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Abstract

We introduce the notion of an Extremely Lossy Function (ELF). An ELF is a family of
functions with an image size that is tunable anywhere from injective to having a polynomial-sized
image. Moreover, for any efficient adversary, for a sufficiently large polynomial r (necessarily
chosen to be larger than the running time of the adversary), the adversary cannot distinguish
the injective case from the case of image size r.

We develop a handful of techniques for using ELFs, and show that such extreme lossiness is
useful for instantiating random oracles in several settings. In particular, we show how to use ELFs
to build secure point function obfuscation with auxiliary input, as well as polynomially-many
hardcore bits for any one-way function. Such applications were previously known from strong
knowledge assumptions — for example polynomially-many hardcore bits were only know from
differing inputs obfuscation, a notion whose plausibility has been seriously challenged. We also
use ELFs to build a simple hash function with output intractability, a new notion we define that
may be useful for generating common reference strings.

Next, we give a construction of ELFs relying on the exponential hardness of the decisional Diffie-
Hellman problem, which is plausible in pairing-based groups. Combining with the applications
above, our work gives several practical constructions relying on qualitatively different — and
arguably better — assumptions than prior works.

1 Introduction
Hash functions are a ubiquitous tool in cryptography: they are used for password verification, proofs
of work, and are central to a variety of cryptographic algorithms including efficient digital signatures
and encryption schemes.

Unfortunately, formal justifications of many of the uses of hash functions have been elusive. The
trouble stems from the difficulty of even defining what security properties a hash function should
satisfy. On one extreme, a hash function can be assumed to have standard security properties such
as one-wayness or collision resistance, which are useless for most of the applications above. On the
other extreme, a hash function can be modeled as a truly random function, where it is assumed
that an adversary only has black-box access. In the so-called random oracle model (ROM) [BR93],
all of the above applications are secure. However, random oracles clearly do not exist and moreover
provably cannot be replaced by any concrete hash function [CGH98]. In this light, it is natural to
ask:

What are useful properties of random oracles
that can be realized by real-world hash functions.
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Some attempts have been made to answer this question; however, many such attempts have
serious limitations. For example Canetti, Goldreich, and Halevi [CGH98] propose the notion
of correlation intractability as a specific feature of random oracles that could potentially have a
standard model instantiation. However, they show that for some parameter settings such standard
model hash functions cannot exist. The only known positive example [CCR16] relies on extremely
strong cryptographic assumptions such as general-purpose program obfuscation. For another
example, Bellare, Hoang, and Keelveedhi [BHK13] define a security property for hash functions
called Universal Computational Extractors (UCE), and show that hash functions with UCE security
suffice for several uses of the random oracle model. While UCE’s present an important step toward
understanding which hash function properties might be achievable and which are not, UCE’s have
several limitations. For example, the formal definition of a UCE is somewhat complicated to even
define. Moreover, UCE is not a single property, but a family or “framework” of assumptions. The
most general form of UCE is trivially unattainable, and some of the natural restricted classes of
UCE have been challenged [BFM14, BST16]. Therefore, it is unclear which versions of UCE should
be trusted and which untrusted.

Similar weaknesses have been shown for other strong assumptions that can be cast as families
of assumptions or as knowledge/extracting assumptions, such as extractable one-way functions
(eOWFs) [BCPR14] and differing inputs obfuscation (diO) [BCP14, ABG+13, GGHW14]. These
weakness are part of a general pattern for strong assumptions such as UCE, eOWFs, and diO
that are not specified by a cryptographic game. In particular, these assumptions do not meet
standard notions of falsifiability ([Nao03, GW11]), and are not complexity assumptions in the sense
of Goldwasser and Kalai [GK16]. (We stress that such knowledge/extracting/framework assumptions
are desirable as security properties. However, in order to trust that the property actually holds, it
should be derived from a “nice” and trusted assumption.) Therefore, an important question in this
space is the following:

Are there primitives with “nice” (e.g. simple, well-established, game-based,
falsifiable, complexity assumption, etc) security properties that can be used to build

hash functions suitable for instantiating random oracles for many protocols.

1.1 Our Work

Our Random Oracle Targets. In this work, we aim to base several applications of random
oracles on concrete, “nice” assumptions with relatively simple instantiations.

• Boosting selective to adaptive security. A trivial application of random oracles is to boost
selective to adaptive security in the case of signatures and identity-based encryption. This is
done by first hashing the message/identity with the random oracle before signing/generating
secret keys. There has been no standard-model security notion for hash functions that allows for
this conversion to be secure, though chameleon hash functions [KR00] achieve this conversion
with a small tweak to the hash-and-sign approach.

• Password hashing. Another common use of hash functions is to securely store a password
in “encrypted” form, allowing for the password to be verified, but hiding the actual password
in case the password database is compromised. This use case is a special instance of point
obfuscation (PO). In the case that there may be side information about the password, we
have the notion of auxiliary input point obfuscation (AIPO). The only prior constructions of
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AIPO [Can97, BP12] rely on very strong knowledge assumptions. The first is Canetti’s [Can97]
strong knowledge variant of the decisional Diffie Hellman (DHH) assumption, whose plausibility
has been called into question by a recent work showing it is incompatible with the existance
of certain strong forms of obfuscation [BST16]. The second is a strong knowledge assumption
about one-way permutations due to Bitansky and Paneth [BP12], which is a strengthening of
Wee’s strong one-way permutation assumption [Wee05]. To the best of our knowledge, the only
known ways to instantiate the [BP12] assumption is to make the tautological assumption that
a particular one-way permutation is secure. For reasons mentioned above, such tautological
knowledge assumptions are generally considered undesirable in cryptography.

• Generating system parameters. A natural use case of hash functions is for generating
common random strings (crs) in a trusted manner. More specifically, suppose a (potentially
untrusted) authority is generating a crs for some protocol. Unfortunately, such a crs may
admit a “trapdoor” that allows for breaking whatever protocol is using it (Dual_EC_DRBG
is a prominent example of this). In order to ensure to untrusting parties that no trapdoor is
known, the authority will generate the crs as an output of the hash function on some input.
The authority may have some flexibility in choosing the input; we wish to guarantee that it
cannot find an input such that it also knows a trapdoor for the corresponding output. In the
random oracle model, this methodology is sound: the authority cannot choose an input so
that it knows the trapdoor for the output. However, standard notions of security for hash
functions do not preclude the possibility of the adversary choosing a strange input the the
hash function so that it knows a trapdoor for the output. We propose (Section 5) the notion of
output intractability as a standard-model security notion that captures this use case. Output
intractability is related to, but incomparable with, the notion of correlation intractability
mentioned above. As an assumption, our notion of output intractability takes the form as
a knowledge assumption on hash functions; no construction based on “nice” assumptions is
known.

• Hardcore bits for any one-way function. A random oracle serves as a good way to
extract many hardcore bits for any one-way function. This fact gives rise to a simple public-
key encryption scheme from trapdoor permutations. Unfortunately, for general one-way
functions, the only known way to extract more than a logarithmic number of hardcore bits is
to use very strong (and questionable [GGHW14]) knowledge assumptions: differing inputs
obfuscation [BST14] or extractable witness PRFs [Zha16]. In the case of one-way permutations,
Bellare, Stepanovs, and Tessaro [BST14] show that the weaker assumption of indistiguishability
obfuscation (iO) suffices. While weaker that diO, iO is still one of the strongest assumptions
made in cryptography. Either way, the forms of obfuscation required are also completely
impractical [AHKM14]. Moreover, prior constructions required the randomness used to sample
the hardcore function to be kept secret.

• Instantiating Full Domain Hash (FDH) signatures. Finally, we consider using random
oracles to instantiate the Full Domain Hash (FDH) protocol transforming trapdoor permuta-
tions into signatures. Hohenberger, Sahai, and Waters [HSW14] show that (indistinguishability)
obfuscating a (puncturable) pseudorandom function composed with the permutation is sufficient
for FDH signatures. However, their proof has two important limitations. First, the resulting
signature scheme is only selectively secure. Second, the instantiation depends on the particular
trapdoor permutation used, as well as the public key of the signer. Thus, each signer needs a
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separate hash function, which needs to be appended to the signer’s public keys. To use their
protocol, everyone will therefore need to publish new keys.

Our approach. We take a novel approach to addressing the questions above. We isolate a
(generally ignored) property of random oracles, namely that random oracles are indistinguishable
from functions that are extremely lossy. More precisely, the following is possible in the random
oracle model. Given any polynomial time oracle adversary A and a non-negligible probability ε,
we can choose the oracle such that (1) the image size of the oracle is a polynomial r (even for
domain/range sizes where a truly random oracle will be injective whp), and (2) A cannot tell the
difference between such a lossy oracle and a truly random oracle, except with advantage smaller
than ε. Note that the tuning of the image size must be done with knowledge of the adversary’s
running time — an adversary running in time O(

√
r) can with high probability find a collision,

thereby distinguishing the lossy function from a truly random oracle. However, by setting
√
r to

be much larger than the adversary’s running time, the probability of finding a collision diminishes.
We stress that any protocol would still use a truly random oracle and hence not depend on the
adversary; the image size tuning would only appear in the security proof. Our observation of this
property is inspired by prior works of Boneh and Zhandry [Zha12, BZ13], who use it for the entirely
different goal of giving security proofs in the so-called quantum random oracle model (random oracle
instantiation was not a goal nor accomplishment of these prior works).

We next propose the notion of an Extremely Lossy Function (ELF) as a standard-model primitive
that captures this tunable image size property. The definition is related to the notion of a lossy
trapdoor function due to Peikert and Waters [PW08], with two important differences: we do not
need any trapdoor, giving hope that ELFs could be constructed from symmetric primitives. On the
other hand, we need the functions to be much, much more lossy, as standard lossy functions still
have exponential image size.

On the surface, extreme lossiness without a trapdoor does not appear incredibly useful, since
many interesting applications of standard lossy functions (e.g. (CCA-secure) public key encryption)
require a trapdoor. Indeed, using an ELF as a hash function directly does not solve most of the tasks
outlined above. Perhaps surprisingly, we show that this extremely lossy property, in conjunction
with other tools — usually pairwise independence — can in fact quite powerful, and we use this
power to give new solutions to each of the tasks above. Our results are as follows:

• (Section 3) We give a practical construction of ELFs assuming the exponential hardness of the
decisional Diffie-Hellman (DDH) problem. The construction is based on the lossy trapdoor
functions due to Peikert and Waters [PW08] and Freeman et al. [FGK+10], though we do not
need the trapdoor from those works. Our construction starts from a trapdoor-less version of
the DDH-based construction of [FGK+10], and iterates it many times at different security
levels, together with pairwise independent hashing to keep the output length from growing
too large. Having many different security levels allows us to do the following: when switching
the function to be lossy, we can do so at a security level that is just high enough to prevent
the particular adversary from detecting the switch. Using the exponential DDH assumption,
we show that the security level can be set low enough so that (1) the adversary cannot detect
the switch, and (2) so that the resulting function has polynomial image size.
The exponential hardness of DDH is plausible on elliptic curve groups — despite over a decade
of wide-spread use and cryptanalysis attempts, there are virtually no non-trivial attacks on
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most elliptic curve groups. In fact, the parameter settings for most real-world uses of the
Diffie-Hellman problem are set assuming the Diffie-Hellman problem takes exponential time to
solve. If our assumption turns out to be false, it would have significant ramifications for the
internet, as it would suggest that parameters for many cryptosystems in practice are set too
aggressively. It would therefore be quite surprising if DDH turned out to not be exponentially
hard on elliptic curves. While not a true falsifiable assumption in the sense of Naor [Nao03] or
Gentry and Wichs [GW11] due to the adversary being allowed to run in exponential time, the
exponential DDH assumption is falsifiable in spirit and naturally fits within the complexity
assumption framework of Goldwasser and Kalai [GK16].

While our ELFs are built from public key tools, we believe such tools are unnecessary and we
leave as an interesting open question the problem of constructing ELFs from symmetric or
generic tools.
We observe that our construction achieves a public coin notion, which is useful for obtaining
public coin hash functions in applications1.

• We give several different hash function instantiations based on ELFs ranging in complexity
and the additional tools used. In doing so, we give new solutions to each of the problems
above. Each construction uses the ELFs in different ways, and we develop new techniques for
the analysis of these constructions. Thus we give an initial set of tools for using ELFs that we
hope to be useful outside the immediate scope of this work.

– The simplest instantiation is just to use an ELF itself as a hash function. Such a function
can be used to generically boost selective security to adaptive security in signatures and
identity-based encryption by first hashing the message/user identity (more details below).

– (Section 4) The next simplest instantiation is to pre-compose the ELF with a pairwise
independent hash function. This function gives rise to a simple (public coin) point
function obfuscation (PO). Proving this requires a new variant of the “leftover hash
lemma” [ILL89], which may be of independent interest.

– (Section 5) A slightly more complicated instantiation is given by post-composing and
ELF with a k-wise independent function. We show that this construction satisfies our
notion of output intractability. It is moreover public coin.

– (Section 6) We then give an even more complicated construction, though still using
ELF’s as the only underlying source of cryptographic hardness. We demonstrate that
our construction is a pseudorandom generator attaining a very strong notion of leakage
resilience for the seed. This property generalizes the strong variant of one-wayness of
Bitansky and Paneth [BP12]. Our construction therefore shows how to instantiate the
knowledge properties conjectured in their work using a more traditional-style assumption.
An immediate consequences of our generator requirement is a (public coin) point function
obfuscation that is secure even in the presence of auxiliary information (AIPO), which was
previously known from either permutations satisfying [BP12]’s one-wayness requirement
(our function is not a permutation), or from Canetti’s strong knowledge variant of

1The construction of [FGK+10] can also be made public coin by tweaking the generation procedure. However,
this necessarily loses the trapdoor, as having a trapdoor and being public coin are incompatible. To the best of our
knowledge, however, we are the first to observe this public coin feature.
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DDH [Can97, BP12]2. Our AIPO construction is qualitatively very different from these
existing constructions, and when plugging in our ELF construction, again relies on just
exponential DDH.
Our generator also immediately gives a family of (public coin) hardcore functions of
arbitrary stretch for any one-way function. Unlike the previous obfuscation-based
solutions, our is both practical, and public coin, and ultimately based on a well-studied
game-based assumption.
Our analysis also demonstrates that our ELF-based function can be used in a standard
random oracle public key encryption protocol [BR93].

– (Section 7) Finally, we give an instantiation that involves obfuscating the composition of
an ELF and a (puncturable) pseudorandom function (but not the permutation) using an
indistinguishability obfuscator. Since we use obfuscation as in Hohenberger, Sahai, and
Waters’ [HSW14] scheme, this construction is still completely impractical and therefore
currently only of theoretical interest. We show that our construction can be used in the
FDH protocol, solving some of the limitations in [HSW14]. In particular, by composing
with an ELF, we immediately get adaptive security as observed above. Our construction
is moreover independent of the permutation (except for the size of the circuit computing
it), and is also independent of the signer’s public key. Thus, our instantiation is universal
and one instantiation can be used by any signer, even using existing keys. Similar
to [HSW14], this construction is still required to be secret coin, even if the underlying
ELF is public coin.

Warm up: generically boosting selective to adaptive security. To give a sense for our
techniques, we show how ELFs can be used to generically boost selective to adaptive security in
signatures and identity-based encryption. We demonstrate the case for signatures; the case for
identity based encryption is almost identical.

Recall that in selective security for signatures, the adversary commits to a message m∗ at the
beginning of the experiment before seeing the public key. Then the adversary makes a polynomial q
adaptive signing queries on messages m1, . . . ,mq, receiving signatures σ1, . . . , σq. It is required that
mi 6= m∗ for any i. Then, the adversary produces a forged signature σ∗ on m∗, and security states
that σ∗ is with overwhelming probability invalid for any efficient adversary. Adaptive security, in
contrast, allows the adversary to choose m∗ potentially after the q adaptive queries.

We now convert selective to adaptive security using ELFs: first hash the message using the ELF,
and then sign. Adaptive security is proved through a sequence of hybrids. The first is the standard
adaptive security game above. Toward contradiction, suppose that the adversary runs in polynomial
time t and succeeds in forging a signature on m∗ with non-negligible probability ε. In the second
hybrid, the ELF is selected to have polynomial image size r, where r ≥ 2q is chosen, say, so that no
t-time adversary can distinguish between this ELF and an injective ELF, except with probability at
most ε/2. Thus, in this hybrid, the adversary still successfully forges with probability ε/2.

In the next hybrid, at the beginning of the experiment, one of the r image points of the ELF, y∗,
is chosen at random3. Then we abort the experiment if the adversary’s chosen m∗ does not hash to

2One drawback of our construction — which is shared with some of the prior constructions — is that we achieve
a relaxed notion of correctness where for some sparse “bad” choices of the obfuscation randomness, the outputted
program may compute the wrong function.

3The ability to sample a random image point does not follow immediately from our basic ELF definition, though
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y∗; with probability 1/r, we do not abort4. This abort condition is independent of the adversary’s
view, meaning that we do not abort, and the adversary successfully forges, with probability at least
ε/2r, which is non-negligible. Notice now that y∗ can be chosen at the beginning of the experiment.
This is sufficient for obtaining an adversary for the selective security of the original signature scheme.

1.2 Complexity Absorption

Not all assumptions are created equal, and it may be more reasonable to assume the sub-exponential
or exponential hardness of an existing well-studied problem than to assume such hardness for
new and untested problems. Moreover, there might be implementation issues (such as having to
re-publish longer keys, see Section 7 for a setting where this could happen) that make assuming the
sub-exponential hardness of certain primitives undesirable.

The result above can be seen as an instance of a more general task of complexity absorption,
where an extra complexity-absorbing primitive (in our case, and ELF) is introduced into the protocol.
The original building blocks of the protocol (the underlying signature/identity-based encryption in
this case) can be reduced from (sub)exponential security to polynomial security. Meanwhile, the
complexity-absorbing primitive may still require exponential hardness as in our case, but hopefully
such hardness is a reasonable assumption. Our hardcore function with arbitrary span can also be
seen in this light: it is straightforward to extend Goldriech-Levin [GL89] to a hardcore function
of polynomial span for exponentially-secure one-way functions. By introducing an ELF into the
hardcore function, the ELF can absorb the complexity required of the one-way function, yielding
a hardcore function for any one-way function, even one-way functions that are only polynomially
secure. Similarly, our random oracle instantiation for Full Domain Hash can also be seen as an
instance of complexity absorption.

Thus, our work can be seen as providing an initial set of tools and techniques for the task of
complexity absorption that may be useful in other settings where some form of sub-exponential
hardness is difficult or impossible to avoid. For example, Rao [Rao14] argues that any proof of
adaptive security for multiparty non-interactive key exchange (NIKE) will likely incur an exponential
loss. As all current multiparty NIKE protocols are built from multilinear maps or obfuscation,
which in turn rely on new, untested (and in many cases broken) hardness assumptions, assuming
the sub-exponential security of the underlying primitives to attain adaptive security is undesirablee.
Hofheinz et al. [HJK+14] give a construction in the random oracle model that only has a polynomial
loss; our work gives hope that a standard model construction based on ELFs may be possible where
the ELF is the only primitive that needs stronger than polynomial hardness.

For a more ambitious example, Garg, Gentry, Sahai, and Waters [GGSW13] argue that any proof
of security of witness encryption and obfuscation will also likely incur an exponential loss. This
suggests that at least one of the underlying assumptions (those on multilinear maps) will need to be
sub-exponentially secure. An intriguing possibility is to use ELFs (or some other (sub)exponentially
secure primitive with better-understood security) to absorb the complexity, yielding an obfuscation
construction from a constant number of assumptions without assuming the sub-exponential hardness

this can be done in our construction. If the ELF is regular, then this can be accomplished by sampling a random
input to the ELF and then applying the ELF. More generally, if it is possible to efficiently enumerate all the image
points, then randomly sampling an image point is easy. Of course, enumerating all the image points will take time at
least r, which is larger than the running time of the adversary, but can still potentially be done efficiently.

4We also need to abort if any of the mi do hash to yi. It is straightforward to show that we still do not abort with
probability at least 1

2r
.
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of multilinear maps.

1.3 Non-black box simulation

Our proofs inherently require knowledge of the adversary’s running time (and success probability).
Thus, they do not make black box use of the adversary. Yet, this is the only non-black box part
of our proofs — the reduction does not need to know the description or internal workings of the
adversary. This is similar to the case of Goldreich-Levin [GL89], where only the adversary’s success
probability is needed. Thus our reductions are very nearly black box, while potentially giving means
to circumvent black-box impossibility results. For example, proving the security of AIPO is known
to require non-black box access to the adversary [Wee05, BP12], and yet our reduction proves the
security of AIPO knowing only the adversary’s running time and success probability. We leave it as
an interesting open question to see if your techniques can be used to similarly circumvent other
black box impossibility results.

1.4 On the minimal assumptions needed to build ELFs

We show how to construct extremely lossy functions from a specific assumption on elliptic curve
groups. One could also hope for generic constructions of ELFs based on existing well-studied
primitives. Unfortunately, this appears to be a difficult task, and there are several relevant black-
box barriers to constructing ELFs. For example, lossy functions (even standard ones) readily
imply collision resistance [PW08], which cannot be built from one-way functions in a black-box
fashion [Sim98]. Rosen and Segev [RS09] show a similar separation from functions that are secure
under correlated products. Pietrzak, Rosen, and Segev [PRS12] show that efficiently amplifying
lossiness in a black box way is impossible — this suggests that building ELFs from standard lossy
functions will be difficult, if not impossible.

Perhaps an even stronger barrier to realizing ELFs from standard assumptions is the follow-
ing. Our assumption, unfortunately, is about exponential-time adversaries, as opposed to typical
assumptions about polynomial-time adversaries. One could hope for basing ELFs on standard
polynomial assumptions, such as polynomial DDH. However, we now argue that this would require
major breakthroughs in complexity theory. Indeed, lossy and injective modes of an ELF can be
distinguished very efficiently using a super-logarithmic amount of non-determinism as follows. Let
D = [2ω(logm)] where m is the number of input bits to the ELF. In the injective mode, there will be
no collisions when the domain is restricted to D. However, in the lossy mode for any polynomial
image size r = r(m), there is guaranteed to be a collision in D. Points in D can be specified
by ω(logm) bits. Therefore, we can distinguish the two modes by non-deterministically guessing
two inputs in D (using ω(logm) bits of non-determinism) and checking that they form a collision.
Therefore, if NP restricted to any super-logarithmic amount of non-determinism was solvable in
polynomial time, then this algorithm could be made efficient while removing all non-determinism.
Such an algorithm would violate ELF security.

Theorem 1.1. If ELFs exist, then for any super-logarithmic function t, NP with t bits of non-
determinism is not solvable in polynomial time.

Therefore, it seems implausible to base ELFs on any polynomially-secure primitive, since it is
consistent with our current knowledge that NP with, say, log2 bits of non-determinism is solvable
in polynomial time, but polynomially-secure primitives exist. This may seem to suggest that
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ELFs are too strong of a starting point for our applications; to the contrary, we argue that for
most of our applications — point functions5 (Section 4), output intractability (Section 5), and
polynomially-many hardcore bits for any one-way function (Section 6) — similar barriers exist to
realizing those applications. Therefore, this limitation of ELFs is actually inherent to any primitive
strong enough to realize the applications.

Therefore, instead of starting from standard polynomially-secure primitives, we may hope to
build ELFs generically from, say, an exponentially secure primitive which has a similar limitation.
Can we build ELFs from exponentially secure (injective) one-way functions? Exponentially-secure
collision resistant hash functions? To what extent do the black-box barriers above extend into the
regime of exponential hardness? We leave these as interesting open questions for future work.

2 Preliminaries
Given a distribution D over a set X , define the support of D, Supp(D), to be the set of points in X
that occur with non-zero probability. For any x ∈ X , let Pr[D = x] be the probability that D selects
x. For any set X , define UX to be the uniform distribution on X . Define the collision probability of
D to be

CP (D) = Pr[x1 = x2 : x1, x2 ← D] =
∑
x∈X

Pr[D = x]2 .

Given two distributions D1,D2, define the statistical distance between D1 and D2 to be

∆(D1,D2) = 1
2
∑
x∈X

∣∣Pr[D1 = x]− Pr[D2 = x]
∣∣ .

Suppose Supp(D1) ⊆ Supp(D2). Define the Rényi Divergence between D1 and D2 to be

RD(D1,D2) =
∑

x∈sup(D1)

Pr[D1 = x]2

Pr[D2 = x]
6 .

The Rényi divergence is related to the statistical distance via the following lemma:

Lemma 2.1. For any distributions D1,D2 over a set Z such that Supp(D1) ⊆ Supp(D2),

∆(D1,D2) ≤ 1
2

√
RD(D1,D2)− 1 .

Consider a distribution H over the set of functions h : X → Y. We say that H is pairwise
independent if, for any x1 6= x2 ∈ X , the random variables H(x1) and H(x2) are independent and
identically distributed, though not necessarily uniform. Similarly define k-wise independence. We
say that H has output distribution D if for all x, the random variable H(x) is identical to D. Finally,
we say that H is uniform if it has output distribution UY

7. We will sometimes abuse notation
and say that a function h is a pairwise independent function (resp. uniform) if h is drawn from a
pairwise independent (resp. uniform) distribution of functions.

5The case of point functions is more or less equivalent to a similar result of Wee [Wee05].
6Often, the Rényi Divergence is defined to be proportional to the logarithm of this quantity. For our purposes, this

representation of the divergence will be more convenient.
7Note that the typical use of pairwise independence is equivalent to our notion of pairwise independence plus

uniformity. For our purposes, it will be convenient to separate out the two properties.
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We will say that a (potentially probabilistic) algorithm A outputting a bit b distinguishes two
distributions D0,D1 with advantage ε if the random variables A(D0) and A(D1) have ε statistical
distance.

Unless otherwise stated, all cryptographic protocols will implicitly take a security parameter
λ as input. Moreover, any sets (such as message spaces, ciphertext spaces, etc) will be implicitly
indexed by λ, unless otherwise stated. In this context, when we say that an adversary is efficient,
we mean its running time is polynomial in λ. A non-negative function ε is negligible if it is smaller
than any inverse polynomial. When discussing cryptographic protocols, we say that a probability of
an event or advantage of an adversary is negligible if it is negligible in λ. Two distributions D0,D1
(implicitly parameterized by λ) are computationally indistinguishable if any efficient algorithm has
only negligible distinguishing advantage.

2.1 A New Leftover Hash Lemma

Here we prove a new variant of the leftover hash lemma which will be useful in some of our analysis,
and may be of independent interest.

Lemma 2.2. Let H be a distribution on functions h : X → Y that is pairwise independent with
output distribution E, for some distribution E that is possibly non-uniform. Let D be an arbitrary
distribution over X . Then we have that

∆
(

(H,H(D)) , (H, E)
)
≤ 1

2

√
CP (D)

(
|Supp(E)| − 1

)
Proof. Our proof will proceed analogously to the proof of the original Leftover Hash Lemma [ILL89].
[ILL89] proceeds by bounding the collision probability of (H,H(D)), and then showing that distri-
butions with low collision probability must be close to uniform. In general, the collision probability
of a distribution F is equivalent to the Rényi divergence RD(F , U) between F and the uniform
distribution, up to an overall scaling factor. Therefore, [ILL89] can be equivalently proved by bound-
ing the Rényi divergence, and then relating the divergence to statistical distance using Lemma 2.1.
This is the view we use for our proof.

Given the following claim and Lemma 2.1, Lemma 2.2 follows:

Claim 2.3. RD( (H,H(D)) , (H, E) ) = 1 + CP (D)(|Supp(E)| − 1)

We now prove the claim. First,

RD( (H,H(D)) , (H, E) ) =
∑
h,y

Pr[H = h ∧ h(D) = y]2

Pr[H = h]Pr[E = y] =
∑
y

∑
h Pr[H = h] Pr[h(D) = y]2

Pr[E = y] .

Now, notice that Pr[h(D) = y]2 = Pr[h(x1) = y ∧ h(x2) = y : x1, x2 ← D], so that∑
h

Pr[H = h] Pr[h(D) = y]2 = Pr[H(x1) = y ∧H(x2) = y : x1, x2 ← D] .

Also, notice that Pr[E = y] = Pr[H(x1) = y] for any x1 ∈ X . Therefore, we can write

RD( (H,H(D)) , (H, E) ) =
∑
x1,x2

Pr[X = x1] Pr[X = x2]
∑
y

Pr[H(x1) = y|H(x2) = y] .

10



Now we divide into two cases. If x1 = x2, then Pr[H(x1) = y|H(x2) = y] = 1, so
∑
y Pr[H(x1) =

y|H(x2) = y] = |Supp(E)|. If x1 6= x2, then by independence Pr[H(x1) = y|H(x2) = y] =
Pr[H(x1) = y] = Pr[E = y], so

∑
y Pr[H(x1) = y|H(x2) = y] =

∑
y Pr[E = y] = 1. Therefore,

RD( (H,H(D)) , (H, E) ) =
∑
x

Pr[D = x]2|Supp(E)|+
∑
x1 6=x2

Pr[D = x1] Pr[D = x2]

= CP (D)|Supp(E)|+ (1− CP (D)) = 1 + CP (D)(|Supp(E)| − 1) .

This completes the proof of the claim, completing the proof of Lemma 2.2.

3 Extremely Lossy Functions
Here, we define our notion of extremely lossy functions, or ELFs. A standard lossy function [PW08]
is intuitively a function family with two modes: an injective mode where the function is injective,
and a lossy mode where the image size of the function is much smaller than the domain. The
standard security requirement is that no polynomial-time adversary can distinguish the two modes8.

An ELF is a lossy function with a much stronger security requirement. In the lossy mode, the
image size can be taken to be a polynomial r. Clearly, such a lossy mode can be distinguished
from injective by an adversary running in time O(

√
r) that simply evaluates the function on

√
r

inputs, looking for a collision. Therefore, we cannot have security against arbitrary polynomial-time
attackers. Instead, we require security against rc-time attackers, for some c ≤ 1/2. Moreover, we
require that r is actually tunable, and can be chosen based on the adversary in question. This
means that for any polynomial time attacker, we can set the lossy function to have domain r for
some polynomial r, and the lossy function will be indistinguishable from injective to that particular
attacker (note that the honest protocol will always use the injective mode, and therefore will not
depend on the adversary in any way).

Definition 3.1. An extremely lossy function (ELF) consists of an algorithm ELF.Gen. ELF.Gen
which takes as input integers M and r ∈ [M ]. There is no security parameter here; instead, logM
acts as the security parameter. ELF.Gen outputs the description of a function f : [M ]→ [N ] such
that:

• f is computable in time polynomial in the bit-length of its input, namely logM . The running
time is independent of r.

• If r = M , then f is injective with overwhelming probability (in logM).

• For all r ∈ [M ], |f([M ])| ≤ r with overwhelming probability. That is, the function f has
image size at most r.

• For any polynomial p and non-negligible function ε (in logM), there is a polynomial q such
that: for any adversary A running in time at most p, and any r ∈ [q(logM),M ], we have that
A distinguishes ELF.Gen(M,M) from ELF.Gen(M, r) with advantage less than ε. Intuitively, no
polynomial-time adversary A can distinguish an injective from polynomial image size (where
the polynomial size depends on the adversary’s running time.).

8[PW08] additionally require that, in the injective mode, there is a trapdoor that allows inverting the funciton. We
will not need any such trapdoor
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For some applications, we will need an additional requirement for ELFs:

Definition 3.2. An ELF has an efficiently enumerable image space if, for any polynomial r, there
is an efficient procedure that, given f ← ELF.Gen(M, r), outputs the entire list of (at most r) image
points of f with overwhelming probability.

We note that enumerating the image space for an ELF is equivalent to sampling a random image
point. In one direction, having the list of image points makes it trivial to sample a random point.
In the other, by sampling λr log r image points independently at random, except with negligible
probability in λ, the set of sampled points will contain every image point.

Definition 3.3. An ELF is public coin if the description of an injective mode f outputted by
ELF.Gen(M,M) is simply the random coins used by ELF.Gen(M,M). The descriptions of lossy mode
f ’s outputted by ELF.Gen(M, r), r < M may (and in fact, must) be a more complicated function of
the random coins.

3.1 Constructing ELFs

Our construction is based on the DDH-based lossy trapdoor function of Peikert and Waters [PW08].
We stress that we do not need the trapdoor property of their construction, only the lossy property.
Security will be based on the exponential hardness of the decisional Diffie-Hellman problem.

Definition 3.4. A cryptographic group consists of an algorithm GroupGen that takes as input a
security parameter λ, and outputs the description of a cyclic group G of prime order p ∈ [2λ, 2× 2λ),
and a generator g for G such that:

• The group operation × : G2 → G can be computed in time polynomial in λ.

• Exponentiation by elements in Zp can be carried out in time polynomial in λ. This follows from
the efficient group operation procedure by repeated doubling and the fact that log p ≤ λ+ 1.

• The representation of a group element h has size polynomial in λ. This also follows implicitly
from the assumption that the group operation is efficient.

We now introduce some notation. For a matrix A ∈ Zm×np , we write gA ∈ Gm×n to be the m×n
matrix of group elements gAi,j . Similarly define gw for a vector w ∈ Znp . Given a matrix Â ∈ Gm×n

of group elements and a vector v ∈ Znp , define Â · v to be ŵ ∈ Gm where ŵi =
∏n
j=1 Â

vj

i,j . Using
this notation, (gA) · v = gA·v. Therefore, the map gA,v 7→ gA·v is efficiently computable.

Definition 3.5. The exponential decisional Diffie Hellman (eDDH) assumption on a cryptographic
group specified by GroupGen holds if there is a polynomial q(·, ·) such that the following is true. For
any time bound t and probability ε, let λ = log q(t, 1/ε). Then for any adversary A running in time
at most t, the following two distributions are indistinguishable, except with advantage at most ε:

(G, g, ga, gb, gc) : (G, g, p)← GroupGen(λ), a, b, c← Zp and
(G, g, ga, gb, gab) : (G, g, p)← GroupGen(λ), a, b← Zp

The following will help us achieve a public coin ELF.

Definition 3.6. A cryptographic group is public coin if the following holds:
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• The “description” of G, g, p is just the random coins sampled by GroupGen.

• There is a (potentially redundant) efficiently computable representation of group elements
in G as strings in {0, 1}n such that (1) a random string in {0, 1}n corresponds to a random
element in G, and (2) a random representation of a random element in G is a random string
in {0, 1}n.

A plausible candidate for a cryptographic group supporting the eDDH assumption are groups
based on elliptic curves. Despite over a decade or research, essentially no non-trivial attack is known
on general elliptic curve groups. Therefore, the eDDH assumption on these groups appears to be a
very reasonable assumption. We note that groups based on elliptic curves can be made public coin.

Construction. Our construction is as follows. We first describe the injective mode (r = M).
Assume M = 2k is a power of two. Let N = M3 = 23k.

• For λ = 1, . . . , k, let (Gi, gi, pi)← GroupGen(i).

• Let ni be the smallest integer such that pni
i ≥ N .

• Choose pairwise independent uniform functions hi : Gk+ni−1
i−1 → Zni

pi
for i = 2, . . . , k

• Choose random matrices A(i) ∈ Z(k+ni)×ni
pi . Let Â(i) = gA(i)

i .

• Choose a pairwise independent uniform function h1 from [M ] into Zn1
p1 .

• Choose a pairwise independent uniform function hi+1 : Gk+ni
i → [N ].

• Output {Gi, gi, pi, hi, Â(i)}i∈[k] as the description of f .

To evaluate f on input x ∈ [M ], do the following.

• Let x(1) = h1(x).

• For i ∈ [k], let y(i) ← Â(i) · x(i) = gA(i)·x(i)
i ∈ Gk+ni

pi
, x(i+1) ← hi+1(y(i)).

• Output x(k+1) ∈ [N ]

x

x(1) x(2)

y(2)y(1)

x(3)

f
g
(A(1) · )
1 g

(A(2) · )
2

h1 h2 h3

Figure 1: An example instantiation for k = 2.
A diagram of the evaluation of f is given in Figure 1. We observe that:

13



• For any f , the number of possible y(i) values is always at most M . Therefore, since the hi
for i > 1 are chosen to be pairwise independent and random with co-domain of size at least
N = M3, the probability that there exists a collision in hi is at most M2/N = 1/M , which is
negligible in logM .

• With overwhelming probability, each of the A(i) has full rank. Therefore, the operation
x(i) → Â(i) · x(i) = gA(i)·x(i)

i is injective.

• Thus, each step of the evaluation of f , and hence f itself, is injective, with overwhelming
probability.

• The elements of Â(i) are just random independent elements in the group. Therefore, if the
group is public coin, these elements can be sampled in a public fashion. Therefore, the ELF is
public coin.

We now describe the lossy modes of f . Given r < M , let i be the integer such that 2i ∈ (r/4, r/2].
The entire construction is the same, except that we choose A(i) to be a random rank 1 matrix. This
means that the number of possible A(i) · x(i), and hence the number of possible gA(i)·x(i)

i , is at most
pi < 2× 2i ≤ r. Hence the image size is at most r, as desired.

For security, first we note that if an adversary can distinguish Â(i) = gA(i)
i for a random matrix

A(i) from the case of a random rank-1 matrix A(i) with advantage ε, it is straightforward to obtain an
adversary running in approximately the same time that distinguishes gi, gai , gbi , gci from gi, g

a
i , g

b
i , g

ab
i

with advantage ε/(ni(k + ni)) ≥ ε/12k2.
Let t be a polynomial in k = logM , ε a non-negligible function in k. Let q be the polynomial

guaranteed by the eDDH assumption. Let q′(k) = 4q(t(k), ε(k)/12k2). Then for any r ≥ q′(k), we
have that i > q(t(k), ε(k)/12k2). This means no t-time adversary can distinguish gi, gai , gbi , gci from
gi, g

a
i , g

b
i , g

ab
i except with advantage at most ε/12k2. In turn, no t-time adversary can distinguish

A(i) being full rank or rank 1, except with advantage ε. Thus the lossy mode with image size r is
indistinguishable from the injective mode, as desired.

Lastly, we describe an efficient image-enumeration procedure for our ELFs. As noted above, it
suffices to devise an efficient algorithm that samples a random image point in the lossy mode. Our
algorithm simply samples a random domain point, and then applies f to get the image point. To
prove that this works, we make the following observations:

• Fix A(i) to be rank-1, and let S(i) be the set of possible values of Â(i) · v ∈ Gk+ni
pi

. Note that
|S(i)| = pi.

• Except for the step y(i) = Â(i) · x(i) for the i determined from r as above, all steps of the
computation of f are injective. Thus, it suffices to show that, for a fixed f , on input a random
x, y(i) will be a random element in S(i).

• Fix the entire description of f except for hi. Since all the prior steps are injective, and since
x(i) is the output of a pairwise independent function, the map x 7→ y(i) is pairwise independent.
Let Di be the output distribution of this map, which is the distribution of y(i) under a random
hi for any fixed x. Then Di has support pi. Therefore, we can appeal to Lemma 2.2 and see
that, given h, the distribution on y(i) for a random x is within a distance 1

2

√
1
M (pi − 1) of Di.

This distance is negligible.
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• It remains to show that the distribution Di is random. Indeed, the uniformity of hi guarantees
that for any fixed x, x(i) is uniform. Therefore, since the map x(i) 7→ y(i) = Â(i) · x(i) is
regular, y(i) is uniform.

Thus we get the following theorem:

Theorem 3.7. If there exists a cryptographic group where the eDDH assumption holds, then ELFs
with efficiently enumerable images exist. Moreover, if the group is public coin, then so is the ELF.

4 Point Function Obfuscation
A (expanding) random oracle H serves as a good point function obfuscator: to obfuscate the point

function Ix(x′) =
{

1 if x′ = x

0 if x′ 6= x
, simply output y = H(x). Then to run the “program” on input

x′, simply check that H(x′) = y. For any x that is drawn from an source with super-logarithmic
min-entropy, an adversary making a polynomial number of queries to H will not be able to determine
x from y. Thus, x is hidden to all efficient adversaries.

In this section, we show how to use ELFs to implement a concrete function H for which the
strategy above still yields a secure point obfuscation (PO).

Definition 4.1. A point obfuscator (PO) is an efficient probabilistic algorithm O with the following
properties:

• (Almost Perfect Correctness) On input a point function Ix, with overwhelming probability
over the random coins of O, O outputs the description of a program P that is functionally
equivalent to Ix. P must run in time polynomial in the length of x and the security parameter.

• (Secrecy) For any distribution D over a set X with super-logarithmic min-entropy, the
distribution O(Ix) for x← D is computationally indistinguishable from O(Ix′) where x′ ← UX .

Before giving our construction, we show that a point obfuscator implies a separation from NP
with super-logarithmic non-determinism and P. Thus, any primitive used to build point obfuscation,
such as ELFs, must necessarily imply such a separation. This is essentially the same statement as a
theorem of Wee [Wee05].

Theorem 4.2. If Point Obfuscators exist, then for any super-logarithmic function t, NP with t bits
of non-determinism is not solvable in polynomial time.

Proof. Fix a super-logarithmic function t, and let T = 2t. Suppose that NP with t bits of non-
determinism is solvable in polynomial time. Then the following problem is solvable in polynomial
time: given a boolean circuit C on t = t(|C|) input bits, determine if C has an satisfying input.

Now we use such a solution to break a point obfuscator. Given a point obfuscator for points
x ∈ X = [2m], let s be the size of the obfuscated circuit, which is polynomial in m. Let t = t(s) =
ω log s = ω logm as above. Let T = 2t, and let D be the uniform distribution on [T ]. Then D has
super-logarithmic min-entropy. Our distinguisher works as follows. Given program P , let P T be the
program restricted to inputs in [T ] (equivalently, all but the last t bits are hard-coded to 0). Then
run the circuit satisfiability algorithm above, and output the result.
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Now notice that if x ← D, then by (almost) perfect correctness, P T has an accepting input,
namely x. Moreover, if x ← UX , then with overwhelming probability x /∈ [T ], and thus by
(almost) perfect correctness, P T will not have an accepting input. Therefore, by running the circuit
satisfiability algorithm, we successfully distinguish the two cases.

4.1 The Construction

Construction 4.3. Let X be the desired domain of H. To generate H, to the following:

• Let Z be some set such that |X |/|Z| is negligible, and sample a hash function h from a uniform
and pairwise independent function distribution from X to Z. By setting Z even larger so
that |X |2/|Z| is negligible, h will be injective with overwhelming probability for any pairwise
independent function distribution. Alternatively, let Z be a large field and |X | a subset of Z.
Then we can set h(x) = ax+ b for random a, b. As long as a 6= 0, h is injective.

• Let f ← ELF.Gen(|Z|, |Z|) to get an injective-mode f .

• Output H = f ◦ h.

h f

H

Figure 2: The function H = f ◦ h.

Theorem 4.4. Assuming ELF is a secure ELF, H in Construction 4.3 gives a secure point obfuscator.
If ELF is public coin, then so is H.

Proof. We will actually show something stronger: that the point function obfuscation of x is
indistinguishable from an obfuscation of the all-zeros function. In particular, we will show that no
efficient adversary can distinguish y = f(h(x)) from y = f(z) for a uniformly random z. Notice that
by injectivity of f , y has a pre-image under H = f ◦ h if and only if z = f−1(y) has a pre-image
under h. Since we chose h to be expanding, when we sample z uniformly random, z will have no
pre-image with overwhelming probability. Therefore, y = f(z) has no pre-image with overwhelming
probability.

The proof involves a sequence of hybrids. Suppose the adversary runs in time t and distinguishes
y = f(h(x)) from y = f(z) with non-negligible advantage ε.

Hybrid 0 This is the honestly generated y = f(h(x)) for f drawn in injective mode and x drawn
from D.

Hybrid 1 Now, we change f to be lossy. That is, we generate f ← ELF.Gen(|Z|, r) where r is
chosen so that no adversary running in time t can distinguish this lossy f from an injective f ,
except with advantage at most ε/3. Thus by ELF security, the adversary cannot distinguish
Hybrid 0 from Hybrid 1, except with probability ε/3.
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Hybrid 2 Now we change y to be y = f(z) for a random uniform z ∈ Z. Fix f , and let E
be the distribution of y. Then notice that by the pairwise independence and uniformity
of h, the composition H = f ◦ h is pairwise independent and has output distribution E.
Moreover, Supp(E) ≤ r is a polynomial. Therefore, by using our new leftover hash lemma
(Lemma 2.2), we see that Hybrid 1 and Hybrid 2 are indistinguishable, except with
probability 1

2

√
CP (D)

(
|Supp(E)| − 1

)
. As long as the collision probability of X is negligible

(which in particular happens when X has superlogarithmic min-entropy), this quantity will be
negligible. In particular, the distinguishing advantage will be less than ε/3.

Hybrid 3 Now we change f to be injective again. Similarly to before, the distinguishing advantage
between Hybrid 2 and Hybrid 3 will be at most ε/3. Notice that Hybrid 3 is exactly our
all-zeros obfuscation. Therefore, Hybrid 0 and Hybrid 3 are indistinguishable, except with
probability less than ε, contradicting our assumption about the adversary.

In Section 6, we will show how to strengthen our construction to get a point obfuscator that is
secure even against auxiliary information about the point.

5 Output Intractability
Consider any k + 1-ary relation R over Yk ×W that is computationally intractable: on a random
input y ∈ Yk, it is computationally infeasible to find a w ∈ W such that R(y, w) outputs 1. If H is
a random oracle, assuming k is a constant, it is computationally infeasible for find a set of distinct
inputs x, xi 6= xj∀i 6= j, and a w ∈ W, such that R(H(x), w) = 1. We will now show how to build
standard-model hash functions H that achieve the same property.

Definition 5.1. A family of hash functions H : X → Y is k-ary output intractable if, for any
computationally intractable k + 1-ary relation R : Yk ×W → {0, 1}, no efficient adversary, given H,
can find a set of distinct inputs x ∈ X k and an element w ∈ W, such that R(H(x), w) = 1.

Note that binary output intractability implies as a special case collision resistance. In the unary
case, and if W is just a singleton set, then output intractability is a special case of correlation
intractability, where the relation in addition depends on the input.

The unary case captures the following use case of hash functions: a given protocol may require
a common reference string (crs), but some or all instances of the crs may admit a trapdoor that
allows breaking the protocol. Of course, such a trapdoor should be difficult to find for a random crs.
To “prove” that the crs is generated so that the generator of the crs does not know a trapdoor, the
generator sets the crs to be the output of a public hash function on an arbitrary point. Since the
potentially malicious generator does not control the hash function, he should be unable to find an
output along with a corresponding trapdoor. Modeling the hash function as a random oracle, this
methodology is sound. However, standard notions of security do not prevent the crs generator from
choosing the input in such a way so that it knows a trapdoor. Unary output intractability precludes
this case. Of course, the hash function itself needs to be set up in a trusted manner; however, once
the hash function is set up and trusted, it can be used to generate arbitrarily many different crs by
even untrusted authorities.

We note, however, that the unary case on its own is not very interesting: the family of hash
functions H parameterizes by a string y ∈ Y where H(x) = y for all x is clearly unary intractable.
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Depending on the application, one may want additional features such as collision resistance, which
as noted above is implied by binary output intractability (k = 2). Therefore, k = 2 and above are
likely to be the most interesting settings.

Trivial impossibility for arbitrary k. We note that no one family of hash functions H can
satisfy k-ary output intractability for all k. That is, for different k, a different family will be required.
Suppose to the contrary that a family H satisfied k-output intractability for all k. Let t be the size
of the circuit computing H. Choose k so that k log |Y| ≥ t. Then with overwhelming probability
over the choice of random y ∈ Yk, there is no circuit of size at most t that outputs yi on input
i ∈ [k]. Therefore, let W be the set of circuits of size at most t, and let R(y, C) output 1 if and only
if C(i) = yi for each i ∈ [k]. Then R is computationally (in fact statistically) intractable. However,
it is trivial to find an x, w that satisfy R(H(x), w) = 1: set x = [k] and w = H. Therefore, output
intractability is violated. We obtain the following:

Theorem 5.2. For any family H : X → Y of hash functions, let t be the size some description of
H. Then H cannot be output intractable for any k ≥ t/ log |Y|.

In the following, we show that it is nonetheless possible to obtain output intractability for any
given constant k. Our functions will be described by strings of length k(log |Y|+ poly(log |X |)),
which in the case |Y| � |X | gives a near-optimal relationship between k and t.

First, however, we show that, even if the set W is just a singleton set, then output intractability
implies that NP with super-logarithmic non-determinism is separated from P.

Theorem 5.3. If binary output intractable hash functions exist, then for any super-logarithmic
function t, NP with t bits of non-determinism is not solvable in polynomial time.

Proof. The proof is analogous to the proof of Theorem 4.2. Suppose to the contrary that NP with
t bits of non-determinism is solvable in polynomial time. This means that it is possible to solve
circuit-SAT for circuits with t input bits in polynomial time. From such a polynomial-time algorithm,
it is straightforward to construct a polynomial-time algorithm that actually finds a satisfying input.

Let H : {0, 1}t/2 → {0, 1}t/4 be unary output intractable. Let R : ({0, 1}t/4)2 → {0, 1} be the
relation such that R(y1, y2) = 1 if and only if y1 = y2 (here, the set W is trivial). Then R is
intractable. Let CH(x1, x2) be the circuit that checks that x1 6= x2 and that R(H(x1), H(x2)) = 1.
Clearly, since H is shrinking, satisfying inputs to CH must exist. Moreover, C takes as input t-bits.
Therefore, we can use the search algorithm above to efficiently find a satisfying input. This violates
the output intractability of H.

5.1 The Construction

Construction 5.4. Let X be the desired domain of H, and Y the desired range. To generate H,
to the following:

• Let f ← ELF.Gen(|X |, |X |) to get an injective-mode f , with codomain Z.

• Let g be a k-wise independent and uniform function from Z to Y.

• Output H = g ◦ f .
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H

g

Figure 3: The function H = g ◦ f .

Theorem 5.5. If ELF is a secure ELF with an efficiently enumerable image, then for any constant
k the hash function H in Construction 5.4 is k-ary output intractable. If ELF is public coin, then so
is H.

Proof. Suppose toward contradiction that there is an intractable k + 1-ary relation R and an
adversary A that on input H finds a set of distinct inputs x and a value w ∈ W such that
R(H(x), w) = 1 with non-negligible probability ε. We will switch to a lossy mode for f so that (1)
f has polynomial image size, and (2) no adversary running in time t (for a t to be chosen later) can
distinguish the lossy mode from injective, except with probability ε/3. By choosing t to be larger
than the running time of A, we have that A still outputs x of distinct elements, and a string w,
such that R(H(x), w) = 1 with non-negligible probability 2ε/3.

We first argue that each of the elements of f(x) are distinct except with probability ε/3. Since
this was true in the injective case (since x is distinct), if this is not true in the lossy case, then the
injective and lossy modes could be easily distinguished by an adversary taking slightly more time
than A. Let t be this time, so that this distinguisher is impossible. Thus, the adversary succeeds
and the elements of f(x) are distinct with probability at least ε/3. Let S be the polynomial-sized
set of image points of f . Then in other words, the adversary comes up with an ordered set z of
distinct elements in S, and a string w, such that R(g(z), w) = 1.

Now, note that, for any ordered set z of k distinct inputs, g(z) is distributed uniformly at
random, by the k-wise independence of g. Moreover, it is straightforward, given z and a vector
y ∈ Yk, to sample a random g conditioned on g(z) = y. Sampling random y, and then g in this
way, gives a correctly distributed g.

We now describe an algorithm B that breaks the intractability of R. B, on input y ∈ Yk, chooses
lossy f as above, and then selects a random ordered set z, |z| = k among the p outputs of f . Next,
it chooses a random g such that g(z) = y. Finally, it runs A on the hash function H = g ◦ f . When
A outputs x, w, if f(x) = z (equivalently, H(x) = y), B outputs w; otherwise it aborts.

Since y is hidden from A’s view, g is distributed randomly according to the k-wise independent
distribution. Therefore, A will output a valid w with probability at least ε/3. If B’s guess for z was
correct, then w will break the correlation intractability of R on y. Since z is random and independent
of A’s view, the probability of a good guess is at least 1/pk (since there are at most pk such z).
Therefore, B breaks the intractability of R with probablity ε/3pk, which is non-negligible.

6 Leakage-resilient PRGs, AIPO and Poly-many Hardcore Bits
In this section, we use ELFs to give arbitrarily-many hardcore bits for any one-way function, or for
constructing point function obfuscation secure in the presence of auxiliary information. Both of
these can be seen as special cases of a very strong security requirement for pseudorandom generators.
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Definition 6.1. A distribution D on pairs (x, z) ∈ X × Z is computationally unpredictable if no
efficient adversary can guess x given z.

Definition 6.2. A family of pseudorandom generators H : X → Y secure for computationally
unpredictable seeds if, for any computationally unpredictable distribution on (X ,Z), no efficient
adversary can distinguish (H, z,H(x)) from (H, z, S) where (x, z)← D and S ← UY .

Basically, this requirement states that H is a secure pseudorandom generator for arbitrary
distributions on the seed, and even remains secure in the presence of arbitrary leakage about the
seed, so long as the seed remains computationally unpredictable. The only restriction is that the
distribution on the seed and the leakage must be chosen independently of H. However, in the
absence of other restrictions, this independence between the source D and function H can easily be
seen to be necessary: if z contained a few bits of H(x), then it is trivial to distinguish H(x) from
random.

6.1 The Construction

The intuition behind our construction is the following. The usual way of extracting pseudorandomness
from computationally unpredictable source is to output a hardcore bit of the source, say using
Goldreich-Levin [GL89]. While this can be used to generate a logarithmic number of pseudorandom
bits, security is lost once a super-logarithmic number of hardcore bits have been generated in this
way.

In order to get around this logarithmic barrier, we actually compute a polynomial number of
Goldriech-Levin bits. Of course, we cannot output these in the clear or else the seed can be easily
computed by linear algebra. Instead, we scramble the hardcore bits using a sequence of ELFs. We
can argue that each of the (scrambled) hardcore bits really is “as good as” random, in the sense
that we can replace each bit with a truly random bit before scrambling without detection. To do
so, we use the lossiness of the ELFs to argue that, when the ith hardcore bit is incorporated into
the scramble, enough information is lost about the previous bits that the ith bit actually still is
hardcore. By iterating this for each bit, we replace each one with random. We now give the details.

Construction 6.3. Let q be the input length and m be the output length. We will consider inputs
x as q-dimensional vectors x ∈ Fq2. Let ELF be an ELF. Let M = 2m+1, and let n be the bit-length
of the ELF on input m+ 1. Set N = 2n. Let ` be some polynomial in m to be determined later.
First, we will construct a function H ′ as follows.

Choose random f1, . . . , f` ← ELF.Gen(M,M) where fi : [M ] → [N ], and let h1, . . . , h` : [N ] →
[M/2] = [2m] be sampled from a pairwise independent and uniform function family. Define
f = {f1, . . . , f`} and h = {h1, . . . , h`}. Define H ′i : {0, 1}i → [N ] as follows:

• H ′0() = 1 ∈ [2m]

• H ′i(b[1,i−1], bi) : compute yi = H ′i−1(b[1,i−1]), zi ← fi(yi||bi), and output yi+1 ← hi(zi)

Then we set H ′ = H ′`. Then to define H, choose a random matrix R ∈ F`×q2 . The description of
H consists of f ,h,R. Then set H(x) = H ′(R · x). A diagram of H is given in Figure 4.

We now prove two important facts about H and H ′:
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Figure 4: An example instantiation for ` = 3.

Claim 6.4. If ` ≥ m, H ′(b) is statistically close to uniform for uniform b.

Proof. Let ci be the collision probability of zi and di the collision probability for yi+1 when the bi
are chosen at random. Then ci = di−1/2, d0 = 1, and di ≤ ci + 1/2n. Solving the recurrence, we
see that di ≤ 2m+2i+1−2

2m+i . Setting i = ` = n, we see that the collision probability of ym+1, namely
dm, is at most 3 × 2−m. Now, recall that the collision probability of a distribution is simply the
Rényi divergence between the distribution and uniform. Then, applying Lemma 2.1, we see that
the distribution of ym+1 is within a negligible distance

√
3× 2−m/2−1 from uniform.

We will thus set ` = m in our construction of H ′. Claim 6.4 will be crucial for our proof that H
meets our strong PRG security notion.

We also show our H is injective (whp) exactly when a truly random function with the same
domain and co-domain is injective (whp).

Claim 6.5. If 2−(m−2q) is negligible (in q), and ` ≥ m, then with overwhelming probability H is
injective.

Proof. First, note that with overwhelming probability by our choice of ` ≥ m ≥ 2q, R is full rank.
Next, let Yi be the set of possible yi values as we vary x, and Zi be the set of possible zi values.
By the injectivity of fi, we have that |Zi| ≥ |Yi|. Moreover, since hi is pairwise independent and
uniform, with overwhelming probability hi is injective on Zi since |Zi| ≤ 2q but the co-domain of hi
has size 2m � (2q)2. Therefore |Yi+1| = |Zi| ≥ |Yi|. This means that as we increase i, the image
size never decreases.

Now pick q linearly independent rows of R. We will assume that the q rows constitute the
first q rows of R; the more general case is handled analogously. By performing an appropriate
invertible transformation on the domain, we can assume that these q rows form the identity matrix.
Therefore, we can take bi = xi for i ∈ [q]. Next, observe that yi for i ∈ [q] only depends on the first
i− 1 bits of x. Thus the set of possible pairs (yi, bi) = (yi, xi) is exactly Yi × {0, 1}, which has size
2|Yi|. By the injectivity of fi, |Zi| = 2|Yi|. Since |Yi+1| = |Zi| = 2|Yi|, we have that the image size
exactly doubles in each iteration for i ∈ [q]. Once we get to i = q, the image size is 2q, and the
remaining iterations do not introduce any collisions. Thus the image size of H is 2q, meaning H is
injective.
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We now present our main theorem of the section:

Theorem 6.6. If ELF is a secure ELF, then H in Construction 6.3 is a pseudorandom generator
secure for computationally unpredictable seeds. If ELF is public coin, then so is H.

Proof. Recall that H(x) = H ′(R · x), and that H ′(b) is statistically close to random when b
is random. Therefore, it suffices to show that the following distributions are indistinguishable:
( f ,h,R, z,H ′(R · x) ) and ( f ,h,R, z,H ′(b) ) for a uniformly random b.

Suppose an adversary A has non-negligible advantage ε in distinguishing the two distributions.
Define b(i) so that the first i bits of b(i) are equal to the first i bits of R · x, and the remaining `− i
bits are chosen uniformly at random independently of x. Define Hybrid i to be the case where A
is given the distribution ( f ,h,R, z,H ′(b(i)) ).

Then A distinguishes Hybrid 0 from Hybrid ` with probability ε. Thus there is an index
i ∈ [`] such that the adversary distinguishes Hybrid i− 1 from Hybird i with probability at least
ε/`. Next, observe that since bits i+ 1 through t are random in either case, they can be simulated
independently of the challenge. Moreover, H ′(b) can be computed given H ′i−1(b[i−1]), bi (be it
random or equal to Ri,x), and the random bi+1, . . . , b`. Thus, we can construct an adversary A′
that distinguishes the following distributions:

( f ,h,R[i−1], z,H
′
i−1(R[i−1] · x),Ri,Ri · x ) and ( f ,h,R[i−1], z,H

′
i−1(R[i−1] · x),Ri, bi )

with advantage ε/t, where R[i−1] consists of the first i− 1 rows of R, Ri is the ith row of R, and bi
is a random bit.

Next, let ε′ = ε/3t, which is a polynomial. There is a polynomial r such A′ cannot distinguish
fi generated as ELF.Gen(M, r) from the honest fi generated from ELF.Gen(M,M), except with
probability at most ε′. This means, if we generate fi ← ELF.Gen(M, r), we have that A′ still
distinguishes the distributions

( f ,h,R[i−1], z,H
′
i−1(R[i−1] · x),Ri,Ri · x ) and ( f ,h,R[i−1], z,H

′
i−1(R[i−1] · x),Ri, bi )

with advantage ε′. Put another way, given ( f ,h,R[i−1], z,H
′
i−1(R[i−1] · x),Ri ), A′ is able to

compute Ri · x with probability 1
2 + ε′.

Now fix f ,h,R[i−1], which fixes H ′i−1. Let yi = H ′i−1(R[i−1] · x). Notice that since f ,h are fixed,
there are at most r possible values for yi, and recall that r is a polynomial. We now make the
following claim:

Claim 6.7. Let D be a computationally unpredictable distribution on X × Z. Suppose T : X → R
is drawn from a family T of efficient functions where the size of the image of T is polynomial. Then
the following distribution is also computationally unpredictable: ( x, (T, z, T (x)) ) where T ← T ,
(x, z)← D.

Proof. Suppose we have an efficient adversary B that predicts x with non-negligible probability δ
given T, z, T (x), and suppose T has polynomial image size r. We then construct a new adversary C
that, given x, samples a random T , samples (x′, z′)← D, and sets a = T (x′). It then runs B(T, z, a)
to get a string x′′, which it outputs. Notice that a is sampled from the same distribution as T (x),
so with probability at least 1/r, a = T (x). In this case, x′′ = x with probability δ. Therefore, C
outputs x with probability δ/r, which is non-negligible.
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Using Claim 6.7 with T = H ′i−1(R[i−1] · x), we see that (x, (f ,h,R[i−1], z,H
′
i−1(R[i−1] · x)) ) is

computationally unpredictable. Moreover, Ri · x is a Goldriech-Levin [GL89] hardcore bit for
any computationally unpredictable source. Hence, no efficient adversary can predict Rx · x given
(f ,h,R[i−1], z,H

′
i−1(R[i−1] ·x),Ri), except with negligible probability. This contradicts the existence

of A′, proving Theorem 6.6.

6.2 Applications

Polynomially-many hardcore bits for any one-way function. We see that H immediately
gives us a hardcore function of arbitrary stretch for any computationally unpredictable distribution.
This includes any one-way function. To the best of our knowledge, this is the first hardcore function
of arbitrary stretch for general computationally unpredictable sources. In the special case of one-
way functions, the only prior constructions are due to Bellare, Stepanovs, and Tessaro [BST14]
using differing inputs obfuscation (diO), and of Zhandry [Zha16] using extractable witness PRFs.
Both diO and extractable witness PRFs constitute very strong knowledge assumptions, and the
plausibility of both have been significantly challenged [GGHW14]. In the case of injective one-way
functions, [BST14] can relax the assumption to indistinguishability obfuscation (iO), which still
remains a very strong primitive based on very new and relatively untested assumptions on multilinear
maps. Our construction offers an entirely different approach to constructing hardcore functions
with arbitrary stretch, and is based on a very simple primitive. While the only instantiation
of our primitive so far requires less-than-standard elliptic curve assumptions, elliptic curves and
assumptions on them, including ours, are far better understood.

Strong injective one-way functions. Bitansky and Paneth [BP12] conjecture the existence of
a very strong one-way permutation family. We demonstrate that our function H meets this notion
of security. Unfortunately, however, it is only injective, not a permutation.

Definition 6.8. A [BP12] permutation is a family of functions H such that for any computationally
unpredictable distribution D, the following two distrubitons are also unpredictable:

(x, (z,H,H(x)) ), and (H(x), (z,H) ) (where (x, z)← D)

The first property is a generalization of a strong uninvertability assumption of Wee [Wee05]. The
second guarantees that if x is unpredictable, then so is H(x). We now show that our construction
H satisfies this definition:

Theorem 6.9. H constructed above using a secure ELF, when set to be injective as in Claim 6.5,
is a [BP12] injective one-way function.

Proof. For the first property, suppose that an efficient adversary A can predict x given (z,H,H(x)).
We now build an adversary A′ that can distinguish (z,H,H(x)) from (z,H, S) for a random S.
A′(z,H, S) runs A(z,H, S) to get a point x′. It then tests if H(x′) = S. If so, it outputs 1
and otherwise outputs 0. In the case that S = H(x), by assumption A will output x′ = x with
non-negligible probability, meaning A′ will output 1 with non-negligible probability. In the case
that S is random, since H is expanding, with overwhelming probability there is no pre-image of S
under H. Therefore A will output 1 with negligible probability. Thus A′ successfully distinguishes
the two cases, violating Theorem 6.6.
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For the second property, suppose an adversary A can predict H(x) from z,H. We construct
an adversary A′ that can distinguish (z,H,H(x)) from (z,H, S) for a random S. A′(z,H, S) runs
A(z,H) to get a string S′, and then outputs 1 if and only if S′ = S. In the case where S = H(x), by
assumption A will output S, and so A′ will output 1, with non-negligible probability. In constrast,
when S is chosen at random it is independent of the view of A. Therefore A will output S, and
so A′ will output 1, with negligible probability. Thus A′ successfully distinguishes the two cases,
violating Theorem 6.6.

The main application of Bitansky and Paneths [BP12] assumption is to build auxiliary input
point function obfuscation (AIPO). Since H is not a permutation, it cannot be immediately plugged
into their construction. Yet, next, we show that going through their construction is unnecessary in
our case: we show that our function H gives an AIPO “out of the box” with no additional overhead.

Point function obfuscation with auxiliary input (AIPO). We now show how to achieve
full AIPO using just the assumption of ELFs.

Definition 6.10. A auxiliary input point obfuscator (AIPO) is an efficient probabilistic algorithm
O that saitsfies the almost perfect correctness requirement of Definition 4.1, as well as the following
secrecy requirement: for any unpredictable distribution D over pairs (x, z) ∈ X × Z, the following
distributions are computationally indistinguishable:

(O(Ix), z) : (x, z)← D and (O(Ix′), z) : (x, z)← D;x′ ← X

As in Section 4, an expanding ideal hash function (random oracle) H gives a very natural AIPO:
the obfuscation of a point function Ix is simply S = H(x). Injectivity of H gives (almost perfect)
correctness. Moreover, security is easily proved in the random oracle model.

We now show that that by choosing H to be as in the construction above, the same is true. In
particular, by Claim 6.5, H is injective in the same regime of input/output sizes as a random oracle.
For security, we have the following:

Theorem 6.11. The obfuscation construction described above is a secure AIPO assuming H is
constructed as in Construction 6.3 using a secure ELF.

Proof. Note that since H is expanding, if we choose S at random from [2m], then with overwhelming
probability there are no inputs x that map to S. Therefore, the obfuscated program corresponding
to S is just the all-zeros function.

Let D be any computationally unpredictable source. We thus need to show that the following
two distributions are indistinguishable: ( H, z,H(x) ) and( H, z, S ) (where (x, z) ← D). This
follows immediately from Theorem 6.6.

Public key encryption from trapdoor permutations. We show how our hardcore function
can be used in the hybrid encryption schemes of Bellare and Rogaway [BR93] for converting a
trapdoor permutation into a public key encryption scheme. Recall the [BR93] public key encryption
scheme:

• PKE.Gen(λ) : run (P, P−1)← TDP.Gen(λ). Choose a random H. Then the secret key for the
scheme is sk = (P−1, H) and the public key is pk = (P,H).
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• PKE.Enc(pk,m): Choose a random r in the domain of P . Output c = (P (r), H(r)⊕m). That
is, the ciphertext has two components, P (r), and a one-time pad encryption of m using H(r)
as the secret key.

• PKE.Dec(sk, c = (c1, c2)) : let r = P−1(c1), and then output m = H(r)⊕ c2.

The proof of the following trivially follows from Theorem 6.6 and the fact that P is a one-way
function so that H(r) is pseudorandom given P (r):

Theorem 6.12. If P is a secure trapdoor permutation and H is constructed as in Construction 6.3
using a secure ELF, then PKE described above is a secure public key encryption scheme.

6.3 Difficulty of Realizing Applications

Since AIPO implies PO, AIPO implies that NP with a super-logarithmic amount of non-determinism
cannot be solved in polynomial time. Hence, this separation is inherent to the AIPO application. As
an immediately corollary, we also have that our pseudorandom generator definition also implies such
a separation. Since our pseudorandom generator definition is essentially equivalent to obtaining
hardcore functions of arbitrary span for any unpredictable source, we also see that such an separation
is inherent to such hardcore functions.

Here, we show that, if we are only interested in hardcore functions for the special case of one-way
functions, some form of exponential hardness seems necessary without a major breakthrough in
complexity theory.

Definition 6.13. A family of one-way functions Fq : {0, 1}q → Y is exponentially secure if, for any
super-logarithmic q = q(λ), Fq is uninvertible to probabilistic algorithms running in time polynomial
in λ.

Theorem 6.14. Let H be a family of hardcore functions for any one-way function. Then if
exponentially secure one-way exist, H must also be an exponentially secure one-way function.

Therefore, proving that any H is a family of hardcore functions seems to require either (1)
proving that no exponentially secure one way functions exist (which would be a major complexity
theoretic breakthrough), or (2) that H itself is an explicit exponentially secure one-way function9.
(2) seems like the most likely scenario, which would mean that whatever underlying primitive is
used to build H must also have some sort of exponential hardness.

Proof. Let n = n(λ) be any super-logarithmic function, and consider the function H : {0, 1}q →
{0, 1}2q. Since H is hardcore, we have that no polynomial time algorithm can distinguish
(H,F (x), H(x)) from (H,F (x), S) where x is random in {0, 1}q and S is random in {0, 1}m. In par-
ticular, no polynomial time algorithm can distinguish (H,H(x)) from (H,S). Since H is expanding,
this in particular means it is impossible in polynomial time to compute x from H,H(x). Thus H is
an exponentially secure one-way function.

9A third option is that H is a “universal” exponentially secure one-way functions, meaning that H is an exponentially
secure one-way function if and only if such one-way functions exist. [Gol01].
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7 Full Domain Hash Signatures
The Full Domain Hash signature scheme [BR93] makes use of a trapdoor permutation P with
trapdoor P−1, and a random oracle O whose range is the same as the domain of P . The signature
on a message m is the pre-image under P of H(m): P−1(H(m)). Verifying the signature is
straightforward. The proof of security in the random oracle model works roughly as follows. We are
given a challenge y = P (x) for some unknown x, and our goal is to use a forger to find x. We need
to embed our challenge y into the forger’s view. We do this by programming the random oracle seen
by the adversary: at a randomly chosen oracle query (say on message m∗), we set the output of H
to be y (the rest of the outputs are sampled at random). If the adversary makes q queries, with
probability 1/q, the adversary’s forgery will be on m∗. In this case, the forgery is the pre-image of
y, namely x. Thus, with probability 1/q the forger enables us to invert the trapdoor perpetuation.

Unfortunately, this proof technique seems to inherently require programming the random oracle
H, and the programming needs to be adaptive (since we do not know a priori which points the
adversary will query on). There is no standard model analog for such programming: for any concrete
implementation of H, once we publish H (which must be a part of the public key), we have fixed
the value of H at all messages.

One alternative is to settle for selective security for the signature scheme, where the adversary
commits to the message m he will sign before receiving the public key. Here, H only needs to be
program at m, which will be known when generating H. Therefore, a standard-model instantiation
may be possible. Indeed, Hohenberger, Sahai, and Waters [HSW14] show that this is possible
assuming indistinguishability obfuscation. Adaptive security can be obtained at the cost of an
exponential loss in the security reduction, therefore requiring the exponential hardness of all
primitives involved, including the trapdoor permutation and the indistinguishability obfuscator.
[HSW14] additionally show how to obtain adaptive security in the particular case where the trapdoor
permutation is instantiated with the RSA permutation.

Beyond achieving only static security for general TDPs, another limitation of [HSW14] is that
the hash function code depends not only on the TDP, but also on the specific public key for the
TDP that the hash function will be used with. Therefore, H cannot be a global reusable hash
function, but must instead be re-instantiated for every separate public key. This is in contrast to
typical heuristic instantiations of the random oracle used in practice, which use public standardized
hash functions such as SHA256.

We note that again, complexity leveraging provides a solution to this limitation as well. The idea
is to start with a universal H, and then in the reduction convert it to a permutation-dependent H as
in [HSW14], and proceed using their proof to argue security. The reduction involves stepping through
every input to H one at a time to change the output on that particular input to match [HSW14];
hence the exponential loss.

However, using complexity leveraging in this setting, besides having to assume that the various
primitives involved are very secure, has a practical implication. If some trusted authority were
to generate a global hash function as above, it likely will not be useable with existing trapdoor
permutation keys, at least not in a sound manner. The issue is that, due to the exponential loss, all
the building blocks, including the trapdoor permutation, need to have key sizes set appropriately
large to as to handle this loss. Most currently deployed cryptographic keys are not set with this loss
in mind. Therefore, in order to use this new hash function, all users would have to republish new,
longer keys, which is a significant administrative hurdle.

In contrast, if the permutation was only required to be polynomially secure, existing deployed
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keys for trapdoor permutations could be used with the new hash function.
To avoid the exponential loss in the reduction, we now describe another proof strategy, derived

from Zhandry [Zha12], that does not require adaptive programming, and is independent of the TDP
and public key (except for depending on a size bound for the TDP evaluation circuit). Suppose the
adversary makes qH oracle queries to H. Consider the following non-uniform distribution on H:
first sample r = O(q1/2

H ) random values y1, . . . , yr. Then for each input x, set the output H(x) to
be chosen randomly from {yi}i∈[r]. Put another way, define H to be the composition H = H2 ◦H1,
where H1 : X → [r] and H2 : [r]→ Y. Following Zhandry, we call functions from this distribution
small-range functions.

From the adversary’s perspective, as long at none of the q queries form a collision in H, such
small range functions are indistinguishable from the truly random case. Moreover by our choice of
r, with probability 1/2, there will be no collisions in the small-range case. Thus, if our adversary
forges with probability 1 in the truly random case, he will still forge with probability 1/2 in the
small-range case.

Now, rather than choosing one of the adversary’s queries at random to insert y, we instead set
one of the yi to by y. That is, we choose a random i ∈ [r], and set yi = y. For all other i, we set
yi = P (xi) for randomly chosen xi. As long as the adversary never makes a signature query on an
message m such that H(m) = y, the reduction will be able to produce the signature as one of the xi.
Let qS be the number of signing queries. We can assume that for every signing query on message
m, the adversary also makes a oracle query to H on m, so that qS ≤ qH . Then the probability
that we can answer all signing queries is at least 1 − (1 − 1/qH)qS ≥ 1 − (1 − 1/qS)qS ≥ 1 − 1/e.
Moreover, with probability 1/r, a forgery produced by the adversary will invert y. Therefore, with
non-negligible probability, we can successfully use the adversary to invert the permutation.

Boneh and Zhandry [BZ13] uses this flavor of proof strategies to prove the security of several
signature schemes against certain models of quantum attacks. Even though we are not concerned
with quantum attacks, the proof strategy is still useful in our context because now the random
oracle can be programmed statically — all of the outputs of O can be chosen up front. Now we may
hope for a standard-model instantiation of O that allows for this proof technique to work. Indeed,
by setting H1 to be an ELF (thus getting the polynomial image size), and H2 to be an appropriate
function, we can emulate this proof strategy.

7.1 Definitions

Puncturable PRFs. An (X ,Y)-pseudorandom function PRF with domain X and co-domain Y
consists of a polynomial-time algorithm PRF.Gen() that outputs the description of an efficiently
computable function g : X → Y. The usual security requirement for a PRF is that oracle access to
a random g ← PRF.Gen() is indistinguishable from oracle access to a truly random function from X
to Y.

A puncturable PRF has an additional algorithm PRF.Punct that takes as input g and a domain
point x ∈ X , and outputs a “punctured key”, namely the description of a function gx : X → Y ∪{⊥}

where gx(y) =
{
g(y) if y 6= x

⊥ if y = x
. Punctured PRF security is the following: the adversary chooses a

point x ∈ X , and receives gx where g ← PRF.Gen(). Then the adversary, given gx, is tasked with
distinguishing g(x) from a random string in Y.
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Indistinguishability Obfuscation. An indistinguiability obfuscator IO is a PPT uniform algo-
rithm satisfying the following conditions:

• IO(C) preserves the functionality of C. That is, for any polynomial-sized circuit C, if we
compute C ′ = IO(C), then C ′(x) = C(x) for all inputs x.

• For any two circuits C0, C1 with the same functionality and size, the circuits IO(C0) and
IO(C1) are computationally indistinguishable.

The first candidate construction of such obfuscators is due to Garg et al. [GGH+13].

7.2 The Construction

Construction 7.1. LetM be the domain of H (the message space), and Y be the co-domain. To
generate H, to the following:

• Let ELF be an ELF. Let f ← ELF.Gen(|M|, |M|) to get an injective-mode f .

• Let PRF be a puncturable PRF with domain Z and co-domain X . Let g ← PRF.Gen().

• Let IO be an indistinguishability obfuscator.

• Output H = IO(g ◦ f), where g ◦ f is appropriately padded before obfuscating.

Security Proof For FDH Signatures. We recall the full-domain hash (FDH) signature scheme
using a hash function H. The starting point for the scheme is trapdoor permutation TDP, which is
used to build a signature scheme SIG.

• SIG.Gen(): Run (P, P−1)← TDP.Gen(). Output sk = P−1 and pk = P .

• SIG.Sign(sk,m): run m̃← H(m) and output σ ← P−1(m̃)

• SIG.Ver(pk,m, σ): run m̃← H(m), and verifies that P (σ) = m̃.

Theorem 7.2. Assuming that ELF is a secure ELF, PRF is a secure PRF, and IO is a secure
indistinguishability obfuscation, then if H is instantiated as in Construction 7.1 (and the obfuscation
is appropriately padded), SIG is existentially unforgeable under a chosen message attack

Proof. We prove security through a sequence of hybrids.

Hybrid 0 This is the standard chosen message attack. Suppose the adversary runs in time s and
produces an existential forgery (m∗, σ∗) with non-negligible probability ε.
Let {m1, . . . ,mq} be the messages for which the adversary requested signatures, and let σi be
the corresponding signature. Let m̂i = f(mi) and m̂∗ = f(m∗).

Hybrid 1 Here, we add a check that m̂∗ /∈ {m̂1, . . . , m̂q}. Notice that since f is injective, this is
equivalent to m∗ /∈ {m1, . . . ,mq}, which is already required. Thus this check is redundant and
the adversary still succeeds with probability ε in Hybrid 1.
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Hybrid 2 Here, we change f to be lossy. That is, we generate f ← ELF.Gen(p(s, 1/(ε/2))). By the
security of the ELF, Hybrid 2 is indistinguishable from Hybrid 1, except with probability
ε/2. Thus, the adversary produces an existential forgery with probability at least ε/2.

Hybrid 3 Let r ≤ p(s, 1/(ε/2)) be the image size of f . We modify Hybrid 2 as follows. Choose
a random m̂∗ in the image of f using the efficient enumeration procedure. Now accept the
adversary’s forgery only if f(m∗) = m̂∗. Notice that m̂∗ is independent of the adversary’s
view, and therefore f(m∗) = m̂∗ happens with probability at least 1/r. Thus, the adversary
succeeds in Hybrid 3 with probability at least ε/2r.

Hybrid 4 Let y∗ be a random point in X (equivalently, let y∗ = P (x∗) for a random x∗ ∈ X ). We
now replace H with an obfuscation of the program HP,f,g,y∗,m̂∗ given in Figure 5.

Inputs: m ∈M
Constants: P, f, g, y∗, m̂∗

1. Compute m̂← f(m).
2. If m̂ = m̂∗, output y∗ and terminate.
3. Otherwise, let x = g(m̂).
4. Output y = P (x).

Figure 5: The program HP,f,g,y∗,m̂∗ .
Suppose our adversary succeeds in forging inHybrid 4 with non-negligible advantage. Then we
can use such an adversary to invert P . Given a point y ∈ X , we simulateHybrid 4 using y∗ = y.
If the adversary ever queries on a message m such that m̂ = f(m) equals m̂∗, abort the game
(sinceHybrid 4 would have rejected anyway). To answer a signing query on messagem, simply
output g(f(m)). It is straightforward to see that, since m̂ 6= m̂∗, this is the correct signature
on m. Now the adversary’s forgery is a message m∗ and signature σ∗ such that P (σ) = H(m∗)
and f(m∗) = m̂∗. Since f(m∗) = m̂∗, we have that H(m∗) = HP,f,g,y∗,m̂∗(m∗) = y∗ = y.
Thus, σ is an inverse of y under P . Therefore we simply output σ. Our success probability is
the same as the success probability of the adversary in Hybrid 4. It remains to prove that
Hybrid 4 is indistinguishable from Hybrid 3, which will complete the security proof.
To that end, endow Z with a total order. Fix f and let L = {z1, . . . , zr} be the sorted list of
all r outputs of f (which can be efficiently enumerated by assumption). Let z0 be smaller than
the smallest element in Z. Let i∗ be the index such that zi∗ = m̂∗. Consider the following
hybrids:

Hybrid 3.i for i = 0, . . . , r This is the same as Hybrid 3, except that we generate two PRFs
g1, g2, and H is an obfuscation of the program HP,f,g1,g2,y∗,m̂∗,zi

given in in Figure 6

First notice that HP,f,g1,g2y∗,m̂∗,z0
is functionally equivalent to g2 ◦ f . Thus the obfuscations

are indistinguishable. This means Hybrid 3 is indistinguishable from Hybrid 3.0. Similarly,
HP,f,g1,g2,y∗,m̂∗,zr

is functionally equivalent to HP,f,g2,y∗,m̂∗
since all the image points of f are

at most zr. Therefore Hybrid 3.r is indistinguishable from Hybrid 4.
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Inputs: m ∈M
Constants: P, f, g1, g2, y

∗, m̂∗, z

1. Compute m̂← f(m).
2. If m̂ ≤ z and m̂ 6== m̂∗, output y = P (g1(m̂)).
3. Otherwise, if m̂ ≤ z and m̂ = m̂∗, output y∗ and terminate.
4. Lastly, if m̂ > z, output y = g2(m̂).

Figure 6: The program HP,f,g1,g2,y∗,m̂∗,z
.

It remains to show that Hybrid 3.i− 1 is indistinguishable from Hybrid 3.i. This follows
from a straightforward application of the punctured programming approach of Sahai and
Waters [SW14] and the fact that P (x) for a uniform x is identically distributed to a uniform
y. We omit the details.
Piecing together, we see that Hybrid 3 is indistinguishable from Hybrid 4, as desired.

Therefore Hybrid 0 is indistinguishable from Hybrid 4, in which the adversary cannot forge.
Thus no efficient adversary can forge in Hybrid 0. This completes the proof.
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