
Comments on “Flaw in the Security Analysis of
Leakage-resilient Authenticated Key Exchange Protocol
from CT-RSA 2016 and Restoring the Security Proof”

Rongmao Chen1,2, Yi Mu1, Guomin Yang1, Willy Susilo1, and Fuchun Guo1

1 Centre for Computer and Information Security Research
School of Computing and Information Technology

University of Wollongong, Australia
2 College of Computer

National University of Defense Technology, China
{rc517, ymu, gyang, wsusilo, fuchun}@uow.edu.au

Abstract. In CT-RSA 2016, Chen, Mu, Yang, Susilo and Guo proposed a strongly
leakage-resilient authenticated key exchange (AKE) protocol [2]. In a rencent
work [1], Chakraborty et al. claimed that they identified a flaw in the security
analysis of Chen et al.’s protocol. In the letter, we point out that the flaw iden-
tified by Chakraborty et al. is invalid and does not exist in the original proof
presented in Chen et al.’s paper.

1 The Strongly Leakage-Resilient AKE Protocol in CT-RSA 2016

Fig. 1 describes Chen et al.’s strongly leakage-resilient AKE protocol. Suppose that k
is the system security parameter. Let G be a group with prime order p and g is a random
generator of G. Let SPHF = (SPHFSetup,HashKG,ProjKG,WordG,Hash,ProjHash)
denote a 2-smooth Smooth Projective Hash Function Family over L ⊂ X and onto the
set Y such that the subset membership problem between L and X is hard. Denote the
hashing key space by HK, the projection key space by HP , the auxiliary input space
by AUX and the witness space byW . Let H1 : {0, 1}∗ → AUX , H2 : G→ Y denote
two collision-resistant hash functions.

Let λ1 = λ1(k) be the bound on the amount of long-term secret key leakage,
λ2 = λ2(k) be that of the ephemeral secret key leakage and Ext1,Ext2,Ext3 be strong
extractors defined as follows: Ext1 : HK×{0, 1}t1(k) → {0, 1}l1(k) is an average-case
(|HK| − λ1, ε1)-strong extractor; Ext2 : {0, 1}u(k) × {0, 1}t2(k) → {0, 1}l2(k) is an
average-case (k − λ2, ε2)-strong extractor; and Ext3 : Y × {0, 1}t3(k) → {0, 1}l3(k) is
an average-case (|Y| − λ1, ε3)-strong extractor.

Let F̂ and F be PRF families and F̃ be a πPRF family defined as follows where the
space of a long-term public key is denoted by Λk.

F̂k,
∑

F̂
,D

F̂
,R

F̂ :
∑

F̂ = {0, 1}l1(k),DF̂ = {0, 1}u(k),RF̂ =W × Zp,

F
k,

∑
F
,D

F
,R

F :
∑

F = {0, 1}l2(k),DF = {0, 1}t1(k),RF =W × Zp,
F̃k,

∑
F̃
,D

F̃
,R

F̃ :
∑

F̃ = {0, 1}l3(k),DF̃ = (Λk)
2×L2×G2×{0, 1}2t3(k),RF̃ = {0, 1}l4(k).

The system parameter is (param,G, p, g,H1, H2,Ext1,Ext2,Ext3, F̂ , F , F̃) where
param← SPHFSetup(1k).

A B
Long-Term Key Generation

hk
$← HashKG(param,L), hk′

$← HashKG(param,L),

hp
$← ProjKG(param,L, hk), hp′

$← ProjKG(param,L, hk′),

rA1

$← {0, 1}t1(k), rA2

$← {0, 1}t2(k), rB1
$← {0, 1}t1(k), rB2

$← {0, 1}t2(k),

lskA = hk, lpkA = (hp, rA1
, rA2

). lskB = hk′, lpkB = (hp′, rB1 , rB2).

Session Execution

eskA
$← {0, 1}u(k), tA

$← {0, 1}t3(k), eskB
$← {0, 1}u(k), tB

$← {0, 1}t3(k),

l̂skA = Ext1(lskA, rA1
), l̂skB = Ext1(lskB, rB1),

êskA = Ext2(eskA, rA2
), êskB = Ext2(eskB, rB2),

(wA, x) = F̂
l̂skA

(eskA) + F
êskA

(rA1
), (wB, y) = F̂

l̂skB
(eskB) + F

êskB
(rB1),

WA = WordG(param,L, wA), X = gx, WB = WordG(param,L, wB), Y = gy,

Erase all state except (eskA,WA, X, tA). Erase all state except (eskB,WB, Y, tB).

(B̂, Â,WA, X, tA)

(Â, B̂,WB, Y, tB)

Session Key Ouput

Set sid = (Â, B̂,WA, X, tA,WB, Y, tB) Set sid = (Â, B̂,WA, X, tA,WB, Y, tB)

aux = H1(sid), KA1
= Y x, aux = H1(sid), KA1

= Xy ,
KA2

= ProjHash(param,L, lpkB,WA, wA, aux), KB2 = Hash(param,L, lskB,WA, aux),
KA3

= Hash(param,L, lskA,WB, aux), KB3 = ProjHash(param,L, lpkA,WB, wB, aux),
sA = Ext3(H2(KA1

)⊕KA2
⊕KA3

, tA ⊕ tB), sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB),
SKA = F̃sA (sid). SKB = F̃sB (sid).

Fig. 1. Framework for CLR-eCK secure AKE

1.1 Security Proof in [2]

Theorem 1. The AKE protocol following the general framework is (λ1, λ2)-CLR-eCK-
secure if the underlying smooth projective hash function is 2-smooth, the DDH assump-
tion holds in G,H1, H2 are collision-resistant hash functions, F̂ and F are PRF families
and F̃ is a πPRF family. Here λ1 ≤ min{|HK|−2 log(1/ε1)−l1(k), |Y|−2 log(1/ε3)−
l3(k)}, λ2 ≤ u(k)− 2 log(1/ε2)− l2(k).

Let session sid∗ = (Â, B̂,W ∗A, X
∗, t∗A,W

∗
B, Y

∗, t∗B) be the target session chosen
by adversaryM. A is the owner of the session sid∗ and B is the peer. We then analyze
the security of the AKE protocol in the following two disjoint cases.

Case I. There exists a matching session, sid∗, of the target session sid∗. Based on the
definition, we can see that for each party, either long-term or ephemeral secret key
remains unknown to the adversary. Without loss of generality, suppose that the ad-
versary obtains at most λ2-bits of the ephemeral secret key of target session sid∗, we

have that êsk
∗
A = Ext2(esk

∗
A, rA2

)
s≡ε2 êsk

′
A

$← {0, 1}l2(k). Therefore, (w∗A, x
∗) =

F̂
l̂skA

(esk∗A) + F
êsk
∗
A
(rA1)

c≡ (w′A, x
′)

$← W × Zp. Similarly, suppose that the ad-

versary obtains at most λ2-bits of the ephemeral secret key of matching session sid∗,

we have that êsk
∗
B = Ext2(esk

∗
B, rB2)

s≡ε2 êsk
′
B

$← {0, 1}l2(k), and thus (w∗B, y
∗) =

F̂
l̂skB

(esk∗B) + F
êsk
∗
B
(rB1

)
c≡ (w′B, y

′)
$← W × Zp. Therefore, regardless of the type

of the reveal query and leakage query, (x∗, y∗) are uniformly random elements in Z2
p

from the view of adversary M. Therefore, K∗A1
= K∗B1

= gx
∗y∗ is computation-

ally indistinguishable from a random element in G according to the DDH assumption
and hence H2(K

∗
A1

) is a uniform random string from the view of M who is given
X∗ = gx

∗
, Y ∗ = gy

∗
. We then have that the seed s∗A for the πPRF function is uni-

formly distributed and unknown to the adversary and thus the derived session key SK∗A
is computationally indistinguishable from a random string. It is worth noting that in this
case we only require F̃ to be a normal PRF.

Case II. There exists no matching session of the test session sid∗.
In this case, the adversary cannot issue LongTermKeyReveal query to reveal the

long-term secret key of B but may issue the leakage query LongTermKeyLeakage to
learn some bit-information of lskB. We prove the security of the AKE protocol as fol-
lows. In the simulation, we modify the security game via the following steps to ob-
tain a new game. We first replace K∗A2

= ProjHash(param,L, lpkB,W ∗A, w∗A, aux∗)
by K∗A2

= Hash(param,L, lskB,W ∗A, aux∗), and then choose W ∗A ∈ X \ L instead
of deriving it from L through the algorithm WordG. One can see that the new game
is identical to the original game from the view of adversary M due to the fact that
ProjHash(param,L, lpkB,W ∗A, w∗A) = Hash(param,L, lskB,W ∗A), and due to the dif-
ficulty of the subset membership problem which ensures that the distribution of X \ L
is indistinguishable from L.

Note that adversaryM may activate a session sid, which is not matching to session
sid∗, with B. Precisely,M can chooseW ∈ X \L (e.g., by replayingW ∗A), sendW to B
and issue SessionKeyReveal(sid) query to learn the shared key. According to the prop-
erty of 2-smooth of the underlying smooth projective hash function, we have that K∗A2

is pairwisely independent from any other such key (denoted by K̃) and all public infor-
mation (i.e., param,L, lpkB,W ∗A, aux∗) and hence H̃∞(K∗A2

|K̃, param,L, lpkB,W ∗A,
aux∗) = |Y|. Suppose that the leakage of lskB is at most λ1-bits (denoted by l̃skB), and
therefore (see Lemma 1), H̃∞(K∗A2

|K̃, param,L, lpkB,W ∗A, aux∗, l̃skB) ≥ H̃∞(K∗A2
|

K̃, param,L, lpkB,W ∗A, aux∗) − λ1 = |Y| − λ1. Therefore, by using the strong ex-

tractor Ext3, it holds that s∗A = Ext3(H2(KA1
)∗ ⊕K∗A2

⊕K∗A3
, t∗A ⊕ t∗B)

s≡ε3 s′A
$←

{0, 1}l3(k). One can see that A obtains a variable s∗A which is pairwisely independent
from any other such variables and thus the derived session key SK∗A is computationally
indistinguishable from a truly random element fromM’s view due to the application of
πPRF, which completes the proof.

Simulation for Non-test Session. Note that for the two cases above, we have to simu-
late the non-test session correctly with the adversary. Specifically, when adversaryM
activates a non-test session withA or B, the session execution simulated should be iden-
tical to the session run by A or B from the view ofM. One can note that this can be
easily guaranteed when the query LongTermKeyReveal(A) or LongTermKeyReveal(B)
is issued in the game. Since we know the long-term secret key of A or B, we can
just select an ephemeral secret key and compute the ephemeral public key correctly
by using the long-term secret key and long-term public key. Nevertheless, if the query

LongTermKeyReveal(A) or LongTermKeyReveal(B) is not issued, that is, without the
long-term secret key ofA or B, the simulation of the non-test session owned byA or B
can no longer be simulated as shown above. In this case, we simulate the session as fol-
lows. Suppose that we are to simulate the session owned by A without knowing lskA,

we pick (r1, r2)
$←W×Zp and then compute WA = WordG(param,L, r1), X = gr2 .

We say that the session simulated in this way can be identical to the real session from
M’s view due to the pseudo-randomness of the PRF. To be more precise, even whenM
obtains at most λ1-bits of lskA through LongTermKeyLeakage(A), the variable l̂skA,
which comes from Ext1(lskA, rA) and inputs to the pseudo-random function F̂ , still
remains unknown to adversary M. Therefore, the value of F̂

l̂skA
(eskA) is computa-

tionally indistinguishable from a random element.

2 The Invalid “Flaw” Shown in [1]

Chakraborty et al. claimed that there is a “flaw” in the security proof of the above AKE
protocol. Fig. 2 illustrates the scenario they used to describe the “problem”.

The “flaw” illustated in Fig. 2 basically claims that Chen et al.’s protocol cannot
be proven secure under the DDH assumption because when the simulator embeds the
DDH problem instance (g, ga, gb, Z) into the simulation, there is a situation that the
simulator cannot answer a session key reveal query made by the adversary. Let πt

∗

B

denote the test (i.e., target) session run by user B and πsA denote a session of user A.
The scenario described in Fig. 2 can be summarized as follows:

1. The simulator embeds the DDH problem into the simulation by setting X = ga for
πsA and Y = gb for πt

∗

B ;
2. The attacker relays X to πt

∗

B which obtains a transcript containing (X,Y);
3. The attacker modifies Y to Ỹ = gc and sends Ỹ to πsA which obtains a transcript

containing (X, Ỹ);
4. The attacker issues a session key reveal query to πsA.
5. Since the simulator cannot compute gac without knowing the value of a or c, the

simulator cannot answer the session key reveal query. But the adversary can com-
pute gac (and hence the final session key of πsA) with the knowledge of c.

The “Flaw” Is Invalid. In the above scenario, the test session πt
∗

B has no matching
session. Below we cite the original definition of “matching session” in the eCK model
[3] which is adopted by Chen et al. in [2]:

“As in the Canetti-Krawczyk model, we define the matching session to an AKE ses-
sion to be the session executed by the other party with the same communications
being transmitted, albeit in different order. For example, in a 2-round protocol, if
A executes the session (O,A, B, commA, commB), then the matching session is
executed by B and has session identifier (P, B,A, commA, commB).”

Although the message πt
∗

B has received is generated by πsA, πt
∗

B and πsA are not
matching sessions and therefore the adversary is allowed to make a session key reveal

query to πsA. Also, with overwhelming probability, there is no other session simulated
by the simulator that has the communication transcript (X,Y) since one of X and Y
will be freshly generated by the simulator in a different session although the adversary
can replay the other one.

Fig. 2. The proof reduction “problem” from [1]

According to the definition of a “fresh” session, when πt
∗

B has no matching ses-
sion, then the adversary cannot corrupt user A. As described in the original proof of
the protocol given above, under this scenario which is referred to as Case 2 in the orig-
inal proof, the security of the session key is based on the security of the SPHF rather
than the difficulty of solving the DDH problem. Therefore, in the above scenario, the

simulator does not need to embed the DDH problem instance into the simulation
at all. As described in the original proof, when there is no matching session, the secu-
rity of the session key generated by the test session πt

∗

B relies on KB3
instead of the

Diffie-Hellman key KB1
. The simulator can simply generate X = gr1 and Y = gr2

with the knowledge of r1 and r2 and answer the session key reveal query to πsA without
any issue.

In conclusion, the “flaw” described in [1] does not exist in the original proof of [2].

References

1. Chakraborty, S., Paul, G., Rangan, C.P.: Flaw in the security analysis of leakage-resilient
authenticated key exchange protocol from ct-rsa 2016 and restoring the security proof. Cryp-
tology ePrint Archive, Report 2016/862 (2016)

2. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F.: Strongly leakage-resilient authenticated key
exchange. In: Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings. pp.
19–36 (2016)

3. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated key exchange.
In: Provable Security. pp. 1–16 (2007)

