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Abstract. SKINNY is a new lightweight tweakable block cipher family proposed by Beierle et al. in
CRYPTO 2016. SKINNY-n-t is a block cipher with n-bit state and t-bit tweakey (key and tweak).
It is designed to compete with the recent NSA SIMON block cipher. In this paper, we present im-
possible differential attacks against reduced-round versions of all the 6 SKINNY’s variants, namely,
SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or n = 128) in the single-tweakey model.
More precisely, we present impossible differential attacks against 18, 20 and 22 rounds of SKINNY-
n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or n = 128), respectively. These attacks are based
on the same 11-round impossible differential distinguisher. To the best of our knowledge, these are
the best attacks against these 6 variants of the cipher in the single-tweakey model.
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1 Introduction

SKINNY [4] is a Substitution Permutation Network (SPN) family of lightweight block ciphers that was
proposed in CRYPTO 2016 by Beierle et al. These family of ciphers inherit the new design trend of having
an SPN cipher with non optimal internal components. More precisely, each round function employs a
compact S-box, a new very sparse diffusion layer, and a new very light key schedule. The arrangement of
these components in SKINNY guarantees strong security. Indeed, the designers of SKINNY using Mixed
Integer Linear Programming (MILP) provide high security bounds against differential/linear attacks for
all the SKINNY versions in the single-key and related-key models. Compared to SIMON [1], SKINNY
provides security guarantee against the best differential/linear characteristics for a much lower proportion
of its total number of rounds in the single-key model. While all the versions of SIMON have no bounds
against the differential/linear attacks in the related-key model, SKINNY has strong bounds.

SKINNY is the first block cipher family that has better performance than SIMON for round-based ASIC
implementations. Moreover, using the serial ASIC it requires a very small area. Therefore, SKINNY is
an integrated work of lightweight block ciphers design that offer high security guarantee. In addition to
the serial implementation, the designers of SKINNY exhibit that its ASIC threshold implementations is
very favorable to AES-128 threshold implementations [7]. Compared to the software implementations of
all the lightweight block ciphers except SIMON (in cases where the key schedule is performed only once),
SKINNY has the most efficient performance. But according to [5], the key schedule has to be performed
every time in practical applications. Therefore, in these scenarios SKINNY implementation is equivalent
to SIMON. Moreover, SKINNY is competitive for most platforms since it has the smallest total number
of AND/NOR/XOR gates. In addition, SKINNY has the advantage that the encryption and decryption
algorithms are almost exact.

Compared to SIMON, SKINNY has the advantage of being tweakable. This advantage is useful in the
leakage resilient implementations and allows SKINNY to be employed into a higher level of operating
modes such as SCT [11]. Moreover, the designers of SKINNY generalized the STK construction [9] in
order to provide compact implementation while the existence of the tweakey with providing high level of
security.



The designers of SKINNY [2] presented 16-round attacks against SKINNY-n-t (n = 64 or n = 128)
utilizing 11-round impossible distinguisher, that will be utilized in our attacks against all the 6 variants of
SKINNY cipher. Moreover, the designers of SKINNY announced a competition [3] against two variants of
SKINNY, namely, SKINNY-64-128 and SKINNY-128-128. In this competition, the authors indicate that
the best known attack against SKINNY-64-128 is 18 rounds.

In this paper, we present impossible differential attacks against all the 6 variants of SKINNY, namely,
SKINNY-n-t, SKINNY-n-2t and SKINNY-n-3t (n = 64 or n = 128). All of these attacks utilize the same
impossible differential distinguisher that is used by the designers of SKINNY to launch 16-round attacks
against SKINNY-n-t (n = 64 or n = 128). We exploited the fact that the tweakey addition are only
performed on the first two rows of the state along with the MixColumn operation properties and the
tweakey schedule relations to extend this distinguisher by 7, 9, 11 rounds to launch key recovery attacks
in the single-tweakey model against 18, 20, 22 rounds of SKINNY-n-t, SKINNY-n-2t and SKINNY-n-3t
(n = 64 or n = 128), respectively. More specifically, we extend this impossible differential distinguisher
by 3, 3 and 3 rounds above it and 4, 6 and 8 rounds below it to launch 18, 20 and 22 rounds attacks
against SKINNY-n-t, SKINNY-n-2t and SKINNY-n-3t (n = 64 or n = 128), respectively. The time, data
and memory complexities of our attacks are presented in Table 1.

Table 1. The time, data and memory complexities of our 4 attacks.

Block cipher version # of rounds Time Data Memory

SKINNY-64-64 18 257.1 247.52 258.52

SKINNY-128-128 18 2116.94 292.42 2115.42

SKINNY-64-128 20 2121.08 247.69 274.69

SKINNY-128-256 20 2245.72 292.1 2147.1

SKINNY-64-192 22 2183.97 247.84 274.84

SKINNY-128-384 22 2373.48 292.22 2147.22

The rest of the paper is organized as follows. Section 2 provides the notations used throughout the paper
and a brief description of SKINNY . In section 3, we present the impossible differential distinguisher used
in our attacks. The details of our attacks are presented in sections 4, 5 and 6, respectively. Finally, the
paper is concluded in section 7.

2 Specifications of SKINNY

The following notations are used throughout the rest of the paper:

– TKi: The round tweakey used in round i.
– ETKi: The equivalent round tweakey used in round i.
– xi: The input to the SubCells (SC) operation at round i.
– yi: The input to the AddRoundConstantTweakey (AK) operation at round i.
– y

′

i: The input to the AddRoundConstantEquivlantTweakey (AEK) operation at round i.
– zi: The input to the ShiftRows (SR) operation at round i.
– wi: The input to the MixColumns (MC) operation at round i.
– xi[j]: The jth cell of xi, where 0 ≤ j < 16.
– xi[j · · · l]: The cells from j to l of xi, where j < l.
– xi[j, l]: The cells j and l of xi.
– xi[j][k]: The kth bit of the jth cell of xi.
– xi[j]{k, l,m}: The XOR of bits k, l,m of cell j of xi.
– xi[col : j]: The four cells in column j, e.g., xi[col : 0] = xi[0, 4, 8, 12].
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– xi[SR
−1[col : j]]: The four cells in column j after the SR−1 operation is applied, e.g., xi[SR

−1[col :
0]] = xi[0, 7, 10, 13].

– xi[col : j][k, l]: The jth and lth cells of column j of xi, e.g., xi[col : 0][0, 1] = xi[0, 4].
– ∆xi, ∆xi[j]: The difference at state xi and cell xi[j], respectively.

SKINNY is a family of lightweight block ciphers that support two block lengths of n = 64 and n = 128
bits. In both versions, the internal state IS is represented as 4 × 4 array of cells such that the cell is a
nibble (when the block length n = 64) or a byte (when the block length n = 128). While the classical
block ciphers have two inputs, namely the plaintext and the key, and output the ciphertext, SKINNY is a
tweakable block cipher [10,9] that uses an input is called the tweakey instead of the key. Then, the user has
the freedom to choose which part of the tweakey to be assigned to the key and which part to be assigned to
the tweak. This family of block ciphers of block length n deploys three main tweakeys of lengths t = n-bit,
t = 2n-bit and t = 3n-bit. Similar to the state, the tweakey state can be represented as z 4 × 4 arrays of
cells, i.e., we have arrays TK1 (in case z = 1), TK1 and TK2 (in case z = 2), TK1, TK2, and TK3 (in
case z = 3).

First, The plaintext m = m0∥m1∥· · · ∥m14∥m15 (where |mi|= n/16 = s-bit) is loaded into the internal
state IS row-wise as depicted in Fig. 1. Then, the tweakey input tk = tk0∥tk1∥· · · ∥tk16z−1 (where |tki| is
s-bit as in the internal state) is loaded row-wise such that TK1[i] = tki for 0 ≤ i ≤ 15 (in case z = 1),
TK1[i] = tki,TK2[i] = tk16+i for 0 ≤ i ≤ 15 (in case z = 2) or TK1[i] = tki,TK2[i] = tk16+i,TK3[i] =
tk32+i for 0 ≤ i ≤ 15 (in case z = 3). Finally, the internal state is updated by applying the round function
r times, where the number of rounds r depends on the block length and the tweakey size, see Table 2.

Table 2. Number of rounds for SKINNY-n-t, with n-bit state and t-bit tweakey state.

Block size n
Tweakey size t

n 2n 3n

64 32 36 40

128 40 48 56

In each round, SKINNY applies five different operations, namely, SubCells, AddConstants, AddRoundTweakey,
ShiftRows and MixColumns, see Fig. 1. This cipher does not apply whitening keys. Consequently, parts of
the first and last rounds do not add any security. In what follows, we describe the five different operations
that are employed in each round:

� � � �

� � � �

	 
 �� ��

�� �� �� ��

�� ��

��� ��������	

����

����

���	


��������

Fig. 1. The SKINNY round function

– SubCells (SC): A nonlinear bijective mapping applied on every cell of the internal state, where 4-bit
(in case of n = 64) or 8-bit (in case of n = 128) S-box is applied. Both S-boxes mapping can be found
in [4].

– AddConstants (AC): A 4×4 round constant is XORed to the state. These round constants are generated
using a 6-bit affine LFSR. The details of generating the round constants can be found in [4].
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– AddRoundTweakey (ART): The first and second rows of all the tweakey arrays are XORed to the
state. More precisely, for 0 ≤ i ≤ 7, we have:
• IS[i] = IS[i]⊕ TK1[i], when z = 1,
• IS[i] = IS[i]⊕ TK1[i]⊕ TK2[i], when z = 2,
• IS[i] = IS[i]⊕ TK1[i]⊕ TK2i ⊕ TK3[i], when z = 3.

– ShiftRows (SR): The rows of the state are rotated as in AES but to the right, i.e., the following
permutation P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14 , 15, 12] is applied.

– MixColumns (MC): Each column in the state is multiplied by a binary matrix M, where

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0


Tweakey Schedule. The tweakey arrays are updated through tweakey schedule, see Fig. 2, as follows.
First all the tweakey arrays; i.e., TK1 (when z = 1), TK1,TK2 (when z = 2), or TK1,TK2,TK3 (when
z = 3); are permuted using a permutation PT such that PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].
Finally, each cell in the first and second rows of TK2,TK3 (when z = 2 or z = 3) is updated using LFSR,
see Table 3, where x0 is the LSB of the cell.

Table 3. The SKINNY LFSR used in the tweakey schedule

TK s LFSR

TK2 4 (x3 ∥ x2 ∥ x1 ∥ x0) → (x2 ∥ x1 ∥ x0 ∥ x3 ⊕ x2)

8 (x7 ∥ x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1 ∥ x0) → (x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1 ∥ x0 ∥ x7 ⊕ x5)

TK3 4 (x3 ∥ x2 ∥ x1 ∥ x0) → (x0 ⊕ x3 ∥ x3 ∥ x2 ∥ x1)

8 (x7 ∥ x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1 ∥ x0) → (x0 ⊕ x6 ∥ x7 ∥ x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1)
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Fig. 2. The tweakey schedule

In our attack, we use AddKey (AK) operation which compromises the AC and ART operations. Moreover,
we swap between the linear operations AK, MC ◦ SR; and hence we use the equivalant subtweakey ETK
instead of the subtweakey TK such that ETKr+1 = MC ◦ SR(TKr).

3 An Impossible Differential Distinguisher of SKINNY

The impossible differential cryptanalysis was proposed by Biham, Biryukov and Shamir [6]. This attack
exploits a (truncated) differential characteristic of probability exactly 0 and thus acts as a distinguisher.
Then, this distinguisher can be extended by prepending and/or appending additional rounds, which are
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usually referred to as the analysis rounds. Finally, the keys that are involved in the analysis round and lead
to the impossible differential are excluded. Miss in the Middle is the general technique to construct the
impossible differential, where in the cipher E = E2 ◦ E1, we try to find two differentials with probability
one, the first one covers the subcipher E1 and has the form ∆δ → ∆γ; and the second one covers the
subcipher E−1

2 , and has the form ∆β → ∆ζ, and the intermediate differences ∆γ,∆ζ do not match.
Finally, we have the differential ∆δ → ∆β that covers the whole cipher E and holds with zero probability.

The designers of SKINNY exhaustively searched for the longest truncated impossible differential that has
one active cell in the input ∆δ and output ∆β of the distinguisher. They found 16 truncated impossible
differentials that each one covers 11 rounds of SKINNY. Moreover, they exploited one of these 16 impossible
differential distinguishers to attack 16 rounds of SKINNY-n-t (n = 64 or n = 128).

In our attack, we exploit the same impossible differential distinguisher that was used by the designers
to launch impossible differential attacks against SKINNY-n-t (n = 64 or n = 128). This impossible dif-
ferential is illustrated in Fig. 3. This distinguisher states that given a pair of message that have only one
active cell at x3[12] cannot have only one active cell at x14[8]. The reason is that, the active cell ∆x3[12]
after 6 rounds will result in 4 active cells and 12 unknown cells at state x9. From the other side, the
active cell ∆x14[8] will result in 4 inactive cells, 5 unknown cells and 7 active cells at state Y9. Since
the cell at ∆x9[15] is active, therefore after the SC operation it should be active (because the S-boxes
that are used in all the SKINNY versions are bijective); and this is not the case because ∆y9[15] is inactive.

Our attacks depend on the following proposition:

Proposition 1. (Differential Property of S-box) Given two nonzero differences ∆i and ∆o in F16 or F256,
the equation: S(x) + S(x+∆i) = ∆o has one solution on average. This property also applies to S−1.

Since all our attacks are based on the same distinguisher, all of these attacks are prepended by 3 rounds
and the only structural difference in the appended rounds, we will describe our attack against SKINNY-
64-128 in details; then, we will mention the differences in the other attacks.

4 Impossible Differential Key-recovery Attack on 20-round SKINNY-n-2t
(n = 64 or n = 128)

4.1 Impossible Differential Key-recovery Attack of SKINNY-64-128

In this section, we present the first 20-round attack on SKINNY-64-128, as depicted in Fig. 4. The impos-
sible differential attack operates in the chosen plaintext model in order to satisfy the plaintext differences
which are obtained from the impossible differential distinguisher. In our attack, we use the idea of structure
to generate enough pairs of messages to launch the attack with less amount of required chosen plaintext. In
the first three rounds we use the equivalent tweakey ETK instead of the tweakey TK. Therefore, the first
round has no tweakey; and hence we can build our structure at y

′

1. Then, propagate it linearly backward
through MC−1,SR−1,SC−1 to obtain the corresponding plaintext. Our utilized structure takes all the
possible values in 7 nibbles y

′

1[3, 4, 5, 6, 9, 11, 14] while the remaining nibbles take a fixed value. Therefore,
one structure generates 24×7 × (24×7 − 1)/2 ≈ 255 possible pairs. Hence, we have 255 possible pairs of
messages satisfying the plaintext differences. Moreover, we utilized the following precomputation tables in
order to extract the tweakey nibbles involved in the analysis rounds efficiently:

H∗: For any round i, for any column j of the state, and for all the 232 possible values of ∆zi[SR
−1[col :

j]], zi[SR
−1[col : j]], compute ∆yi+1[col : j], yi+1[col : j]. Then, store ∆zi[SR

−1[col : j]], zi[SR
−1[col :

j]], yi+1[col : j][0, 1] in H∗ indexed by ∆yi+1[col : j], yi+1[col : j][2, 3]. H
∗ has 224 rows and on average

about 232/224 = 28 values for each row1.

1 We compute this table only once. Then, we use it many times in different rounds and columns.
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Fig. 3. Impossible differential distinguisher of SKINNY

H1: For all the 224 possible values of ∆z17[SR
−1[col : 2][0, 1]], z17[SR

−1[col : 2]], compute ∆y18[col :
2], y18[col : 2]. Then, store ∆z17[SR

−1[col : 2][0, 1]], z17[SR
−1[col : 2]], y18[col : 2][0, 1] in H1 indexed by

∆y18[col : 2], y18[col : 2][2, 3]. H1 has 224 rows and on average about 224/224 = 1 value for each row.

H2: For all the 228 possible values of ∆z17[SR
−1[col : 0][0, 2, 3]], z17[SR

−1[col : 0]], compute ∆y18[col :
0], y18[col : 0]. Then, store ∆z17[SR

−1[col : 0][0, 2, 3]], z17[SR
−1[col : 0]], y18[col : 0][0, 1] in H2 indexed by

∆y18[col : 0], y18[col : 0][2, 3]. H2 has 224 rows and on average about 228/224 = 24 values for each row.

H3: For all the 228 possible values of ∆z17[SR
−1[col : 3][0, 1, 3]], z17[SR

−1[col : 3]], compute ∆y18[col :
3], y18[col : 3]. Then, store ∆z17[SR

−1[col : 3][0, 1, 3]], z17[SR
−1[col : 3]], y18[col : 3][0, 1] in H3 indexed by

∆y18[col : 3], y18[col : 3][2, 3]. H3 has 224 rows and on average about 228/224 = 24 values for each row.

H4: For all the 2
20 possible values of ∆z16[SR

−1[col : 0][0]], z16[SR
−1[col : 0]], compute ∆y17[col : 0][0, 1, 3],

y17[col : 0]. Then, store ∆z16[SR
−1[col : 0][0]], z16[SR

−1[col : 0]], y17[col : 0][0, 1] in H4 indexed by
∆y17[col : 0][0, 1, 3], y17[col : 0][2, 3]. H4 has 220 rows and on average about 220/220 = 1 value for each row.

H5: From the properties of the MixColumn, we have ∆x16[0] = ∆x16[8] = ∆x16[12] = ∆w15[8]. Therefore,
for all the 240 possible values for ∆x16[8], x16[8, 12],∆w16[2, 7], w16[2, 6, 14], x17[3, 11], compute w16[10, 15],
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∆y17[2, 3, 6, 10, 11, 14], y17[2, 3, 6, 10, 11, 14, 15] such that y17[15] = SC([w16[15] ⊕ x17[3]), from the Mix-
Columns operation. Then, store ∆z16[SR

−1[col : 2][0, 2]], ∆z16[SR
−1[col : 3][1, 3]], z16[SR

−1[col : 2]],
z16[SR

−1 [col : 3][3]], y17[2, 3, 6] in H5 indexed by ∆y17[2, 3, 6, 10, 11, 14], y17[10, 11, 14, 15]. H5 has 240

rows and on average about 240/240 = 1 value for each row.

H6: For all the 224 possible values of ∆z16[SR
−1[col : 1][0, 3]], z16[SR

−1[col : 1]], compute ∆y17[col :
1][0, 1, 3], y17[col : 1]. Then, store ∆z16[SR

−1[col : 1][0, 3]], z16[SR
−1[col : 1]], y17[col : 1][0, 1] in H6 indexed

by ∆y17[col : 1][0, 1, 3], y17[col : 1][2, 3]. H6 has 220 rows and on average about 224/220 = 24 values for each
row.

H7: For all the 2
20 possible values of ∆z15[SR

−1[col : 0][2]], z15[SR
−1[col : 0]], compute ∆y16[col : 0][0, 2, 3],

y16[col : 0]. Then, store ∆z15[SR
−1[col : 0][2]], z15[SR

−1[col : 0]], y16[col : 0][0] in H7 indexed by ∆y16[col :
0][0, 2, 3], y16[col : 0][2, 3]. H7 has 220 rows and on average about 220/220 = 1 value for each row.

H8: For all the 2
20 possible values of ∆z15[SR

−1[col : 2][0]], z15[SR
−1[col : 2]], compute ∆y16[col : 2][0, 1, 3],

y16[col : 2]. Then, store ∆z15[SR
−1[col : 2][0]], z15[SR

−1[col : 2]], y16[col : 2][0, 1] in H8 indexed by
∆y16[col : 2][0, 1, 3], y16[col : 2][2, 3]. H8 has 220 rows and on average about 220/220 = 1 value for each row.

H9: From the properties of the MixColumn, we have ∆x15[2] = ∆x15[10] = ∆x15[14] = ∆w14[10]. There-
fore, for all the 24 possible differences for∆x15[2, 10], 2

8 possible values of x15[2, 10] and 24 possible values of
TK15[2], compute∆z15[2 , 10], z15[2, 10]. Then, store∆z15[2] inH9 indexed by∆z15[2, 10], z15[2, 10],TK15[2].
H9 has 220 rows and on average about 216/220 = 2−4 values for each row.

H10: For all the 212 possible differences of ∆w1[5, 9, 13], we have only 24 valid differences that have ex-
actly one difference in ∆y

′

2[13] and 3 zero differences in ∆y
′

2[1, 5, 9]. Therefore, for all the 24 possible
differences of ∆w1[5, 9, 13], 2

12 possible values of w1[5, 9, 13] and 28 possible values of ETK1[4, 14], com-
pute ∆y

′

1[4, 14], y
′

1[4, 14],∆x1[11], x1[11]. Then, store ∆w1[5, 9 , 13], w1[5, 9, 13], x1[11] in H10 indexed by
∆y

′

1[4, 14], y
′

1[4, 14],∆x1[11],ETK1[4, 14]. H10 has 228 rows and on average about 224/228 = 2−4 values for
each row.

H11: For all the 212 possible differences of ∆w1[3, 7, 11], we have only 24 valid differences that have
exactly one difference in ∆y

′

2[7] and 3 zero differences in ∆y
′

2[3, 11, 15]. Therefore, for all the 24 pos-
sible differences of ∆w1[3, 7, 11], 212 possible values of w1[3, 7, 11] and 24 possible values of ETK1[6],
compute ∆y

′

1[6], y
′

1[6],∆x1[3, 9], x1[3, 9]. Then, store ∆w1[3, 7, 11], w1[3, 7, 11], x1[3, 9] in H11 indexed by
∆x1[3, 9],∆y

′

1[6], y
′

1[6],ETK1[6]. H11 has 220 rows and on average about 220/220 = 1 value for each row.

H12: For all the 28 possible values of ∆x16[1], x16[1], compute ∆y16[1], y16[1].Then, store y16[1] in H12

indexed by ∆y16[1]. H12 has 24 rows and on average about 28/24 = 24 values for each row.

H13: For all the 216 possible values of ∆w1[6], w1[1, 6],ETK1[1, 5] (ETK1[1] = ETK1[5], see Appendix
A), compute ∆y

′

1[5], y
′

1[1, 5]. Then, store ∆w1[6], w1[1, 6] in H13 indexed by ∆y
′

1[5], y
′

1[1, 5],ETK1[1]. H13

has 216 rows and on average about 216/216 = 1 value for each row.

H14: From the properties of the MixColumn, we have ∆w2[4] = ∆w2[8] = ∆w2[12] = ∆y
′

3[12]. Therefore,
for all the 24 possible differences for ∆w2[4, 8, 12], 2

12 possible values of w2[4, 8, 12] and 212 possible values
of ETK2[7, 10, 13], compute ∆y

′

2[7, 10, 13], y
′

2[7, 10, 13]. Then, store ∆y
′

2[10] in H14 indexed by ∆y
′

2[7, 10
, 13], y

′

2[7, 13],ETK2[7, 10, 13]. H14 has 232 rows and on average about 228/232 = 2−4 value for each row.

Using the above mentioned precomputation tables and the utilized structure, our attack proceeds as
follows:

1. We take 2n structures generated as mentioned above. Therefore, we have 2n+55 pairs of messages
generated using 2n+28 messages. Then, ask the encryption oracle for their corresponding ciphertexts;
and then decrypted them partially over MC−1,SR−1 to compute z19.
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2. Determine the number of possible values for TK19[0 : 7] that satisfy the last round. This can be
achieved by performing the following steps for all the message pairs:

(a) Access H∗ for i = 18, j = 0 and compute TK19[0, 4] such that TK19[0, 4] = y19[0, 4] ⊕ z19[0, 4]
2.

Therefore, we have 28 possible tweakeys for TK19[0, 4].
(b) Access H∗ for i = 18, j = 1 and compute TK19[1, 5] such that TK19[1, 5] = y19[1, 5] ⊕ z19[1, 5].

Therefore, we have 28+8=16 possible tweakeys for TK19[0, 1, 4, 5].
(c) Access H∗ for i = 18, j = 2 and compute TK19[2, 6] such that TK19[2, 6] = y19[2, 6] ⊕ z19[2, 6].

Therefore, we have 216+8=24 possible tweakeys for TK19[0, 1, 2, 4, 5, 6].
(d) Access H∗ for i = 18, j = 3 and compute TK19[3, 7] such that TK19[3, 7] = y19[3, 7] ⊕ z19[3, 7].

Therefore, we have 224+8=32 possible tweakeys for TK19[0 : 7].

3. Determine the number of possible values for TK18[0 : 7] that satisfy the nineteenth round. This can
be achieved by performing the following steps for all the message pairs and remaining tweakeys that
satisfy the path until now:

(a) Access H1 and compute TK18[2, 6] such that TK18[2, 6] = y18[2, 6] ⊕ z18[2, 6]. Therefore, we have
232 possible tweakeys for TK19[0 : 7],
TK18[2, 6].

(b) Access H2 and compute TK18[0, 4] such that TK18[0, 4] = y18[0, 4] ⊕ z18[0, 4]. Therefore, we have
232+4=36 possible tweakeys for TK19[0 : 7],TK18[0, 2, 4, 6].

(c) Access H3 and compute TK18[3, 7] such that TK18[3, 7] = y18[3, 7] ⊕ z18[3, 7]. Therefore, we have
236+4=40 possible tweakeys for TK19[0 : 7],TK18[0, 2, 3, 4, 6, 7].

(d) Access H∗ for i = 17, j = 1 and compute TK18[1, 5] such that TK18[1, 5] = y18[1, 5] ⊕ z18[1, 5].
Therefore, we have 240+8=48 possible tweakeys for TK19[0 : 7],TK18[0 : 7].

4. Determine the number of possible values for TK17[0 : 6] that satisfy the eighteenth round. This can
be achieved by performing the following steps for all the message pairs and remaining tweakeys that
satisfy the path until now:

(a) Access H4 and compute TK17[0, 4] such that TK17[0, 4] = y17[0, 4] ⊕ z17[0, 4]. Therefore, we have
248 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0, 4].

(b) Access H5 and compute TK17[2, 3, 6] such that TK17[2, 3, 6] = y17[2, 3, 6] ⊕ z17[2, 3, 6]. Therefore,
we have 248 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0, 2, 3, 4, 6].

(c) Access H6 and compute TK17[1, 5] such that TK17[1, 5] = y17[1, 5] ⊕ z17[1, 5]. Therefore, we have
248+4=52 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6].

5. Determine the number of possible values for TK16[0, 2] that satisfy the seventeenth round. This can
be achieved by performing the following steps for all the message pairs and remaining tweakeys that
satisfy the path until now:

(a) AccessH7 and compute TK16[0] such that TK16[0] = y16[0]⊕z16[0]. Therefore, we have 2
52 possible

tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0].
(b) Access H8 and compute TK16[2] such that TK16[2] = y16[2]⊕z16[2]. Therefore, we have 2

52 possible
tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0, 2]

3.

6. Using the knowledge of TK15[2], since we know it from the knowledge of TK19[6],TK17[4] (see Appendix
A), determine the number of possible tweakey values that satisfy the sixteenth round. This can be
achieved by performing the following steps for all the message pairs and remaining tweakeys that
satisfy the path until now:

(a) Access H9; and we will find 2−4 possible values in each row, i.e., we have 4-bit filter on the
remaining tweakeys. Therefore, we have 252−4=48 possible tweakeys for TK19[0 : 7], TK18[0 :
7],TK17[0 : 6],TK16[0, 2] TK15[2].

7. Using the knowledge of ETK1[4, 6, 14] (ETK1[6] = ETK1[14]), since we know it from the knowledge of
TK18[2, 4],TK16[0, 2] (see Appendix A), determine the number of possible values for ETK1[3, 9, 11] that
satisfy the second round. This can be achieved by performing the following steps for all the message
pairs and remaining tweakeys that satisfy the path until now:

2 TK19[0, 4] = y19[0, 4]⊕ z19[0, 4] means that TK19[0] = y19[0]⊕ z19[0],TK19[4] = y19[4]⊕ z19[4]
3 Note that instead of having TK16[6] that lead to the impossible differential distinguisher, we have x16[6] that
lead to the same impossible differential distinguisher
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(a) Access H10 and compute ETK1[11] such that ETK1[11] = y
′

1[11]⊕x1[11]; we will find 2−4 possible
values in each row, i.e., we have 4-bit filter on the remaining tweakeys. Therefore, we have 248−4=44

possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0, 2],TK15[2],ETK1[4, 6, 11, 14].
(b) AccessH11 and compute ETK1[3, 9] such that ETK1[3, 9] = y

′

1[3, 9]⊕x1[3, 9]. Therefore, we have 2
44

possible tweakeys for TK19[0 : 7],TK18[0 : 7],TK17[0 : 6],TK16[0, 2],TK15[2], ETK1[3, 4, 6, 9, 11, 14].
8. Determine the number of possible values for TK16[1] that satisfy the seventeenth round. This can

be achieved by performing the following steps for all the message pairs and remaining tweakeys that
satisfy the path until now:
(a) AccessH12 and compute TK16[1] such that TK16 = y16[1]⊕z16[1]. Therefore, we have 2

44+4=48 pos-
sible tweakeys for TK19[0 : 7],TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2],TK15[2], ETK1[3, 4, 6, 9, 11, 14].

9. Using the knowledge of ETK1[1, 5] (ETK1[1] = ETK1[5]), since we know it from the knowledge of
TK18[0],TK16[1] (see Appendix A), determine the number of possible tweakey values that satisfy the
second round. This can be achieved by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:
(a) Access H13 and we will find 1 possible value in each row. Therefore, we have 248 possible tweakeys

for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2],TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14],.
10. Using the knowledge of ETK2[7, 10, 13], since we know it from the knowledge of TK19[0, 3, 7],TK17[1, 3, 5]

(see Appendix A), determine the number of possible tweakey values that satisfy the third round. This
can be achieved by performing the following steps for all the message pairs and remaining tweakeys
that satisfy the path until now:
(a) Access H14 and we will find 2−4 possible values in each row. Therefore, we have 248−4=44 possible

tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2],TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14],
ETK2[7, 10, 13].

Attack Complexity. As depicted in Fig. 4, we have 38 round tweakey nibbles that are involved in the
analysis. Thanks to the key schedule, these 38 nibbles take only 2116 possible values, see Appendix A. For
each of the 2n+55 message pairs, we remove, on average, 244 out of 2116 possible values of the tweakey
nibbles involved in the analysis rounds. Therefore, the probability that a wrong key is not discarded with
one pair is 1−244−116 = 1−2−72. Hence, after processing all the 2n+55 pairs, we have 2116(1−2−72)2

n+55 ≈
2116×2−1.4×2n−17

remaining candidates for 116-bit of the tweakey. In order to determine the optimal value
of n that will lead to the best computational complexity, we evaluate the computational complexity of the
attack as a function of n, as illustrated in Table 4. Analogous to AES [8], the SKINNY round function
can be implemented using 16 table lookups. As seen from Table 4, steps 5(a), 5(b) and 6(a) dominate the
time complexity of the attack; and hence in order to optimize the time complexity of the attack we choose
n = 19.69. Consequently, we have 2107 remaining key candidates for the 116-bit of the tweakey. Therefore,
the tweakey can recovered by exhaustively search the 2107 remaining key candidates with 212 remaining
tweakey bits, that are not involved in the attack, using 2 plaintext/ciphertext pairs. Therefore, the total
time complexity of the attack is 2× 2107 × 212 + 2120.15 = 2121.08 encryptions. The data complexity of the
attack can be determined from step 1 in which we generate 2n=19.69 structures. Hence, the data complexity
of the attack is 219.69+28=47.69 chosen plaintexts. The memory complexity of the attack is dominated by
the memory that is required to store 2n+55=74.69 pairs to exclude the wrong keys; hence, it is 274.69.

4.2 Impossible Differential Key-recovery Attack of SKINNY-128-256

Since the only difference between SKINNY-64-128 and SKINNY-128-256 is the key schedule. More pre-
cisely, in the LFSR operation. The previous attack on SKINNY-64-128 can be applied on SKINNY-128-256
while only considering that the cell size s = 8. Therefore, one structure can generate 2111 pairs with 256

chosen plaintexts; and according to the key schedule the 38 bytes involved in the attack have 2232 possible
values, see the relations in Appendix B. In this attack, we exclude, on overage, 288 out of 2232 possible
values of the involved tweakey bytes for every message pair. Hence, the probability that one wrong key is
not discarded is 1− 288−232 = 1− 2−144. Therefore, we have 2232 × (1− 2−144)2

n+111 ≈ 2232 × 2−1.4×2n−33

remaining candidates for 232-bit of the tweakey bytes, after processing all the message pairs. In order
to optimize the time complexity of the attack, we choose n = 36.1. As a result, we have 2220 remaining
candidates for 232-bit of the tweakey; and hence the tweakey can be recovered by exhaustively searching
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Table 4. Time complexity of the different steps of the attack on 20-round SKINNY-64-128, where NT:
Number of Tweakeys to be excluded and E: Encryption.

Step Time Complexity NT n = 19.69

1 2n+28E - 247.69

2(a) 2n+55 × 1

16× 20
≈ 2n+46.68E 28 266.37

2(b) 2n+55 × 28 × 1

16× 20
≈ 2n+54.68E 216 274.37

2(c) 2n+55 × 216 × 1

16× 20
≈ 2n+62.68E 224 282.37

2(d) 2n+55 × 224 × 1

16× 20
≈ 2n+70.68E 232 290.37

3(a) 2n+55 × 232 × 1

16× 20
≈ 2n+78.68E 232 298.37

3(b) 2n+55 × 232 × 1

16× 20
≈ 2n+78.68E 236 298.37

3(c) 2n+55 × 236 × 1

16× 20
≈ 2n+82.68E 240 2102.37

3(d) 2n+55 × 240 × 1

16× 20
≈ 2n+86.68E 248 2106.37

4(a) 2n+55 × 248 × 1

16× 20
≈ 2n+94.68E 248 2114.37

4(b) 2n+55 × 248 × 2

16× 20
≈ 2n+95.68E 248 2115.37

4(c) 2n+55 × 248 × 1

16× 20
≈ 2n+94.68E 252 2114.37

5(a) 2n+55 × 252 × 1

16× 20
≈ 2n+98.68E 252 2118.37

5(b) 2n+55 × 252 × 1

16× 20
≈ 2n+98.68E 252 2118.37

6(a) 2n+55 × 252 × 1

16× 20
≈ 2n+98.68E 248 2118.37

7(a) 2n+55 × 248 × 1

16× 20
≈ 2n+94.68E 244 2114.37

7(b) 2n+55 × 244 × 1

16× 20
≈ 2n+90.68E 244 2110.37

8(a) 2n+55 × 244 × 1

16× 20
≈ 2n+90.68E 248 2110.37

9(a) 2n+55 × 248 × 1

16× 20
≈ 2n+94.68E 248 2114.37

10(a) 2n+55 × 248 × 1

16× 20
≈ 2n+94.68E 244 2114.37
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the remaining candidates with 224 possible values, for the 24-bit of the tweakey that are not involved
in the attack, using 2 plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
2 × 2220 × 224 + 236.1+111 × 2104 × 3

16×20
4= 2245 + 2244.36 = 2245.72. The data complexity of the attack is

2n+56=92.1 chosen plaintexts; and the memory complexity is dominated by storing 2n+111=147.1 message
pairs.

5 Impossible Differential Key-recovery Attack on 18-round SKINNY-n-n
(n = 64 or n = 128)

The only difference between SKINNY-64-64 and SKINNY-128-128 is the cell size s, where s = 4 (resp.
s = 8) in case of SKINNY-64-64 (resp. SKINNY-128-128). Therefore, we present the steps of the two
attacks concurrently as a function of s. This attack is applicable to the first 18 rounds of the previous
attack, i.e., the ciphertext c = x18. Therefore, we use the same steps used in the previous attack from step
4 to the end and the same precomputation tables from H4 to the end with the following modifications:

– Step 1, each structure can generate 27×s × 27×s−1 = 214×s−1 with 27×s chosen plaintexts. Then,
to apply the attack we take 2n structures to generate 2n+14×s−1 pairs, but we have 4 s-bit filter in
the transition over MC−1 from the ciphertext to w17. Therefore, we have 2n+14×s−1−4×s=n+10×s−1

remaining pairs to launch the attack.
– The number of rows and entries in each table will be represented as a function of s. For example, H6

has 25×s rows; and in each row, we have 2s entries.
– The modifications of the number of Tweakeys to be excluded from step 4 to the end are presented in

Table 5.
– For the relation of the tweakey cells, see Appendix C.

Attack Complexity. We have 22 tweakey cells that are involved in the analysis rounds; these 22 tweakey
cells have only 213×s possible values, refer to Appendix C. The probability that one wrong key is not
discarded with one pair is 1− 2−s−13×s = 1− 2−14×s. Hence, after processing all the 2n+10×s−1 pairs, we
have 213×s(1−2−14×s)2

n+10×s−1 ≈ 213×s×2−1.4×2n−4×s−1

remaining candidates for 13×s-bit of the tweakey.
Steps 5(a), 5(b) and 6(a) dominate the time complexity of the attack, as seen from Table 5; and hence
in order to optimize the time complexity of the attack we choose n = 19.52 (resp. n = 36.42) in case of
SKINNY-64-64 (resp. SKINNY-128-128). Consequently, we have 244 (resp. 289) remaining key candidates
for the 52-bit (resp. 104-bit) of the tweakey. Therefore, the tweakey can be recovered by exhaustively
searching the 244 (resp. 289) remaining key candidates with 212 (resp. 224) for the other tweakey bits, that
are not involved in the attack, using 1 plaintext/ciphertext pair. Therefore, the total time complexity of the
attack is 244×212+256.14 = 257.1 (resp. 289×224+2116.84 = 2116.94) encryptions in case of SKINNY-64-64
(resp. SKINNY-128-128). The data complexity of the attack can be determined from step 1 in which we
generate 2n=19.52 (resp. 2n=36.42) structures. Hence, the data complexity of the attack is 219.52+28=47.52

(resp. 236.42+56=92.42) chosen plaintexts in case of SKINNY-64-64 (resp. SKINNY-128-128). The memory
complexity of the attack is 258.52 (resp. 2115.42) that are required to store the 258.52 (resp. 2115.42) pairs
after the ciphertext filtration to exclude the wrong keys in case of SKINNY-64-64 (resp. SKINNY-128-128).

6 Impossible Differential Key-recovery Attack on 22-round SKINNY-n-3n
(n = 64 or n = 128)

SKINNY-64-192 differs from SKINNY-128-384 in the cell size s and the tweakey schedule. As the tweakey
schedule does not influence the attack procedure, we present the two attacks as a function of s. The
previous 20-round attack of SKINNY-n-2n (n = 64 or n = 128) can be extended to 22-round attack on
SKINNY-n-3n (n = 64 or n = 128) by appending 2 rounds, i.e., the ciphertext c = x22. Therefore, we can
use the same attack procedures of SKINNY-n-2n (n = 64 or n = 128) to attack SKINNY-n-3n (n = 64 or
n = 128) by repeating step 2 three times to extract the tweakey cells TK19[0 : 7],TK20[0 : 7],TK21[0 : 7],

4 The second term is computed from step 5(a),5(b) and 6(a).
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the details of the tweakey schedule can be found in Appendix D. Moreover, as in the previous attack
on 18-round SKINNY-n-n (n = 64 or n = 128), each structure can generate 27×s × 27×s−1 = 214×s−1

with 27×s chosen plaintexts. Then, we take 2n structures to generate 2n+14×s−1 pairs using 2n+7×s chosen
plaintexts.

Attack Complexity. We have 54 tweakey cells that are involved in the analysis rounds; these 54 tweakey
cells have only 245×s possible values. The probability that one wrong key is not discarded with one pair
is 1 − 227×s−45×s = 1 − 2−18×s. Hence, after processing all the 2n+14×s−1 pairs, we have 245×s(1 −
2−18×s)2

n+14×s−1 ≈ 245×s × 2−1.4×2n−4×s−1

remaining candidates for 45× s-bit of the tweakey. In order to
optimize the time complexity of the attack we choose n = 19.84 (resp. n = 36.22) in case of SKINNY-
64-192 (resp. SKINNY-128-384). Consequently, we have 2170 (resp. 2347) remaining key candidates for the
180-bit (resp. 360-bit) of the tweakey. Therefore, the tweakey can be recovered by exhaustively searching
the 2170 (resp. 2347) remaining key candidates with 212 (resp. 224) for the other tweakey bits, that are
not involved in the attack, using 3 plaintext/ciphertext pairs. Therefore, the total time complexity of
the attack is 3 × 2170 × 212 + 2183.97 = 2184.79 (resp. 3 × 2347 × 224 + 2372.35 = 2373.48) encryptions in
case of SKINNY-64-192 (resp. SKINNY-128-384). The data complexity of the attack is 219.84+28=47.84

(resp. 236.22+56=92.22) chosen plaintexts in case of SKINNY-64-192 (resp. SKINNY-128-384). The memory
complexity of the attack is 274.84 (resp. 2147.22) in case of SKINNY-64-64 (resp. SKINNY-128-384).

Table 5. Time complexity of the different steps of the attack on 18-round SKINNY-64-64 and SKINNY-
128-128, where NT: Number of Tweakeys to be excluded and E: Encryption.

Step Time Complexity NT s = 4, n = 19.52 s = 8, n = 36.42

1 2n+7×sE - 247.52 292.42

4(a) 2n+10×s−1 × 1

16× 18
≈ 2n+10×s−9.17E 1 250.35 2107.25

4(b) 2n+10×s−1 × 2

16× 18
≈ 2n+10×s−8.17E 1 251.35 2108.25

4(c) 2n+10×s−1 × 1

16× 18
≈ 2n+10×s−9.17E 2s 250.35 2107.25

5(a) 2n+10×s−1 × 2s × 1

16× 18
≈ 2n+11×s−9.17E 2s 254.35 2115.25

5(b) 2n+10×s−1 × 2s × 1

16× 18
≈ 2n+11×s−9.17E 2s 254.35 2115.25

6(a) 2n+10×s−1 × 2s × 1

16× 18
≈ 2n+11×s−9.17E 1 254.35 2115.25

7(a) 2n+10×s−1 × 1

16× 18
≈ 2n+10×s−9.17E 2−s 250.35 2107.25

7(b) 2n+10×s−1 × 2−s × 1

16× 18
≈ 2n+9×s−9.17E 2−s 246.35 299.25

8(a) 2n+10×s−1 × 2−s × 1

16× 18
≈ 2n+9×s−9.17E 1 246.35 299.25

9(a) 2n+10×s−1 × 1

16× 18
≈ 2n+10×s−9.17E 1 250.35 2107.25

10(a) 2n+10×s−1 × 1

16× 18
≈ 2n+10×s−9.17E 2−s 5 250.35 2107.25

5 After this step, we have 2−s tweakeys to be excluded for each message pair, i.e., we exclude 1 tweakey after
processing 2s pairs.
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7 Conclusion

In this work, we presented impossible differential attacks against all the 6 variants of SKINNY. All of these
attacks use the same impossible differential distinguisher that covers 11-round. We extended these 11-round
by 7, 9 and 11 rounds to attack 18, 20 and 22 rounds of SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n
(n = 64 or n = 128), respectively, exploiting that the tweakey is only added to the first two rows with the
MixColumns operation properties and the simple tweakey schedule.
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A SKINNY-64-128 Key schedule relations

Tables 6, 7 illustrate the tweakey and equivalent tweakey relations, respectively, that are considered in
the analysis rounds. We have 28 tweakey nibbles and 10 equivalent tweakey nibbles that are used in the
analysis rounds. In this section, we show that these tweakey and equivalent tweakey nibbles have only 2116

possible values, thanks to the key schedule.

For the tweakey nibbles TK17[t], t = {0, 1, 2, 3, 4, 5, 6} and TK19[f ], f = {2, 0, 4 , 7, 6, 3, 5}, the following
relations hold:

TK17[t][0] = TK1[l][0]⊕ TK2[l]{0, 1, 2, 3} TK19[f ][0] = TK1[l][0]⊕ TK2[l]{0, 1, 3}
TK17[t][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2} TK19[f ][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2, 3}
TK17[t][2] = TK1[l][2]⊕ TK2[l]{1, 2, 3} TK19[f ][2] = TK1[l][2]⊕ TK2[l]{0, 1, 2}
TK17[t][3] = TK1[l][3]⊕ TK2[l]{0, 2} TK19[f ][3] = TK1[l][3]⊕ TK2[l]{1, 2, 3},

where l = 9, 15, 8, 13, 10, 14, 12. From the above relations we can deduce TK1[l], TK2[l]. Therefore, we
have 22×7×4=56 possible values for these 14 nibbles. Moreover, the knowledge of TK1[e],TK2[e], where
e = 13, 14, 15 allows us to deduce the values of ETK2[7, 10, 13]; and the knowledge of of TK1[10],TK2[10]
allows us to deduce the value of TK15[2]. In addition, we have 24 possible values for the nibble TK19[1].
Therefore, we have 256+4=60 possible values for the 19 tweakey nibbles that are involved in rounds 3, 16,
18, 20.

For the tweakey nibbles TK16[t], t = {0, 1, 2} and TK18[f ] , f = {2, 0, 4}, the following relations hold:

TK16[t][0] = TK1[l][0]⊕ TK2[l]{0, 1, 2} TK18[f ][0] = TK1[l][0]⊕ TK2[l]{0, 1, 2, 3}
TK16[t][1] = TK1[l][1]⊕ TK2[l]{1, 2, 3} TK18[f ][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2}
TK16[t][2] = TK1[l][2]⊕ TK2[l]{0, 2} TK18[f ][2] = TK1[l][2]⊕ TK2[l]{1, 2, 3}
TK16[t][3] = TK1[l][3]⊕ TK2[l]{1, 3} TK18[f ][3] = TK1[l][3]⊕ TK2[l]{0, 2},

where l = 0, 1, 2. From the above relations we can deduce TK1[l], TK2[l]. Therefore, we have 22×3×4=24

possible values for these 6 nibbles. Moreover, the knowledge of TK1[l],TK2[l] allows us to deduce the values
of ETK1[1, 4, 5, 6, 14]. Hence, we have 224 possible values for the 10 tweakey nibbles that are involved in
rounds 2, 17, 19.

For the tweakey nibbles ETK1[t], t = {3, 9, 11} and TK18[f ] , f = {7, 6, 5}, the following relations hold:

ETK1[t][0] = TK1[l][0]⊕ TK2[l]{0} TK18[f ][0] = TK1[l][0]⊕ TK2[l]{0, 1, 2, 3}
ETK1[t][1] = TK1[l][1]⊕ TK2[l]{1} TK18[f ][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2}
ETK1[t][2] = TK1[l][2]⊕ TK2[l]{2} TK18[f ][2] = TK1[l][2]⊕ TK2[l]{1, 2, 3}
ETK1[t][3] = TK1[l][3]⊕ TK2[l]{3} TK18[f ][3] = TK1[l][3]⊕ TK2[l]{0, 2},

where l = 3, 4, 6. From the above relations we can deduce TK1[l], TK2[l]. Moreover, the knowledge of
TK1[6],TK2[6] allows us to deduce the values of TK16[6] Therefore, we have 2

2×3×4=24 possible values for
these 7 nibbles. In addition, we have 28 possible values of TK18[1, 3]. Hence, we have 224+8=32 possible
values for the 9 tweakey nibbles that are involved in rounds 2, 17, 19.

B SKINNY-128-256 Key schedule relations

Tables 8, 9 illustrate the tweakey and equivalent tweakey relations, respectively.
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Table 6. SKINNY-64-128 tweakey relations for round i = 15, 16, · · · , 19 (Lh
1 = Ph

T , L
h
2 = (LFSR ◦ PT )

h).

Round i = 15, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l]), l = 8, 9, 10, 11, 12, 13, 14, 15
and Round i = 16, TKi[j, j = 0 : 7] =L8

1(TK1[l])⊕ L8
2(TK2[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 2} TK1[l][1]⊕ TK2[l]{1, 2, 3} TK1[l][2]⊕ TK2[l]{0, 2} TK1[l][3]⊕ TK2[l]{1, 3}

Round i = 17, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l]), l = 9, 15, 8, 13, 10, 14, 12, 11
and Round i = 18, TKi[j, j = 0 : 7] =L9

1(TK1[l])⊕ L9
2(TK2[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 2, 3} TK1[l][1]⊕ TK2[l]{0, 1, 2} TK1[l][2]⊕ TK2[l]{1, 2, 3} TK1[l][3]⊕ TK2[l]{0, 2}

Round i = 19, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 3} TK1[l][1]⊕ TK2[l]{0, 1, 2, 3} TK1[l][2]⊕ TK2[l]{0, 1, 2} TK1[l][3]⊕ TK2[l]{1, 2, 3}

Table 7. SKINNY-64-128 equivlant tweakey relations for round i = 1, 2 (Lh
1 = Ph

T , L
h
2 = (LFSR ◦ PT )

h).

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l]⊕ TK2[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l][0] TK1[l][1]⊕ TK2[l][1] TK1[l][2]⊕ TK2[l][2] TK1[l][3]⊕ TK2[l][3]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l])⊕ L2(TK2[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l]{2, 3} TK1[l][1]⊕ TK2[l][0] TK1[l][2]⊕ TK2[l][1] TK1[l][3]⊕ TK2[l][2]
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Table 8. SKINNY-128-256 tweakey relations for round i = 15, 16, · · · , 19 (Lh
1 = Ph

T , L
h
2 = (LFSR ◦PT )

h).

Round i = 15, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l]), l = 8, 9, 10, 11, 12, 13, 14, 15
and Round i = 16, TKi[j, j = 0 : 7] =L8

1(TK1[l])⊕ L8
2(TK2[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 4, 6} TK1[l][1]⊕ TK2[l]{1, 5, 7} TK1[l][2]⊕ TK2[l]{0, 2} TK1[l][3]⊕ TK2[l]{1, 3}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{2, 4} TK1[l][5]⊕ TK2[l]{3, 5} TK1[l][6]⊕ TK2[l]{4, 6} TK1[l][7]⊕ TK2[l]{5, 7}

Round i = 17, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l]), l = 9, 15, 8, 13, 10, 14, 12, 11
and Round i = 18, TKi[j, j = 0 : 7] =L9

1(TK1[l])⊕ L9
2(TK2[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{3, 7} TK1[l][1]⊕ TK2[l]{0, 4, 6} TK1[l][2]⊕ TK2[l]{1, 5, 7} TK1[l][3]⊕ TK2[l]{0, 2}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{1, 3} TK1[l][5]⊕ TK2[l]{2, 4} TK1[l][6]⊕ TK2[l]{3, 5} TK1[l][7]⊕ TK2[l]{4, 6}

Round i = 19, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{2, 6} TK1[l][1]⊕ TK2[l]{3, 7} TK1[l][2]⊕ TK2[l]{0, 4, 6} TK1[l][3]⊕ TK2[l]{1, 5, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{0, 2} TK1[l][5]⊕ TK2[l]{1, 3} TK1[l][6]⊕ TK2[l]{2, 4} TK1[l][7]⊕ TK2[l]{3, 5}
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Table 9. SKINNY-128-256 equivlant tweakey relations for round i = 1, 2 (Lh
1 = Ph

T , L
h
2 = (LFSR◦PT )

h).

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l]⊕ TK2[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l][0] TK1[l][1]⊕ TK2[l][1] TK1[l][2]⊕ TK2[l][2] TK1[l][3]⊕ TK2[l][3]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4]⊕ TK2[l][4] TK1[l][5]⊕ TK2[l][5] TK1[l][6]⊕ TK2[l][6] TK1[l][7]⊕ TK2[l][7]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l])⊕ L2(TK2[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l]{5, 7} TK1[l][1]⊕ TK2[l][0] TK1[l][2]⊕ TK2[l][1] TK1[l][3]⊕ TK2[l][2]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4]⊕ TK2[l][3] TK1[l][5]⊕ TK2[l][4] TK1[l][6]⊕ TK2[l][5] TK1[l][7]⊕ TK2[l][6]

C SKINNY-64-64 and SKINNY-128-128 Key schedule relations

Tables 10, 11 illustrate the tweakey and equivalent tweakey relations, respectively.

Table 10. SKINNY-64-64 and SKINNY-128-128 tweakey relations for round i = 15, 16, 17.

Round i = 15 TKi[j, j = 0 : 7] =TK1[l], l = 8, 9, 10, 11, 12, 13, 14, 15

Round i = 16 TKi[j, j = 0 : 7] =TK1[l], l = 0, 1, 2, 3, 4, 5, 6, 7

Round i = 17 TKi[j, j = 0 : 7] =TK1[l], l = 9, 15, 8, 13, 10, 14, 12, 11

Table 11. SKINNY-64-64 and SKINNY-128-128 equivlant tweakey relations for round i = 1, 2.

Round i = 1 ETKi[j, j = 0 : 15] =TK1[l], l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

Round i = 2 ETKi[j, j = 0 : 15] =TK1[l], l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

D SKINNY-64-192 and SKINNY-128-384 Key schedule relations

Tables 12, 13 (resp. 14, 15) illustrate the tweakey and equivalent tweakey relations of SKINNY-64-192
(resp. SKINNY-128-384).
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Table 12. SKINNY-64-192 tweakey relations for round i = 15, 16, · · · , 21 (Lh
1 = Ph

T , L
h
2 = (LFSR◦PT )

h).

Round i = 15, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l])⊕ L8
2(TK3[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l])⊕ L8
2(TK3[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{1, 2, 3}

TK1[l][1]⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{0, 2}

TK1[l][2]⊕ TK2[l]{0, 2}
⊕TK3[l]{1, 3}

TK1[l][3]⊕ TK2[l]{1, 3}
⊕TK3[l]{0, 2, 3}

Round i = 17, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l])⊕ L9
2(TK3[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l])⊕ L9
2(TK3[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{0, 2}

TK1[l][1]⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{1, 3}

TK1[l][2]⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][3]⊕ TK2[l]{0, 2}
⊕TK3[l]{0, 1}

Round i = 19, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l])⊕ L10
2 (TK3[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

and Round i = 20, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l])⊕ L10
2 (TK3[l]), l = 7, 3, 1, 6, 0, 4, 2, 5

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 1, 3}
⊕TK3[l]{1, 3}

TK1[l][1]⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][2]⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{0, 1}

TK1[l][3]⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{1, 2}

Round i = 21, TKi[j, j = 0 : 7] =L11
1 (TK1[l])⊕ L11

2 (TK2[l])⊕ L11
2 (TK3[l]), l = 11, 13, 15, 12, 9, 10, 8, 14

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][1]⊕ TK2[l]{0, 1, 3}
⊕TK3[l]{0, 1}

TK1[l][2]⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{1, 2}

TK1[l][3]⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{2, 3}

Table 13. SKINNY-64-192 equivlant tweakey relations for round i = 1, 2 (Lh
1 = Ph

T , L
h
2 = (LFSR◦PT )

h).

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l]⊕ TK2[l]⊕ TK3[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l][0]
⊕TK3[l][0]

TK1[l][1]⊕ TK2[l][1]
⊕TK3[l][1]

TK1[l][2]⊕ TK2[l][2]
⊕TK3[l][2]

TK1[l][3]⊕ TK2[l][3]
⊕TK3[l][3]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l])⊕ L2(TK2[l])⊕ L2(TK3[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,
11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l]{2, 3}
⊕TK3[l]{1}

TK1[l][1]⊕ TK2[l][0]
⊕TK3[l]{2}

TK1[l][2]⊕ TK2[l][1]
⊕TK3[l]{3}

TK1[l][3]⊕ TK2[l][2]
⊕TK3[l]{0, 3}
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Table 14. SKINNY-128-384 tweakey relations for round i = 15, 16, · · · , 21 (Lh
1 = Ph

T , L
h
2 = (LFSR◦PT )

h).

Round i = 15, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l])⊕ L8
2(TK3[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8
1(TK1[l])⊕ L8

2(TK2[l])⊕ L8
2(TK3[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 6}

TK1[l][1]⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 7}

TK1[l][2]⊕ TK2[l]{0, 2}
TK3[l]{0, 2, 6}

TK1[l][3]⊕ TK2[l]{1, 3}
TK3[l]{1, 3, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{2, 4}
TK3[l]{0, 2, 4, 6}

TK1[l][5]⊕ TK2[l]{3, 5}
TK3[l]{1, 3, 5, 7}

TK1[l][6]⊕ TK2[l]{4, 6}
TK3[l]{0, 2, 4}

TK1[l][7]⊕ TK2[l]{5, 7}
TK3[l]{1, 3, 5}

Round i = 17, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l])⊕ L9
2(TK3[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9
1(TK1[l])⊕ L9

2(TK2[l])⊕ L9
2(TK3[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{3, 7}
TK3[l]{1, 7}

TK1[l][1]⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 2, 6}

TK1[l][2]⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 3, 7}

TK1[l][3]⊕ TK2[l]{0, 2}
TK3[l]{0, 2, 4, 6}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{1, 3}
TK3[l]{1, 3, 5, 7}

TK1[l][5]⊕ TK2[l]{2, 4}
TK3[l]{0, 2, 4}

TK1[l][6]⊕ TK2[l]{3, 5}
TK3[l]{1, 3, 5}

TK1[l][7]⊕ TK2[l]{4, 6}
TK3[l]{2, 4, 6}

Round i = 19, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l])⊕ L10
2 (TK3[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

and Round i = 20, TKi[j, j = 0 : 7] =L10
1 (TK1[l])⊕ L10

2 (TK2[l])⊕ L10
2 (TK3[l]), l = 7, 3, 1, 6, 0, 4, 2, 5

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{2, 6}
TK3[l]{0, 2, 6}

TK1[l][1]⊕ TK2[l]{3, 7}
TK3[l]{1, 3, 7}

TK1[l][2]⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 2, 4, 6}

TK1[l][3]⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 3, 5, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{0, 2}
TK3[l]{0, 2, 4}

TK1[l][5]⊕ TK2[l]{1, 3}
TK3[l]{1, 3, 5}

TK1[l][6]⊕ TK2[l]{2, 4}
TK3[l]{2, 4, 6}

TK1[l][7]⊕ TK2[l]{3, 5}
TK3[l]{3, 5, 7}

Round i = 21, TKi[j, j = 0 : 7] =L11
1 (TK1[l])⊕ L11

2 (TK2[l])⊕ L11
2 (TK3[l]), l = 11, 13, 15, 12, 9, 10, 8, 14

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0]⊕ TK2[l]{1, 5}
TK3[l]{1, 3, 7}

TK1[l][1]⊕ TK2[l]{2, 6}
TK3[l]{0, 2, 4, 6}

TK1[l][2]⊕ TK2[l]{3, 7}
TK3[l]{1, 3, 5, 7}

TK1[l][3]⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 2, 4}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4]⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 3, 5}

TK1[l][5]⊕ TK2[l]{0, 2}
TK3[l]{2, 4, 6}

TK1[l][6]⊕ TK2[l]{1, 3}
TK3[l]{3, 5, 7}

TK1[l][7]⊕ TK2[l]{2, 4}
TK3[l]{0, 4}
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Table 15. SKINNY-128-384 equivlant tweakey relations for round i = 1, 2 (Lh
1 = Ph

T , L
h
2 = (LFSR◦PT )

h).

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l]⊕ TK2[l]⊕ TK3[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l][0]
⊕TK3[l][0]

TK1[l][1]⊕ TK2[l][1]
⊕TK3[l][1]

TK1[l][2]⊕ TK2[l][2]
⊕TK3[l][2]

TK1[l][3]⊕ TK2[l][3]
⊕TK3[l][3]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4]⊕ TK2[l][4]
⊕TK3[l][4]

TK1[l][5]⊕ TK2[l][5]
⊕TK3[l][5]

TK1[l][6]⊕ TK2[l][6]
⊕TK3[l][6]

TK1[l][7]⊕ TK2[l][7]
⊕TK3[l][7]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l])⊕ L2(TK2[l])⊕ L2(TK3[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,
11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0]⊕ TK2[l]{5, 7}
⊕TK3[l][1]

TK1[l][1]⊕ TK2[l][0]
⊕TK3[l][2]

TK1[l][2]⊕ TK2[l][1]
⊕TK3[l][3]

TK1[l][3]⊕ TK2[l][2]
⊕TK3[l][4]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4]⊕ TK2[l][3]
⊕TK3[l][5]

TK1[l][5]⊕ TK2[l][4]
⊕TK3[l][6]

TK1[l][6]⊕ TK2[l][5]
⊕TK3[l][7]

TK1[l][7]⊕ TK2[l][6]
⊕TK3[l]{0, 6}
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Fig. 4. Impossible differential attack on 20-round SKINNY-n-2n
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