply our negation transformation from Theorem 6
and get the following encoding for (negated) monotonic boolean formulas:

sE′x =

(
diag(x) −In 0n,k−1 0n,n
0k−1,n 0k−1,n −Ik−1 0k−1,n

)

rE′M =

 0n,n In 0n,k−1 In
0k−1,n 0k−1,n Ik−1 (M{2,...,k})

>

0>n 0>n 0>
k−1 (M{1})

>

 kE′M =

 0n
0k−1

1


We will simplify the above encoding by using our Theorem 3. We choose the
identity matrix for Ax and BM and certain matrix C that satisfies the conditions
of the theorem, i.e., for every pair (x, y) /∈ ¬P, the column span of C contains at
least one witness w such that sE′xw = 0n+k−1 and rE′Mw = kE′M . Let (x,M) /∈
¬P. Let w = (w1,w2,w3,w4) ∈ Znp × Znp × Zk−1p × Znp . For w to be a valid
witness, it needs to satisfy the following system of equations

diag(x)w1 −w2 = 0n+k−1
−w3 = 0k−1
w2 +w4 = 0n
w3 + (M{2,...,k})

>w4 = 0k−1
(M{1})

>w4 = 1



34

Since (x,M) /∈ ¬P, there exists a ∈ Znp such that a>diag(x)M =
(

1 0 k−1. . . 0
)
.

Note that if we choose w1 = w2 = diag(x)a, w3 = 0k−1, w4 = −diag(x)a, then
w is a valid witness, since all the equations are satisfied12. This implies that the
matrix

C =


In
In

0k−1,n
−In


contains the valid witness w described above and can be used to simplify the
encoding into sE′′x = sE′xC, rE′′M = rE′MC, kE′′M = kE′M . That is,

sE′′x =

(
diag(x)−In

0k−1,n

)
rE′′M =

 0n,n
−(M{2,...,k})>
−(M{1})>

 kE′′M =

 0n
0k−1

1


Now, the matrices

Ax =
(
In 0n,k−1

)
BM =

(
0>n 0>

k−1 −1
0n,n −Ik−1 0k−1

)
verify the conditions of our Theorem 3 and when applied to the encoding sE′′,
rE′′, kE′′ they produce the encoding presented in Section 6.2 for negated mono-
tonic boolean formulas.

E Concrete encodings

E.1 Predicate encoding for γ-inner product (modified from [15])

Let n ∈ N and let X = Znp ×Zp, Y ∈ Znp . The following is a (n+ 1, 1, n+ 2)-valid

predicate encoding for the predicate P((x, γ),y) = 1 iff x>y = γ,

sEx =

(
x In 0n
γ 0>n 1

)
rEy =

(
0 y> −1

)
kEy =

(
1
)

sD>x,y =
(
y> −1

)
rDx,y =

(
1
)

It is an attribute-hiding predicate encoding.

E.2 Generalized predicate encoding for broadcast encryption

We generalize the predicate encoding for broadcast encryption from [15]. Let
X = Znp , Y = [n] × Zp, we consider the predicate P(x, (i, γ)) = 1 iff xi = γ. As
in [15], it is convenient to express the above predicate as follows:
X = (Zt2p )t1 , Y = [t1]× [t2]× Zp and

P((x1, . . . ,xt1), (i1, i2, γ)) = 1 iff x>i1ei2 = γ

12 observe that diag(x)diag(x) = diag(x) because x ∈ {0, 1}n
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where n = t1t2 and (i1, i2) is the unique pair of integers satisfying i = (i1−1) ·
t2 + i2 and 0 < i2 ≤ t2. Also, (e1, . . . , et2) is the standard basis of Zt2p . The
following is a valid (t1, t2, t1 + t2)-predicate encoding for the above predicate:

sEx =

 x>1
It1

...
x>t1

 rE(i1,i2,γ) =
(
0t2,(i1−1) ei2 0t2,(t1−i1) γ · It2

)

kE(i1,i2,γ) = ei2 sDx,(i1,i2,γ) = ei1 rDx,(i1,i2,γ) = γ−1 · xi1

This encoding can be used to perform 2-dimensional broadcast encryption. That
is, users are divided in n groups and every user i has a unique identifier γi.
Encryption can be done in such a way that at most one user from every group
will be able to decrypt.

E.3 Tag-based encoding for root sharing of polynomials

Let m,n ∈ N and let X ,Y ⊂ Zp[T ] be the sets of polynomials of degree m and
n respectively with coefficients over Zp. For f(t) ∈ X and g(t) ∈ Y, let P be the
predicate defined as P(f, g) = 1 iff ∃t0 ∈ Zp : f(t0) = g(t0) = 0. The following is
a valid (n,m,m+ n)-tag-based encoding for P,

cEf =


am . . . a0 0 n−1. . . 0

0 am . . . a0 0 n−2. . . 0
. . .

. . .

0 n−1. . . 0 am . . . a0

 kEg =


bn . . . b0 0 m−1. . . 0

0 bn . . . b0 0 m−2. . . 0
. . .

. . .

0 m−1. . . 0 bn . . . b0


where f(t) = amt

m + · · ·+ a1t+ a0 and g(t) = bnt
n + · · ·+ b1t+ b0.


