
Estonian Voting Verification Mechanism
Revisited

Köksal Muş1, Mehmet Sabır Kiraz2, Murat Cenk3, and İsa Sertkaya2

1İstanbul Aydın University, 2TÜBİTAK BİLGEM
3Middle East Technical University Turkey

koksalmus@aydin.edu.tr,mehmet.kiraz@tubitak.gov.tr,

mcenk@metu.edu.tr,isa.sertkaya@tubitak.gov.tr

Abstract. After the Estonian Parliamentary Elections held in 2011, an
additional verification mechanism was integrated into the i-voting system
in order to resist corrupted voting devices, including the so called Stu-
dent’s Attack where a student practically showed that the voting system
is indeed not verifiable by developing several versions of malware capable
of blocking or even changing the vote. This mechanism gives voters the
opportunity to verify whether the vote they cast is stored in the cen-
tral system correctly. However, the verification phase ends by displaying
the cast vote in plain form on the verification device. In other words,
the device on which the verification is done learns the voter’s choice. In
this work, our aim is to investigate this verification phase in detail and
to point out that leaking the voter’s choice to the verification applica-
tion may harm the voter privacy. Additionally, when applied in a wide
range, this would even compromise the fairness and the overall secrecy
of the elections. In this respect, we propose an alternative verification
mechanism for the Estonian i-voting system to overcome this vulnera-
bility. Not only is the proposed mechanism secure and resistant against
corrupted verification devices, so does it successfully verify whether the
vote is correctly stored in the system. We also highlight that our pro-
posed mechanism brings only symmetric encryptions and hash functions
on the verification device, thereby mitigating these weaknesses in an
efficient way with a negligible cost. More concretely, it brings only m
additional symmetric key decryptions to the verification device, where
m denoting the number of candidates. Finally, we prove the security of
the proposed verification mechanism and compare the cost complexity
of the proposed method with that of the current mechanism.

Keywords: Internet Voting, Privacy, Verifiability, Trust

1 Introduction

Technology is frequently used in daily routines for governmental or banking
services via the internet using computers or smart devices. Among these services,
internet voting (i-voting) has the potential of increasing election participation,

2 Estonian Voting Verification Mechanism Revisited

allowing voters, especially handicapped citizens or those citizens living abroad, to
cast a vote without going to polling stations on a specific day or time. However,
related security issues have not been taken into extensive consideration when
the users install applications onto their devices. In particular, by not paying
attention to the permissions given to the applications, users turn their smart
devices into potential targets for malicious malware that may be used to obtain
critical information about users [6].

Estonian i-voting protocol with its verification mechanism present an inter-
esting case because it avoids the additional pre- and post-channels as seen in
the Norwegian protocol, in which the verification is performed via smart de-
vices [12, 20]. Since 2005 Estonian i-voting system is still being used and the
number of i-voters increases in every election. In 2005 local election trial, while
only 1,9% of all votes were cast using the i-voting system, more specifically, 5,5%,
14,7%, 15,8%, 24,3%, 21,2%, 31,3% and 30,5% of votes were cast using the i-
voting system in the upheld elections successively [33]. These statistics show
that the increasing number of citizens prefer to use i-voting system. Accord-
ingly, security concerns related the i-voting system should be considered more
seriously.

The i-voting system aims to be at least as secure as traditional paper ballots,
meaning that i-voting should meet both cast-as-intended and recorded-as-cast
requirements [7, 8]. As mentioned in [18, 21], client-side weaknesses were expe-
rienced in both the cast-as-intended and recorded-as-cast mechanisms during
Estonia’s 2011 parliamentary elections, so called Student’s Attack. Therefore, af-
ter the 2011 election, a verification mechanism was added to the system that
gives voters the opportunity to verify the vote stored in the system via a smart
device with a camera and internet connection. The verification mechanism pilot
was first tested in the 2013 local elections and then used in the European Parlia-
ment Elections and in 2014, and the Parliamentary Elections in 2015. Although
using an application on a smart device for voting verification solves the aimed
security weaknesses, it may bring with it additional problems related not only
to the voter privacy, but also to the secrecy of election results.

1.1 Contributions

In this work, we point out an important privacy issue in the verification system
of the Estonian i-voting system. The motivation of our attack comes from the
fact that all voter details including the real vote are displayed by the verification
device. We stress that if the smart device running the verification application is
corrupted, then vote privacy can be easily compromised by sniffing the process
on the verification device of which the voter is most probably the owner. In fact,
smart phone users generally install mobile applications without paying attention
to potential security or privacy issues. Therefore, assuming the corruption of a
smart device is relevant due to the huge number of increase in malwares during
the last years [22–25,27–31]. Hence, it is possible for an adversary to acquire an
IMEI number and other private information, such as location, contacts, phone

Estonian Voting Verification Mechanism Revisited 3

number, emails, and photos from smart devices including voting details, thereby
compromises the voters’ privacy.

The goal of this paper is to mitigate the described privacy leakage of the
Estonian i-voting verification mechanism. In this respect, we propose a new,
privacy-preserving, and an efficient verification mechanism even in the case that
a corrupted verification device is used. Our proposal is quite practical since only
a few additional symmetric encryptions on the verification device is performed.
Secondly, the secrecy of the election results may also be violated within a wide
range attacks. Specifically, attacker may obtain information about the partial
results of the election before it has concluded [21]. In this work, however, our
updated verification mechanism ensures the same security level without leaking
any information about the vote.

1.2 Organization

The rest of the paper is organized as follows. Related works are discussed in
the following section. The necessary preliminaries and underlying cryptographic
mechanisms are explained in Section 3. The current Estonian i-voting system
along with its components, security and threat models are explained in Section
4. A potential privacy issue is introduced and the proposed voting protocol
and security model are given in Section 5. The security analysis of the proposed
system is presented in Section 6. Section 7 compares the complexities of Estonian
system with our proposed system. Finally, Section 8 concludes the paper.

2 Previous Work

In this section, we will give a brief overview of related work, focusing on only
internet voting schemes. After the 2011 elections in Estonia, Heiberg et al. pub-
lished a paper discussing new attacks and weaknesses resulting from client and
server side weaknesses namely Student’s Attack [14, 15, 18, 21]. The designers of
the Estonian i-voting system improved it by adding a verification mechanism.
Like in the Norwegian i-voting scheme, using SMS services as a post channel was
a possible solution; however, not all citizens may register their mobile numbers.
Furthermore, the post channel mechanism was not only rather expensive, it also
had various problems, as already seen in the Norwegian election system [10,12].
After a period of research and analysis, it was agreed that an individual verifica-
tion mechanism using smart devices without requiring any personal information
would be the most suitable verification channel for the Estonian i-voting sys-
tem [21]. It also well-known that the Helios system is end-2-end verifiable which
is not sufficient for secure elections since it does not prevent attacks from both
corrupted client and servers [2, 13,16,17].

The designers of the Estonian i-voting system claim that it was as reliable
and secure as the conventional election [12,32]. Contrary to their security claims,
in [20], Springall et al. reported that the system is plagued by serious procedural
and architectural weaknesses enabling client-side attacks that skew the results of

4 Estonian Voting Verification Mechanism Revisited

the election undetectably bypassing the ID card system and smart device verifi-
cation mechanism. Additionally, it is claimed that there are several inadequate
procedural controls, lax operational security, insufficient transparency and sev-
eral vulnerabilities in the published code. Moreover, in the same work, Springall
et al. implemented a mock election in which they experienced both client and
server side attacks. In responses the authors presented their recommendations
on how to eliminate inadequate procedural controls and lax operational security
weaknesses. In [11], Heiberg et al. researched ways to eliminate transparency
weaknesses using an auditing mechanism.

The future brings more security and privacy risks for mobile devices [29–31].
For example, users can be fooled into installing malicious applications on their
devices or to grant unauthorized remote access [22–25,27–31]. Hence, an adver-
sary can easily identify the owner of the smart device via private information,
such as one’s IMEI number, location, contacts, phone number, emails, and pho-
tos. More specifically, IMEI numbers might also be required to be record into a
central system beforehand which are used to identify and authenticate the mobile
device whenever there is a connection request to a carrier. Those IMEI numbers
not recorded into the system can be banned from communicating (e.g., [26]).
For these reasons, one should never be able to obtain any information about the
intention of a voter from the voting details on the verification device .

3 Preliminaries

In the next section, we will present the general setup and symbols needed to
presenting our protocol.

Underlying Cryptosystem. We are going to denote a symmetric key encryp-
tion process as Esym = SymEnck(M) and decryption as M = SymDeck(Esym),
where k is a secret key and M is a plaintext to be encrypted. We are going
to denote the hashing of a message M as H(M), where M is a message and
H : {0, 1}∗ → {0, 1}t. AES-256 and SHA3-256 (where t = 256) can be utilized
for symmetric encryption and hash function, respectively [3, 4].

The underlying public key encryption scheme is semantically secure 1 (e.g.,
Paillier [35], and ElGamal [34]). An election specific public and private key pair
(pkS , skS) is generated by the servers of the National Electoral Committee (NEC)
in a k of n threshold manner. In other words, it is generated by the cooperation of
n independent parties and it is not possible to regenerate the key pair if at least
k of them do not cooperate. Furthermore, pkS is mounted to voter applications
VoterApp. Similarly, (pkV , skV) denotes a public and private key pair of a user
V. Easym = AsymEncpkV (M) denotes an encryption of a message M using the
public key of the voter V. Similarly, SignskV (M) denotes the signature of a user
V on a message M using the private key of V.

1 Note that semantically secure cryptographic algorithms are basically randomized
encryptions meaning that encryption of the same votes is uniformly indistinguishable
from each other.

Estonian Voting Verification Mechanism Revisited 5

4 Estonian Internet Voting Protocol and its Security
Analysis

4.1 Components of the System

The Estonian i-voting mechanism is composed of three main parts: (1) client-
side applications (a voter application VoterApp and a verification application
VerifApp), (2) a Central System, and (3) Auditing and Counting processes.

A VoterApp is performed by the citizens eligible to vote via their ID cards.
VoterApp is already developed and published by NEC, and should be installed
beforehand. VerifApp should be installed on a smart device. Note that VerifApp
can be developed by any parties, including NEC, political parties, or an open
source community. The Central System has three main servers for forwarding,
storing and counting phases under NEC responsibility. The Vote Forwarding
Server (VFS) is the server that the client-side applications authenticate, send
signed and encrypted votes, and obtain the required data for both the voting
and the verification stages. The Vote Storage Server (VSS) stores the signed
encrypted votes during the voting period. At the end of the election, it removes
double votes, cancels ineligible voters, and prepares the votes to be tallied by
anonymizing the encrypted votes via a mixnet mechanism (e.g., [5]).

Separated from the rest of the system by an air gap, the Vote Counting Server
tallies the anonymized votes and computes the election results. During all these
processes, the auditing mechanisms save logs of the Central System events in
order to resolve independent auditors’ disputes and complaints.

4.2 Estonian I-Voting Protocol

For simplicity of describing the voting protocol, we divide it into two phases: the
voting phase and the verification phase. The voting phase begins by VoterApp
authenticating VFS via a TLS connection. A voter V receives the related can-
didate list CL = {c1, · · · , cm} where ci’s are candidates’ unique identity values
and m denotes the number of candidates. Next, the voter V chooses a candi-
date c ∈ CL to cast the vote. VoterApp generates a signed and encrypted vote
SignEncVote = SignskV (Easym) where Easym = AsymEncpkS (c, r) and r ∈R {0, 1}κ
is a random number, κ ∈ N. Next, VoterApp sends SignEncVote to VFS, and then
receives a vote reference voteref which is a receipt to be used in the verification
phase.

During the verification phase, VerifApp receives r and voteref from VoterApp,
request the related data from VFS by the voteref, and computes the vote. Finally,
VerifApp shows the recorded vote on the screen. If the voter confirms the cor-
rectness of the cast vote then the voting procedure ends successfully, otherwise,
the voter V puts an alarm.

Voting Stage:

1. A voter V: Authenticates to VFS through VoterApp using a national ID Card.

6 Estonian Voting Verification Mechanism Revisited

2. VFS: Sends CL = {c1, . . . , cm} to VoterApp where m is the number of can-
didates.

3. V: Chooses c from CL
4. VoterApp:

(a) Generates a random number r.
(b) Encrypts c and r by pkS , Easym = AsymEncpkS (c, r).
(c) Signs Easym by skV , i.e. SignEncVote = SignskV (Easym) .
(d) Sends SignEncVote to VFS.

5. VFS:
(a) Stores SignEncVote.
(b) Generates voteref.
(c) Sends voteref to VoterApp.

Verification Stage: Note that the verification stage is optional and used only
to ensure whether the vote has been correctly stored in VFS. It is also important
to note that for security purposes, VerifApp and VoterApp should not be installed
on the same device. Additionally, it should be noted that VerifApp scans the QR
code by camera instead of obtaining it via an internet connection.

Fig. 1. Verification stage of the Estonian i-voting protocol

1. (a) VoterApp: Generates a QR code including r and voteref and show on the
screen.

(b) VerifApp: Scans QR code by camera.
2. VerifApp: Sends voteref to VFS.
3. VFS: Sends Easym and CL to VerifApp.
4. VerifApp:

(a) Computes Ejasym = AsymEncpkS (cj , r) for all j = 1, · · · ,m.

(b) Finds ` such that Easym
?
= E`asym for some ` ∈ {1, · · · ,m}.

(c) Shows c` on the screen.

5. V: Checks c`
?
= c.

(a) If c` = c, the vote is received and stored VFS without any modification.
(b) Else, V puts an alarm (which basically shows that malware is present).

Estonian Voting Verification Mechanism Revisited 7

4.3 Security Model of the Estonian I-Voting Protocol

A security analysis of the current i-voting system of Estonia is discussed in de-
tail in [20,21] which are briefly mentioned in attack scenarios. Estonian i-voting
security model assumes that either VoterApp or the device that runs VoterApp is
malicious. We note that the assumptions VerifApp and VFS collude maliciously
or VerifApp and VoterApp collude maliciously are not realistic since the duty of
VerifApp is to independently check the correctness of VFS and VoterApp. Further-
more, as noted in [8], limited number of corrupted voters’ devices are accepted
as a reasonable risk.

Attack Scenarios. The main attack scenarios are about ballot integrity, the
reliability of the voting system, and coercion resistance.

– Manipulation Attacks. Manipulation attacks consist of modifications to
a vote without the knowledge of the voter V. These attacks are aimed to
change the vote to either a predetermined or a random candidate. There are
basically two variants of manipulation attacks:

• Student’s Attack. In Estonia’s 2011 parliamentary elections, the Student’s
Attack exposed that neither ballot integrity and secrecy in the election
was guaranteed [18]. The attack is based on installing a malware to
the device that runs on VoterApp. This malware is designed so that it
undermines VoterApp and while the vote is being cast, it silently diverts
or cancels the intended vote. At first, this attack was not considered as a
thread (see [18,20]). But, after, it became a real and efficient attack [18].
So that, a verification mechanism is integrated into the system [21].

• Ghost Click Attack. A malicious software that runs on the same device
as VoterApp can obtain the PIN code of the ID card during the voting
process. When the ID card is reinserted, the malware may re-vote silently
without being detected [20]. Although this is an interesting attack, it is
not included in the scope of this work.

– Reliability Issues. By decreasing voters’ confidence in the i-voting system,
an election can be held questionable without there being any violation to vote
secrecy. Therefore, not only an effective verification mechanism must be set
up to prevent such attacks, but also, citizens should be well informed about
the process and security concerns about the system [8]. In fact, fairness and
the secrecy of the elections should be satisfied, that is in any paper based
or electronic voting scheme, the election’s partial or total results can not be
revealed before the tallying process.

– Coercion Attacks. An i-voting system must prevent a voter from being
able to prove to a coercer how he voted. Therefore, the system should provide
receipt-freeness or coercion resistance. Allowing vote updates (i.e., re-voting)
is the countermeasure to prevent such attacks.

8 Estonian Voting Verification Mechanism Revisited

Threat Model.

– Malicious VFS. In this case, there is a full privacy leakage where VFS may
leak all stored information as a result of potential Insider Attacks [20]. As a
countermeasure, auditing mechanisms with independent auditors can verify
the computations of VFS [11].

– Malicious VoterApp and its adversarial environment. During the prepa-
ration of signed encrypted vote, a malicious VoterApp can change the voter’s
intention c ∈ CL by c∗ ∈ CL where c 6= c∗ and then sends encrypted form of
c∗ instead of c. During the verification, VerifApp will reveal that the ballot
does not reflect the voter’s own will as intended and puts an alarm. The
voter V re-votes again from another device. Note that integrity of the stored
data in VFS is ensured after successful verification. Therefore, manipulating
the vote using a malicious VoterApp is not possible.

– Malicious VerifApp and its adversarial environment: It is possible to
sniff data from a smart device using any malicious application installed on
the device [22–25,27–31]. Leaking verified votes from the smart devices gives
an opportunity to get some idea about the election results before the elec-
tion ended. This attack violates one of the important limitation ”secrecy of
election results” of the Estonian i-voting system. Another attack based on
the leakage is that using a device’s IMEI number allows one to match the
vote with the voter V. In other words, the link between the vote and the
voter V is revealed. The attack disrupts the privacy of V which is one of the
main limitation of the Estonian i-voting system. Note that, the candidate
choice of a voter represents the voter’s political view. Therefore, when the
voter’s intention revealed, there is no way to recover. In other words, it is
not possible to choose another candidate and vote again. More details about
the attacks are given in 5.1.

In the next section, we will show that there is a practical and realistic attack
that may become a real issue.

5 A New Potential Privacy Issue and Our Improved
Verification System

5.1 No Vote Privacy in the Estonian Verification Mechanism

Recall that VerifApp is integrated into the i-voting system to be resistant against
Student’s Attack. VerifApp can be freely developed by NEC, by an open source
community or even by one who is able to write her own verification software while
VoterApp is developed only by NEC. In contrast, most citizens cannot develop or
control the trustability of VerifApp even it is downloaded from a known source.
Therefore, it is not realistic to assume that VerifApp is honest. The Estonian
i-voting system is designed in this manner and VerifApp explicitly outputs the
voters’ intention in plain form.

Even if VerifApp itself were to work properly, any malicious application run-
ning on the same device may sneak into the processes in an attempt to monitor

Estonian Voting Verification Mechanism Revisited 9

inputs and outputs. Therefore, it would be sufficient to have any privileged ap-
plication running on the same device [22–25, 27–31]. As soon as an adversary
manages to install such a privileged application, the only thing that needs to be
done is to grab a screen shot of the device while VerifApp displays the output
to the voter V. After that, the cast vote will also be known by the adversary.
Furthermore, since IMEI numbers and other private information (e.g, contacts,
phone number, location, emails, photos) can be obtained by a malicious appli-
cation loaded on the verification device, an adversary can obtain V’s identity.
Hence, privacy of V can be easily compromised. We highlight that this privacy
issue may lead to coercion or vote buying (e.g., an adversary can force voters
to install a malicious application on their smart devices for later check the their
actual votes).

When considered on the individual level, this attack causes privacy leakage.
On the other hand, when applied over a wide range by sniffing the plain votes
from the VerifApps without trying to find the related identity information, this
attack may also promise the reliability and, more importantly, the secrecy of
the elections. Because, as explained in [9], in any election the results would not
be exposed before the counting process has been partially or totally completed.
Therefore, the possibility of a corrupted verification device must be included
in the design criteria of the Estonian i-voting system, the current Estonian i-
voting system requires additional countermeasures to guard against this privacy
leakage.

In the next section, we offer a new protocol for the verification mechanism
which eliminates the trust the verification device.

5.2 Enhanced Security Model

Our security model extends the Estonian scheme by eliminating the need to trust
the verification device on which VerifApp runs. Namely, the extended scheme
gives specific information to VerifApp on which the voted candidate should be
recognized only by the voter V with her own eyes manually. Even VerifApp can
not learn the voted candidate using the data which is gathered from the network
or its outputs by VerifApp. More formally, the probability of correctly guessing
V’s intention using the information given by VerifApp’s inputs and outputs should
be the same as the conditional probability of guessing V’s intention randomly.
We stress that using a mobile device to verify the vote makes the Estonian i-
voting scheme vulnerable as in the original system because VerifApp outputs V’s
intention explicitly. In order to overcome this vulnerability, each candidate will
be displayed on the screen with a verification parameter and to let V checks
these results with her own eyes using the parameters and decides whether the
correct parameter and the candidate is matched.

5.3 Our Verification Mechanism

We are now ready to describe our proposal. The actual flow of the protocol
is similar to the Estonian i-voting system. In order to make the verification

10 Estonian Voting Verification Mechanism Revisited

phase more resistant against the attacks described in Section 5.1, we introduce
a new parameter q that will only be known to VoterApp and VFS where the
size of q is the same as the output size of the hash function H. More con-
cretely, V chooses q as a verification parameter and securely sends it to VFS
during the voting phase. Furthermore, during the verification phase, VFS com-
putes H(Easym) and uses it as a symmetric key to encrypt q for transmitting
Esym = SymEncH(Easym)(q) to VerifApp. During the verification phase, in order to
find the correct encryption key, VerifApp will perform a number of decryptions
qi = SymDecH(Ei

asym)
(Esym), i = 1, · · · ,m depending on the number of candidates.

Hence, it outputs a list Q = {q1, · · · , qm} of possible verification parameters
with the corresponding candidates. Finally, the voter V will manually check the
output list on the VerifApp’s screen with her own eyes to learn the given q dur-
ing the voting phase on the position of the chosen candidate . The verification
phase ends successfully if q exists and its index is the same as the index of the
candidate chosen by the voter V in the list CL.

Here, the trick is to encrypt q with the hash of the encrypted vote as the sym-
metric key (i.e., H(Easym)). In the verification phase, VerifApp tries all candidates
in order to generate the possible keys (hash of the possible encrypted votes). In
order to complete the verification successfully, the index of the chosen candidate
and the index of q in Q should match. Otherwise, either an alarm would be
raised, or the voting procedure should be re-started, or the verification phase
should be run in another device. It should be noted that manually finding the
correct verification parameter with eyes is an important security measure so as
not to reveal a voter’s intention to VerifApp. Otherwise, if the chosen candidate
is displayed in plain form as in the Estonian i-voting scheme, adversaries may
obtain a proof of their vote which may lead vote buying or coercion problems.

The voting and verification phases are explained in detail below.

Voting Stage:

1. A voter V: Authenticates to VFS through VoterApp using a national ID Card.
2. VFS: Sends CL = {c1, . . . , cm} to VoterApp where m is the number of can-

didates.
3. V: Chooses c from CL and 4 characters of random verification parame-

ter (composed of 4 bytes per character) which is a random value qright ∈R
{0, 1}32.

4. VoterApp:
(a) Generates a random number r ∈R {0, 1}κ and qleft ∈R {0, 1}224.
(b) Encrypts c and r by pkS , Easym = AsymEncpkS (c, r).
(c) Signs Easym by skV , SignEncVote = SignskV (Easym) .
(d) Sends SignEncVote and the value q = qleft||qright to VFS2.

5. VFS:
(a) Stores SignEncVote and q.
(b) Generates voteref.
(c) Sends voteref to V for verification phase.

2 We note that q can also be signed by the voter to ensure its source and correctness.

Estonian Voting Verification Mechanism Revisited 11

Fig. 2. The voting phase of the proposed protocol

Verification Stage:

1. (a) VoterApp: Generates a QR code including r and voteref and show on the
screen.

(b) VerifApp: Scans the QR code by the camera.
2. VerifApp: Sends voteref to VFS.
3. VFS:

(a) Computes H(Easym).
(b) Encrypts Esym = SymEncH(Easym)(q).
(c) Sends the ordered m-tuple CL and Esym.

4. VerifApp:

(a) For each cj ∈ CL, j = 1, · · · ,m, computes;

i. Ejasym = AsymEncpkS (cj , r).

ii. The hash value H(Ejasym).
iii. qj = SymDecH(Ej

asym)
(Esym).

(b) Shows the ordered m-tuple Q = {q1, · · · , qm} on the screen.

5. V: Finds the indices of q
?
= qα ∈ Q = {q1, · · · , qm} and c

?
= cβ ∈ {c1, · · · , cm},

where α, β ∈ {1, · · · ,m} 3.

(a) Checks α
?
= β.

(b) If α = β, the vote is received and stored correctly in VFS.
(c) Else, V puts an alarm (which basically shows that malware is present).

6 Security Analysis of Our Verification Mechanism

We next show the correctness and prove the security of our mechanism.

Theorem 1 (Correctness). The verification phase of the proposed protocol
ensures both the properties recorded-as-cast (the vote is stored in VFS) and cast-
as-intended (the vote reflects the intention of the voter).

3 For usability concerns, 32-bit integers q is viewed to the voter as 4 characters.

12 Estonian Voting Verification Mechanism Revisited

Fig. 3. The Verification phase of the proposed protocol

Proof. During the verification phase, the VerifApp first obtains r and voteref from
VoterApp. Next, VerifApp requests the relevant data according to the voteref from
VFS. VFS responds with the ordered m-tuple candidate list CL = {c1, · · · , cm}
and Esym = SymEncH(Easym)(q). Now, suppose that the voter V votes for the can-
didate cβ ∈ CL where β ∈ {1, · · · ,m}. Then, VerifApp completes the verification
phase by computing Eiasym = AsymEncpkS (ci, r) for each ci ∈ CL and outputs
the list Q = {q1, · · · , qm} where qi = SymDecH(Ei

asym)
(Esym). Since the random

value of the underlying asymmetric encryption r is given to the VerifApp, Eiasym
becomes deterministic. Therefore, VerifApp computes the correct value q success-
fully. Finally, the voter V searches for q (i.e., the last four characters of q which
were shown on the screen of the voter computer) on the verification device and
finds the index β ∈ {1, · · · ,m} where qβ = q.

Therefore, this scheme guarantees that the ballot reflects the intention of the
V (i.e., it has been cast-as-intended) and is correctly stored in VFS (i.e., it has
been recorded-as-cast). ut

Theorem 2 (Privacy against malicious VoterApp and its adversarial en-
vironment). Our verification mechanism described in Section 5.3 is secure
against malicious VoterApp or adversarial environment of VoterApp.

Proof. Suppose VoterApp (or its adversarial environment) cheats and tries to
send the vote for another predefined candidate. Below, we show that the voter
V can easily detect this adversarial action via VerifApp.

Suppose a malicious VoterApp tries to find the appropriate parameters to
mock the VerifApp by finding a value r∗ for the candidate c∗ 6= c ∈ CL satisfying

q′ = q′left||qright = SymDecH(E′
asym)

Estonian Voting Verification Mechanism Revisited 13

where E′asym = AsymEncpkS (c∗, r∗) and q = qleft||qright. Namely, a malicious Voter-
App can fool a voter by only showing the correct value qright which is in the
position of the chosen candidate c.

In our system, for usability concerns, a voter chooses only four characters dur-
ing the voting phase. However, a malicious VerifApp may guess r∗ in such a way
that q′ = q′left||qright = SymDecH(E′

asym)
(Esym) where E′asym = AsymEncpkS (c∗, r∗).

However, this probability is 1/m · 1
232 (choose the correct candidate of the voter

and the corresponding value r∗). Because voting phase is independent for each
voter, this probability goes to negligible for only 3 voters (i.e., 1

296).
In the most general case, if a voter chooses the full length of q, then the com-

putational cost of finding r∗ for certain c, r and c∗ such that AsymEncpkS (c∗, r∗) =
AsymEncpkS (c, r) = Easym is infeasible because of the underlying encryption
scheme. An attacker may also simply guess q∗ which will be correct with prob-
ability at most 1

2k
where k is the length of q. ut

Theorem 3 (Privacy against malicious VerifApp and its adversarial en-
vironment). Our verification mechanism described in Section 5.3 is secure
against malicious VerifApp or adversarial environment of the VerifApp and does
not leak any information about the V and her intention.

Proof. For the verification phase, VerifApp receives the parameters voteref, r,
CL = {c1, · · · , cm}, and Esym. Additionally, it computes the listsQ = {q1, · · · , qm}
and {E1

asym, · · · , Emasym} where m is the number of candidates. It can be easily
checked if the received parameters or the computed values reveal any informa-
tion about the V’s intention. Therefore, an attacker sniffing VerifApp can only
learn whether a voter already has checked her vote.

Note that VerifApp never learns which qj is the correct q since the V checks
the index of verification parameter, which reveals the intention of the V, by her
own eyes from the ordered list Q. Therefore, an attacker sniffing VerifApp should
guess the correct q with probability of 1

m which is no more than guessing the
candidate randomly. Hence, VerifApp leaks no information about the choice of
the V. ut

Theorem 4 (Privacy against malicious VFS). Our verification mechanism
described in Section 5.3 is secure against a malicious VFS.

Proof. Our proposed verification mechanism uses the same voting phase with the
Estonian i-voting system. The only difference is our mechanism is to the random
verification parameter q which gives no information about the vote. Therefore,
the proof of the security of malicious VFS is exactly the same with the Estonian
scheme which is explained in [8]. ut

7 Complexity Analysis

In Table 1, the complexity analysis of the proposed verification mechanism is
tabulated. The cost of ridding the privacy leakage in the verification phase using

14 Estonian Voting Verification Mechanism Revisited

symmetric key cryptography requires almost the same cost as the current Esto-
nian i-voting scheme, specifically 1 extra symmetric encryption for VFS and m
extra symmetric encryptions for VerifApp.

Table 1. Comparison of Computational Cost of the Verification Mechanisms where
SymEnc, AsymEnc, Sign denote symmetric, asymmetric encryptions and digital signa-
ture.

Security Against
VoterApp VFS VerifApp Corrupted Verification

Device

Estonian 1 AsymEnc ∅ m AsymEnc 7

Verification + 1 Sign

This Paper 1 AsymEnc 1 SymEnc m AsymEnc X
+ 1 Sign + m SymEnc

7.1 Usability and Optimization Improvement for the Verification q

The size of q is important due to privacy and usability concerns. Firstly, because
VerifApp computes qi = SymDecH(Ei

asym)
(Esym), i = 1, · · · ,m and outputs the list

Q = {q1, · · · , qm}, each qi must be random of equal size where qj = q for some
j = 1, · · · ,m. Otherwise, a malicious VerifApp can easily detect the vote from
only the size of the q value. However, it not usable and impractical for a voter to
generate a random q of t-length bits in practice because, for example, if AES-256
and SHA3-256 were used as the encryption function then the voter must also
generate a random q of size 256-bits. Therefore, instead of searching the value q
itself, it is only sufficient to check the last 32 bits of q and q1, · · · , qm. In other
words, qleft ∈ {0, 1}224 can be generated by VoterApp while qright ∈R {0, 1}32 can
be provided by the V and it is sufficient to compare the last 32 bits qright. In
this way, a voter can easily compare the q on VoterApp to the qj ’s on VerifApp.
Hence, the protocol will be run as defined in Section 5.3, but both VoterApp and
VerifApp will only display the last 32 bits of the verification parameters of q and
q1, · · · , qm. A voter has to confirm with her own eyes that the original q (i.e.,
the last 32 bits as 4 letters) exist in Q.

As an illustration, we present a sample shortening operation in Table 2 for
the parameter q =‘ThEParameterWillBelongToremember’. Let ` = 4 and the
position numbers are chosen as 8-bit words at the positions p1, p2, p3 and p4
respectively 29, 30, 31 and 32. Then, shortened value ’mber’ is shown on the
screen instead of whole q. In Table 3, Step 5 of the verification phase is presented
as an example which shows the values on VerifApp screen where ci is the i-th
candidate and qi is the related verification value for i = 1, · · · ,m.

Estonian Voting Verification Mechanism Revisited 15

Table 2. Shortened verification parameter on the screen on of the voter computer.

Position # 1 2 3 4 · · · 25 26 27 28
29 30 31 32

q T h E P · · · r e m e
m b

e r

Shortened q · · ·
m

b e r

Table 3. Original and shortened verification values.

ci qi t-bits q Shortened

c1 q1 qxvsEgaKMXpwApGDsNnPaNhjTJYtqven qven
...

...
...

...

cβ qβ ThEParameterWillBelongToremember mber
...

...
...

...

cm qm RatqPKvgtTAFectHpOeteDoPYKbTkApp kApp

8 Conclusion

Internet voting schemes are evolving and being used practically which aim to
guarantee at least the same security level offered by classical paper ballot voting
systems. After the 2011 election in Estonia, a verification phase was integrated
into the Estonian system to check whether the vote has been correctly recorded.
However, this phase eventually displays the cast vote in plain form which may
cause a privacy weakness and compromise the fairness of the election. The design-
ers of the Estonian scheme overlooked the fact that the device running VerifApp
may also be compromised. Thus, there is no difference between trusting a device
running VoterApp and trusting a device running VerifApp.

In this paper, we have proposed a new verification mechanism that does not
disclose any information about a voter’s intention, if used by corrupted veri-
fication devices. Hence, our proposed verification system is strong against the
aforementioned privacy weaknesses. As a future work, investigating a mechanism
that resists the Ghost Click Attack and does not rely on additional post-channel
communication would be very interesting.

Acknowledgment
The authors would like to thank the anonymous reviewers for their contributions
and comments.

References

1. Gritzalis, D.A., Secure Electronic Voting, Advances in Information Security,
Springer US, 2012.

16 Estonian Voting Verification Mechanism Revisited

2. Dawid Gawel and Maciej Kosarzecki and Poorvi L. Vora and Hua Wu and Filip
Zagorski, Apollo - End-to-end Verifiable Internet Voting with Recovery from Vote
Manipulation, Cryptology ePrint Archive, Report 2016/1037, 2016.

3. National Institute of Standards and Technology, FIPS 197: Advanced Encryp-
tion Standard (AES), Federal Information Processing Standards Publication Series,
2001.

4. National Institute of Standards and Technology, FIPS 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, Federal Information
Processing Standards Publication Series, 2015.

5. M. Jakobsson, A. Juels, and R. L. Rivest, Making mix nets robust for electronic
voting by randomized partial checking, in Proceedings of the 11th USENIX Security
Symposium, pp. 339353, USENIX Association, Berkeley, CA, USA, 2002.

6. G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, Evolution,
detection and analysis of malware for smart devices, IEEE Communications Surveys
and Tutorials, 16(2), pp. 961987, 2014.

7. S. Popoveniuc, J. Kelsey, A. Regenscheid, and P. Vora, Performance require-
ments for end-to-end verifiable elections, in Proceedings of the 2010 International
Conference on Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE10, pp. 116, USENIX Association, Berkeley, CA, USA, 2010.

8. Ansper, A. and Buldas, A. and Jurgenson, A. and Oruaas, M. and Priisalu, J. and
Raiend, K. and Veldre, A. and Willemson, J. and Virunurm, K: E-voting Concept
Security, Analysis and Measures, 2016.

9. Estonian National Electoral Committee: 2010 E-Voting System, General Overview-
2010, http://vvk.ee/public/dok/General_Description_E-Voting_2010.pdf.
(last access: 30 April 2016).

10. Stenerud, Ida Sofie Gebhardt and Bull, Christian: When Reality Comes Knocking
Norwegian Experiences with Verifiable Electronic Voting, Electronic Voting, volume
205 of LNI, pp.21–33, GI, 2012.

11. Heiberg, Sven and Parsovs, Arnis and Willemson, Jan: Log Analysis of Estonian
Internet Voting 2013-2015, IACR Cryptology ePrint Archive, 2015.

12. Meter, Christian: Design of Distributed Voting Systems, Department of Computer
Science, Heinrich-Heine-University Dsseldorf, September, 2015.

13. Benaloh, Josh and Rivest, Ronald and Ryan, Peter Y A. and Stark, Philip and
Teague, Vanessa and Vora, Poorvi: End-to-end verifiability. In: CoRRabs/1504.0
(2015). http://arxiv:org/abs/1504:03778.

14. Estonian National Electoral Committee: Statistics-Internet Voting- Voting meth-
ods in Estonia. http://www:vvk:ee/voting-methodsin-estonia/engindex/statistics/.
Version: April 2015.

15. Halderman, John: Independent Report on E-voting in Estonia.
https://estoniaevoting:org/. Version: September 2015.

16. Halderman, J. Alex and and Teague, Vanessa: The New South Wales iVote Sys-
tem: Security Failures and Verification Flaws in a Live Online Election, Springer
International Publishing, 35-53, isbn:978-3-319-22270-7, September 2015.

17. Gjosteen, Kristian: The Norwegian internet voting protocol. In: EVoting and Iden-
tity 7187 LNCS, pp. 118. DOI 10.1007/9783642327476 1. ISBN 9783642327469.
2013.

18. Heiberg, Sven and Laud, Peeter and Willemson, Jan: The Application of I-voting
for Estonian Parliamentary Elections of 2011, Lecture Notes in Computer Science
series, 3rd International Conference on E-voting and Identity, Tallinn, volume 7187,
Springer-Verlag, 2012.

http://vvk.ee/public/dok/General_Description_E-Voting_2010.pdf

Estonian Voting Verification Mechanism Revisited 17

19. Maaten, Epp: Towards Remote E-Voting, Estonian case, Electronic Voting in Eu-
rope, LNI Series, volume 47, pp. 83–100, GI, 2004.

20. Springall, Drew and Finkenauer, Travis and Durumeric, Zakir and Kitcat, Jason
and Hursti, Harri and MacAlpine, Margaret and Halderman, J. Alex: Security Anal-
ysis of the Estonian Internet Voting System, Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14 series, pp.703–715,
ACM, 2014.

21. Sven Heiberg and Jan Willemson: Verifiable Internet Voting in Estonia, 6th In-
ternational Conference on Electronic Voting, Verifying the Vote, EVOTE 2014,
Lochau/Bregenz, Austria, pp. 1–8, 2014.

22. IPhone and Android Apps Breach Privacy, http://online.wsj.com/article/

SB10001424052748704694004576020083703574602.html (last access: 30 April
2016).

23. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS
Applications, 18th Annual Network and Distributed System Security Symposium,
2011.

24. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, Anmol N. Sheth, TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones, Proceedings of the 9th USENIX
conference on Operating systems design and implementation, p.1–6, Vancouver, BC,
Canada, 2010.

25. Mahaffey, K., Hering, J.: App Attack: Surviving the Explosive Growth of Mobile
Apps, 2010.

26. ICTA-Information and Communication Technologies Authority: CEIR-Central
Equipment Identity Register, http://www.mcks.gov.tr/en/KonuDetay.php?BKey=
47 (last access: 30 April 2016)

27. Bartlomiej Uscilowski: Security Response- Mobile Adware and Malware Anal-
ysis, http://www.symantec.com/content/en/us/enterprise/media/security_

response/whitepapers/madware_and_malware_analysis.pdf (last access: 30
April 2016).

28. Ori Bach: Mobile Malware Threats in 2015, Fraudsters Are
Still Two Steps Ahead, https://securityintelligence.com/

mobile-malware-threats-in-2015-fraudsters-are-still-two-steps-ahead/

(last access: 30 April 2016).

29. Felt, Adrienne Porter and Finifter, Matthew and Chin, Erika and Hanna, Steve
and Wagner, David: A Survey of Mobile Malware in the Wild, Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’11, pp.3–14, ACM, New York, NY, USA, 2011.

30. A. K. Jain and D. Shanbhag: IT Professional: Addressing Security and Privacy
Risks in Mobile Applications, volume 14, number 5, pp. 28–33, 2012.

31. Zhu, Hengshu and Xiong, Hui and Ge, Yong and Chen, Enhong: Mobile App
Recommendations with Security and Privacy Awareness, Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14 series, pp.951–960, ACM, New York, USA, 2014.

32. Estonian Internet Voting Committee: Using ID-card and mobil-ID, May 2014:
https://www.valimised.ee/eng/kkk (last access: 30 April 2016).

33. National Electoral Committee: Statistics about Internet Voting in Estonia, http://
www.vvk.ee/voting-methods-in-estonia/engindex/statistics (last access: 30
April 2016).

http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://www.mcks.gov.tr/en/KonuDetay.php?BKey=47
http://www.mcks.gov.tr/en/KonuDetay.php?BKey=47
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
https://securityintelligence.com/mobile-malware-threats-in-2015-fraudsters-are-still-two-steps-ahead/
https://securityintelligence.com/mobile-malware-threats-in-2015-fraudsters-are-still-two-steps-ahead/
https://www.valimised.ee/eng/kkk
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics

18 Estonian Voting Verification Mechanism Revisited

34. El Gamal, Taher: A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, Proceedings of CRYPTO 84 on Advances in Cryptology,
Springer-Verlag New York, Inc., 1985.

35. Paillier, Pascal and Pointcheval, David: Efficient Public-Key Cryptosystems Prov-
ably Secure Against Active Adversaries, Proceedings of the International Conference
on the Theory and Applications of Cryptology and Information Security, Advances
in Cryptology, ASIACRYPT ’99, pp. 165–179, Springer-Verlag, 1999.

36. Fujisaki, Eiichiro and Okamoto, Tatsuaki and Pointcheval, David and Stern,
Jacques: RSA-OAEP Is Secure under the RSA Assumption, August 19–23, 2001
Proceedings, Advances in Cryptology — CRYPTO 2001, 21st Annual International
Cryptology Conference, pp.260–274 Springer Berlin Heidelberg, Santa Barbara, Cal-
ifornia, USA, 2001.

	Lecture Notes in Computer Science
	Introduction
	Contributions
	Organization

	Previous Work
	Preliminaries
	Estonian Internet Voting Protocol and its Security Analysis
	Components of the System
	Estonian I-Voting Protocol
	Voting Stage:
	Verification Stage:

	Security Model of the Estonian I-Voting Protocol
	Attack Scenarios.
	Threat Model.

	A New Potential Privacy Issue and Our Improved Verification System
	No Vote Privacy in the Estonian Verification Mechanism
	Enhanced Security Model
	Our Verification Mechanism
	Voting Stage:
	Verification Stage:

	Security Analysis of Our Verification Mechanism
	Complexity Analysis
	Usability and Optimization Improvement for the Verification q

	Conclusion

