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Abstract. While the smart grid has the potential to have a positive
impact on the sustainability and e�ciency of the electricity market, it
also poses some serious challenges with respect to the privacy of the con-
sumer. One of the traditional use-cases of this privacy sensitive data is
the usage for forecast prediction. The well-studied approaches to alle-
viate the privacy concerns for smart billing do not apply to this more
complicated and computationally intensive setting.
In this paper we show how to compute the forecast prediction such that
the supplier does not learn any individual consumer usage information.
This is achieved by using the Fan-Vercauteren somewhat homomorphic
encryption scheme. Typical prediction algorithms are based on arti�cial
neural networks that require the computation of an activation function
which is complicated to compute homomorphically. Instead of ignoring
this requirement, as was done in previous work, we investigate a di�erent
approach and show that Ivakhnenko's group method of data handling is
suitable for homomorphic computation.
Our results show this approach is practical: prediction for a small apart-
ment complex of 10 households can be computed homomorphically in less
than four seconds using a parallel implementation or in 90 seconds using
a sequential implementation. Expressed in terms of the mean average
percentage error (MAPE), the prediction accuracy is about 21%.

1 Introduction

One of the promising solutions to cope with current and future challenges of
electricity supply is the smart grid. With the prospect of having a positive impact
on the sustainability, reliability, �exibility, and e�ciency many countries around
the world (especially the USA and inside the EU) are investing signi�cantly

This work was supported by the European Commission through the ICT programme
under contract H2020-ICT-2014-1 644209 HEAT.



in such smart grid solutions. The deployment of smart meters is already well
underway. For example, in the United Kingdom the large energy suppliers were
operating over 400, 000 smart gas and electricity meters, representing 0.9 percent
of all the domestic meters operated by the large suppliers in 2014 [9]. This
development is expected to continue and intensify: the EU third energy package
has as an objective to replace at least 80 percent of electricity meters with smart
meters by 2020 [15]. This change will fundamentally re-engineer the (electricity)
service industry.

The replacement of the classical meters with their smart variants has advan-
tages for both the consumer and industry. Some of the key bene�ts include giving
consumers the information to gain control over their energy consumption, low-
ering the cost for managing the supply of energy across industry, and producing
detailed consumption information data from these smart meters which in turn
enable a wide range of services [9]. It is expected that the meters have an update
rate of every 15 minutes at least [14]. When generating such a large amount of
consumer data a lot of privacy sensitive information is being disclosed. There
are various initiatives (e.g. [32,37]) which stress and outline the importance of
having solutions for the smart grid where privacy protecting mechanisms are
already built-in by design.

This work is concerned with enhancing the privacy of the smart meter read-
ings in the setting of forecast prediction: energy suppliers need to forecast in
order to buy energy generation contracts that cover their clients. Moreover, to
ensure network capacity the network operators require longer term forecast-
ing [23,37,10]. This forecasting is typically done by taking as input the (ag-
gregated) data from a number of households. Based on this consumption data,
together with other variables such as the date and the current temperature and
weather, a forecast is computed to predict the short, medium, or long term con-
sumption. The energy providers or network operators only need to know the
desired forecast information based on their (potentially proprietary) forecasting
algorithm and model. There is no need to observe the individual consumer data.

We investigate the potential of fully homomorphic encryption (FHE) to real-
ize this goal. The notion of FHE was introduced in the late 1970s [34] and a con-
crete instantiation was found in 2009 by Gentry [19]. FHE allows an untrusted
party to carry out arbitrary computation on encrypted data without learning
anything about the content of this data. Currently, the Fan-Vercauteren (FV)
FHE scheme [16] is regarded as the best choice with respect to security and
practical performance. See Section 4 for a more detailed description of the FV
scheme. Additively homomorphic encryption schemes [31] and other tools have
been proposed to enhance the privacy in the setting of computing detailed billing
in the context of the smart grid [33,30,18,26,13,24]. However, these approaches
cannot be directly used in the setting of prediction algorithms since these more
complex algorithms need to compute both additions and multiplications, hence
the need for FHE.

One popular class of algorithms which are used for prediction are based on
arti�cial neural networks. One of the main ingredients in these forecasting algo-
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rithms is the computation of the so-called activation function, in practice it is
common to use a sigmoid function where the logistic function t 7→ 1/(1 + e−t)
is a popular choice. However, computing such a sigmoid function homomor-
phically is far from practical. One possible way to proceed is to simply ignore
the sigmoidality requirement and to proceed with a truncated Taylor series ap-
proximating this function or, more generally, to use any non-linear polynomial
function which is simple. This was investigated by Livni et al. [27] regardless of
cryptographic applications. Recent work by Xie et al. [39] and Dowlin et al. [12]
suggests to apply the same approach to homomorphically encrypted data. They
called the resulting neural networks `crypto-nets'.

However, by computing arti�cial neural networks in this fashion it becomes
just an organized manner of �tting a polynomial through the given data set.
In this paper we investigate an older tool for realizing this goal. Namely, we
show that Ivakhnenko's group method of data handling (GMDH) which was
proposed back in 1970 [22] is a perfect match for being computed homomor-
phically. Moreover, a recent comparison analysis between di�erent forecasting
methods [36] showed that GMDH produced signi�cantly more accurate results
compared to the other methods considered.

We show that GMDH can be implemented homomorphically using the re-
cent �xed point approach from [11,6]. Using a �ve-layered network (one input
layer, three hidden layers and an output node) we are able to homomorphically
predict the next half-hour energy consumption for an apartment complex of 10
households. Our software implementation results indicate that this requires less
than four seconds using a parallel implementation or less than 90 seconds using
a sequential implementation while the prediction accuracy expressed using the
mean absolute percentage error (MAPE, see Section 3 for a de�nition) is only
21 percent. This shows that privacy preserving forecasting using homomorphic
encryption is indeed practical.

2 The Smart Grid and Privacy Concerns

The authors of [35] de�ne the smart grid as �an electricity network that can
cost e�ciently integrate the behavior and actions of all users connected to it �
generators, consumers and those that do both � in order to ensure economically
e�cient, sustainable power system with low losses and high levels of quality and
security of supply and safety�. This paper is concerned with the cryptographic
solutions to privacy concerns within the smart grid. Within this scope we assume
that the meters are protected against various types of side-channel attacks such
that no secret data can be retrieved from the device when it is operating (e.g. key
extraction). Moreover, we assume that the smart metering device acts honestly in
accordance with the implementation or protocol given to it. These assumptions
avoid the usual security threats and leave us with the privacy related concerns
which we aim to address.

In the early 1990s, Hart showed a non-intrusive approach where by monitor-
ing the electric load one can observe the individual appliances turning on and
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o� [20]. Hence, detailed smart meter readings, which are expected to be gener-
ated at least every 15 minutes in the context of the smart grid (cf. [14]), can be
used to derive various privacy sensitive information about a house-hold or even
an apartment complex.

In order to grasp where the main privacy challenges are in smart metering
it is good to understand how and when the meter readings are used in practice
by the various parties involved. As identi�ed by the survey paper [23], which
in turn has collected this information from the privacy impact assessment by
NIST [37] and the enumeration of data uses by the consultation of the British
Department of Energy and Climate Change [10], the key usages of smart meter
readings include the usage for load monitoring and forecasting and smart billing.

There has been a signi�cant amount of work related to privacy-preserving
smart billing solutions for the smart grid. One line of research allows complex
non-linear tari� policies where the bill is computed and sent along with a zero-
knowledge proof to ensure that the computations are correct [33,30]. Another
approach is based on privacy-friendly aggregation schemes (e.g. using additively
homomorphic encryption schemes such as the Paillier scheme [31]) where one
can compute a function on the ciphertexts which corresponds to adding the
plaintexts [18,26,13,24]. Such approaches heavily rely on the fact that only ag-
gregation of the results is required. As soon as more complex operations need
to be computed (such as a large number of multiplications) one has to look for
other solutions.

One example where more complex operations are performed is in the setting
of load monitoring and forecasting. There are many di�erent forecasting ap-
proaches (see e.g. the survey paper [21] on this topic and the references therein).
One of the popular and well-studied techniques is using arti�cial neural networks
(see e.g. [1,17]). In the next section we describe how such neural networks op-
erate, analyze the challenges they pose when being evaluated in the encrypted
domain, and discuss how this naturally leads to considering the group method
of data handling as an alternative forecasting tool.

3 Neural Networks versus The Group Method of Data

Handling

Over time, arti�cial neural networks (ANNs) have manifested themselves among
the most popular and reliable prediction tools for various purposes, including
load forecasting. For our preliminary discussion, it su�ces to think of an ANN as
a real-valued function f : Rn0 → R that arises as the composition of a number
of `neurons' νij : Rni−1 → R, organized in layers i = 1, . . . , r, as depicted in
Figure 1. Each neuron is of the form

νij : R
ni−1 → R : (x1, x2, . . . , xni−1) 7→ g

(
ni−1∑
k=1

wijkxk − bij

)
for weights and biases wijk, bij ∈ R and some �xed sigmoidal activation function
g : R → R, such as the logistic function t 7→ 1/(1 + e−t). The global shape of
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Fig. 1. Design of an Arti�cial Neural Network (ANN).

the network is decided in advance, and the goal is to determine the weights
wijk and the biases bij such that f approximates an unknown target function

f̃ : Rn0 → R, in our case load prediction, as well as possible. This is done during
a so-called supervised learning phase. One starts from a reasonable guess, after
which the network's performance is assessed by feeding to it a number of input-
output pairs of f̃ , taken from a given data set, and measuring the error. During
a process called backpropagation, which is based on the chain rule for derivation,
the weights and biases are then modi�ed repeatedly, in the hope of converging
to values that minimize the error.

The backpropagation method requires the activation function g to have a nice
and easy derivative, while at the same time it should be sigmoidal, i.e. its graph
should have the typical step-like activation shape, allowing the ANNs to do what
they were designed for: to simulate computation in (an area of) the human brain.
Unfortunately, the class of such functions does not contain examples that are
easy to evaluate homomorphically. A natural attempt would be to use a Taylor
approximation to the logistic function or to one of its known alternatives, but
such approximations become highly non-sigmoidal away from the origin.

One way out is simply to ignore the sigmoidality requirement and to proceed
with this truncated Taylor series, or more generally to replace g by any simple
non-linear polynomial function, the easiest choice being t 7→ t2. This has been
investigated by Livni et al. [27] for reasons of computational e�ciency, regardless
of cryptographic applications. Recent work by Xie et al. [39] and Dowlin et al. [12]
suggested to apply the same approach to homomorphically encrypted data. The
resulting neural networks were named `crypto-nets'.

However in this way the ANN just becomes an organized way of �tting a
polynomial through the given data set. There exist older and simpler predic-
tion tools that do this. In this paper we study one of the oldest such tools,
namely Ivakhnenko's group method of data handling (GMDH) from 1970 [22].
Besides being suited for applications using homomorphic encryption, one partic-
ular feature is that its performance in the context of load forecasting enjoys a
large amount of existing literature, at times even with results that are superior
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Fig. 2. Network-like illustration of the Group Method of Data Handling.

to ANNs. Indeed, a comparison analysis between di�erent forecasting methods
from 2008 [36] showed that GMDH produced signi�cantly more accurate results
compared to the other methods considered.

The basic version of GMDH works as follows, although many variations are
possible (and seem to deserve a further analysis). The goal is to approximate
our target function f̃ : Rn0 → R with a truncated Wiener series

a0 +

n0∑
i=1

aixi +

n0∑
i=1

n0∑
j=i

aijxixj +

n0∑
i=1

n0∑
j=i

n0∑
k=j

aijkxixjxk + . . . ,

which is also called a Kolmogorov-Gabor polynomial. The idea is to approach
this by a �nite superposition of quadratic polynomials

νij : R
2 → R : (x, y) 7→ bij0 + bij1x+ bij2y + bij3xy + bij4x

2 + bij5y
2

along a diagram of the kind depicted in Figure 2. One can think of this as some
sort of ANN, and indeed the diagram is sometimes called a `polynomial neural
network'. As a �rst main di�erence, however, note that the wiring is incomplete:
each neuron has two inputs only.

Also the learning phase is quite di�erent from the one in conventional ANNs.
Here the goal is to determine the coe�cients bijk of the quadratic polynomials
νij , but also the concrete structure of the network, which is not �xed in advance.
Indeed, one decides beforehand on the number of layers r and the number of
neurons ni in each layer, but the wiring between these is de�ned during the
learning process. Recall that each node can have only two inputs, so the following
constraint should be satis�ed:

ni ≤
(
ni−1
2

)
.

In order to prevent exponential growth of the number of neurons, the left hand
side will in general be much smaller than the right hand side. As to which
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combinations end up being chosen, one �rst considers all possible combinations
and then removes the (

ni−1
2

)
− ni

worst neurons with respect to their error performance, in the sense explained
below, while at the same time determining the coe�cients bijk of the surviving
neurons. One then proceeds with the next layer. In particular, there is no back-
propagation. The node with the smallest error performance will be assigned as
an output for the whole network; this may in fact be di�erent from what was
initially foreseen to become the output neuron. One sometimes applies the rule
that if at some point all nodes in layer i perform worse than the best performing
node in layer i− 1, then the algorithm stops, and the latter node is assigned as
the output.

To assess the error performance of a neuron, while at the same time deter-
mining the coe�cients of the corresponding quadratic polynomial, one uses a
given data set of correct input-output pairs for f̃ . Additionally, an error (or loss)
function should be set up beforehand. Throughout this paper we use the Mean
Squared Error (MSE) function

MSE((yforecast1 , . . . , yforecastn ), (yactual1 , . . . , yactualn )) =
1

n

n∑
i=1

(yforecasti − yactuali )2,

but there are a couple of other standard choices, such as the Mean Absolute
Error (MAE) and the Mean Absolute Percentage Error (MAPE):

1

n

n∑
i=1

∣∣yforecasti − yactuali

∣∣ resp.
100

n

n∑
i=1

∣∣∣∣yforecasti − yactuali

yactuali

∣∣∣∣ .
For each neuron νij the data set is randomly split into a learning set and a test
set. This is done to avoid over�tting, where the network learns too much about
the inherent noise always being present in real-world data. The learning set is
used to determine the coe�cients bijk, by choosing them such that the error is
as small as possible. In the case of MSE this can be achieved by linearization of
the quadratic polynomial and applying the least squares method. The test set is
then used to assess the performance of the neuron.

4 The Fan-Vercauteren SHE scheme

In this section we brie�y describe a simpli�ed version of the FV scheme [16],
which we will present in its somewhat homomorphic encryption (SHE) form,
meaning that it is suitable only for computations up to a given depth, thereby
avoiding very expensive bootstrapping operations. It concerns a scale-invariant
SHE scheme based on the hardness of the ring version of the learning with errors
problem (RLWE) [28]. It works in the polynomial ring R = Z[X]/(f(X)) with
f(X) = Xd + 1 and d = 2n. For an integer N we denote with RN the reduction
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of R modulo N . Abusing notation, elements of R will often be identi�ed with
their unique representant in Z[X] of degree at most d−1, and similarly elements
of RN are identi�ed with their unique representant inside{

αd−1X
d−1 + αd−2X

d−2 + . . .+ α0

∣∣ αi ∈ (−N/2, N/2] for all i
}
,

but this should cause no confusion. For an element a ∈ R or a ∈ Z[X] we write
[a]N do denote its reduction inside the above set of representants.

The plaintext space in the FV scheme is given by the ring Rt for some small
integer modulus t > 1, while a ciphertext is given by a pair of ring elements in
Rq where q > 1 is a much larger modulus.

The key generation and the encryption operations in the FV scheme require
sampling from two probability distributions de�ned on R, denoted χkey and
χerr. The security of the scheme is determined by the degree d of f , the size of q,
and by the probability distributions. Typically χkey and χerr are coe�cient-wise
discrete Gaussian distributions centered around 0 and having a small standard
deviation, but in practice one often samples the coe�cients of the key from a
uniform distribution on a narrow set like {−1, 0, 1}.

The RLWE distribution on Rq × Rq is constructed as follows: �rst choose
a �xed element s ← χkey, and then generate samples of the form (a, b) with
a← Rq uniformly random and b = [−(as+ e)]q with e← χerr. (The minus sign
is not standard but makes a better �t with the discussion below.) The decision
RLWE problem is then to distinguish between the RLWE distribution and the
uniform distribution on Rq×Rq. The search RLWE problem is to retrieve s from
polynomially many samples. Both problems are believed to be very hard for an
appropriate choice of parameters.

By construction, for a RLWE sample (a, b) we have that e = −[as + b]q
and therefore that the right-hand side has small coe�cients, with overwhelm-
ing probability. Furthermore note that the sample can be easily re-randomized
without knowledge of s as follows: choose u← χkey and e1, e2 ← χerr and form
the new sample as (ua+ e1, ub+ e2). In the encryption scheme below, the public
key will consist of a single RLWE sample, which will be re-randomized during
encryption. The new RLWE sample will then be used as an additive mask to
encrypt a message m ∈ Rt. Before we present the FV scheme, we �rst describe
some subroutines that are required in the algorithm:

� WordDecompw,q(a): This function is used to decompose a ring element a ∈ Rq
in base w by splicing each coe�cient of a. For u = blogw(q)c, it returns ai ∈ R
with coe�cients in (−w/2, w/2], such that a =

∑u
i=0 aiw

i.
� PowersOfw,q(a): This function scales an element a ∈ Rq by the di�erent

powers of w. It is de�ned as PowersOfw,q(a) = (awi)ui=0.

These two functions can be used to perform a polynomial multiplication in Rq
through an inner product:

〈WordDecompw,q(a), PowersOfw,q(b)〉 = a · b .

This expression has advantage in reducing the noise during homomorphic mul-
tiplications, as the �rst vector contains small elements only.
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The FV scheme consists of an encryption scheme augmented with additional
functions Add, Mult, and ReLin to compute homomorphically on encrypted data.

1. ParamsGen(λ): For a given security parameter λ, choose a degree d = 2n and
thus a polynomial f(X) = Xd + 1, moduli q and t and distributions χerr
and χkey. Also choose the base w for WordDecompw,q(·). Return the system
parameters (d, q, t, χerr, χkey, w).

2. KeyGen(d, q, t, χerr, χkey, w): Sample the secret key s← χkey, sample a← Rq
uniformly at random, and sample e← χerr. Compute b = [−(as+ e)]q. The
public key is the pair pk = (b, a) and the secret key is sk = s. The scheme
uses another key rlk called relinearization key in the function ReLin below.
De�ne ` = u + 1 = blogw(q)c + 1, sample a vector a ← R`q uniformly at

random, sample e← χ`err, and let

rlk = ([PowersOfw,q(s
2)− (e+ a · s)]q,a) ∈ R`q ×R`q .

3. Encrypt(pk,m): First encode the input message m ∈ Rt into a polynomial
∆m ∈ Rq with ∆ = bq/tc. Next sample the error polynomials e1, e2 ← χerr,
sample u← χkey, and compute the two polynomials c0 = ∆m+bu+e1 ∈ Rq
and c1 = au+e2 ∈ Rq. The ciphertext is the pair of polynomials c = (c0, c1).

4. Decrypt(sk, c): First compute the polynomial m̃ = [c0 + sc1]q. Then recover
the plaintext message m by a decoding the coe�cients of m̃ by scaling down
by ∆ and rounding.

5. Add(c1, c2): For two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), return
c = (c1,0 + c2,0, c1,1 + c2,1) ∈ Rq ×Rq.

6. Mult(c1, c2, rlk): Compute c̃mult = (c0, c1, c2) where c0 = b tq ·c1,0 ·c2,0e, c1 =

b tq · (c1,0 · c2,1+ c1,1 · c2,0)e, and c2 = b tq · c1,1 · c2,1e and apply relinearization.

7. ReLin(c̃mult, rlk): Write rlk = (b,a) and c̃mult = (c0, c1, c2), then compute
a relinearized ciphertext as c′ = (c′0, c

′
1) as

([c0 + 〈WordDecompw,q(c2),b〉]q, [c1 + 〈WordDecompw,q(c2),a〉]q) .

Given an FV ciphertext c = (c0, c1), we can write [c0+c1s]q = ∆m+e, where
e is called the noise inside the ciphertext. It is clear that when the noise gets
too large, in particular if ‖e‖∞ > (∆ − t)/2, correct decryption will fail. Here
‖·‖∞ denotes the maximal absolute value of the coe�cients. Every operation on
ciphertexts causes the noise to increase, and in particular, multiplication of two
ciphertexts c1 and c2 results in a ciphertext c whose noise is a constant factor
(depending on the parameters of the scheme) larger than the maximum of the
noises of c1 and c2. Products of multiple ciphertexts should be evaluated by using
a binary tree to balance the noise growth in the intermediate ciphertexts. The
noise in the ciphertext resulting from computing such a product tree consisting
of L levels can be bounded [25] by ‖e‖∞ < CL1 V + LCL−11 C2, where V =
Berr(1 + 2dBkey) is a bound on the noise in the input ciphertexts and

C1 = (1 + ε)d2tBkey, C2 = d2Bkey(Bkey + t2) + d · l ·wBerr, ε = 4(dBkey)
−1 .
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Here Berr resp. Bkey is a bound on the absolute values of the coe�cients of
the samples from χerr resp. χkey. Assuming that the coe�cients of the key are
sampled uniformly from {−1, 0, 1}, we can set Bkey = 1. Furthermore, Berr can
be set to 6σ for a discrete Gaussian distribution with standard deviation σ, since
this will bound the error coe�cients with overwhelming probability.

The parameters of the FV scheme are not only determined by the required
multiplicative depth as above, but also by the security requirements. It is easy
to see that when d and σ/q grow, amounting to larger polynomials and more
noise in the ciphertexts, then RLWE becomes harder. A precise security analysis
is beyond the scope of this paper, but to derive our security estimates we closely
follow the work by Albrecht, Player and Scott [3] and the open source LWE-
estimator implemented by Albrecht [2]. In particular, the LWE-estimator allows
one to estimate the concrete hardness of the LWE problem given the dimension
d, the modulus q and the standard deviation σ. Note that the actual tool takes
as input the parameter α =

√
2πσ/q, instead of σ directly.

For a level 4 tree and a security level of 96 bits, we can combine both re-
strictions described above and obtain the parameter set d = 4096, q ' 2154

and σ = 102 (corresponding to α = 256/q), which will be used throughout the
remainder of the paper. In particular, this implies that one ciphertext takes up
154kB space.

5 Representing �xed-point numbers in plaintext space

Our �nal goal is to evaluate a trained GMDH network in the encrypted domain
using the FV scheme. As explained in the previous section, the plaintext space
is of the form Rt, which is the reduction modulo a certain integer t > 1 of

R = Z[X]/(Xd + 1),

where d = 2n for some n ∈ Z>0. Therefore an important task is to encode the
input values x1, x2, . . . , xn0

∈ R, as well as the coe�cients bijk ∈ R, as elements
of Rt. This should be done in such a way that real additions and multiplications
agree with the corresponding operations in the ring Rt, up to a certain depth of
computation. Dowlin et al. [11] proposed two ways of addressing this issue, which
were revisited in a recent paper by Costache et al. [6], who showed them to be
essentially equivalent, and also provided lower bounds on t and d guaranteeing
that the arithmetic in R is indeed compatible with that in Rt to the extent
desired. We brie�y recall their main conclusions, adapted to our setting.

On the real number side, we use �xed-point arithmetic. We assume that
the xi's and the bijk's are given in balanced ternary expansion to some �nite
precision, that is, they are of the form

b`1−1b`1−2 . . . b0 . b−1b−2 . . . b−`2 (1)

with bi ∈ {−1, 0, 1} for i = −`2, . . . , `1 − 1. This should be read as

b`1−13
`1−1 + b`1−23

`1−2 + . . .+ b03
0 + b−13

−1 + b−23
−2 + . . .+ b−`23

−`2 .
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As usual we say that (1) has `1 integral digits and `2 fractional digits; throughout
we assume that `1 ≥ 1 and `2 ≥ 0. In order to encode (1) as an element of Rt
one simply replaces the base 3 by X. This yields

b`1−1X
`1−1+b`1−2X

`1−2+ . . .+b0X
0+b−1X

−1+b−2X
−2+ . . .+b−`2X

−`2 , (2)

which one can rewrite as

b`1−1X
`1−1+ b`1−2X

`1−2+ . . .+ b0X
0+ b−1X

d−1+ b−2X
d−2+ . . .+ b−`2X

d−`2 ,

using the relation Xd ≡ −1.
To decode a given element of Rt one �rst considers its unique representant

inside {
αd−1X

d−1 + αd−2X
d−2 + . . .+ α0

∣∣ αi ∈ (−t/2, t/2] for all i
}
,

after which one replaces all suitably high powersXi by −Xi−d, and one evaluates
the resulting Laurent polynomial at 3. The outcome is a rational number whose
denominator is a power of 3, so it can be easily rewritten in balanced ternary
expansion. For simplicity we think of `suitably high' as i > d/2, although to
improve the bound on d in Lemma 1 below, a more careful (but easy) estimation
should be made, that takes into account the lengths of the integral and fractional
parts of the �xed-point numbers involved.

Clearly, the ring operations in Rt are compatible with �xed-point arithmetic
on the real number side as long as they do not involve `wrapping around' modulo
t and/or modulo Xd + 1. (In the latter case this means that neither the terms
of high degree nor the terms of low degree are allowed to cross the separation
point Xd/2.) Thus t and d should be taken large enough to ensure this, for
which Costache et al. elaborated concrete lower bounds. We will not explicitly
rely on these bounds, but rather apply the underlying ideas to obtain a more
implicit statement. For all integers ` ≥ 0, λ ≥ 0, r ≥ −1 we de�ne d`,λ,r :=
2r+1` + (2r+1 − 1)λ. Moreover for all `1 ≥ 1, λ1 ≥ 1, `2 ≥ 0, λ2 ≥ 0, r ≥ −1 we
introduce a polynomial D`1,λ1,`2,λ2,r(X) ∈ Z[X], which is recursively de�ned by
putting

D`1,λ1,`2,λ2,−1(X) = 1 +X +X2 + . . .+X`1+`2−1

and for r ≥ 0 letting D`1,λ1,`2,λ2,r(X) be

X2d`2,λ2,r−1 + 2Xd`2,λ2,r−1D`1,λ1,`2,λ2,r−1(X) + 3D`1,λ1,`2,λ2,r−1(X)2

multiplied with
1 +X +X2 + . . .+Xλ1+λ2−1.

We then de�ne
c`1,λ1,`2,λ2,r = ‖D`,λ,r(X)‖∞

where as before ‖·‖∞ denotes the maximal absolute value of the coe�cients.
Note that degD`,λ,r(X) = d`1+`2−1,λ1+λ2−1,r. This all looks a bit cumbersome
but the idea underlying these de�nitions should become apparent from the proof
below.
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Lemma 1. Suppose that the input values x1, x2, . . . , xn0
resp. the coe�cients

bijk are given by balanced ternary expansions of at most `1 resp. λ1 integral
digits and `2 resp. λ2 fractional digits. Let xout be the evaluation of our GMDH
network at the xi's, obtained by using �xed-point arithmetic. Let φ(X) ∈ Rt
be the evaluation of our GMDH network at the encodings of the xi's (using
the encodings of the bijk's as coe�cients), obtained by using the respective ring
operations in Rt. If

t ≥ 2 · c`1,λ1,`2,λ2,r and d ≥ 2 ·max{d`1+`2−1,λ1+λ2−1,r, d`2,λ2,r + 1}

then φ(X) decodes to xout.

Proof. Consider the evaluation of our GMDH network when carried out in
Z[X,X−1], using encodings of the form (2). We claim that the outcome is of
the form

X−mg(X)

with m ≤ d`2,λ2,r and g(X) ∈ Z[X] of degree at most d`1+`2−1,λ1+λ2−1,r and
having coe�cients bounded (in absolute value) by c`1,λ1,`2,λ2,r. This claim clearly
implies the lemma.

The key observation is that if one replaces all inputs by

X−`2 +X−`2+1 +X−`2+2 + . . .+X`1−1

while replacing all encoded bijk's by

X−λ2 +X−λ2+1 +X−λ2+2 + . . .+Xλ1−1

then these quantities can only increase, by the triangle inequality for the absolute
value. By induction on r, it is easy to show that the corresponding evaluation is
precisely

X−d`2,λ2,r ·D`1,λ1,`2,λ2,r(X),

from which the claim follows. �

These bounds are easy to compute in practice, using a computer algebra
package. For example with `1 = 8, `2 = 1, λ1 = 1, λ2 = 8 and r = 3, along the
Magma script below we obtain the bounds

t ≥ 550631418217151633145512879466722892 < 2119 and d ≥ 496. (3)

This concrete choice of parameters will reoccur later in the paper.

ell1 := 8; lambda1 := 1; ell2 := 1; lambda2 := 8; r := 3;

R<X> := PolynomialRing(Integers());

D := &+[X^i : i in [0..ell1 + ell2 - 1]];

beta := &+[X^i : i in [0..lambda1 + lambda2 - 1]];

depth := -1;

repeat
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depth +:= 1;

d := 2^depth*ell2 + (2^depth-1)*lambda2;

D := beta*(X^(2*d) + 2*X^d*D + 3*D^2);

until depth eq r;

print "Bound on t is", 2*Maximum(Coefficients(D));

print "Bound on d is", 2*Maximum(Degree(D), 2*d + lambda2 + 1);

One sees that the obtained bound on t is rather large, and in fact this is
problematic for a direct application of the FV scheme. To address this issue
we follow an idea mentioned in [4, �5.5], namely to decompose the plaintext
space using the Chinese Remainder Theorem (CRT). That is, if one lets t be
a large enough product of small prime numbers t1, t2, . . . , tm then we have the
well-known ring isomorphism

Rt → Rt1 ×Rt2 × . . .×Rtm : g(X) 7→ (g(X) mod t1, . . . , g(X) mod tm).

Instead of evaluating our GMDH network directly in Rt, we can work in each of
the Rti 's separately, simply by reducing things modulo ti. The outcomes can then
be combined very e�ciently in order to end up in Rt again. As a consequence
it su�ces to carry out the FV scheme using the much smaller plaintext spaces
Rti , although one needs to do it for each i separately. For the above example,
the 25 primes up to 97 multiply together to

t = 2305567963945518424753102147331756070 ≈ 2121,

which indeed satis�es the bound from (3). Thus it su�ces to work with R2, R3,
. . . , R97.

As mentioned, the bound on d can be improved by using a more careful
decoding method and corresponding analysis. But since we need a much larger
value of d anyway for security reasons, we did not put e�ort in this.

6 Prediction Approach for the Smart Grid

6.1 Prediction Model: Apartment Complexes

It is known that it is intrinsically di�cult to make accurate short-term predic-
tions based on data from one household when using an arti�cial neural net-
work [38], and the same volatile behaviour is to be expected when following
a GMDH approach. In order to con�rm this we designed and trained for each
value of n = 1, . . . , 100 a GMDH network that predicts the energy consumption
during the next half hour for n aggregated households. This was done along the
design criteria (and using the data set) described in Section 6.2 below. The ob-
served prediction qualities, expressed in terms of the mean average percentage
error (MAPE), are given in Figure 3. One sees that the results for one household
are particularly bad, showing a MAPE of over 158 percent. However, the results
start to improve signi�cantly when using aggregated measurements of 10 house-
holds: here the MAPE is slightly above 20 percent, while it drops to 7 percent
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Fig. 3. The MAPE when forecasting the power consumption for the next half hour
when using a varying number of aggregated households.

for n = 100. These observations are well in line with the ones for ANNs [38].
Due to this volatile nature we decided to aim for aggregated prediction, albeit
for a low number of households, at a scale where the security issues mentioned
in Section 2 remain at hand. More precisely, we chose n = 10. This use-case
matches small apartment complexes in rural areas and the aggregation could be
performed locally inside the apartment.

The cryptographic setting we have in mind is that these aggregated measure-
ments are homomorphically encrypted and sent to an untrusted third party. This
third party can be seen as just another service user on the smart grid network.
He/she has received the concrete parameters (such as the coe�cients bijk) of
a trained GMDH network from the party who wants to know the consumption
prediction (e.g. the electricity supplier or the network operator). Using both the
encrypted inputs x1, x2, . . . , xn0

and the network parameters the untrusted third
party can compute the encrypted forecast and forward this to the �nal party,
who is able to decrypt using the cryptographic key corresponding to the one
installed in the smart meter.
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6.2 Design of the Network

As explained in Section 3 the exact layout of our GMDH network is determined
during a learning phase, for which we need access to some real smart meter data.
We used the data that was collected through the Irish smart metering electricity
customer behaviour trials [5] which ran in 2009 and 2010 with over 5,000 Irish
homes and businesses participating. The data consists of electricity consumed
during 30 minute intervals (in kW). Per household there are 25, 728 electricity
measurements for a total of 536 days. We use the measurements of the �rst year
as training data and the remaining half year to validate and measure how good
the network is performing.

An important balancing act is to �nd a network layout that minimizes the
number of layers (and therefore the multiplicative depth of the prediction al-
gorithm) while at the same time preserving a reasonable prediction accuracy,
preferably comparable to [38]. Through some trial and error the simplest GMDH
network we found to meet these requirements consists of r = 3 hidden layers with
n1 = 8, n2 = 4 and n3 = 2 nodes, respectively. As input layer a set of n0 = 51
nodes is used, where 48 nodes represent the half hour measurements that were
made during the previous 24 hours. The remaining 3 inputs correspond to the
temperature, the month, and the day of the week. The single output node ν4,1
then returns the predicted electricity consumption for the next half hour.

Let f̃ : R51 → R denote the function that we want to approximate, for which
a set of m input-output pairs

((xi1, xi2, . . . , xin0
), yactuali )i=1,...,m, with yactuali = f̃(xi1, xi2, . . . , xin0

),

is given through the Irish data set. As explained in Section 3 these are used to
inductively determine the coe�cients bijk, while at the same time selecting the
best performing nodes. Assuming that layer i − 1 was dealt with, for node νij
this is done by minimizing the quantity

MSE
(
(fij(x11, . . . , x1n0

), . . . , fij(xm1, . . . , xmn0
)) , (yactual1 , . . . , yactualm )

)
,

where fij : R51 → R denotes the function obtained from the network by tem-
porarily considering νij as an output node. The minimization can be done using
standard linear regression. The useful feature of this approach is that one can
apply L2-regularization and kill two birds with one stone. On the one hand reg-
ularization helps to avoid the over�tting problem, while on the other hand it
allows to control the magnitude of the bijk's. In this way one can achieve that
νij is a quadratic polynomial function with small coe�cients and a reasonable
MSE. We would like to point out that while we use MSE in the learning phase,
the quality of the eventually resulting GMDH network is measured in terms
of MAPE, in order to allow for a meaningful comparison with the forecasting
results reported upon in the scienti�c literature.

6.3 Using Fixed Point Representation

As already indicated in Section 5 another design issue is to decide how many
bits of integer and fractional precision are used when evaluating the network.

15



Table 1. The impact of varying the total number of binary �xed-point digits when
using aggregated results over 10 households. The �rst row shows the average MAPE.
The second row shows the average increase in MSE when compared to the �oating
point setting. (Averages are over 100 randomly selected measurements.)

total prec. 13 14 15 16 17 18 19

MAPE (%) 22.17 21.81 21.57 21.49 21.44 21.43 21.42
MSE increase (%) 9.40 8.26 6.00 4.72 3.06 0.72 0.20

We ran experiments with a classical (i.e. non-encrypted) implementation of the
GMDH algorithm and compared the results between a �xed point version and
a �oating point version. Our �ndings in the setting of 10 aggregated households
are summarized in Table 1 when using the GMDH layout as described in Sec-
tion 6.2. The total number of �xed-point bits starts from 13, as this turns out to
be a minimum needed for evaluation of the prediction algorithm without over-
�ow. The table shows that 13 �xed-point bits is actually enough for our current
purposes, as this already attains basically the same average MAPE as in the
�oating point setting: a further increase of the precision does not give any signif-
icant improvement, although it gradually makes the �xed-point MSE converge
to the �oating-point one.

Now as outlined in Section 5 we carry out �xed-point arithmetic using bal-
anced ternary expansions, rather than binary expansions. But this is not ex-
pected to come at an observable cost: quick experiments suggest that the con-
version accounts for MSE variations of about 7 · 10−5 percent. Of course the
number of digits changes: 13 bits correspond to about 9 balanced ternary digits.
More precisely we use at most 8 integral digits and 1 fractional digit to represent
the input values x1, x2, . . . , xn0

, while the coe�cients bijk are represented using
a balanced ternary representation using 1 integral and 8 fractional digits. In view
of Table 1 we expect that the resulting �xed point MSE values are on average 9
percent larger than the �oating-point MSEs, but this minor error is acceptable
given the uncertainty of the prediction algorithm itself (see Figure 3).

6.4 Benchmark Results

In order to assess the practical performance and verify the correctness of our
selected parameters we implemented the privacy-preserving homomorphic fore-
casting approach as introduced in this paper. Our implementation (which will be
made publicly avaiable soon) uses the FV-NFLlib software library [7] which im-
plements the FV homomorphic encryption scheme which in turn uses the NFLlib
software library (as described in [29] and released at [8]) for computing polyno-
mial arithmetic. Our presented benchmark �gures are obtained when running
the implementation on an average laptop equipped with an Intel Core i5-3427U
CPU (running at 1.80GHz).

Let us recall and summarize the exact forecasting setting and the param-
eters we selected for the implementation. It is our goal to predict the energy
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Table 2. The time (in ms) to compute the various basic (homomorphic) operations
for our selected parameters.

op enc dec key gen add mul scalar mul

ms 2.1 5.8 77 0.1 33 29

consumption for the next half hour of an apartment complex of 10 households
while not revealing any energy consumption information to the party computing
on this data using the GMDH approach as outlined in Section 3. Inherent to this
approach we expect a MAPE which is slightly over 20 percent (see Section 6.1).
In order to work e�ciently with real numbers we use the �xed-point represen-
tation with the parameters as outlined in Section 5, using the CRT approach
for decomposing plaintext space. We use the FV scheme for the homomorphic
computation with the parameters as presented in Section 4. Hence, we target a
security level of 96 bits and use the ring R2154 = Z2154 [X]/(X212 +1) along with
a standard deviation of 102. This means a ciphertext size of 154kB.

We would like to point out that the coe�cients bijk are not being encrypted.
This prevents an additional growth of the multiplicative depth of the algorithm.
When multiplying both parts of a ciphertext by a scalar g ∈ R one gets an
encryption of a scaled plaintext

c′ = (g · c0, g · c1) = (∆mg + bug + e1g, aug + e2g).

An encoding of a polynomial coe�cient contains only 9 ternary bits in our ex-
periments. So multiplication by that scalar increases the noise bits up to a factor
of log2 9. It allows us to stay with the plaintext modulus t chosen in Section 5.
Moreover, this approach neither reveals any information about the encrypted
data that is being processed nor about the corresponding output.

As outlined in Section 6.2 the layout of our network consists of an input
layer of 51 nodes, three hidden layers of 8, 4 and 2 nodes respectively and a
single output node. Each node performs 8 multiplications out of which 5 are
by polynomial coe�cients and 5 additions. Since there are 15 nodes this means
computing 120 multiplications (out of which 75 by polynomial coe�cients) and
75 additions. Table 2 summarizes the performance cost (expressed in millisec-
onds) for the various basic building blocks used in our homomorphic prediction
algorithm. As can be seen from this table, and this is con�rmed by running the
entire forecasting algorithm in practice, the entire computation of the prediction
is just below 4 seconds. However, as explained in Section 5 this process has to
be repeated 25 times for the CRT approach. In practice, the entire forecasting
can be computed in 90 seconds. Due to the embarrassingly parallel nature of
the CRT approach, a parallel implementation can compute this in less than 4
seconds (assuming the 25 computations can be computed in parallel).
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7 Conclusions and Future Work

We have shown that Ivakhnenko's group method of data handling from the
1970s is very suitable for homomorphic computation. This seems to be a better
method with respect to the applicability to implement prediction homomorphi-
cally compared to the related arti�cial neural network based approaches in this
cryptographic setting. We have studied this prediction approach in the setting
of enhancing the privacy of the consumer for forecasting in the smart grid. Our
privacy-preserving implementation of this approach to homomorphically forecast
for 10 households shows is that this can be computed in less than four seconds
for parallel and in 90 seconds for a sequential implementation.

We would like to point out that this approach has applications beyond the
scope of just the smart grid. Other areas which need reliable prediction algo-
rithms but work with privacy sensitive data can directly bene�t as well. Exam-
ples include computing on �nancial data or biometric data.
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