
Splinter: Practical Private Queries on Public Data
Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan (MIT CSAIL), Matei Zaharia (Stanford)

Abstract
Many online services let users query public datasets

such as maps, flight prices, or restaurant reviews. Unfortu-

nately, the queries to these services reveal highly sensitive

information that can compromise users’ privacy. This pa-

per presents Splinter, a system that protects users’ queries

on public data and scales to realistic applications. A user

splits her query into multiple parts and sends each part to

a different provider that holds a copy of the data. As long

as any one of the providers is honest and does not collude

with the others, the providers cannot determine the query.

Splinter uses and extends a new cryptographic primitive

called Function Secret Sharing (FSS) that makes it up to

an order of magnitude more efficient than prior systems

based on Private Information Retrieval and garbled cir-

cuits. We develop protocols extending FSS to new types

of queries, such as MAX and TOPK queries. We also pro-

vide an optimized implementation of FSS using AES-NI

instructions and multicores. Splinter achieves end-to-end

latencies below 1.6 seconds for realistic workloads includ-

ing a Yelp clone, flight search, and map routing.

1 Introduction
Many online services let users query large public datasets:

some examples include restaurant sites, product cata-

logs, stock quotes, and searching for directions on maps.

In these services, any user can query the data, and the

datasets themselves are not sensitive. However, web ser-

vices can infer a great deal of identifiable and sensitive

user information from these queries, such as her current

location, political affiliation, sexual orientation, income,

etc. [38, 39]. Web services can use this information mali-

ciously and put users at risk to practices such as discrim-

inatory pricing [26, 57, 61]. For example, online stores

have charged users different prices based on location [29],

and travel sites have also increased prices for certain fre-

quently searched flights [58]. Even when the services are

honest, server compromise and subpoenas can leak the

sensitive user information on these services [31, 51, 52].

This paper presents Splinter, a system that protects

users’ queries on public datasets while achieving practi-

cal performance for many current web applications. In

Splinter, the user divides each query into shares and sends

them to different providers, which are services hosting a

copy of the dataset (Figure 1). As long as any one of the

providers is honest and does not collude with the others,

the providers cannot discover sensitive information in the

query. However, given responses from all the providers,

the user can compute the answer to her query.

Previous private query systems have generally not

achieved practical performance because they use expen-

Splinter Client

Splinter
Provider
Library

Splinter
Provider
Library

Splinter
Provider
Library

Figure 1: Splinter architecture. The Splinter client splits each

user query into shares and sends them to multiple providers. It

then combines their results to obtain the final answer. The user’s

query remains private as long as any one provider is honest.

sive cryptographic primitives and protocols. For ex-

ample, systems based on Private Information Retrieval

(PIR) [11, 41, 53] require many round trips and high

bandwidth for complex queries, while systems based on

garbled circuits [8, 32, 64] have a high computational cost.

These approaches are especially costly for mobile clients

on high-latency networks.

Instead, Splinter uses and extends a recent crypto-

graphic primitive called Function Secret Sharing (FSS) [9,

21], which makes it up to an order of magnitude faster

than prior systems. FSS allows the client to split certain

functions into shares that keep parameters of the function

hidden unless all the providers collude. With judicious

use of FSS, many queries can be answered at low CPU

and bandwidth cost in only a single network round trip.

Splinter makes two contributions over previous work

on FSS. First, prior work has only demonstrated efficient

FSS protocols for point and interval functions with addi-

tive aggregates such as SUMs [9]. We present protocols

that support a more complex set of non-additive aggre-

gates such as MAX/MIN and TOPK at low computational

and communication cost. Together, these protocols let

Splinter support a subset of SQL that can capture many

popular online applications.

Second, we develop an optimized implementation of

FSS for modern hardware that leverages AES-NI [56]

instructions and multicore CPUs. For example, using the

one-way compression functions that utilize modern AES

instruction sets, our implementation is 2.5⇥ faster per

core than a naïve implementation of FSS. Together, these

optimizations let Splinter query datasets with millions of

records at sub-second latency on a single server.

We evaluate Splinter by implementing three applica-

tions over it: a restaurant review site similar to Yelp,

airline ticket search, and map routing. For all of our ap-

plications, Splinter can execute queries in less than 1.6

seconds, at a cost of less than 0.02¢ in server resources

on Amazon EC2. Splinter’s low cost means that providers

could profitably run a Splinter-based service similar to

OpenStreetMap routing [46], an open-source maps ser-

vice, while only charging users a few dollars per month.

In summary, our contributions are:

• Splinter, a private query system for public datasets

that achieves significantly lower CPU and communi-

cation costs than previous systems.

• New protocols that extend FSS to complex queries

with non-additive aggregates such as TOPK and

MAX.

• An optimized FSS implementation for modern hard-

ware.

• An evaluation of Splinter on realistic applications.

2 Splinter Architecture
Splinter aims to protect sensitive information in users’

queries from providers. This section provides an overview

of Splinter’s architecture, security goals, and threat model.

2.1 Splinter Overview

There are two main principals in Splinter: the user and

the providers. Each provider hosts a copy of the data.

Providers can retrieve this data from a public repository or

mirror site. For example, OpenStreetMap [46] publishes

publicly available map, point-of-interest, and traffic data.

For a given user query, all the providers have to run it on

the same view of the data. Maintaining data consistency

from mirror sites is beyond the scope of this paper, but

standard techniques can be used [10, 62].

As shown in Figure 1, to issue a query in Splinter, a

user splits her query into shares, using the Splinter client,

and submits each share to a different provider. The user

can select any providers of her choice that host the dataset.

The providers use their shares to execute the user’s query

over the cleartext public data, using the Splinter provider

library. As long as one provider is honest (does not col-

lude with others), the user’s sensitive information in the

original query remains private. When the user receives

the responses from the providers, she combines them to

obtain the final answer to her original query.

2.2 Security Goals

The goal of Splinter is to hide sensitive parameters

in a user’s query. Specifically, Splinter lets users run

parametrized queries, where both the parameters and

query results are hidden from providers. For example,

consider the following query, which finds the 10 cheapest

flights between a source and destination:

SELECT TOP 10 flightid FROM flights
WHERE source = ? AND dest = ?
ORDER BY price

Splinter hides the information represented by the ques-

tions marks, i.e., the source and destination in this ex-

ample. The column names being selected and filtered

are not hidden. Finally, Splinter also hides the query’s

results—otherwise, these might be used to infer the source

and destination. Splinter supports a subset of the SQL

language, which we describe in Section 4.

The easiest way to achieve this property would be for

users to download the whole database and run the queries

locally. However, this requires substantial bandwidth

and computation for the user. Moreover, many datasets

change constantly, e.g., to include traffic information or

new product reviews. It would be impractical for the user

to continuously download these updates. Therefore, our

performance objective is to minimize computation and

communication costs. For a database of n records, Splin-

ter only requires O(n logn) computation at the providers

and O(logn) communication (Section 5).

2.3 Threat Model

Splinter keeps the parameters in the user’s query hidden as

long as at least one of the user-chosen providers does not

collude with others. Splinter also assumes these providers

are honest but curious: a provider can observe the inter-

actions between itself and the client, but Splinter does

not protect against providers returning incorrect results or

maliciously modifying the dataset.

We assume that the user communicates with each

provider through a secure channel (e.g., using SSL), and

that the user’s Splinter client is uncompromised. Our cryp-

tographic assumptions are standard. We only assume the

existence of one-way functions in our two-provider imple-

mentation. In our implementation for multiple providers,

the security of Paillier encryption [48] is also assumed.

3 Function Secret Sharing
In this section, we give an overview of Function Secret

Sharing (FSS), the main primitive used in Splinter, and

show how to use it in simple queries. Sections 4 and 5

then describe Splinter’s full query model and our new

techniques for more complex queries.

3.1 Overview of Function Secret Sharing

Function Secret Sharing [9] lets a client divide a func-

tion f into function shares f
1

, f
2

, . . . , fk so that multiple

parties can help evaluate f without learning certain of its

parameters. These shares have the following properties:

• They are close in size to a description of f .

• They can be evaluated quickly (similar in time to f).

• They sum to the original function f . That is, for any

input x,

k
Â

i=1

fi(x) = f (x). We assume that all compu-

tations are done over Z
2

m
, where m is the number of

bits in the output range.

ItemId Price

ItemId1 Price1

ItemId2 Price2

… ...

ItemIdn Pricen

f1(ItemId1)

f1(ItemId2)

…
f1(ItemIdn)

r1 = f1(ItemIdi)

i=1

n

∑

answer =
r1 + r2

ItemId Price

ItemId1 Price1

ItemId2 Price2

… ...

ItemIdn Pricen

f2(ItemId1)

f2(ItemId2)

…
f2(ItemIdn)

r2 = f2(ItemIdi)

i=1

n

∑

Figure 2: Overview of how FSS can be applied to database

records on two providers to perform a COUNT query.

• Given any k�1 shares fi, an adversary cannot recover

the parameters of f .

Although it is possible to perform FSS for arbitrary

functions [16], practical FSS protocols only exist for point
and interval functions. These take the following forms:

• Point functions fa are defined as fa(x) = 1 if x = a or

0 otherwise.

• Interval functions are defined as fa,b(x) = 1 if a x
b or 0 otherwise.

In both cases, FSS keeps the parameters a and b private:

an adversary can tell that it was given a share of a point

or interval function, but cannot find a and b. In Splinter,

we use the FSS scheme of Boyle et al. [9]. Under this

scheme, the shares fi for both functions require O(ln)
bits to describe and O(ln) bit operations to evaluate for

a security parameter l (the size of cryptographic keys),

and n is the number of bits in the input domain.

3.2 Using FSS for Database Queries
We can use the additive nature of FSS shares to run private

queries over an entire table in addition to a single data

record. We illustrate here with two examples.

Example: COUNT query. Suppose that the user wants

to run the following query on a table served by Splinter:

SELECT COUNT(*) FROM items WHERE ItemId = ?

Here, ‘?’ denotes a parameter that the user would like

to keep private; for example, suppose the user is searching

for ItemId = 5, but does not want to reveal this value.

To run this query, the Splinter client defines a point

function f (x) = 1 if x = 5 or 0 otherwise. It then divides

this function into function shares f
1

, . . . , fn and distributes

them to the providers, as shown in Figure 2. For simplic-

ity, suppose that there are two providers, who receive

shares f
1

and f
2

. Because these shares are additive, we

know that f
1

(x)+ f
2

(x) = f (x) for every input x. Thus,

each provider p can compute fp(ItemId) for every ItemId

in the database table, and send back rp =Ân
i=1

fp(ItemIdi)

ItemId Price f
1

(ItemId) f
2

(ItemId)

5 8 10 -9

1 8 3 -3

5 9 10 -9

Figure 3: Simple example table with outputs for the FSS func-

tion shares f
1

, f
2

applied to the ItemId column. The function is

a point function that returns 1 if the input is 5, and 0 otherwise.

All outputs are integers modulo 2

m
for some m.

to the client. The client then computes r
1

+ r
2

, which is

equal to Ân
i=1

f (ItemIdi), that is, the count of all matching

records in the table.

To make this more concrete, Figure 3 shows an exam-

ple table and some sample outputs of the function shares,

f
1

and f
2

, applied to the ItemId column. There are a few

important observations. First, to each provider, the out-

puts of their function share seem random. Consequently,

the provider does not learn the original function f and the

parameter “5”. Second, because f evaluates to 1 on inputs

of 5, f
1

(ItemId)+ f
2

(ItemId) = 1 for rows 1 and 3. Simi-

larly, f
1

(ItemId)+ f
2

(ItemId) = 0 for row 2. Therefore,

when summed across the providers, each row contributes

1 (if it matches) or 0 (if it does not match) to the final re-

sult. Finally, each provider aggregates the outputs of their

shares by summing them. In the example, one provider

returns 23 to the client, and the other returns -21. The

sum of these is the correct query output, 2.

This additivity of FSS enables Splinter to have low com-
munication costs for aggregate queries, by aggregating

data locally on each provider.

Example: SUM query. Suppose that instead of a

COUNT, we wanted to run the following SUM query:

SELECT SUM(Price) FROM items WHERE ItemId=?

This query can be executed privately with a small

extension to the COUNT scheme. As in COUNT, we

define a point function f for our secret predicate, e.g.,

f (x) = 1 if x = 5 and 0 otherwise. We divide this function

into shares f
1

and f
2

. However, instead of computing

rp = Ân
i=1

fp(ItemIdi), each provider p computes

rp =
n

Â
i=1

fp(ItemIdi) ·Pricei

As before, r
1

+ r
2

is the correct answer of the query,

that is, Ân
i=1

f (ItemIdi) · Pricei. We add in each row’s

price, Pricei, 0 times if the ItemId is equal to 5, and 1 time

if it does not equal 5.

4 Splinter Query Model
Beyond the simple SUM and COUNT queries in the pre-

vious section, we have developed protocols to execute a

large class of queries using FSS, including non-additive

aggregates such as MAX and MIN, and queries that re-

turn multiple individual records instead of an aggregate.

Query format:

SELECT aggregate
1

, aggregate
2

, . . .
FROM table
WHERE condition
[GROUP BY expr

1

, expr
2

, . . .]

aggregate:
• COUNT | SUM | AVG | STDEV (expr)

• MAX | MIN (expr)

• TOPK (expr, k, sort_expr)

• HISTOGRAM (expr, bins)

condition:
• expr = secret
• secret

1

 expr secret
2

• AND of ‘=’ conditions and up to one interval

• OR of multiple disjoint conditions

(e.g., country="UK" OR country="USA")

expr: any public function of the fields in a table row

(e.g., ItemId + 1 or Price * Tax)

Figure 4: Splinter query format. The TOPK aggregate returns

the top k values of expr for matching rows in the query, sorting

them by sort_expr. In conditions, the parameters labeled secret
are hidden from the providers.

For all these queries, our protocols are efficient in both

computation and communication. On a database of n
records, all queries can be executed in O(n logn) time and

O(logn) communication rounds, and most only require 1

or 2 communication rounds (Figure 6 on page 6).

Figure 4 describes Splinter’s supported queries using

SQL syntax. Most operators are self-explanatory. The

only exception is TOPK, which is used to return up to k
individual records matching a predicate, sorting them by

some expression sort_expr. This operator can be used to

implement SELECT...LIMIT queries, but we show it as

a single “aggregate” to simplify our exposition. To keep

the number of matching records hidden from providers,

the protocol always pads its result to exactly k records.

Although Splinter does not support all of SQL, we

found it expressive enough to support many real-world

query services over public data. We examined various

websites, including Yelp, Hotels.com, and Kayak, and

found we can support most of their search features as

shown in Section 8.1.

Finally, Splinter only “natively” supports fixed-width

integer data types. However, such integers can also be

used to encode strings and fixed-precision floating point

numbers (e.g., SQL DECIMALs). We use them to repre-

sent other types of data in our sample applications.

5 Executing Splinter Queries
Given a query in Splinter’s query format (Figure 4), the

system executes it using the following steps:

1. The Splinter client builds function shares for the con-

dition in the query, as we shall describe in Section 5.1.

2. The client sends the query with all the secret pa-

rameters removed to each provider, along with that

provider’s share of the condition function.

3. If the query has a GROUP BY, each provider divides

its data into groups using the grouping expressions;

otherwise, it treats the whole table as one group.

4. For each group and each aggregate in the query, the

provider runs an evaluation protocol that depends on

the aggregate function and on properties of the con-

dition. We describe these protocols in Section 5.2.

Some of the protocols require further communication

with the client, in which case the provider batches its

communication for all grouping keys together.

The main challenge in developing Splinter is designing

efficient execution protocols for Splinter’s complex condi-

tions and aggregates (Step 4). Our contribution is multiple

protocols that can execute non-additive aggregates with

low computation and communication costs.

One key insight that pervades our design is that the best
strategy to compute each aggregate depends on properties
of the condition function. For example, if we know that

the condition can only match one value of the expression

it takes as input, we can simply compute the aggregate’s

result for all distinct values of the expression in the data,

and then use a point function to return just one of these

results to the client. On the other hand, if the condition

can match multiple values, we need a different strategy

that can combine results across the matching values. To

reason about these properties, we define three condition
classes that we then use in aggregate evaluation.

5.1 Condition Types and Classes

For any condition c, the Splinter client defines a function

fc that evaluates to 1 on rows where c is true and 0 other-

wise, and divides fc into shares for each provider. Given a

condition c, let Ec = (e
1

, . . . ,et) be the list of expressions

referenced in c (the expr parameters in its clauses). Be-

cause the best strategy for evaluating aggregates depends

on c, we divide conditions into three classes:

• Single-value conditions. These are conditions that

can only be true on one combination of the values of

(e
1

, . . . ,et). For example, conditions consisting of an

AND of ‘=’ clauses are single-value.

• Interval conditions. These are conditions where the in-

put expressions e
1

, . . . ,et can be ordered such that c is

true on an interval of the range of values e
1

||e
2

|| . . . ||et
(where || denotes string concatenation).

• Disjoint conditions, i.e., all other conditions.

The condition types described in our query model (Fig-

ure 4) can all be converted into sharable functions, and

categorized into these classes, as follows:

Equality-only conditions. Conditions of the form e
1

=
secret

1

AND . . . AND et = secrett can be executed as a

single point function on the binary string e
1

|| . . . ||et . This

is simply a point function that can be shared using existing

FSS schemes [9]. These conditions are also single-value.

Interval and equality. Conditions of the form e
1

=
secret

1

AND . . . AND et�1

= secrett�1

AND secrett
et secrett+1

can be executed as a single interval function

on the binary string e
1

|| . . . ||et . This is again supported

by existing FSS schemes [9], and is an interval condition.

Disjoint OR. Suppose that c
1

, . . . ,ct are disjoint condi-

tions that can be represented using functions fc
1

, . . . , fct .

Then c= c
1

OR. . .OR ct is captured by fc = fc
1

+ · · ·+ fct .

We share this function across providers by simply giving

them shares of the underlying functions fci . In the general

case, however, c is a disjoint condition where we cannot

say much about which inputs give 0 or 1.

5.2 Aggregate Evaluation
5.2.1 Sum-Based Aggregates
To evaluate SUM, COUNT, AVG, STDEV and HIS-

TOGRAM, Splinter sums one or more values for each row

regardless of the condition function class. For SUM and

COUNT, each provider sums the expression being aggre-

gated or a 1 for each row and multiplies it by fi(row), its

share of the condition function, as in Section 3.2. Comput-

ing AVG(x) for an expression x, requires finding SUM(x)

and COUNT(x), while computing STDEV(x) requires

finding these values and SUM(x2

). Finally, computing a

HISTOGRAM into bin boundaries provided by the user

simply requires tracking one count per bin, and adding

each row’s result to the count for its bin. Note that the

binning expression is not private—only information about

which rows pass the query’s condition function.

5.2.2 MAX and MIN
Suppose we are given a query to find MAX(e

0

) WHERE

c(e
1

, . . . ,et), for expressions e
0

, . . . ,et . The best evalua-

tion strategy depends on the class of the condition c.

Single-value conditions. If c is only true for one com-

bination of the values e
1

, . . . ,et , each provider starts by

evaluating the query

SELECT MAX(e
0

) FROM data GROUP BY e
1

, . . . ,et

This query gives an intermediate table with the tuples

(e
1

, . . . ,et) as keys and MAX(e
0

) as values. Next, each

provider computes ÂMAX(e
0

) · fi(e1

, . . . ,et) across the

rows of the intermediate table, where fi is its share of

the condition function. This sum will add a 0 for each

non-matching row and MAX(e
0

) for the matching row,

thus returning the right value. Note that if the original

table had n rows, the intermediate table can be built in

O(n) time and space using a hash table.

A

Size-2 intervals

Size-4 intervals

Size-8 intervals

3 5 1 2 4 1 0 1

5 2 4 1

5 4

5

A[3..6]

Figure 5: Data structure for querying MAX on intervals. We

find the MAX on each power-of-2 aligned interval in the ar-

ray, of which there are O(n) total. Then, any interval query

requires retrieving O(logn) of these values. For example, to

find MAX(A[3..6]), we need two size-1 intervals and one size-2.

Interval conditions. Suppose that c is true if and only if

e
1

|| . . . ||et is in an interval [a,b], where a and b are secret

parameters. As in the single-value case, the providers can

build a data structure that helps them evaluate the query

without knowing a and b.

In this case, each provider builds an array A of entries

(k,v), where the keys are all values of e
1

|| . . . ||et in lexico-

graphic order, and the values are MAX(e
0

) for each key.

It then computes MAX(A[i.. j]) for all power-of-2 aligned
intervals of the array A (Figure 5). This data structure is

similar to a Fenwick tree [19].

Query evaluation then proceeds in two rounds. First,

Splinter counts how many keys in A are less than a and

how many are less than b: the client sends the providers

shares of the interval functions k 2 [0,a � 1] and k 2
[0,b�1], and the providers apply these to all keys k and

return their results. This lets the client find indices i and j
in A such that all the keys k 2 [a,b] are in A[i.. j].

Second, the client sends each provider shares of new

point functions that select up to two intervals of size 1, up

to two intervals of size 2, etc out of the power-of-2 sized

intervals that the providers computed MAXes on, so as to

cover exactly A[i.. j]. Note that any integer interval can be

covered using at most 2 intervals of each power of 2. The

providers evaluate these functions to return the MAXes

for the selected intervals, and the client combines these

O(logn) MAXes to find the overall MAX on A[i.. j].1

For a table of size n, this protocol requires O(n logn)
time at each provider (to sort the data to build A, and

then to answer O(logn) point function queries). It also

only requires two communication rounds, and O(logn)
communication bandwidth. The same protocol can be

used for other associative aggregates, such as products.

Disjoint conditions. If we must find MAX(e
0

)

WHERE c(e
1

, . . . ,et) but know nothing about c, Splin-

ter builds an array A of all rows in the dataset sorted by e
0

.

Finding MAX(e
0

) WHERE c is then equivalent to finding

1

To hide which sizes of intervals were actually required, the client

should always request 2 intervals of each size and ignore unneeded ones.

the largest index i in A such that c(A[i]) is true. To do this,

Splinter uses binary search. The client repeatedly sends

private queries of the form

SELECT COUNT(*) FROM A
WHERE c(e

1

, . . . ,et) AND index 2 [secret
1

,secret
2

],

where index represents the index of each row in A and

the interval for it is kept private. By searching for secret

intervals in decreasing power-of-2 sizes, the client can

find the largest index i such that c(A[i]) is true. For exam-

ple, if we had an array A of size 8 with largest matching

element at i = 5, the client would probe A[0..3], A[4..7],
A[4..5], A[6..7] and finally A[4] to find that 5 is the largest

matching index.

Normally, ANDing the new condition index 2
[secret

1

,secret
2

] with c would cause problems, because

the resulting conditions might no longer be in Splinter’s

supported condition format (ANDs with at most one inter-

val and ORs of disjoint clauses). Fortunately, because the

intervals in our condition are always power-of-2 aligned,

it can also be written as an equality on the first k bits of

index. For example, supposing that index is a 3-bit value,

the condition index 2 [4,5] can be written as index
0,1 =

“10”, where index
0,1 is the first two bits of index. This lets

us AND the condition into all clauses of c.

Once the client has found the largest matching index i,
it runs one more query with a point function to select the

row with index = i. The whole protocol requires O(logn)
communication rounds and O(n logn) computation and

works well if c has many conditions.

However, if c has a small number of OR clauses, an

optimization is to run one query for each clause in parallel.

The user then resolves the responses locally to find the

answer to the original query. Although doing this opti-

mization requires more bandwidth because the returned

result size is larger, it avoids the O(logn) communication

rounds and the O(n logn) computation.

5.2.3 TOPK
Our protocols for evaluating TOPK are similar to those

for MAX and MIN. Suppose we are given a query to find

TOPK(e, k, e
sort

) WHERE c(e
1

, . . . ,et). The evaluation

strategy depends on the class of the condition c.

Single-value conditions. If c is only true for one com-

bination of e
1

, . . . ,et , each provider starts by evaluating

SELECT TOPK(e, k, e
sort

) FROM data
GROUP BY e

1

, . . . ,et

This gives an intermediate table with the tuples (e
1

, . . . ,et)
as keys and TOPK(·) for each group as values, from which

we can select the single row matching c as in MAX.

Interval conditions. Here, the providers build the same

auxiliary array A as in MAX, storing the TOPK for each

Aggregate Condition Time Rounds Bandwidth
Sum-based any O(n) 1 O(1)

MAX/MIN 1-value O(n) 1 O(1)
MAX/MIN interval O(n logn) 2 O(logn)
MAX/MIN disjoint O(n logn) O(logn) O(logn)

TOPK 1-value O(n) 1 O(1)
TOPK interval O(n logn) 2 O(logn)
TOPK disjoint O(n logn) O(logn) O(logn)

Figure 6: Complexity of Splinter’s query evaluation protocols

for a database of size n. For bandwidth, we report the multiplier

over the query’s normal result size.

key instead. They then compute the TOPKs for power-

of-2 aligned intervals in this array. The client finds the

interval A[i.. j] it needs to query, extracts the top k values

for power-of-2 intervals covering it, and finds the overall

top k. As in MAX, this protocol requires 2 rounds and

O(logn) communication bandwidth.

Disjoint conditions. Finding TOPK for disjoint condi-

tions is different from MAX because we need to return

multiple records instead of just the largest record in the

table that matches c. This protocol proceeds as follows:

1. The providers sort the whole table by e
sort

to create

an auxiliary array A.

2. The client uses binary search to find indices i and j in

A such that the top k items matching c are in A[i.. j].
This is done the same way as in MAX, but searching

for the largest indices where the count of later items

matching c is 0 and k.

3. The client uses a sampling technique (Appendix A)

to extract the k records from A[i.. j] that match c. Intu-

itively, although we do not know which rows these are,

we build a result table of > k values initialized to 0,

and add the FSS share for each row of the data to one

row in the result table, chosen by a hash. This scheme

extracts all matching records with high probability.

This protocol needs O(logn) communication rounds and

O(n logn) computation if there are many clauses, but like

the protocol for MAX, if the number of clauses in c is

small, the user can issue parallel queries for each clause

to reduce the communication rounds and computation.

5.3 Complexity
Figure 6 summarizes the complexity of Splinter’s query

evaluation protocols based on the aggregates and con-

dition classes used. We note that in all cases, the com-

putation time is O(n logn) and the communication costs

are much smaller than the size of the database. This

makes Splinter practical even for databases with millions

of records, which covers many common public datasets,

as shown in Section 8. Finally, the main operations used

to evaluate Splinter queries at providers, namely sorting

and sums, are highly parallelizable, letting Splinter take

advantage of parallel hardware.

6 Optimized FSS Implementation
Apart from introducing new protocols to evaluate complex

queries using FSS, Splinter includes an FSS implemen-

tation optimized for modern hardware. In this section,

we describe our implementation and also discuss how to

select the best multi-party FSS scheme for a given query.

6.1 One-Way Compression Functions

The two-party FSS protocol [9] is efficient because of its

use of one-way functions. A common class of one-way

functions is pseudorandom generators (PRGs) [33], and in

practice, AES is the most commonly used PRG because of

hardware accelerations, i.e. the AES-NI [56] instruction.

Generally, using AES as a PRG is straightforward (use

AES in counter mode). However, the use of PRGs in

FSS is not only atypical, but it also represents a large

portion of the computation cost in the protocol. The

FSS protocol requires many instantiations of a PRG with

different initial seed values, especially in the two-party

protocol [9]. Initializing multiple PRGs with different

seed values is very computationally expensive because

AES cipher initialization is much slower than performing

an AES evaluation on an input. Therefore, the challenge

in Splinter is to find an efficient PRG for FSS.

Our solution is to use one-way compression functions.

One way compression functions are commonly used as a

primitive in hash functions, like SHA, and are built using

a block cipher like AES. In particular, Splinter uses the

Matyas-Meyer-Oseas one-way compression function [37]

because this function utilizes a fixed key cipher. As a

result, the Splinter protocol initializes the cipher only

once per query.

More precisely, the Matyas-Meyer-Oseas one-way

compression function is defined as:

F(x) = Ek(x)� x

where x is the input, i.e. PRG seed value, and E is a block

cipher with a fixed key k.

The output of a one-way compression function is a

fixed number of bits, but we can use multiple one-way

compression functions with different keys and concate-

nate the outputs to obtain more bits. Security is preserved

because a function that is a concatenation of one-way

functions is still a one-way function.

With this one-way compression function, Splinter ini-

tializes the cipher, Ek, at the beginning of the query and

reuses it for the rest of the query, avoiding expensive

AES initialization operations in the FSS protocol. For

each record, the Splinter protocol needs to perform only

n XORs and n AES evaluations using the AES-NI instruc-

tion, where n is the input domain size of the record. In

Section 8.3, we show that Splinter’s use of one-way com-

pression functions results in a 2.5⇥ speedup over using

AES directly as a PRG.

6.2 Selecting the Correct Multi-Party FSS Protocol
There is one efficient protocol for two-party FSS, but for

multi-party (more than 2 parties) FSS, there are two dif-

ferent schemes ([9], [14]) that offer different tradeoffs

between bandwidth and CPU usage. Both still only re-

quire that one provider is honest and does not collude with

the remaining providers. In this section, we will provide

an overview of the two schemes and discuss their tradeoffs

and applicability to different types of applications.

Multi-Party FSS with one-way functions: In [9], the

authors present a multi-party protocol based on only one-

way functions, which provides good performance. How-

ever, there are two limitations. First, the function share

size is proportional to the number of parties. Second, the

output of the evaluated function share is only additive

mod 2 (xor homomorphic), which means that the provider

cannot add values locally. This limitation affects queries

where there are multiple matches for a condition that re-

quires aggregation, i.e. COUNT and SUM queries. To

solve this, the provider responds with all the records that

match for a particular user-provided condition, and the

client performs the aggregation locally. The size of the

result is the largest number of records for a distinct con-

dition, which is usually smaller than the database size.

Other queries remain unaffected by this limitation. Ap-

plications should use this scheme by default because it

provides the fastest response times on low-latency net-

works. However, for SUM and COUNT queries, an ap-

plication should be careful using this scheme in settings

that are bandwidth-sensitive. Similarly, an application

should avoid using this scheme for queries that involve

many providers.

Multi-Party FSS with Paillier: In [14], only a point

function for FSS is provided, but we modified the scheme

to handle interval functions. This scheme has the same

additive properties as the two-party FSS protocol in [9],

and does not suffer from the limitations of the scheme

described above. In fact, the size of the function shares

is independent of the number of parties. However, this

scheme is slower because it uses the Paillier [48] cryp-

tosystem instead of one-way functions. However, it is use-

ful for SUM and COUNT queries in bandwidth-sensitive

settings like queries over cellular network, and it is also

beneficial in settings where the user uses many providers.

7 Implementation
We implemented Splinter in C++, using OpenSSL

1.0.2e [45] and the AES-NI hardware instructions for

AES encryption. We used GMP [20] for large inte-

gers and OpenMP [44] for multithreading. Our opti-

mized FSS library is about 2000 lines of code, and the

applications on top of it are about 2000 lines of code.

There is around 1500 lines of test code to issue the

queries. For comparison, we also implement the multi-

party FSS scheme in [14] using 2048 bit Paillier encryp-

tion [48]. Our FSS library implementation can be found

at https://github.com/frankw2/libfss.

8 Evaluation
In our evaluation, we aim to answer one main question:

can Splinter be used practically for real applications? To

answer this question, we built and evaluated clones of

three applications on Splinter: restaurant reviews, flight

data, and map routing, using real datasets. We also com-

pare Splinter to previous private systems, and estimate

hosting costs. Our providers ran on 64-core Amazon EC2

x1 servers with Intel Xeon E5-2666 Haswell processors

and 1.9 TB of RAM. The client was a 2 GHz Intel Core i7

machine with 8 GB of RAM. Our client’s network latency

to the providers was 14 ms.

Overall, our experiments show the following:

• Splinter can support realistic applications including

the search features of Yelp and flight search sites, and

data structures required for map routing.

• Splinter achieves end-to-end latencies below 1.6 sec-

onds for queries in these applications on realistic

datasets.

• Splinter’s protocols use up to 10⇥ fewer round trips

than prior systems and have lower response times.

8.1 Case Studies
Here, we discuss the three application clones we built on

Splinter. Figure 7 summarizes our results, and Figure 8

describes the sizes and characteristics of our three datasets.

Finally, we also reviewed the search features available in

real websites to study how many Splinter supports.

Restaurant review site: We implement a restaurant re-

view site using the Yelp academic dataset [65]. The origi-

nal dataset contains information for local businesses in 10

cities, but we duplicate the dataset 4 times so that it would

approximately represent local businesses in 40 cities. We

use the following columns in the data to perform many

of the queries expressible on Yelp: name, stars, review

count, category, neighborhood and location.

For location-based queries, e.g., restaurants within 5

miles of a user’s current location, multiple interval con-

ditions on the longitude and latitude would typically be

used. To run these queries faster, we quantize the loca-

tions of each restaurant into overlapping hexagons of dif-

ferent radii (e.g., 1, 2 and 5 miles), following the scheme

from [40]. We precompute which hexagons each restau-

rant is in and expose these as additional columns in the

data (e.g., hex1mi and hex2mi). This allows the location

queries to use ‘=’ predicates instead of intervals.

For this dataset, we present results for the following

three queries:

Q1: SELECT COUNT(*) WHERE category="Thai"

Q2: SELECT TOP 10 restaurant
WHERE category="Mexican" AND
(hex2mi=1 OR hex2mi=2 OR hex2mi=3)
ORDER BY stars

Q3: SELECT restaurant, MAX(stars)
WHERE category="Mexican" OR
category="Chinese" OR category="Indian"
OR category="Greek" OR category="Thai"
OR category="Japanese"
GROUP BY category

Q1 is a count on the number of Thai restaurants. Q2 re-

turns the top 10 Mexican restaurants within a 2 mile radius

of a user-specified location by querying three hexagons.

We assume that the provider caches the intermediate table

for the Top 10 query as described in Section 5.2.3 because

it is a common query. Finally, Q3 returns the best rated

restaurant from a subset of categories. This requires more

communication than other queries because it performs

a MAX with many disjoint conditions as described in

Section 5.2.2. Although most queries will probably not

have so many disjoint conditions, we evaluate this query

to show that Splinter is still practical in that condition

setting.

Flight search: We implement a flight search service

similar to Kayak [30], using a public flight dataset [17].

The columns are flight number, origin, destination, month,

delay, and price. To find a flight, we search by origin-

destination pairs. We present results for two queries:

Q1: SELECT AVG(price) WHERE month=3
AND origin=1 AND dest=2

Q2: SELECT TOP 10 flight_no
WHERE origin=1 and dest=2 ORDER BY price

Q1 shows the average price for a flight during a cer-

tain month. Q2 returns the top 10 cheapest flights for a

given source and destination, which we encode as inte-

gers. Since this is a common query, the results in Figure 7

assume a cached Top 10 intermediate table.

Map routing: We implement a private map routing ser-

vice, using real traffic map data from [15] for New York

City. However, implementing map routing in Splinter

is difficult because the providers can perform only a re-

stricted set of operations. The challenge is to find a short-

est path algorithm compatible with Splinter. Fortunately,

extensive work has been done to optimize map routing [3].

One algorithm compatible with Splinter is transit node

routing (TNR) [2, 5], which has been shown to work well

in practice [4]. In TNR, the provider divides up a map

into grids, which contain at least one transit node, i.e. a

transit node that is part of a "fast" path. There is also a

separate table that has the shortest paths between all pairs

https://github.com/frankw2/libfss

Dataset Query Desc. FSS Scheme Input Bits Round
Trips

Query
Size

Response
Size

Response
Time

Restaurant

COUNT of Thai restau-

rants (Q1)

Two-party

11 1

~2.75 KB ~0.03 KB 57 ms

Multi-party ~10 KB ~18 KB 52 ms

Restaurant

Top 10 Mexican restau-

rants near user (Q2)

Two-party

22 1

~16.5 KB ~7 KB 150 ms

Multi-party ~1.9 MB ~0.21 KB 542 ms

Restaurant

Best rated restaurant in

category subset (Q3)

Two-party

11 11

~244 KB ~0.7 KB 1.3 s

Multi-party ~880 KB ~396 KB 1.6 s

Flights

AVG monthly price for a

certain flight route (Q1)

Two-party

17 1

~8.5 KB ~0.06 KB 1.0 s

Multi-party ~160 KB ~300 KB 1.2 s

Flights

Top 10 cheapest flights

for a route (Q2)

Two-party

13 1

~3.25 KB ~0.3 KB 30 ms

Multi-party ~20 KB ~0.13 KB 39 ms

Maps

Routing query on NYC

map

Two-party Grid: 14

2

~12.5 KB ~31 KB 1.2 s

Multi-party Transit Node: 22 ~720 KB ~1.1 KB 1.0 s

Figure 7: Performance of various queries in our case study applications on Splinter. Response times include 14 ms network latency

per network round trip. All subqueries are issued in parallel unless they depend on a previous subquery. Query and response sizes are

measured per provider. For the multi-party FSS scheme, we run 3 parties. Input bits represent the number of bits in the input domain

for FSS, i.e., the maximum size of a column value.

Dataset # of rows Size (MB) Cardinality
Yelp [65] 225,000 23 900 categories

Flights [17] 6,100,000 225 5000 flights

NYC Map [15]

260,000 nodes

300 1333 transit nodes

733,000 edges

Figure 8: Datasets used in the evaluation. The cardinality of

queried columns affects the input bit size in our FSS queries.

of transit nodes, which represent a smaller subset of the

map. To execute a shortest path query for a given source

and destination, the user can use FSS to download the

paths in her source and destination grid. She locally finds

the shortest path to the source transit node and destina-

tion transit node. Finally, she queries the provider for the

shortest path between the two transit nodes.

We used the source code from [2] and identified the

1333 transit nodes. We divided the map into 5000 grids,

and calculated the shortest path for all transit node pairs.

The grid table has 5000 rows representing the edges and

nodes in a grid, and the transit node table has about

800,000 rows representing the number of shortest paths

for all transit node pairs.

Figure 7 shows the total response time for a routing

query between a source and destination in NYC. Figure 9

shows the breakdown of time spent on querying the grid

and transit node table. One observation is that the multi-

party version is slightly faster than the two party version

because it is faster at processing the grid query as shown

in Figure 9. The two-party version of FSS requires using

GMP operations, which is slower than integer operations

used in the multi-party version, but as shown in Figure 7,

the two-party version requires much less bandwidth.

FSS scheme Grid Transit Node Total
Two Party 0.35 s 0.85 s 1.2 s

Multi-party 0.15 s 0.85 s 1.0 s

Figure 9: Grid, transit node, and total query times for NYC

map. A user issues 2 grid queries and one transit node query.

The two grid queries are issued together in one message, so

there are a total of 2 network round trips.

Communication costs: Figure 7 shows the total band-

width of a query request and response for the various case

study queries. The sum of those two values represents

total bandwidth between the provider and user.

There are two main observations. First, both the query

and response sizes are much smaller than the size of the

database. Second, for non-aggregate queries, the multi-

party protocol has a smaller response size compared to

the two-party protocol but the query size is much larger

than the two-party protocol, leading to higher overall

communication. For aggregate queries, in Section 6.2, we

mention that the faster multi-party FSS scheme is only xor

homomorphic, so it outputs all the matches for a specific

predicate. The user has to perform the aggregation locally,

leading to a larger response size than the two-party proto-

col. Overall, the multi-party protocols have higher total

bandwidth compared to the two-party protocols despite

some differences in response size.

Coverage of supported queries: We also manually

characterized the applicability of Splinter to several

widely used online services by studying how many of

the search fields on these services’ interfaces Splinter

can support. Figure 10 shows the results. Most services

use equality and range predicates: for example, the Ho-

tels.com user interface includes checkboxes for selecting

Website Search Feature Splinter
Primitive

Yelp

Booking Method, Cities, Distance Equality

Price Range

Best Match, Top Rated, Most Reviews Sorting

Free text search —

Hotels.com

Destination, Room type, Amenities Equality

Check in/out, Price, Ratings Range

Stars, Distance, Ratings, Price Sorting

Name contains —

Kayak

From/To, Cabin, Passengers, Stops Equality

Date, Flight time, Layover time, Price Range

Google Maps From/To, Transit type, Route options Equality

Figure 10: Example website search features and their equivalent

Splinter query class.

categories, neighborhoods, stars, etc, a range fields for

price, and one free-text search field that Splinter does not

support. In general, all features except free-text search

could be supported by Splinter. For free-text search, sim-

ple keywords that map to a category (e.g., “grocery store”)

could also be supported.

8.2 Comparison to Other Private Query Systems

To the best of our knowledge, the most recent private

query system that can perform a similar class of queries as

Splinter is that of Olumofin et al. [41], which uses multi-

party PIR. Olumofin et al. creates an m-ary (m = 4) B+

index tree for the dataset and uses PIR to search through

it to return various results. As a result, their queries

require O(logm n) round trips, where n is the number of

records. In Splinter, the number of rounds trips does not

depend on the size of the database for most queries. As

shown in Section 5.2.2 and Section 5.2.3, the exception

is for MIN/MAX and TOPK queries with many disjoint

conditions where Splinter’s communication is similar; if

there are a small number of disjoint conditions, Splinter

will be faster than previous systems because the user can

issue parallel queries.

Figure 11 shows the round trips required in Olumofin

et al.’s system and in Splinter for the queries in our case

studies. Splinter improves over [41] by up to an order of

magnitude. Restaurant Q3 uses a disjoint MAX, so the

communication is similar.

We see a similar performance difference from the re-

sults in [41]’s evaluation, which reports response times of

of 2-18 seconds for queries with several million records,

compared to 50 ms to 1.6 seconds in Splinter. Moreover,

the experiments in [41] do not use a real network, despite

having a large number of round trips, so their response

times would be even longer on high-latency networks. Fi-

nally, the system in [41] has weaker security guarantees:

it requires all the providers to be honest, whereas Splinter

only requires that one provider is honest.

For maps, a recent system by Wu et al. [64] used gar-

bled circuits for map routing. They achieve response

Splinter Query RTs in [41] RTs in Splinter
Restaurant Q1 10 1

Restaurant Q2 6 1

Restaurant Q3 6 11

Flights Q1 13 1

Flights Q2 8 1

Map Routing 19 2

Figure 11: For our queries, we show the round trips required

for the system of Olumofin et al. [41] and Splinter.

2

times of 140-784 seconds for their maps with Los An-

geles as their largest map, and require 8-16 MB of total

bandwidth. Splinter has a response time of 1.2 seconds

on a larger map (NYC), which is 100⇥ lower, and with a

total bandwidth of 45-725 KB, which is 10⇥ lower.

8.3 FSS Microbenchmarks
Cryptographic operations are the main cost in Splinter.

We present microbenchmarks to show these costs of var-

ious parts of the FSS protocol, tradeoffs between vari-

ous FSS protocols, and the throughput of FSS. The mi-

crobenchmarks also show why the response times in Fig-

ure 7 are different between the two-party and multi-party

FSS cases. All of these experiments are done on one core

to show the per-core throughput of the FSS protocol.

Two-party FSS: For two-party FSS, generating a func-

tion share takes less than 1 ms. The speed of FSS eval-

uation is proportional to the size of the input domain,

i.e. number of bits per record. We can perform around

700,000 FSS evaluations per second on 24-bit records,

i.e. process around 700,000 distinct 24-bit records, using

one-way compression functions. Figure 12 shows the

per-core throughput of our implementation for different

FSS schemes, i.e. number of unique database records that

can be processed per second. It also shows that using

one-way compression functions as described in Section 6,

we obtain a 2.5⇥ speedup over using AES as a PRG.

Multi-party FSS: As shown in Figure 12, for the multi-

party FSS scheme from [9] that only uses one-way func-

tions, the time to generate the function share and evaluate

it is proportional to 2

n/2

where n is the number of bits in

the input domain. The size of the share scales with 2

n/2

rather than just n in the two-party case. An important

observation is that using one-way compression functions

instead of AES does not make a significant difference

for multi-party FSS because the PRG is called less often

compared to two-party FSS. For small input domains (<
20 bits), the multi-party version of FSS is faster than the

2

The number of round trips in Restaurant Q3 is O(logn) in both

Splinter and Olumofin et al., but the absolute number is higher in Splinter

because we use a binary search whereas Olumofin et al. use a 4-ary tree.

Splinter could also use a 4-ary search to achieve the same number of

round trips, but we have not yet implemented this.

Figure 12: Per-core throughput of various FSS protocols. The

graph shows the number of FSS operations that can be per-

formed, i.e. database records processed, per second for various

input sizes, on one core.

Time to generate function shares

of bits Query Gen in
Boyle et al [9]

Query Gen in
Riposte [14]

8 < 1 ms 0.06 s

16 < 1 ms 1 s

24 44 ms 16 s

32 166 ms 265 s

Figure 13: Query generation times for multi-party FSS schemes

using one-way functions [9] and using Paillier [14].

2-party version, but as stated in Section 6.2, a provider

cannot aggregate locally for SUM and COUNT queries.

For the scheme from [14], which uses Paillier encryp-

tion, generating a function share is slower compared to [9]

because it requires many exponentiations over a large in-

teger group and depends on the number of record bits.

Figure 13 shows a summary of the query generation times

for both schemes. However, the evaluation of the function

share is independent of the size of the input domain. The

output of the function share in [14] returns a group ele-

ment that is additive in a large integer group, but in order

to have this property, the performance is lower compared

to [9]. We can perform 250 FSS evaluations a second, but

this lower performance is useful for SUM and COUNT

operations on bandwidth-constrained clients.

8.4 Hosting Costs

We estimate Splinter’s server-side computation cost on

Amazon EC2, where the cost of a CPU-hour is about 5

cents [1]. We found that most of our queries cost less than

0.002¢. Map queries are a bit more costly, about 0.02¢ to

run a shortest path query for NYC, because the amount

of computation required is higher.

9 Discussion and Limitations
Economic feasibility: Although it is hard to predict

real-world deployment, we believe that Splinter’s low cost

makes it economically feasible for several types of appli-

cations. Studies have shown that many consumers are will-

ing to pay for services that protect their privacy [28, 55].

In fact, users might not use certain services because of

privacy concerns [52, 54]. Well-known sites like OkCu-

pid, Pandora, Youtube, and Slashdot allow users to pay a

monthly fee to remove ads that collect their information,

showing there is already a demographic willing to pay

for privacy. As shown in Section 8.4, the cost of running

queries on Splinter is low, with our most expensive query,

map routing, costing less than 0.02¢ in AWS resources.

At this cost, providers could offer Splinter-based map

routing for a subscription fee of $1 per month, assuming

each user makes 100 map queries per day. Splinter’s trust

model, where only one provider needs to be honest, also

makes it easy for new providers to join the market, in-

creasing users’ privacy. Whether such a business model

would work in practice is beyond the scope of this paper.

One obstacle to Splinter’s use is that many current

data providers, such as Yelp and Google Maps, generate

revenue primarily by showing ads and mining user data.

Nonetheless, there are already successful open databases

containing most of the data in these services, such as

OpenStreetMap [46], and basic data on locations does not

change rapidly once collected. Moreover, the availability

of techniques like Splinter might make it easier to intro-

duce regulation about privacy in certain settings, similar

to current privacy regulations in HIPAA [27].

Unsupported queries: As shown in Section 4, Splinter

supports only a subset of SQL. Splinter does not sup-

port partial text matching or image matching, which are

common in types of applications that might use Splinter.

Moreover, Splinter cannot support private joins, i.e. Splin-

ter can only support joining with another table if the join

condition is public. Despite these limitations, our study in

Section 8.1 shows Splinter can support many application

search interfaces.

Number of providers: One limitation of Splinter is

that a Splinter-based service has to be deployed on at

least two providers. However, previous PIR systems de-

scribed in Section 10 also require at least two providers.

Unlike those systems, Splinter requires only one honest

provider whereas those systems require all providers be

honest. Moreover, current multi-party FSS schemes do

not scale well past three providers, but we believe that

further research will improve its efficiency.

Full table scans: FSS, like PIR, requires scanning the

whole input dataset on every Splinter query, to prevent

providers from figuring out which records have been ac-

cessed. Despite this limitation, we show in Section 8 that

Splinter is practical on large real-world datasets, such as

maps.

Splinter needs to scan the whole table only for con-

ditions that contain sensitive parameters. For example,

consider the query:

SELECT flight from table WHERE src=SFO
AND dst=LGA AND delay < 20

If the user does not consider the delay of 20 in this query

to be private, Splinter could send it in the clear. The

providers can then create an intermediate table with only

flights where the delay < 20 and apply the private con-

ditions only to records in this table. In a similar manner,

users querying geographic data may be willing to reveal

their location at the country or state level but would like

to keep their location inside the state or country private.

Maintaining consistent data views: Splinter requires

that each provider executes a given user query on the same

copy of the data. Much research in distributed systems

has focused on ensuring databases consistency across

multiple providers [13, 43, 63]. Using the appropriate

consistency techniques is dependent on the application

and an active area of research. Applying those techniques

in Splinter is beyond the scope of this paper.

10 Related Work
Splinter is related to work in Private Information Retrieval

(PIR), garbled circuit systems, encrypted data systems,

and Oblivious RAM (ORAM) systems. Splinter achieves

higher performance than these systems through its map-

ping of database queries to the Function Secret Sharing

(FSS) primitive.

PIR systems: Splinter is most closely related to sys-

tems that use Private Information Retrieval (PIR) [12] to

query a database privately. In PIR, a user queries for the

ith record in the database, and the database does not learn

the queried index i or the result. Much work has been

done on improving PIR protocols [42, 47]. Work has also

been done to extend PIR to return multiple records [24],

but it is computationally expensive. Our work is most

closely related to the system in [41], which implements

a parametrized SQL-like query model similar to Splinter

using PIR. However, because this system uses PIR, it has

up to 10⇥ more round trips and much higher response

times for similar queries.

Popcorn [25] is a media delivery service that uses PIR

to hide user consumption habits from the provider and

content distributor. However, Popcorn is optimized for

streaming media databases, like Netflix, which have a

small number (about 8000) of large records.

The systems above have a weaker security model: all
the providers need to be honest. Splinter only requires

one honest provider, and it is more practical because it

extends Function Secret Sharing (FSS) [9, 21], which lets

it execute complex operations such as sums in one round

trip instead of only extracting one data record at a time.

Garbled circuits: Systems such as Embark [32], Blind-

Box [59], and private shortest path computation sys-

tems [64] use garbled circuits [7, 22] to perform private

computation on a single untrusted server. Even with im-

provements in practicality [6], these techniques still have

high computation and bandwidth costs for queries on

large datasets because a new garbled circuit has to be gen-

erated for each query. (Reusable garbled circuits [23] are

not yet practical.) For example, the recent map routing

system by Wu et al. [64] uses garbled circuits and has

100⇥ higher response time and 10⇥ higher bandwidth

cost than Splinter.

Encrypted data systems: Systems that compute on

encrypted data, such as CryptDB [49], Mylar [50],

SPORC [18], Depot [36], and SUNDR [34], all try to

protect private data against a server compromise, which

is a different problem than what Splinter tries to solve.

CryptDB is most similar to Splinter because it allows for

SQL-like queries over encrypted data. However, all these

systems protect against a single, potentially compromised

server where the user is storing data privately, but they do

not hide data access patterns. In contrast, Splinter hides

data access patterns and a user’s query parameters but is

only designed to operate on a public dataset that is hosted

at multiple providers.

ORAM systems: Splinter is also related to systems that

use Oblivious RAM [35, 60]. ORAM allows a user to read

and write data on an untrusted server without revealing

her data access patterns to the server. However, ORAM

cannot be easily applied into the Splinter setting. One

main requirement of ORAM is that the user can only read

data that she has written. In Splinter, the provider hosts a

public dataset, not created by any specific user, and many

users need to access the same dataset.

11 Conclusion
Splinter is a new private query system that protects sen-

sitive parameters in SQL-like queries while scaling to

realistic applications. Splinter uses and extends a recent

cryptography primitive, Function Secret Sharing (FSS),

allowing it to achieve up to an order of magnitude better

performance compared to previous private query systems.

We develop protocols to execute complex queries with low

computation and bandwidth. As a proof of concept, we

have evaluated Splinter with three sample applications—a

Yelp clone, map routing, and flight search—and showed

that Splinter has low response times from 50 ms to 1.6

seconds with low hosting costs.

Acknowledgements
We thank our anonymous reviewers and our shepherd Tom

Anderson for their useful feedback. We would also like

to thank James Mickens, Tej Chajed, Jon Gjengset, David

Lazar, Malte Schwarzkopf, Amy Ousterhout, Shoumik

Palkar, and Peter Bailis for their helpful comments on the

paper. This work was partially supported by an NSF Grad-

uate Research Fellowship (Grant No. 2013135952), NSF

awards CNS-1053143, CNS-1413920, CNS-1350619,

CNS-1414119, Alfred P. Sloan Research Fellowship, Mi-

crosoft Faculty Fellowship, an Analog Devices grant, SI-

MONS Investigator award Agreement Dated 6-5-12, and

VMWare.

References
[1] Amazon. Amazon EC2 Instance Pricing. https://aws.

amazon.com/ec2/pricing/.

[2] J. Arz, D. Luxen, and P. Sanders. Transit node routing

reconsidered. In Experimental Algorithms, pages 55–66.

2013.

[3] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann,

T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck.

Route planning in transportation networks. arXiv preprint
arXiv:1504.05140, 2015.

[4] H. Bast, S. Funke, and D. Matijevic. Ultrafast shortest-

path queries via transit nodes. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, 74:175–192,

2009.

[5] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast

routing in road networks with transit nodes. Science,

316(5824):566–566, 2007.

[6] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.

Efficient garbling from a fixed-key blockcipher. In Pro-
ceedings of the 34th IEEE Symposium on Security and
Privacy, pages 478–492, San Francisco, CA, May 2013.

[7] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of

garbled circuits. In Proceedings of the 19th ACM Confer-
ence on Computer and Communications Security (CCS),
pages 784–796, Raleigh, NC, Oct. 2012.

[8] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A

system for secure multi-party computation. In Proceedings
of the 15th ACM Conference on Computer and Communi-
cations Security (CCS), pages 257–266, Alexandria, VA,

Oct. 2008.

[9] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing.

In Proceedings of the 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 337–367. Sofia, Bul-

garia, Apr. 2015.

[10] C.-H. Chi, C.-K. Chua, and W. Song. A novel ownership

scheme to maintain web content consistency. In Inter-
national Conference on Grid and Pervasive Computing,

pages 352–363. Springer, 2008.

[11] B. Chor, N. Gilboa, and M. Naor. Private information
retrieval by keywords. Citeseer, 1997.

[12] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.

Private information retrieval. Journal of the ACM (JACM),
45(6):965–981, 1998.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, et al. Spanner: Google’s globally dis-

tributed database. ACM Transactions on Computer Sys-
tems (TOCS), 31(3):8, 2013.

[14] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:

An anonymous messaging system handling millions of

users. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, San Jose, CA, May 2015.

[15] DIMACS. 9th DIMACS Implementation Challenge

- Shortest Paths. http://www.dis.uniroma1.it/
challenge9/download.shtml.

[16] Y. Dodis, S. Halevi, R. Rothblum, and D. Wichs. Spooky

encryption and its applications. In Proceedings of the 36th
Annual International Cryptology Conference (CRYPTO),
pages 93–122, Santa Barbara, CA, Aug. 2016.

[17] Enigma. Arrival Data for Non-Stop Domestic

Flights by Major Air Carriers for 2012. https:
//app.enigma.io/table/us.gov.dot.rita.trans-
stats.on-time-performance.2012.

[18] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Fel-

ten. SPORC: Group collaboration using untrusted cloud

resources. In Proceedings of the 9th Symposium on Oper-
ating Systems Design and Implementation (OSDI), Van-

couver, Canada, Oct. 2010.

[19] P. M. Fenwick. A new data structure for cumulative

frequency tables. Software – Practice and Experience,

24(3):327–336, Mar. 1994.

[20] F. S. Foundation. GNU Multi Precision Arithmetic Library.

https://gmplib.org/.

[21] N. Gilboa and Y. Ishai. Distributed point functions and

their applications. In Proceedings of the 33rd Annual
International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), pages 640–

658. Copenhagen, Denmark, May 2014.

[22] S. Goldwasser. Multi party computations: past and present.

In Proceedings of the 16th Annual ACM Symposium on
Principles of Distributed Computing (PDC), pages 1–6,

1997.

[23] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan,

and N. Zeldovich. Reusable garbled circuits and succinct

functional encryption. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), pages

555–564, Palo Alto, CA, June 2013.

[24] J. Groth, A. Kiayias, and H. Lipmaa. Multi-query

computationally-private information retrieval with con-

stant communication rate. In International Workshop on
Public Key Cryptography, pages 107–123. Springer, 2010.

[25] T. Gupta, N. Crooks, S. T. Setty, L. Alvisi, and M. Walfish.

Scalable and private media consumption with Popcorn. In

Proceedings of the 13th Symposium on Networked Systems
Design and Implementation (NSDI), pages 91–107, Santa

Clara, CA, Mar. 2016.

[26] A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wil-

son. Measuring price discrimination and steering on e-

commerce web sites. In Proceedings of the Conference on
Internet Measurement Conference (IMC), pages 305–318,

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
https://app.enigma.io/table/us.gov.dot.rita.trans-stats.on-time-performance.2012
https://app.enigma.io/table/us.gov.dot.rita.trans-stats.on-time-performance.2012
https://app.enigma.io/table/us.gov.dot.rita.trans-stats.on-time-performance.2012
https://gmplib.org/

2014.

[27] Health Insurance Portability and Accountability

Act. https://en.wikipedia.org/wiki/Health_
Insurance_Portability_and_Accountability_
Act.

[28] D. Indiviglio. Most Internet Users Willing to Pay for Pri-

vacy, December 22 2010. http://www.theatlantic.
com/business/archive/2010/12/most-internet-
users-willing-to-pay-for-privacy/68443/.

[29] J. S.-V. Jennifer Valentino-Devries and A. Soltani. Web-

sites Vary Prices, Deals Based on Users’ Information, De-

cember 24 2012. Wall Street Journal.

[30] Kayak. Kayak. https://www.kayak.com.

[31] J. Kincaid. Another Security Hole Found on Yelp,

Facebook Data Once Again Put at Risk, May 11 2010.

http://techcrunch.com/2010/05/11/another-
security-hole-found-on-yelp-facebook-data-
once-again-put-at-risk/.

[32] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu.

Embark: Securely outsourcing middleboxes to the cloud.

In Proceedings of the 13th Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 255–273,

Santa Clara, CA, Mar. 2016.

[33] L. A. Levin. One way functions and pseudorandom gener-

ators. Combinatorica, 7(4):357–363, 1987.

[34] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure

untrusted data repository (SUNDR). In Proceedings of the
6th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 91–106, San Francisco, CA, Dec.

2004.

[35] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and

J. Schiffman. Shroud: Ensuring private access to large-

scale data in the data center. In Proceedings of the
11th USENIX Conference on File and Storage Technolo-
gies (FAST), pages 199–213, San Jose, CA, Feb. 2013.

[36] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish. Depot: Cloud storage with

minimal trust. In Proceedings of the 9th Symposium on
Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[37] S. M. Matyas, C. H. Meyer, and J. Oseas. Generating

strong one-way functions with cryptographic algorithms.

IBM Technical Disclosure Bulletin, 27(10A):5658–5659,

1985.

[38] A. Narayanan and V. Shmatikov. Robust de-anonymization

of large sparse datasets. In Proceedings of the 29th IEEE
Symposium on Security and Privacy, pages 111–125, Oak-

land, CA, May 2008.

[39] A. Narayanan and V. Shmatikov. Myths and fallacies of

personally identifiable information. Communications of
the ACM, 53(6):24–26, 2010.

[40] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,

and D. Boneh. Location privacy via private proximity

testing. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium, San Diego, CA,

Feb. 2011.

[41] F. Olumofin and I. Goldberg. Privacy-preserving queries

over relational databases. In Proceedings of the 10th Pri-
vacy Enhancing Technologies Symposium, pages 75–92,

Berlin, Germany, 2010.

[42] F. Olumofin and I. Goldberg. Revisiting the computational

practicality of private information retrieval. In Financial
Cryptography and Data Security, pages 158–172. 2011.

[43] D. Ongaro and J. Ousterhout. In search of an understand-

able consensus algorithm. In Proceedings of the 2014
USENIX Annual Technical Conference, pages 305–319,

Philadelphia, PA, June 2014.

[44] OpenMP. OpenMP. http://www.openmp.org/.

[45] OpenSSL. OpenSSL. https://openssl.org.

[46] OpenStreetMap. OpenStreetMap. https://www.
openstreetmap.org/.

[47] R. Ostrovsky and W. E. Skeith III. A survey of single-

database private information retrieval: Techniques and

applications. In Public Key Cryptography (PKC), pages

393–411. 2007.

[48] P. Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In Proceedings of the 18th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques (EUROCRYPT),
pages 223–238, Prague, Czech Republic, May 1999.

[49] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Bal-

akrishnan. CryptDB: Protecting confidentiality with en-

crypted query processing. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP),
pages 85–100, Cascais, Portugal, Oct. 2011.

[50] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich,

M. F. Kaashoek, and H. Balakrishnan. Building web appli-

cations on top of encrypted data using Mylar. In Proceed-
ings of the 11th Symposium on Networked Systems Design
and Implementation (NSDI), pages 157–172, Seattle, WA,

Apr. 2014.

[51] F. Y. Rashid. Twitter Breached, Attackers

Stole 250,000 User Data, February 2 2013.

http://securitywatch.pcmag.com/none/307708-
twitter-breached-attackers-stole-250-000-
user-data.

[52] R. Ravichandran, M. Benisch, P. G. Kelley, and N. M.

Sadeh. Capturing social networking privacy preferences.

In Proceedings of the 9th Privacy Enhancing Technologies
Symposium, pages 1–18, Seattle, WA, Aug. 2009.

[53] J. Reardon, J. Pound, and I. Goldberg. Relational-complete

private information retrieval. University of Waterloo, Tech.
Rep. CACR, 34:2007, 2007.

[54] P. F. Riley. The Tolls of Privacy: An underestimated

roadblock for electronic toll collection usage. Computer
Law & Security Review, 24(6):521–528, 2008.

[55] R. J. Rosen. Study: Consumers Will Pay $5 for an App

that Respects their Privacy, December 26 2013. http:
//www.theatlantic.com/technology/archive/
2013/12/study-consumers-will-pay-5-for-an-

https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
http://www.theatlantic.com/business/archive/2010/12/most-internet-users-willing-to-pay-for-privacy/68443/
http://www.theatlantic.com/business/archive/2010/12/most-internet-users-willing-to-pay-for-privacy/68443/
http://www.theatlantic.com/business/archive/2010/12/most-internet-users-willing-to-pay-for-privacy/68443/
https://www.kayak.com
http://techcrunch.com/2010/05/11/another-security-hole-found-on-yelp-facebook-data-once-again-put-at-risk/
http://techcrunch.com/2010/05/11/another-security-hole-found-on-yelp-facebook-data-once-again-put-at-risk/
http://techcrunch.com/2010/05/11/another-security-hole-found-on-yelp-facebook-data-once-again-put-at-risk/
http://www.openmp.org/
https://openssl.org
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://securitywatch.pcmag.com/none/307708-twitter-breached-attackers-stole-250-000-user-data
http://securitywatch.pcmag.com/none/307708-twitter-breached-attackers-stole-250-000-user-data
http://securitywatch.pcmag.com/none/307708-twitter-breached-attackers-stole-250-000-user-data
http://www.theatlantic.com/technology/archive/2013/12/study-consumers-will-pay-5-for-an-app-that-respects-their-privacy/282663/
http://www.theatlantic.com/technology/archive/2013/12/study-consumers-will-pay-5-for-an-app-that-respects-their-privacy/282663/
http://www.theatlantic.com/technology/archive/2013/12/study-consumers-will-pay-5-for-an-app-that-respects-their-privacy/282663/

app-that-respects-their-privacy/282663/.

[56] J. Rott. Intel advanced encryption standard instructions

(AES-NI). Technical report, Technical report, Intel, 2010.

[57] F. Salmon. Why the Internet is Perfect for

Price Discrimination, September 3 2013. http:
//blogs.reuters.com/felix-salmon/2013/09/
03/why-the-internet-is-perfect-for-price-
discrimination/.

[58] R. Seaney. Do Cookies Really Raise Airfares?, April 30

2013. http://www.usatoday.com/story/travel/
columnist/seaney/2013/04/30/airfare-expert-
do-cookies-really-raise-airfares/2121981/.

[59] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blind-

box: Deep packet inspection over encrypted traffic. In

Proceedings of the 2015 ACM SIGCOMM, pages 213–226,

London, United Kingdom, Aug. 2015.

[60] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,

X. Yu, and S. Devadas. Path ORAM: An extremely sim-

ple oblivious RAM protocol. In Proceedings of the 20th
ACM Conference on Computer and Communications Se-
curity (CCS), Berlin, Germany, Nov. 2013.

[61] A. Tanner. Different customers, Different

prices, Thanks to big data, March 21 2014.

http://www.forbes.com/sites/adamtanner/
2014/03/26/different-customers-different-
prices-thanks-to-big-data/.

[62] R. Tewari, T. Niranjan, and S. Ramamurthy. WCDP: A

protocol for web cache consistency. In Proceedings of the
7th Web Caching Workshop. Citeseer, 2002.

[63] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases. In

Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), Farmington, PA, Nov. 2013.

[64] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell.

Privacy-preserving shortest path computation. In Proceed-
ings of the 2016 Annual Network and Distributed System
Security Symposium, San Diego, CA, Feb. 2016.

[65] Yelp. Yelp Academic Dataset. https://www.yelp.com/
dataset_challenge/dataset.

A Extracting Disjoint Records with FSS
This appendix describes our sampling-based technique

for returning multiple records using FSS, used in TOPK

queries with disjoint conditions (Section 5.2.3). Given a

table T of records and a condition c that matches up to k
records, we wish to return those records to the client with

high probability without revealing c.

To solve this problem, the providers each create a result

table R of size l > k, containing (value, count) columns

all initialized to 0. They then iterate through the records

and choose a result row to update for each record based

on a hash function h of its index i. For each record r,

each provider adds 1 · fc(r) to R[h(i)].count and r · fc(r)
to R[h(i)].value, where fc is its share of the condition c.

The client then adds up the R tables from all the providers

to build up a single table, which contains a value and

count for all indices that a record matching c hashed into.

Given this information, the client can tell how many

records hashed into each index: entries with count=1 have

only one record, which can be read from the entry’s value.

Unfortunately, entries with higher counts hold multiple

records that were added together in the value field. To

recover these entries, the client can run the same process

multiple times in parallel with different hash functions h.

In general, for any given value of r and k, the proba-

bility of a given record colliding with another under each

hash function is a constant (e.g., it is less than 1/3 for

r = 3k). Repeating this process with more hash functions

causes the probability to fall exponentially. Thus, for any

k, we can return all the distinct results with high proba-

bility using only O(logk) hash functions and hence only

O(logk) extra communication bandwidth.

http://www.theatlantic.com/technology/archive/2013/12/study-consumers-will-pay-5-for-an-app-that-respects-their-privacy/282663/
http://blogs.reuters.com/felix-salmon/2013/09/03/why-the-internet-is-perfect-for-price-discrimination/
http://blogs.reuters.com/felix-salmon/2013/09/03/why-the-internet-is-perfect-for-price-discrimination/
http://blogs.reuters.com/felix-salmon/2013/09/03/why-the-internet-is-perfect-for-price-discrimination/
http://blogs.reuters.com/felix-salmon/2013/09/03/why-the-internet-is-perfect-for-price-discrimination/
http://www.usatoday.com/story/travel/columnist/seaney/2013/04/30/airfare-expert-do-cookies-really-raise-airfares/2121981/
http://www.usatoday.com/story/travel/columnist/seaney/2013/04/30/airfare-expert-do-cookies-really-raise-airfares/2121981/
http://www.usatoday.com/story/travel/columnist/seaney/2013/04/30/airfare-expert-do-cookies-really-raise-airfares/2121981/
http://www.forbes.com/sites/adamtanner/2014/03/26/different-customers-different-prices-thanks-to-big-data/
http://www.forbes.com/sites/adamtanner/2014/03/26/different-customers-different-prices-thanks-to-big-data/
http://www.forbes.com/sites/adamtanner/2014/03/26/different-customers-different-prices-thanks-to-big-data/
https://www.yelp.com/dataset_challenge/dataset
https://www.yelp.com/dataset_challenge/dataset

	Introduction
	Splinter Architecture
	Splinter Overview
	Security Goals
	Threat Model

	Function Secret Sharing
	Overview of Function Secret Sharing
	Using FSS for Database Queries

	Splinter Query Model
	Executing Splinter Queries
	Condition Types and Classes
	Aggregate Evaluation
	Sum-Based Aggregates
	MAX and MIN
	TOPK

	Complexity

	Optimized FSS Implementation
	One-Way Compression Functions
	Selecting the Correct Multi-Party FSS Protocol

	Implementation
	Evaluation
	Case Studies
	Comparison to Other Private Query Systems
	FSS Microbenchmarks
	Hosting Costs

	Discussion and Limitations
	Related Work
	Conclusion
	Extracting Disjoint Records with FSS

