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Abstract:- In this paper we obtain a weakness in the design specification of ACORN, which is
a competitor of CAESAR competition. We show that there exists a probabilistic linear relation
between message bits and ciphertext bits, which holds with probability greater than 1

2 . This is the
first paper which finds a probabilistic linear relation between message and corresponding ciphertext
bits of ACRON, and which holds with probability greater than 1

2 . We also propose a new type
of CPA attack on ACORN. By our attack method, it is possible to recover full initial state of
the encryption phase of the cipher, and the attack has complexity ≈ 240. After obtaining the
initial state of the encryption phase, one can invert the associated data loading phase and key-IV
initialization phase to recover the secret key bits.
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1 Introduction

ACORN [7, 8] is an authenticated encryption stream cipher, which is a submitted article in CAE-
SAR competition [1]. It is a stream cipher based authenticated encryption cipher. The cipher is
based on LFSRs, nonlinear feedback function and one nonlinear output function. The state size of
the cipher is 293 and the cipher uses 128 bit secret key and 128 bit initialization vector to initialize
the state. After the initialization phase is over the cipher starts producing the ciphertext bits
which is simple XOR of keystream bits and plaintext bits like normal stream cipher. Further, the
cipher generates tag bits, which are required for authentication. The decryption and verification
are similar to the encryption and tag generation process.

Recently, Salam et al. [5] observed state collisions in ACORN. They have obtained collision for
different cases such as: for two different associated data with same key, initialization vector and
same plaintext; for two pairs of different key, initialization vector, and associated data with same
plaintext. They have also obtained a collision for two different plaintext pairs. The basic idea for
finding a collision is to, consider two different states in such a way that after a certain number of
clockings the two states differ only at some desired positions. And for two different plaintexts or
associated data, the difference between the two states cancel out and they generate same states.
For doing this work one need to solve some system of equations involving a certain number of
variables. In the same year, Lafitte et al. [4] have proposed a SAT-based attack on ACORN.

In ISC 2015, Jiao et al. [3] have tried to find a linear relation between the state bits of the cipher
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ACORN by guessing some state bits, but they were unable to produce the final linear relation.
In our work, we obtain a linear relation between the message bits and ciphertext bits, which is
independent of other parameters.

In this paper, we obtain a probabilistic linear relation between plaintext bits and ciphertext bits,
which holds with a probability greater than 1

2 and the relation is independent of secret key or
initialization vector. To obtain this kind of relation we need to find some linear approximation of
nonlinear functions which are used in ACORN. In the last part of this article, we also propose a new
type of attack on ACORN, by using a new chosen plaintext attack model. By this attack technique,
we are able to recover the full state of the cipher in the first round of encryption phase. After that
it is possible to recover the secret key by inverting the key-IV initialization and associated data
loading phase. This is the first work which breaks ACORN with very practical complexity.

The rest of the article is organized as follows: In Section 2 we discuss about the design specification
of ACORN. The probabilistic linear relation between message and ciphertext bits has been derived
in Section 3. Our new CPA attack in described in Section 4. Finally, the article is concluded in
Section 5.

2 Design specification of ACORN

In this section, we discuss about the design specification of ACORN ([7, 8]). This authenticated
cipher is based on 128 bit key and 128 initialization vector. The total state size of the cipher is 293.
The cipher is based on 6 LFSRs of different lengths 61, 46, 47, 39, 37 and 59 and one additional
register of 4 bits. In the first phase, the cipher will be initialized by the 128-bit secret key and
128-bit IV then the cipher goes through the associated data processing phase. The final steps are
encryption phase and tag generation phase. The design specification of the cipher is given in the
following figure 1.
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Figure 1: Design specification of ACORN

ACORN is based on 6 linear feedback functions, one nonlinear feedback function and one nonlinear
output function. The i-th state bit at t-th clocking of the cipher is denoted by st,i and the whole
state at t-th clocking is denoted by st. In each clocking the feedback function of all 6 LFSRs
are linear and the feedback function for the last bit is nonlinear. The expression of the nonlinear
feedback function is given in the following expression,

ft(s
t, at, bt) =1 + st,0 + st,107 + st,61 + st,244st,23 + st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111

+ st,193st,111 + st,230st,66 + st,196st,66 + st,193st,66 + atst,196 + bt(st,12 + st,154 + st,111

+ st,107 + st,61st,193 + st,61st,154 + st,23st,193 + st,23st,160 + st,23st,154 + st,0st,193

+ st,0st,160 + st,0st,154 + st,193st,235 + st,160st,235 + st,154st,235 + st,61st,235 + st,23st,235

+ st,0st,235).

In the expression of the nonlinear feedback function there are two parameters at and bt which can
take either 0 or 1 value. The values of these two parameters vary for different phases of the cipher.
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So depending upon the values of at and bt the expression of the nonlinear feedback function changes
for different phases. The complete form of the state update function is given below,

State update function.

- st,289 = st,289 + st,235 + st,230

- st,230 = st,230 + st,196 + st,193

- st,193 = st,193 + st,160 + st,154

- st,154 = st,154 + st,111 + st,107

- st,107 = st,107 + st,66 + st,61

- st,61 = st,61 + st,23 + st,0

- st+1,j = st,j+1 for j := 0 to 291

- st+1,292 = ft + mt

The cipher is based on one nonlinear output function and the expression is,

Yt = Fy(st,12, st,61, st,154, st,193, st,235)

= st,12 + st,154 + st,61st,193 + st,193st,235 + st,61st,235.

In the key-IV initialization phase and associated data processing phase, the cipher will be clocked for
certain number of clockings without generating any output. In the encryption and tag generation
phase the cipher produces ciphertext and tag as output.

Key-IV initialization phase. In this phase cipher will be initialized by the secret key and by
the initialization vector. The secret key bits are denoted by ki and the initialization vector bits
are denoted by ivi, where i = 0, ..., 127. In this phase the cipher will be clocked for 1792 clockings.
The steps are given below,

- Initialize the whole state to 0; i.e., si = 0 for i = 0, ..., 292.

- m−1792+i = ki and m−1792+128+i = ivi, for i = 0 to 127.

- m−1792+256 = ki mod 128 + 1 for i = 0;
m−1792+256+i = ki mod 128 for i = 1 to 1535.

- Parameters at = 1 and bt = 1 for all clockings.

- Update the state.

Associated data processing phase. After the key-IV initialization phase the cipher moves to
the next phase, which is known as associated data processing phase. In this phase the cipher takes
the associated data as input and update the state without producing any output bits. The general
process is given below,

- mi = adi for i = 0 to l− 1, where l denotes the length of associated data and adi denotes the
bits of associated data.
ml = 1.
ml+i = 0 for i = 1 to 255.
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- ai = 1 for i = 0 to l + 127;
ai = 0 for i = l + 128 to l + 255;
bi = 1 for i = 0 to l + 255.

- Update the state in each clocking for i = 0 to m + 255.

From the above discussion we can observe that if there is no associated data, still the cipher will
be clocked for 256 clockings without generating any output bit. After that cipher moves to next
phase.

Encryption. After the associated data processing phase of the cipher, it moves to the encryption
phase. Here pi denotes the plaintext bit and ci denotes the corresponding ciphertext bit. The
length of the plaintext is denoted by n. The general process of the encryption phase is given below,

- mi = pi for i = 0 to n− 1;
mn = 1;
mn+i = 0 for i = 1 to 255.

- ai = 1 for i = 0 to 383;
ai = 0 for i = 384 to 511;
bi = 0 for i = 0 to 511;

- Update the state in each clocking for i = 0 to 511;
ci = pi + Yi for i = 0 to 511.

Tag generation phase. After the encryption phase the cipher moves to tag generation phase. In
this phase the cipher generates tag corresponding to the plaintext, which are required for verifica-
tion. The tag generation process is given below,

- mi = 0 for i = 0 to 767.

- ai = 1 for i = 0 to 767;
bi = 1 for i = 0 to 767.

- Update the state in each clocking for i = 0 to 767.

- The authentication tag bits are the last t keystream bits.

The decryption and verification phases are same as encryption and tag generation phase. The
detailed description is given in the original article [7].

3 Existence of probabilistic linear relation between message and
ciphertext bits only

In this section, we show that there exists a probabilistic relation between message and ciphertext bits
of ACORN and the probability corresponding to this relation is greater than 1

2 . To find this linear
relation between plaintext bits and ciphertext bits, we need to find some linear approximation of
some nonlinear functions which are used in the design specification of ACORN. To find this relation
we consider only the encryption phase of the cipher. We first find the linear approximation of the
nonlinear feedback function. We consider only the expression when ai = 1 in the encryption phase
(as ai = 0 means st,196 will be absent as linearly) and similar discussion can be done for ai = 0.
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Consider the expression of the nonlinear filter function with at = 1 and bt = 0,

ft(·) =1 + st,0 + st,61 + st,244st,23 + st,160(st,23 + st,244) + (st,230 + st,196 + st,193)(st,66 + st,111)

+ st,107 + st,196.

There are two nonlinear parts one is A = st,244st,23 + st,160(st,23 + st,244) and other one is B =
(st,230 + st,196 + st,193)(st,66 + st,111).

Consider the following truth table 1,

st,244 st,23 st,160 A

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 1: Truth table related to the nonlinear filter function of ACORN.

From this truth table 1 we can easily observe that Pr[A = st,160] = 3
4 .

Now consider the expression of B. From the expression of B we can easily observe that Pr[B =
(st,66 + st,111)] = 3

4 as B = 1 iff st,230 + st,196 + st,193 = 1 and st,66 + st,111 = 1 and 0 for all other
cases.

From the above discussion we have,

Pr[st,244st,23 + st,160(st,23 + st,244) = st,160] =
3

4

Pr[(st,230 + st,196 + st,193)(st,66 + st,111) = (st,66 + st,111)] =
3

4
.

Now we will find the following probability,

Pr[st,244st,23 + st,160(st,23 + st,244) + (st,230 + st,196 + st,193)(st,66 + st,111) = st,160 + st,66 + st,111]

= Pr[A + B = st,160 + st,66 + st,111]

= Pr[A = st,160]Pr[B = st,66 + st,111] + Pr[A = 1 + st,160]Pr[B = 1 + st,66 + st,111]

=
3

4
· 3

4
+

1

4
· 1

4

=
5

8
=

1

2
+

1

8
.

Hence,

Pr[ft(·) = 1 + st,0 + st,61 + st,160 + st,66 + st,111 + st,107 + st,196] =
1

2
+

1

8
. (1)
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Next we find linear approximation of the output function. The expression of the output function
is,

Y t = Fy(st,12, st,61, st,154, st,193, st,235)

= st,12 + st,154 + st,61st,193 + st,193st,235 + st,61st,235.

Let C = st,61st,193 + st,193st,235 + st,61st,235. Consider the following truth table 2,

st,61 st,193 st,235 C 1 + st,61 + st,193 + st,235
0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 0

Table 2: Truth table related to the output function of ACORN.

From this truth table 2, we can easily observe that Pr[st,61st,193 + st,193st,235 + st,61st,235 = 1 +
st,61 + st,193 + st,235] = 3

4 . Hence,

Pr[Yt = st,12 + st,154 + 1 + st,61 + st,193 + st,235] =
1

2
+

1

4
(2)

From the approximation 2, the linear approximation of the ciphertext bit will be,

ci = pi + si,12 + si,154 + 1 + si,61 + si,193 + si,235, (3)

this equation will hold with probability P =
(
1
2 + 1

4

)
.

From the approximation 1, the linear approximation of the nonlinear feedback bit will be,

si+1,292 = pi + 1 + si,0 + si,61 + si,160 + si,66 + si,111 + si,107 + si,196, (4)

this equation will hold with probability Q =
(
1
2 + 1

8

)
.

Now, by using the above two approximations we desire to find a probabilistic relation between
message and ciphertext bits. To obtain this relation we implement the cipher along with these two
approximations in SAGE software [6]. We first re-write the approximated output bit equation 3 in
the following form,

ci = pi + Xi,

where Xi = si,12 + si,154 + 1 + si,61 + si,193 + si,235 (Xi denotes the terms involving only state
bits). Now, we consider Xi’s for 292 clockings. After implementing in SAGE software [6] we have
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observed that these 292 equations (Xi) are linearly independent equations involving 292 initial state
variables (s0,j) only s0,99 variable is absent. We have observed this linear independency by finding
Gröbner bases [2] of this system of equations.

The expression of the feedback bit in the approximated form was,

si+1,292 = pi + 1 + si,0 + si,61 + si,160 + si,66 + si,111 + si,107 + si,196

= pi + Yi,

where Yi = 1 + si,0 + si,61 + si,160 + si,66 + si,111 + si,107 + si,196. To find a probabilistic relation
between message bits and cipherext bits we need to sum the ciphertext bit equations in such a way
that the state bits get canceled. To achieve this, we consider only Xi’s and assume that feedback
bits are only Yi’s but not the plaintext bits. Now, if we can find a relation

∑
i∈AXi = 0, then in the

relation
∑

i∈A ci all the state bits will get cancel only some plaintext, ciphertext bits will remain.

To obtain this type of relation we try to obtain one Xj , j /∈ {0, ..., 291}, which can be written
as linear combination of {X0, ..., X291} by considering Yi’s as feedback bits. To find this we start
from X292 and check whether it belongs to the ideal generated by polynomials X0, ..., X291. We
do all these computations in SAGE software [6] and it has been observed that X325 belongs to the
ideal generated by the polynomials X0, ..., X291, i.e., X325 can be expressed as linear combination

of X0, ..., X291. From this result we can say that ∃ lj ∈ {0, 1} such that X325 =
291∑
j=0

ljXj .

Now, our next aim is to find those Xi ∈ {X0, ..., X291} which contributes in the sum
∑291

j=0 ljXj , i.e.,
we are interested to find the lj ’s those are 1. To find this we have followed basis element replacement
procedure. We choose one Xk ∈ {X0, ..., X291} and check whether the equation Xk belongs to the
ideal generated by the set of equations {X0, ..., Xk−1, X325, Xk+1, ..., X291} or not, if it belongs then
the corresponding lk is 1 otherwise lk is 0, i.e., we choose any one Xk ∈ {X0, ..., X291} and replace
the Xk by X325 from the set {X0, ..., X291} and check whether Xk belongs to the ideal generated
by the new updated set or not, if it belongs then the corresponding coefficient lk is 1 otherwise
0. By following this process we can find the li’s those are 1. By using the SAGE software [6] we
have observed that li = 1 for i ∈ B = {0, 3, 6, 12, 14, 15, 20, 21, 23, 24, 26, 27, 29, 33, 35, 36,
37, 38, 39, 41, 42, 44, 45, 46, 47, 50, 51, 57, 65, 69, 71, 74, 75, 76, 77, 78, 80, 81, 84, 88, 89, 93,
97, 101, 104, 105, 107, 109, 110, 113, 117, 118, 119, 122, 126, 127, 128, 130, 132, 133, 136, 137,
138, 140, 141, 143, 144, 145, 148, 149, 153, 154, 159, 160, 162, 163, 164, 169, 171, 178, 181, 183,
184, 185, 187, 188, 190, 191, 192, 197, 198, 199, 200, 202, 204, 206, 211, 215, 217, 221, 222, 223,
228, 229, 230, 231, 234, 238, 239, 240, 245, 247, 248, 249, 250, 251, 252, 259, 264, 266, 271, 278,
280, 282, 285, 286, 287, 288, 291}. So, now we can write X325 by the linear combination of the

equations {X0, ..., X291} and the linear combination is X325 =
291∑
j=0

ljXj , where lj = 1, ∀j ∈ B and

lj = 0, ∀j /∈ B.

From the above discussion we can observe that X325 +

291∑
j=0

ljXj = 0 (state bits get cancel), where

lj = 1, ∀j ∈ B and lj = 0, ∀j /∈ B. Now we consider the sum
∑
j∈B1

cj , where B1 = B ∪ {325}.
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∑
j∈B1

cj =
∑
j∈B1

pj +
∑
j∈B1

Xj . (5)

Initially to find the relation between Xj ’s we did not consider the plaintext bits in feedback function,
because we wanted to find one relation between Xj ’s such that in the final relation all the state
bits vanishes. Due to the presence of plaintext bits in the feedback bit equation, there will be some
plaintext bits in

∑
j∈B1

Xj , but there will not be any state bits (as they cancel out). We have
observed that the final expression of the sum

∑
j∈B1

pj +
∑

j∈B1
Xj is,∑

j∈B1

pj +
∑
j∈B1

Xj =p0 + p1 + p3 + p7 + p9 + p10 + p12 + p15 + p17 + p18 + p19 + p23 + p24 + p26

+ p27 + p30 + p32 + p34 + p35 + p38 + p40 + p42 + p43 + p44 + p45 + p46

+ p49 + p50 + p51 + p54 + p55 + p57 + p58 + p60 + p62 + p67 + p68 + p70

+ p72 + p73 + p77 + p78 + p79 + p81 + p82 + p88 + p90 + p92 + p93 + p97

+ p101 + p106 + p109 + p112 + p113 + p115 + p116 + p117 + p122 + p123

+ p124 + p125 + p127 + p131 + p132 + p135 + p136 + p138 + p140 + p142

+ p143 + p144 + p145 + p147 + p158 + p159 + p160 + p163 + p164 + p167

+ p169 + p170 + p171 + p173 + p176 + p178 + p179 + p180 + p181 + p182

+ p183 + p184 + p185 + p186 + p187 + p188 + p193 + p194 + p195 + p197

+ p198 + p199 + p200 + p204 + p206 + p207 + p211 + p215 + p217 + p222

+ p225 + p226 + p238 + p239 + p240 + p245 + p247 + p248 + p249 + p250

+ p251 + p252 + p259 + p264 + p266 + p268 + p271 + p278 + p280 + p282

+ p285 + p286 + p287 + p288 + p291 + p325.
(6)

We denote the index set corresponding to above all pi’s by A1. Finally, we have one probabilistic
relation between plaintext bits and ciphertext bits, and the relation is,∑

j∈B1

cj =
∑
j∈A1

pi. (7)

Now we need to find the probability corresponding to this relation 7. To obtain the relation 7 we
need to add the probabilistic ciphertext bits equations for |B1| number of times, where |B1| denotes
the cardinality of the set B1 and the cardinality is 130. Also we have replaced many feedback bits
by its probabilistic expression in terms of the initial state bits. Replacing one feedback bit from
one expression means add the expression of the feedback bit with the considered expression. It

has been observed that if we consider the sum
∑
i∈B1

ci then we need to replace the feedback bits

for 106 times, i.e., we need to add the probabilistic feedback bit equation 4 with the original
equation for 106 times for different clockings. Ciphertext bit expressions are independent to each
other, as different ciphertext bit equations contain different plaintext bits. Also, the feedback bit
equations are independent from the output bit equations. Now, by Piling up lemma the probability
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corresponding to the relation 7 will be,

P =
1

2
+
(

2129 ×
(1

4

)130)
×
(

2105 ×
(1

8

)106)
=

1

2
+

1

2344
.

Finally, we are able to obtain a probabilistic relation between plaintext bits and ciphertext bits,

which is independent of secret key bits, and the relation holds with probability P =
(
1
2 + 1

2344

)
.

The relation is,

F (p, c)⇒
∑
j∈B1

cj =
∑
j∈A1

pi. (8)

From this discussion the following theorem follows,
Theorem 3.1. There exists a linear probabilistic relation F between the message bits and the
corresponding ciphertext bits only, which holds with probability P = 1

2 + 1
2344

.

Note: We have seen that X325 was the first equation which belongs to the ideal generated by the
equations X0, ...., X291. Now if we consider any Xj for j > 325 which belongs to the ideal generated
by the same set of equations, then in the final relations the number of feedback bits will increase, as
in the expression of Xj for j > 325 has more feedback bits than X325. Due to this reason the bias
corresponding to the final linear relation will decrease. Hence it can be said that this is the best
linear relation, which exists between message and ciphertext bits of ACORN, which has highest
bias. In ISC 2015, Jiao et al. [3] have tried to find a probabilistic linear relation between the state
bits of ACORN, in this paper we have come with a probabilistic linear relation between message
and ciphertext bits only.

4 New attack on ACORN

In this section, we discuss about our new attack method on ACORN. In the expression of the state
update function, we can note that the expression of the last feedback bit is st+1,292 = ft + mt,
where ft is a function involving the current state bits of the cipher. The value of the feedback bit
is either 0 or 1. It may happen that for one key, IV and associated data pair, one can find one
message M , such that the value of the last feedback bit will be 0 for all clockings, i.e., st+1,292 = 0
for all clockings, this implies ft+mt = 0⇒ mt = ft for all clockings starting from the first clocking.
If this type of situation occurs then the last register of 4-bit will not affect the ciphertext after 4
clockings, because the state of the last register will be null after 4 clocking. Due to this reason
the affect of the nonlinear feedback function will not be present in the state update function of the
cipher, due to this the degree of the ciphertext bit equation will remain fix. So, for one key, IV
and associated pair there exists one message M which will help us to construct very low degree
keystream bit equations (constant degree), involving the state bits of the cipher. The expression
of the message bits will be,

mt = 1 + st,0 + st,107 + st,61 + st,244st,23 + st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111

+ st,193st,111 + st,230st,66 + st,196st,66 + st,193st,66 + atst,196

= ft(s
t, at),
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where at = 1 for t = 0, ..., 383 and at = 0 for t = 384, ..., 511. So the expression of the message bits
will be,

mt =1 + st,0 + st,107 + st,61 + st,244st,23 + st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111

+ st,193st,111 + st,230st,66 + st,196st,66 + st,193st,66 + st,196,

for t = 0, ..., 383, and

mt =1 + st,0 + st,107 + st,61 + st,244st,23 + st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111

+ st,193st,111 + st,230st,66 + st,196st,66 + st,193st,66,

for t = 384, ..., 511.

Now, if we substitute the expression of the message in terms of the state bits in the expression of
the ciphertext bit equation, then the expression of the ciphertext bit equation will be,

ct = zt + mt

= Ft + ft

= st,12 + st,154 + st,61st,193 + st,193st,235 + st,61st,235 + 1 + st,0 + st,107 + st,61 + st,244st,23

+ st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111 + st,193st,111 + st,230st,66 + st,196st,66

+ st,193st,66 + atst,196,

(9)

where at = 1 for t = 0, ..., 383 and at = 0 for t = 384, ..., 511. As the last feedback bit will be 0 for
all clocking corresponding to the message M , where mt’s are the message bits and mt = ft, then
the degree of the ciphertext bit equations will remain same for all clocking and the degree will be
2. Now, if attacker knows the ciphertext bits corresponding to that desired plaintext bits mt, then
he can construct a system of equations involving the state bits of cipher, the form of the equation
is given in equation 9. Now the question is that how the adversary will able to find the ciphertext
corresponding to the desired message M .

To find the values of the ciphertext bits for all clockings corresponding to the desired message M ,
adversary will use the cipher ACORN as black box in the encryption phase. We assume that the
cipher has gone through key-IV initialization phase and associated data loading phase corresponding
to one key-IV associated data pair (K, IV, ad). Adversary will consider the following function,

ft(s
t, at) =1 + st,0 + st,107 + st,61 + st,244st,23 + st,23st,160 + st,160st,244 + st,230st,111 + st,196st,111

+ st,193st,111 + st,230st,66 + st,196st,66 + st,193st,66 + atst,196,
(10)

where at = 1 for t = 0, ..., 383 and at = 0 for t = 384, ..., 511 and st denotes the state of the
cipher at t-th clocking. Then adversary asks the black box (challenger), in each clocking you apply
this function on your current state and consider the output of the function as plaintext bit, then
encrypt the plaintext bit and provide me the ciphertext bit ct for all clocking. Then the black box
(challenger) does the following computations, it performs this function ft(s

t, at) on current state
of the cipher at t-th clocking and consider that bit as message bit mt = ft(s

t, at) and encrypt that
message bit and output ciphertext bits ct for all clockings.

Now the adversary is having the ciphertext bits ct corresponding to message bits mt for all clockings.
We can observe that this ciphertext C = c0c1... is the ciphertext corresponding to the desired
message M = m0m1.... By using the ciphertext bits ct for all t, adversary can construct fixed
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degree equations (of degree 2) for different clockings, these equations involve only the initial state
bits of the cipher. The form of the equation is described in equation 9.

Finally, the adversary solves the system to get back the values of the initial state bits s0,i, i =
0, ..., 292, of the encryption phase of the cipher. We can observe that the degree of the equation
9 is 2 and it remains same for all clockings, as this message M makes the nonlinear feedback to 0
for all clocking. Now if we linearize the system, we need maximum T =

(
293
2

)
= 42778 number of

variables. After linearizing the system, we can solve the system by Gauss elimination method. As

the modern days computers can do 64 bit operations in one CPU clocks, then we need 7T log72

64 ≈ 240

CPU clocks to solve the system. Hence, the complexity of our attack is very much lesser than the
complexity of exhaustive search on the security parameters. For practical implementation one can
use SAGE [6] to recover the initial state bits. Now after getting the initial state of the cipher in the
encryption phase of the cipher, adversary will run the inverse algorithms of associated data loading
phase and key-IV initialization phase to recover the secret key, which can be done very easily after
knowing the initial state of the encryption phase of ACORN.

Hence, we can observe that an adversary can recover the initial state of encryption phase of ACORN
in 240 complexity, and further can recover the secret key by using inverse algorithms of associated
data loading phase and key-IV loading phase, which can be done very easily. The complexity of
the attack is less than the complexity of the exhaustive search on the security parameter of the
cipher, which is 2128.

5 Conclusion

In this paper, we have proved the existence of linear relation between message and ciphertext
bits only. We have shown that there exists a linear relation between message and corresponding
ciphertext bits, which holds with probability greater than 1

2 even if the cipher uses a secret key &
IV to initialize the state, and in the encryption phase the state bits are involved nonlinearly with
the message. We can also observe that this is the best possible linear relation exists between the
message and ciphertext bits of ACORN. We have also proposed a new attack on ACORN, by this
attack method it is possible to recover the initial state of the encryption phase of the cipher in
240 complexity. Further one can recover the secret key by inverting the associated data loading
algorithm and key-IV initialization algorithm. Hence, it can be seen that we are able to break
ACORN in 240 complexity, which is lesser than the complexity of exhaustive search on the security
parameter.
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