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Abstract. At CRYPTO’16, Beierle et al. presented SKINNY, a fam-
ily of lightweight tweakable block ciphers intended to compete with
SIMON. SKINNY can be implemented efficiently in both soft- and
hardware, possesses a Substitution-Permutation-Network structure, and
supports block sizes of 64 and 128 bits as well as key and tweak sizes of
64, 128, 192, and 256 bits. This paper outlines a related-key impossible-
differential attack on 21 and 22 rounds of SKINNY-64/128.

Keywords: Symmetric cryptography · cryptanalysis · tweakable block
cipher · impossible differential · lightweight cryptography.

1 Introduction

SKINNY is a family of lightweight tweakable block ciphers recently proposed
at CRYPTO 2016 by Beierle et al. [3]. Its goal was to design a cipher that
could be implemented highly efficiently on both soft- and hardware platforms,
with performance comparable or better than the SIMON and SPECK families of
block ciphers [1]. Like the NSA designs SIMON and SPECK, SKINNY supports
a wide range of block sizes and tweak/key sizes – however, in contrast to the
And-RX and Add-RX based NSA proposals, SKINNY should base on the better
understood Substitution-Permutation-Network approach.
SKINNY offers a large security margin within the number of rounds for each
member of the SKINNY family. The designers show that the currently best
known attacks approach close to half of the number of rounds of the cipher.
To motivate third-party cryptanalysis, the designers of SKINNY recently an-
nounced a cryptanalysis competition [2] for SKINNY-64/128 and SKINNY-
128/128 with the obvious challenge of attacking more rounds than the prelimi-
nary analysis, concerning both the single- and related-key models.



Related Work. Liu et al. [7] analysed SKINNY in the related-tweakey model,
showing impossible-differential and rectangle attacks for 18, 22, 27 rounds of
SKINNY-n/n, SKINNY-n/2n and SKINNY-n/3n, respectively. Tolba et al.
[9] showed impossible-differential attacks for 18, 20, 22 rounds of SKINNY-n/n,
SKINNY-n/2n and SKINNY-n/3n, respectively. Moreover, Sadeghi et al. [8]
studied related-tweakey impossible-differential and zero-correlation linear char-
acteristics. In comparison our proposed 22 round related-tweakey impossible-
differential attacks have the lowest time complexity so far.

Contributions and Outline. In this paper, we propose an impossible-differential
attack on SKINNY-64/128 reduced to 21 rounds in the related-key model which
we then extend to 22 rounds. The attack uses an 11-round impossible differential
trail, to which six and four rounds can be added to the beginning and end,
respectively, in order to obtain a 21-round attack. Later we show that another
round can be appended in the end to give a 22 round attack.
The paper is organized in the following manner: In Section 2, we give a brief
introduction to the SKINNY family of block ciphers. In Section 3, we detail
the attack on SKINNY and provide time and memory complexities. Finally,
Section 4 concludes the paper.

2 Description of SKINNY

Each round of SKINNY consists of the operations SubCells, AddRoundCon-
stants, AddRoundTweakey, ShiftRows, and MixColumns. The round
operations are schematically illustrated in Figure 1. A cell represents a 4-bit
value in SKINNY-64/* and an 8-bit value in SKINNY-128/*.

SC AC

ART

»>1

»>2

»>3

ShiftRows MixColumns

Fig. 1: Round function of SKINNY.

We concentrate on SKINNY-64/128, which has a block size of 64 bits and a
tweakey size of 128 bits. The data is arranged nibble-by-nibble in a row-wise
fashion in a 4× 4-matrix.

SubCells (SC) substitutes each nibble x by S(x), which is given below.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f



AddRoundConstants (AC) adds LFSR-based round constants to the Cells
0, 4, and 8 of the state.

AddRoundTweakey (ART) adds the round tweakey to the first two state
rows.

ShiftRows (SR) rotates the ith row, for 0 ≤ i ≤ 3, by i positions to the
right.

MixColumns (MC) multiplies each column of the state by a matrix M :

M =


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0


SKINNY-64/128 recommends 36 executions of the round function to get the
final ciphertext.

Tweakey Schedule. The tweakey schedule of SKINNY, as illustrated in Fig-
ure 2, follows the TWEAKEY framework [5]. As a major contrast to previous
TWEAKEY designs Deoxys-BC and Joltik-BC, SKINNY employs a signif-
icantly more lightweight strategy. In each round, only the both topmost rows
of each tweakey word are extracted, and XORed to the state. An additional
round-dependent constant is also XORed to the state to prevent attacks from
symmetry, such as slide attacks, and complicate subspace cryptanalysis.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 2: Tweakey schedule of SKINNY.

The 128-bit tweakey is arranged in two 64-bit tweakey words, represented by 4×4
matrices TK1 and TK2. As mentioned, the arrangement is row-wise and nibble-
by-nibble. In each round, the tweakey words are updated by a cell permutation
PT that ensures that the two bottom rows of a tweakey word in a certain round
are exchanged with the two top rows in the tweakey word in the subsequent
round. The permutation is given as:

PT = {9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7}

The permutation PT has a period of 16, as visualized in Fig. 6 in the appendix.
Moreover, each individual cell in the two topmost rows of the tweakey word TK2



is transformed by a 4-bit LFSR to thwart iterative differentials; TK1 employs
no LFSR transformation. The LFSR based transformation L is given by

L(x3, x2, x1, x0) := (x2, x1, x0, x3 ⊕ x2),

where x3, x2, x1, x0 represent the individual bits (x0 represents the LSB of the
cell) of every tweakey nibble. To avoid confusion, the update equation for the
tweak cells can be written explicitly as:

TKr+1
1 [i] =

{
TKr

1 [P [i]] for 0 ≤ i ≤ 15,

TKr+1
2 [i] =

{
L(TKr

2 [P [i]]) if 0 ≤ i ≤ 7,

TKr
2 [P [i]] otherwise.

where TKr
a[i] represents the ith nibble of TKa (a = 1, 2) in round r. Note that

the rth-round tweakey is given by Kr = TKr
1 [i]⊕ TKr

2 [i], for 0 ≤ i ≤ 7.

3 Impossible Differential attack in the Related Key mode

Impossible differential attacks were independently introduced by Biham et al. [4]
and Knudsen [6]. They are widely used as an important cryptanalytic technique.
The attack starts with finding an input difference that can never result in an
output difference, which makes up an impossible differential. By adding rounds
before and/or after the impossible differential, one can collect pairs with certain
plaintext and ciphertext differences. If there exists a pair that meets the input
and output values of the impossible differential under some subkey, these subkeys
must be wrong. In this way, we can filter as many wrong keys as possible and
exhaustively search the rest of the keys.

Notations. Before proceeding let us state a few notations that we will use in
the attack description:

Kr represents the rth round key. This is equal to TKr
1⊕TKr

2 , the first and second
tweakey blocks. Similarly kr[i] = tkr1[i]⊕ tkr2[i] represents the individual ith
tweakey nibble in round r.

Ar represents the internal state before SC in round r, and Ar[i] represents the
ith nibble of Ar.

Br represents the internal state after SC in round r, and Br[i] represents the
ith nibble of Br.

Cr represents the internal state after AT in round r, and Cr[i] represents the
ith nibble of Cr.

Dr represents the internal state after SR in round r, and Dr[i] represents the
ith nibble of Dr.

Er represents the internal state after MC in round r, and Er[i] represents the
ith nibble of Er. Incidentally, we have Er = Ar+1.

Lt represents the t-times composition of LFSR function L.
X represents the corresponding variable X under the related-key difference en-

cryption flow.
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Fig. 3: Related-Key Impossible Differential Trail for 11 round SKINNY 64/128 (grey
cells are the key, white cells are the tweak)



Impossible Differential Trail. Fig. 3 presents the 11-round related key dif-
ferential trail that we use in this paper. We introduce a nibble difference in cell
8 of the combined tweakey. Since the initial difference is in cell number 8, i.e.
in one of the bottom two rows in the tweakey, it does not affect the state in the
first round, and will be introduced in the state from the second round onwards.
Similarly in the backward trail, the difference in the 11th round tweakey appears
in cell 11 (also situated in one of the bottom two rows), due to which we get an
extra round in the backward direction too.

Lemma 1. The equation S(x+∆i)+S(x) = ∆o has one solution x on average
for ∆i, ∆o 6= 0. Similar result holds for the inverse S-Box S−1.

Proof. The above fact can be deduced by analyzing the Differential Distribution
Table (DDT ) of the S-box S as illustrated in Table 1 in the appendix. The
average can be calculated as 1

225 ·
∑
∆i,∆o 6=0DDT (∆i, ∆o) ≈ 1. A similar exercise

can be done for the inverse S-box yielding the same result.

Lemma 2. For random values of x and ∆i, ∆o 6= 0, the equation S(x +∆i) +
S(x) = ∆o holds with probability around 2−4.

Proof. The above fact can also be deduced by analyzing the Differential Distri-
bution Table (DDT ) of the S-box S as illustrated in Table 1 in the appendix.
The probability can be calculated as (let Pr[(x, δi, δo) denote the probablility
that the equation is satisfied for the triplet x, δi, δo)

Pr[(x,∆i, ∆o)] =
∑

δi,δo 6=0

Pr[(x, δi, δo)|∆i = δi, ∆o = δo]Pr[∆i = δi, ∆o = δo]

=
1

225
·

∑
∆i,∆o 6=0

DDT (∆i, ∆o) · 2−4 ≈ 2−4

Attack on 21 rounds. The impossible differential trail described in Fig. 3 can
be extended by 6 and 4 rounds in backward and forward direction as will be
explained in the following two lemmas.

Lemma 3. It is possible to find plaintext pairs P, P and related-tweakey pairs
K,K such that if the tweakey pairs differ only in nibble-position 11, then there is
no difference in the internal state after executing 6 rounds of SKINNY-64/128
with the plaintext-tweakey pairs (P,K) and (P ,K).

Proof. We will proceed to demonstrate how the required plaintext and tweakey
pairs are generated. We choose the nibble at position 11 to introduce the ini-
tial difference because after completing 6 rounds, the difference is shuffled to
the nibble-position 8 of the roundkey and it coincides with the beginning of the
impossible differential trail, shown in Fig. 3. To begin with, it can be seen that
the AddRoundTweakey in the first round can be pushed to after the Mix-
Columns operation, by changing the first round key to Lin(K1) where Lin= MC
◦ SR represents the linear layer (please refer to Fig. 4).



Lin(K1) =


k1[0] k1[1] k1[2] k1[3]

k1[0] k1[1] k1[2] k1[3]

k1[7] k1[4] k1[5] k1[6]

k1[0] k1[1] k1[2] k1[3]


Furthermore, the initial difference between K = TK1

1 + TK1
2 and K = TK1

1 +

TK1
2 can be selected in a specific form, so that in round 6, the tweakey difference

is 0. Let us denote δ1 = tk11[11] + tk11[11] and δ2 = tk12[11] + tk12[11]. In round 6
the difference will appear in location 0 of the roundkey and so we want:

k6[0] + k6[0] = tk61[0] + tk61[0] + tk62[0] + tk62[0]

= tk11[11] + tk11[11] + L3( tk12[11] ) + L3( tk12[11] )

= δ1 + L3(δ2) = 0

So if the attacker chooses δ1, δ2 satisfying the equation δ1+L3(δ2) = 0, then there
is no difference introduced via the roundkey addition in round 6. The attacker
should thus follow the following steps:

1. Take any Plaintext P and compute the state after the first round Mix-
Columns, i.e. E1.

2. Take any 3 nibble difference ∆1, ∆3, ∆4, to construct E1 such that

E1 ⊕ E1 =


0 0 0 0

0 ∆1 0 ∆2

∆3 0 0 0

0 0 0 ∆4


The value of ∆2 will be determined shortly. The attacker can recover P by
inverting the MC, SR, AC and SC layers on E1.

3. The attacker chooses the difference α in cell 14 of E2. She then calculates
k1[1], k1[3], k1[7], so that

B2 ⊕B2 = Lin−1(E2)⊕ Lin−1(E2)

=


0 0 0 0

0 α 0 β

α 0 0 0

0 0 0 α
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Fig. 4: Trail for the forward 6 rounds (the values of active nibbles in red are functions
of δ1, δ2, grey cells are the key, white cells are the tweak, the dark gray cell visualises
the tweakey cancelation)



For example k1[1] is a solution of the equation:

S(E1[5]⊕ k1[1])⊕ S(E1[5]⊕∆1 ⊕ k1[1]) = α

Note that the above equation, according to Lemma 1 has one solution on
average.

4. β needs to be equal to k2[7] ⊕ k2[7] = tk21[7] + tk22[7] + tk21[7] + tk22[7]. This
is equal to tk11[11] + L( tk22[11] ) + tk11[11] + L( tk22[7] ) = δ1 ⊕ L(δ2).
So the attacker chooses δ1 and δ2 satisfying δ1 + L3(δ2) = 0 and calculates
β = δ1 ⊕ L(δ2). ∆2 can then be determined as a solution of the equation:

S(E1[7]⊕ k1[3])⊕ S(E1[7]⊕∆2 ⊕ k1[3]) = β (1)

Again by Lemma 1, there exists on average one solution of the above equa-
tion. The attacker now has the values of ∆1, ∆2, ∆3, ∆4 and so he can com-
pute E1, E1 and hence P, P .

5. However, the attacker still needs that in round 4 the active nibble in cell 1 of
B4 be equal to δ1⊕L2(δ2) to make all the state cells inactive in C4, D4, E4.

6. For that the attacker needs to guess three additional key values in round 1
(i.e. k1[2], k1[4], k1[6]) and three additional key values in round 2 (i.e. k2[1] =
tk11[15] +L(tk12[15]), k2[2] = tk11[8] +L(tk12[8]), k2[6] = tk11[12] +L(tk12[12])).
If the attacker can guess these values, then he knows the actual values
(marked with v) of the state cells for the plaintext pair P, P as opposed
to only differences (marked by 0) in both Fig. 4 and Fig. 5.

7. Guessing the above tweakey nibbles enable the attacker to calculate the
value of B3[1]. She then calculates k3[1] = tk11[7]⊕L(tk12[7]) as follows. Since
D3[1] = B3[1]⊕ k3[1] we should have:

S(D3[1]⊕D3[9]⊕D3[13])⊕ S(D3[1]⊕D3[9]⊕D3[13]) = δ1 ⊕ L2(δ2)

Since the knowledge of the guessed key nibbles already allow the attacker
to calculate D3[9], D3[13], D3[13], k3[1] = tk11[7] ⊕ L(tk12[7]) is the solution
to the above equation. Again Lemma 1 guarantees one solution on average.
Since the attacker has already determined k1[7] = tk11[7]⊕ tk12[7], this gives
her the values of tk11[7] and tk12[7] uniquely.

8. This guarantees that there are no more active nibbles after round 4. The
key difference does not add to the state in round 5, and due to the fact that
δ1 + L3(δ2) = 0, the tweak difference becomes 0 in round 6.

Thus by guessing 6 key nibbles, and calculating 3 key nibbles we can construct
P, P and K,K so that the internal state after 6 rounds has no active nibbles.

Lemma 4. Given C,C as the two output ciphertexts after querying plaintext-
tweakey pairs (P,K) and P ,K as described above, to a 21-round SKINNY-64/128
encryption oracle. Then for a fraction 2−40 of the ciphertext pairs, it is possible
to construct a backward trail for round 21 to round 18 by guessing intermediate
tweakey nibbles so that there are no active nibbles in the internal state at the end
of round 17.
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Proof. The attacker starts working backward from the ciphertext pairs C,C and
proceeds as follows (illustrated in Fig. 5):

1. The attacker rejects ciphertext pairs which do not have 7 inactive cells (i.e.
in cell positions 3, 4, 5, 8, 9, 11, 14) after peeling off the last MixColumns
layer (i.e. D21). Thus a fraction of 2−28 pairs are filtered after this stage.

2. Furthermore, the attacker rejects ciphertext pairs which do not have the
difference δ1 ⊕ L10(δ2) in cell 13 of A21, i.e. reject if A21[13] ⊕ A21[13] 6=
δ1 ⊕ L10(δ2). Since calculating this cell does not require any key guess, the
attacker can do this filtering. Thus a further 2−4 pairs are filtered after this
stage.

3. Since the last two rows of the state are not affected by the tweakey addition
and since tk11[7], tk12[7] are already known, she can calculate the actual values
in the cells 0, 8, 12 in A21 for the ciphertext pairs. These have to be equal
since they are the output of the 20th round MixColumns on column 0 with
only one active nibble in its input. If the active nibble in cell 8 and 12 are not
equal, the attacker can reject the pair. This adds another filter of probability
2−4

4. Continuing the previous point, since the actual values in cell 0 in A21 for
the ciphertext pairs were already calculated in the previous step, she now
checks if the value of the active nibble in cell 0 is equal to the active nibble
in 8, 12. If it is not equal to the active nibble 8, 12 she can reject it. This
adds another filter of probability 2−4.

5. The attacker determines k21[5] = tk11[4]⊕L10(tk12[4]) so that the active nibble
in cell 5 of A21 is δ1 ⊕ L10(δ2). Since A21[5] = S−1( k21[5]⊕ C21[5] ), k21[5]
is a solution to the equation below:

S−1( k21[5]⊕ C21[5] )⊕ S−1( k21[5]⊕ C21[5] ) = δ1 ⊕ L10(δ2)

6. The attacker determines k21[2] = tk11[1] ⊕ L10(tk12[1]) and k21[6] = tk11[2] ⊕
L10(tk12[2]) so that the active nibble in cell 2,6 of A21 is equal to the active
nibble in cell 14. Again this works, since they are output of the 20th round
MixColumns on column 2 with only one active nibble in its input.

7. Additionally the attacker guesses k21[4] = tk11[0]⊕ L10(tk12[0]). This enables
the attacker to compute the actual values for the entire 0th column of A21

and hence D20 after applying the inverse MixColumns.

8. The value of the active nibble in cell 10 of A20 is given as:

A20[10]⊕A20[10] = S−1( B20[10] )⊕ S−1( B20[10] )

= S−1( D20[8] )⊕ S−1( D20[8] ) = η
(2)

Since the 0th column of D20 is known, the attacker can calculate η. This
must be equal to active nibble in cell 14 of A20, (since they are output of the
19th round MixColumns with one active input nibble). This is given as:



A20[14]⊕A20[14] = S−1( D20[13] )⊕ S−1( D20[13])

= S−1( A21[1]⊕A21[13] )⊕ S−1( A21[1]⊕A21[13] )
(3)

A21[1] = S−1( C21[1] ⊕ k21[1] ). Similarly A21[1] = S−1( C21[1] ⊕ k21[1] ).
By calculating Equation (2) and (3) she can solve for k21[1] = tk11[3] ⊕
L10(tk12[3]). One solution on average is guaranteed by Lemma 1.

9. The values tk11[i]⊕ tk12[i] (i = 1, 2, 3, 4), were already determined during the
calculation of the forward trail. So using this the attacker can determine the
actual values tk11[i], tk12[i] (i = 1, 2, 3, 4).

10. The attacker calculates k20[2] = tk11[9]⊕L10(tk12[9]) so that the active nibble
in cell 2 in A20 is equal to the active value η in cell 10, 14 (since they are
output of the 19th round MixColumns with one input active nibble). This
is done by solving

η = A20[2]⊕A20[2] = S−1(C20[2]⊕ k20[2])⊕ S−1(C20[2]⊕ k20[2]) (4)

11. The final condition to be satisfied is that the active nibble in cell 8 of A19

has to be equal to δ1 ⊕ L9(δ2) = γ.

γ = S−1(D19[10])⊕ S−1(D19[10])

= S−1(A20[6]⊕A20[14])⊕ S−1(A20[6]⊕A20[14])
(5)

Note that A20[6] = S−1(C20[6]⊕ k20[6]). And since A20[6] = A20[6], solving
Equation (5) helps to determine k20[6] = tk11[10]⊕ L10(tk12[10]).

Since in the steps 1, 2, 3, 4 a total of 2−28−4−4−4 = 2−40 ciphertext pairs are
filtered the result follows.

3.1 Attack Algorithm

We now put together the findings of Lemma 3 and 4 into an attack procedure
as follows:

1. The adversary chooses a random base plaintext P and gets the corresponding
ciphertext C for (P,K)

2. She choose a fixed δ1, δ2 satisfying δ1 ⊕ L3(δ2) = 0.

3. For each nonzero difference (∆1, ∆3, ∆4) ((24 − 1)3 choices):
– Choose α (24 − 1 choices) and so determine ∆2.

– With the value of (∆1, ∆2, ∆3, ∆4), compute P

– Get the ciphertext C for (P ,K)



– If C ⊕ C does not pass the 2−36 filter (Step 1, 2, 3 in Lemma 4) abort
and start again.

– If they pass the filter: the adversary can guess 7 tweakey cells (228
guesses) and calculate 17 key/tweak cells as follows:

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk
1
2[i] for i = 2, 4, 6 1

2 tk11[i]⊕ L(tk
1
2[i]) for i = 8, 12, 15 2

3 tk11[i]⊕ L
10(tk12[i]) for i = 0 21

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1, 2, 3, 4 21

6 tk11[i]⊕ L
10(tk12[i]) for i = 9, 10 20

The 17 tweakey nibbles used for elimination are therefore:

(a) tk11[i], tk12[i] for i = 1, 2, 3, 4, 7

(b) tk11[i]⊕ L10(tk12[i]) for i = 9, 10

(c) tk11[i]⊕ L10(tk12[i]) for i = 0

(d) tk11[i]⊕ L(tk12[i]) for i = 8, 12, 15

(e) tk11[i]⊕ tk12[i] for i = 6

– A fraction of 2−4 tweakeys will fail the condition required in Step 4 of
Lemma 4.

– Therefore the adversary has a set of 228−4 = 224 wrong key candidates.

The above procedure is repeated with 2x chosen plaintexts till a single key so-
lution remains for the 17 nibbles of the tweakey.

Complexity. For every plaintext: to begin the adversary has (24 − 1)3 choices
of differences, and for each α she has on average 1 values of ∆2. Since there are
24− 1 choices of α there are on average 24− 1 choices of ∆2. This makes a total
of (24 − 1)4 ≈ 216 encryption calls. With 2x such base plaintexts she has 2x+16

encryption calls. With probability 2−36 the adversary gets a workable ciphertext
difference to process. Each such instance generates 228−4 = 224 key candidates
(in 17 nibbles) for elimination. On average after 2x+16−36 = 2x−20 times, she
gets to guess a set of 224 tweakey candidates to eliminate.

Time complexity = max(2x+16, 2x−20+24) = 2x+16

The attacker gets wrong solutions for 2x−20+24 = 2x+4 incorrect solutions for 17
nibbles. To reduce the keyspace to 1 we need:

217×4(1− 2−17×4)2
x+4

≈ 217×4e−2
x−64

= 1

For this we need x = 70. So the total number of encryption calls to 21 round
SKINNY-64/128 is 270+16 = 286.



3.2 2nd Attack

We will present another attack procedure that changes the way the related plain-
text/tweakey pairs are constructed:

1. The adversary chooses the nibble values of the random base variable E1 in
all locations except nibbles indexed by 5, 7, 8, 15.

2. She chooses a fixed δ1, δ2 satisfying δ1 ⊕ L3(δ2) = 0.

3. For each choice of (E1[5], E1[7], E1[8], E1[15]) (216 choices):

– Calculate P by inverting 1st round operations.

– Query the 21 round encryption oracle for P,K and P,K

So for every choice of the base variable E1 we have 217 encryption calls. We
can pair up related plaintext and tweakey pairs in the following way. For every
plaintext Pi choose a plaintext Pj so that E1 for Pi and Pj have a non zero
difference in all the locations 5, 7, 8, 15. For every Pi there will exist (24−1)4 ≈
215.6 values of Pj , and so 216+15.6 = 231.6 pairs to work with. The attack now
proceeds as follows.

1. For each choice of Pi, Pj (231.6 choices):

– Denote P = Pi and P = Pj .

– The attacker can choose α and proceed with the steps of the above attack
with one exception

– She can no longer choose ∆2 as in Step 4 of Lemma 3 since she has
already chosen P, P ,K,K.

– With probability 2−4 (as per Lemma 2), the plaintext pair satisfies Equa-
tion (1) in Step 4 of Lemma 3 and he proceeds if it does. Else abort.

– Get the ciphertext C for (P ,K) and C for P,K.

– If C ⊕ C does not pass the 2−36 filter (Step 1, 2, 3 in Lemma 4) abort
and start again.

– If they pass the filter: the adversary can guess 7 tweakey cells (228
guesses) and calculate 17 key/tweak cells as in previous attack.

– A fraction of 2−4 tweakeys will fail the condition required in Step 4 of
Lemma 4.

– Therefore the adversary has a set of 228−4 = 224 wrong key candidates.

The above procedure is repeated with 2x chosen plaintexts till a single key so-
lution remains for the 17 nibbles of the tweakey.



Complexity. For every base value of E1: the adversary makes 217 encryption
calls. Out of these she has has 231.6 pairs to work with. For each pair, the attacker
can then choose α in 24−1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], k1[7]. Of which only a fraction 2−4 passes
the filter in Equation (1) and so she has 231.6 pairs to work with. In effect for
every Pi, Pj there is only once choice of α on average going forward.
With 2x such base plaintexts she has 2x+17 encryption calls but 2x+31.6 plaintext
and hence ciphertext pairs. With probability 2−36 the adversary gets a workable
ciphertext difference to process. Each such instance generates 228−4 = 224 key
candidates (in 17 nibbles) for elimination. On average after 2x+31.6−36 = 2x−4.4

times, she gets to guess a set of 224 tweakey candidates to eliminate.

Time complexity = max(2x+17 encryptions , 2x−4.4+24 guesses ) = 2x+19.6

The attacker gets wrong solutions for 2x−4.4+24 = 2x+19.6 incorrect solutions for
17 nibbles. To reduce the keyspace to 1 we need:

217×4(1− 2−17×4)2
x+19.6

≈ 217×4e−2
x−48.4

= 1

For this we need x = 55. So the total number of encryption calls to 21 round
SKINNY-64/128 is 255+17 = 272 and total guesses is 274.6.

3.3 Attacking 22 round SKINNY 64/128 in known tweak setting

The above attack can be extended to 22 round SKINNY 64/128 under the
assumption that 48 of the 128 bits in the tweakey is a publicly known tweak
block. In particular we assume that tk11[i], tk12[i] for i = 8, 11, 12, 13, 14, 15 is
reserved for the tweak. The remaining 80 bits constitute the secret key.
In that event he can add one round at the end. Having the 6 of the 8 cells in the
lower half of the tweakey blocks known is helpful in the following way: from the
the ciphertext (which is E22) one can work back to compute E21, if we guess
k22[4, 5] which is tk11[9, 10]⊕L11(tk12[9, 10]), so it allows easy stripping-off of the
extra round that we have added. Thereafter the attack is almost the same as the
previous attack, with the excetion that tweakey indices i = 8, 11, 12, 13, 14, 15
and their functions are known and need not be guesssed.

1. Generate 231.6 plaintext/ciphertext pairs from every base choice of E1 and
217 encryption calls.

2. For each choice of Pi, Pj (231.6 choices):
– Denote P = Pi and P = Pj .

– The attacker can choose α and calculate k1[1], k1[3], k1[7] as per Step 3
of Lemma 3.

– She can no longer choose ∆2 as in Step 4 of Lemma 3 since she has
already chosen P, P ,K,K.

– With probability 2−4, the plaintext pair satisfies Equation (1) in Step 4
of Lemma 3 and he proceeds if it does. Else abort.



– As already outlined: she does not need to guess the round 2 tweakey
nibbles in step 6 of Lemma 3: i.e. functions of k1[8, 12, 15] as these are
in the lower half of the tweakey blocks and assumed to be known.

– Retrieve the ciphertext C for (P ,K) and C for P,K.

– Guess k22[4, 5] which is tk11[9, 10]⊕ L11(tk12[9, 10]) to peel off last round
and get E21.

– If E21⊕E21 does not pass the 2−36 filter (Step 1, 2, 3 in Lemma 4) abort
and start again.

– After determining k20[2] = tk11[9] ⊕ L10(tk12[9]) and k20[6] = tk11[10] ⊕
L10(tk12[10]) in steps 10, 11 of Lemma 4, she can uniquely determine
tk11[9, 10] as tk11[9, 10]⊕ L11(tk12[9, 10]) is already guessed.

– If they pass the filter: the adversary can guess 6 tweakey cells (224
guesses) and calculate 16 key cells as follows.

# Guessed Rnd Calculated Rnd

1 tk11[i]⊕ tk
1
2[i] for i = 2, 4, 6 1

2 tk11[i]⊕ L
10(tk12[i]) for i = 0 21

3 tk11[i]⊕ L
11(tk12[i]) for i = 9, 10 22

4 tk11[i], tk
1
2[i] for i = 7 3

5 tk11[i], tk
1
2[i] for i = 1, 2, 3, 4 21

6 tk11[i], tk
1
2[i] for i = 9, 10 20

The 16 tweakey nibbles used for elimination are therefore:

(a) tk11[i], tk12[i] for i = 1, 2, 3, 4, 7, 9, 10

(b) tk11[i]⊕ L10(tk12[i]) for i = 0

(c) tk11[i]⊕ tk12[i] for i = 6

– A fraction of 2−4 tweakeys will fail the condition required in Step 4 of
Lemma 4.

– Therefore the adversary has a set of 224−4 = 220 wrong key candidates.

The above procedure is repeated with 2x chosen plaintexts till a single key so-
lution remains for the 12 nibbles of the tweakey.

Complexity. For every base value of E1: the adversary makes 217 encryption
calls. Out of these she has has 231.6 pairs to work with. For each pair, the attacker
can then choose α in 24−1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], k1[7]. Of which only a fraction 2−4 passes
the filter in Equation (1) and so she has 231.6 pairs to work with. In effect for
every Pi, Pj there is only once choice of α on average going forward.
With 2x such base plaintexts she has 2x+17 encryption calls but 2x+31.6 plaintext
and hence ciphertext pairs. With probability 2−36 the adversary gets a workable
ciphertext difference to process. Each such instance generates 224−4 = 220 key



candidates (in 16 nibbles) for elimination. On average after 2x+31.6−36 = 2x−4.4

times, she gets to guess a set of 220 tweakey candidates to eliminate.

Time complexity = max(2x+17 encryptions , 2x−4.4+20 guesses ) = 2x+17

The attacker gets wrong solutions for 2x−4.4+20 = 2x+15.6 incorrect solutions for
12 nibbles. To reduce the keyspace to 1 we need:

216×4(1− 2−16×4)2
x+15.6

≈ 216×4e−2
x−48.4

= 1

For this we need x = 54. So the total number of encryption calls to 22 round
SKINNY-64/128 is 254+17 = 271.

4 Conclusion

In this paper, we outline a related-key impossible differential attack against 22
round SKINNY-64/128. Our attack is based on a 11 round impossible differen-
tial trail, to which we prepend and append 6 and 5 rounds before and after the
trail respectively to get an attack on 22 rounds.
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A Permutation PT
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Fig. 6: The permutation PT in the tweakey-schedule has a period of 16.

B Difference Distribution Table

Table 1: Differential Distribution Table
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 . . . . . . . . . . . . . . .

1 . . . . . . . . 4 4 4 4 . . . .

2 . 4 . 4 . 4 4 . . . . . . . . .

3 . . . . . . . . 2 2 2 2 2 2 2 2

4 . . 4 . . . 2 2 . . . 4 2 2 . .

5 . . 4 . . . 2 2 . . 4 . 2 2 . .

6 . 2 . 2 2 . . 2 2 . 2 . . 2 2 .

7 . 2 . 2 2 . . 2 . 2 . 2 2 . . 2

8 . . . . 4 4 . . . . . . 2 2 2 2

9 . . . . 4 4 . . . . . . 2 2 2 2

a . . . . . 4 4 . 2 2 2 2 . . . .

b . 4 . 4 . . . . . . . . 2 2 2 2

c . . 4 . . . 2 2 4 . . . . . 2 2

d . . 4 . . . 2 2 . 4 . . . . 2 2

e . 2 . 2 2 . . 2 . 2 . 2 . 2 2 .

f . 2 . 2 2 . . 2 2 . 2 . 2 . . 2
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Fig. 7: Related-Key Impossible Differential Attack on 22 round SKINNY 64/128 (grey
cells are the key, white cells are the tweak, the dark gray cell visualises the cancelation
of the tweakeys)
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