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Abstract

A memory-hard function (MHF) f is equipped with a space cost σ and time cost τ parameter such
that repeatedly computing fσ,τ on an application specific integrated circuit (ASIC) is not economically
advantageous relative to a general purpose computer. Technically we would like that any (generalized)
circuit for evaluating an iMHF fσ,τ has area × time (AT) complexity at Θ(σ2 ∗ τ). A data-independent
MHF (iMHF) has the added property that it can be computed with almost optimal memory and time
complexity by an algorithm which accesses memory in a pattern independent of the input value. Such
functions can be specified by fixing a directed acyclic graph (DAG) G on n = Θ(σ ∗τ) nodes representing
its computation graph.

In this work we develop new tools for analyzing iMHFs. First we define and motivate a new complexity
measure capturing the amount of energy (i.e. electricity) required to compute a function. We argue that,
in practice, this measure is at least as important as the more traditional AT-complexity. Next we describe
an algorithm A for repeatedly evaluating an iMHF based on an arbitrary DAG G. We upperbound both
its energy and AT complexities per instance evaluated in terms of a certain combinatorial property of G.

Next we instantiate our attack for several general classes of DAGs which include those underlying
many of the most important iMHF candidates in the literature. In particular, we obtain the following
results which hold for all choices of parameters σ and τ (and thread-count) such that n = σ ∗ τ .

• The Catena-Dragonfly function of [FLW13] has AT and energy complexities O(n1.67).

• The Catena-Butterfly function of [FLW13] has complexities is O(n1.67).

• The Double-Buffer and the Linear functions of [CGBS16] both have complexities in O(n1.67).

• The Argon2i function of [BDK15] (winner of the Password Hashing Competition [PHC]) has com-
plexities O(n7/4 log(n)).

• The Single-Buffer function of [CGBS16] has complexities O(n7/4 log(n)).

• Any iMHF can be computed by an algorithm with complexities O(n2/ log1−ε(n)) for all ε > 0.
In particular when τ = 1 this shows that the goal of constructing an iMHF with AT-complexity
Θ(σ2 ∗ τ) is unachievable.

Along the way we prove a lemma upper-bounding the depth-robustness of any DAG which may prove
to be of independent interest.

1 Introduction

Moderately hard to compute functions have proven to be useful security primitives. In this work we focus
on “memory-hard functions” (MHF) introduced in [Per09]. These aim to serve as password hashing algo-
rithms for storing passwords in a login system, as Key Derivation Functions (also called “key stretching”
functions) for password-based cryptography and for building Proof-of-Effort protocols (in particular for use
in cryptocurrencies such as Litecoin [Cha11], [Bil13] and others). In each case the main security property
we would like to achieve for the MHF is that brute-force attacks (i.e. evaluating the MHF on many inputs)
using an application-specific integrated circuit (ASIC) should not be economically viable.
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1.1 Memory-Hard Functions and Their Complexity

We interpret this intuitive goal in two ways. Either the cost of building the ASIC should be prohibitively
expensive (in terms of say USD) or the cost of running the ASIC should be prohibitively expensive. In fact,
given that the former is a one-time cost which can be amortized over the life-time of the device while the
later is a recurring cost, it may often be the case that the later is the most interesting goal to achieve.

The cost of building a circuit is often approximated by its AT-complexity [Tho79, BL13, BK15, AS15];
that is the product of the area of the chip and the time it takes the chip to produce the output. In this
work we consider MHFs built as modes of operation over an underlying compression function H. Thus,
we measure time in units of tocks; namely the time it takes to evaluate one instance of H from start to
finish.1. We measure area in units of “memory-area” (MAr); namely the area required to store one output
of H (called a block). Finally we parametrize our AT-complexity notion ATR with the core-memory area
ratio [BK15] R > 0, a positive real denoting the number of MAr required to implement one copy of H.2

To estimate the cost of running the chip we will use a new notion which we call the “energy-complexity”
or E-complexity of the circuit. Intuitively, it approximates the energy (say in kilo-Watt-hours) used in an
execution of the chip. More precisely the unit of measure for E-complexity is a “memory-Watt-tock”(MWt)
– the number of kWh it takes to store one block for one tock. We also parametrize the complexity notion ER̄
with the core-memory energy ratio, a positive real R̄ > 0 which is the number of MWt required to evaluate
one instance of H.

To see why this is an interesting measure for achieving our stated security goal consider the case of
password hashing. (The case for KDFs follows essentially the same reasoning.) Suppose an attacker manages
to pilfer the credentials file from a login-server and now executes an off-line brute-force attack A implemented
in an ASIC with core-memory energy ratio R̄ using ER̄(A) MWt per password guess. We model the monetary
income from such an attack as being proportional to the number of password guesses made which we denote
by #eval.3 Conversely, we model the running cost as being proportional to the electricity consumed by the
ASIC while executing the attack, namely its ER̄-complexity times #eval. The attacker can always increase
income (i.e. increase #eval) simply by adding more implementations of A to the ASIC or running the ASIC
for more time. Therefore, the attack is profitable (in this model) if and only if the USD cost c of one MWt
and the income i per password guess are such that i > c∗ER̄(A). Thus we can use ER̄(A) as a key indicator
for which ranges of (c, i) an attack is economically viable.

When using an MHF to construct a Proof-of-Work for a cryptocurrency the application of energy com-
plexity follows a slightly different reasoning. In this context our security goal is to make mining (the practice
of generating new coins by repeatedly evaluating the MHF until certain type of input/output is found) eco-
nomically uninteresting on an ASIC. In contrast to the previous case, it now matters to a miner how much
time is needed for the evaluations. Indeed, in practice mining ASICs are usually specified by manufacturers
in terms of their throughput (#eval/s) [BP1, BF1, Spo]. Thus we model the rate of profit of a mining rig
as being proportional to

profit

second
≈ #eval

second
− energy

second
=

#eval − energy
second

.

A miner can always increase #eval/second by implementing more copies of the MHF on the ASIC. Therefore,
to keep the profit down we want the energy consumption to increase accordingly. How much it increases
per increment of #eval is given precisely by the amortized energy complexity of the (most efficient circuit
implementing the) MHF. Thus, demonstrating an MHF with a high enough energy-complexity results in a
Proof-of-Work protocol for which running any mining ASIC costs as much as the income it generates from
freshly minted coins.4

1I.e. without considering pipelining and other such amortized optimizations.
2This allows our analysis to be applied regardless of the particular VLSI technology employed and the particular implemen-

tation of H used when constructing the ASIC.
3Intuitively, the more passwords guesses made the higher the expected number of password (equivalents) recovered by the

adversary which can then be monetized.
4This calculation may also help explain why, in practice, mining ASIC vendors tend to specify their devices in terms of

#eval/second (which approximates rate of income) [BP1, BF1, Spo], while third-party sites comparing devices across vendors
tend focus equally on the energy-complexity of the devices (which is just as important when estimating rate of profit) [MR1, Coi].
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Quality of an Attack. A candidate MHF F is specified via an algorithm which evaluates it. (E.g. [Per09,
FLW13, BDK15].) We refer to this algorithm as the näıve algorithm N for F and it is understood to be the
algorithm used by the honest party. N is intended to be an algorithm that can be evaluated efficiently on
typical (i.e. general purpose) computer architectures — where we may not be able to evaluate H multiple
times in parallel. As usual, we are interested in what advantage an adversarial evaluation algorithm can have
over the honest party. Therefore, one measure of the quality of a given algorithm A for evaluating (multiple
instances of) an MHF F is to compare its complexity to that of N . In particular for given core-memory
ratios R and R̄ the AT -quality and energy-quality of A are given by

AT-qualityR(A) =
ATR(N )

ATR(A)
and E-qualityR̄(A) =

ER̄(N )

ER̄(A)
.

Here, ATR(A) (resp. ER̄(A)) measures the amortized AT complexity (resp. amortized energy complex-
ity).5 That is ATR(A) is smallest ATR complexity of a chip implementing A divided by #inst(A) — the
number of instances of F computed in an execution of A. We consider A an “attack” if either one of these
quality measures is greater than 1. (However we remark that all attacks in this work have both qualities
simultaneously tending towards infinity as #inst grows.)

Data-Independent and Ideal MHFs. An data-independent memory-hard function (iMHF) is a function
f for which the associated näıve algorithm N , on input x, computes f(x) using a memory access pattern
that is independent of x. These take on special importance in applications where the MHF is to be evaluated
on secret input in an (at least somewhat) hostile environment. This is because (in contrast to their siblings
data-dependent MHFs) it is much easier to implement an iMHF in such a way that it avoids information
leakage via certain side-channel attacks such as Timing attacks. In these attacks, the variation in the time
taken to perform certain operations is used to deduce information about the inputs upon which the MHF
is being evaluated. Similar attacks have in the past been mounted by local adversarial processes [BM06],
adversarial virtual machines in a cloud environment [RTSS09] or even completely remotely [Ber, ASK07].
Therefore, in the context of both KDFs and password hashing data-independence is a desirable property.
All MHFs considered in this work are of this form.

In general, an iMHF f can be described via a fixed DAG G representing its computation graph. Each
node represents an intermediary value, which is computed via some deterministic round function, using the
values represented by the parent nodes in G (e.g. via a single call to H). The source node of G represents
the input x while f(x), the output of the computation, is the value represented by the sink node.

Let f be an iMHF given by some DAG G of size n with constant in-degree. There exists a trivial
algorithm triv which can always compute f with AT and energy complexities Θ(n2).6 Given a constant
c > 1 we consider f to be a c-ideal iMHF if, when we take the näıve algorithm to be triv, there exist no
attack A on f with better quality than c (i.e. ∀A E-qualityR̄(A) ≤ c and AT-qualityR(A) ≤ c). A primary
goal of research in this field is to find an ideal iMHF.7

1.2 MHF Candidates

Due to the growing interest in MHFs there are a number of candidate functions. For example in the recently
completed Password Hashing Competition [PHC] most entrants claimed some form of memory-hardness.
The goal of the PHC was to select a winning algorithm to act as a new standard for password hashing.

5Generally, unless explicitly specified otherwise, we are only interested in the amortized AT and energy complexities per
instance of the MHF computed.

6Simply compute each intermediary value in topological order, one value at a time, storing all results in memory until the
computation is complete.

7Hopefully one permuting as simple as possible an explicit description and näıve implementation and as lightweight as
possible round-function.
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Catena. To the best of our knowledge the earliest candidate iMHF is the PHC finalist Catena [FLW13].
It received special recognition for its agile framework and its resistance to side-channel attacks. In [FLW13]
the authors proposed two different DAGs giving rise two two separate functions. The first, called Catena Bit
Reversal, is based on an λ-layered graph BRGnλ with n nodes. The second is called Catena Double Butterfly
and is based on different O

(
λ log n

)
-layered graph DBGnλ. The Catena designers recommended choosing

λ ∈ {1, 2, 3, 4} [FLW13].

Argon2. One of the most important MHF candidates is Argon2 [BDK15]. Notably, it is the winner of the
Password Hashing Competition [PHC]. Argon2 is equipped with a data-dependent mode of operation and
an independent mode which is called Argon2i.

Balloon Hashing Most recently, three new candidate iMHFs are proposed in [CGBS16]. These are called
the Single-Buffer (SB), Double-Buffer and Linear constructions respectively and are jointly referred to as the
Balloon Hashing constructions. The authors provide strong evidence for the memory-hardness of all three
candidates albeit assuming the absence of parallelism.

In general iMHF candidates are equipped with a space-cost parameter σ (in which the memory required
per evaluation is intended to scale) and a time-cost parameter τ (in which the time required for an evaluation
is intended to scale)8. Additionally, Argon2i, the Double-Buffer and the Linear functions are also equipped a
parallelism parameter φ the property that the näıve algorithm can make efficient use of (up to) φ concurrent
threads. Viewing these functions as DAGs gives rise to a graph on n = σ ∗ τ nodes. The näıve algorithm N
will run in time n/φ and will use space σ at each step. Thus, the energy cost will be Θ(σ2 ∗ τ/φ) The hope
is that for all settings of (σ, τ, φ) the AT and energy complexity lie in Θ(σ2 ∗ τ/φ).

1.3 Our Contributions

In this work we introduce and motivate the notion of (amortized) energy complexity. Next we give a
generic evaluation algorithm PGenPeb for data-independent iMHFs based on arbitrary DAG G. We analyze
PGenPeb’s energy and AT complexities in terms of a combinatorial property of G. In particular, we obtain
an attack against any iMHF for which G is not depth-robust. Informally, a DAG G is not depth-robust if
there is a relatively small set S of nodes such that after removing S from G the resulting graph (denoted
G− S) has low depth (i.e. contains only short paths).

We instantiate the attack for various classes of DAGs. In particular, we exhibit a “depth-reducing” node
set S for the Argon2i DAG, both types of Catena DAGs and all three Balloon Hashing DAGs. For example,
for any parameters (σ, τ, φ = 1) with n = σ∗τ we obtain an attack on both Catena, the Double-Buffer and the
Linear iMHFs with quality Ω

(
n1/3

)
. Similarly we demonstrate an attack on Argon2i and the Single-Buffer

iMHF with quality Ω
(
n1/4

lnn

)
.9

In fact we demonstrate that no DAG with constant indegree is sufficiently depth-robust to completely
resist the attack. More precisely, we show that any iMHF is at best c-ideal for c = Ω

(
log1−ε n

)
and any

ε > 0. In particular this means that ideal iMHFs, as described above, do not exist.

General Attack on Non-Depth Robust DAGs. We first present in Section 3, a generic evaluation
algorithm GenPeb which takes as inputs a node subset S. Because G is not depth-robust there exists a small
set S of nodes such that d = depth(G− S) is relatively small. The basic idea behind our attack is to divide
computation steps into two phases: balloon phases and light phases. Each light phase lasts roughly g � d
time steps. During light phases we discard most of the values that we have computed from memory keeping
only values corresponding to nodes in S, the highest node i whose value has been computed and the parents

8τ corresponds to the number of passes through memory. For Catena DAGs this corresponds to the parameter λ, the number
of layers in the DAG.

9For the cases when φ > 1 PGenPeb maintains the same complexities but the resulting quality decreases somewhat as the
complexity of the näıve algorithm improves for Argon2i, the Double-Buffer and the Linear functions. In other words quality
decreases not because memory-hardness increases but because the honest algorithm becomes more efficient.
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of the nodes whose values we plan to compute in the next g time steps. As the name suggests, light phases
are cheap. Our memory usage is low during these light phases and we will compute one instance of the
round function (e.g. call to H) during each time step. During a Balloon Phase we quickly restore all of the
discarded values to memory so that we can complete the next light phase. Unlike light phases, the balloon
phases are more expensive because we are storing up to O(n) values in memory and because we will often
make multiple calls to the round function in parallel. However, the key observation is that we will not incur
these higher cost in too many time steps. In particular, because the graph G − S has small depth d � g
and we never discard values for nodes in S the Balloon Phase can be completed very quickly (i.e., in at most
d� g times steps) by making parallel calls to the round function.

While for any non-depth-robust graph the GenPeb algorithm has good energy complexity, obtaining an
evaluation algorithm with low AT-complexity requires a bit more work. Notice that during a light phase most
of the memory capacity and round function implementations needed for a balloon phase are no longer being
used. Moreover light phases run for significantly more time than the balloon phases. These observations
give rise to the low AT-complexity parallel algorithm PGenPeb which evaluates g/d instances of the iMHF
concurrently such that at any given time only a single instance is in a balloon phase while all other instances
are in light phases. Intuitively this results in more efficient use of available hardware while technically we get
that the energy complexity of the algorithm is approximately equal to the AT complexity (Theorem 3.5).

Stacked Sandwich Graphs. In Section 4 we focus on two classes of DAGs called (strict) stacked sandwich
graphs. Informally, a DAG G is a λ-stacked sandwich DAG if the nodes can be partitioned into λ+ 1 layers
such that, with the possible exception of node i, all of the parents of node i + 1 are from previous layers.
These classes include the DAGs implicit to both Catena iMHFs as well as the Double-Buffer and Linear
iMHFs. We prove that no λ-stacked sandwich graph is depth-robust (Lemma 4.2). For any t > 1 there is a
set S of n/t nodes such that depth(G− S) ≤ (λ+ 1)t.

(n, δ, w)-Random Graphs. In Section 5 we turn to a class of random graphs called (n, δ, w)-random DAGs.
We remark that the graphs implicit to Argon2i and the Single-Buffer iMHF (for a randomly chosen salt) fall
into this category of random DAGs. We show (in Lemma 5.3) that, with high probability, by removing just
a few nodes these graphs can be transformed into stacked sandwich graphs and are thus not depth-robust.

Attack on any iMHF. In Section 6 we prove that no DAG with constant indegree is sufficiently depth-
robust to resist at least some form of attack (Theorem 6.3). In our proof, we rely on a result due to
Valiant [Val77] which states that for any DAG G with m edges and depth d there is a set S of m/ log d
edges s.t. by deleting them we obtain a graph of depth at most d/2 (see Lemma 6.1). Given ε > 0 we can

repeatedly apply this result obtain a set S of o
(

δn
log1−ε n

)
nodes s.t depth(G − S) ≤ n

log2 n
. Thus if we let

the näıve algorithm be (any algorithm complexity comparable to) triv then we have a generic attack A with
quality AT-qualityR(A) = Ω

(
δ−1 log1−ε n

)
and ER̄(A) = Ω

(
δ−1 log1−ε n

)
.

Exact Security Analysis. Finally we present exact bounds for the energy and AT complexities of all
of our attacks. Our analysis demonstrate that our attacks have high quality for practical values of n and
R̄ — not just as n → ∞. For example setting n = 218 we already have an attack A against Argon2i with
AT-qualityR(A), E-qualityR̄(A) > 1 — using a realistic value R̄ = 3, 000. In general, E-qualityR̄(A) will
increase as n increases or as R̄ decreases.

1.4 Related Work

The intuitive goal of constructing functions for which VLSI implementations are prohibitively expensive was
first laid out by Percival in [Per09]. This property was formalized by asking that evaluating such a function
on a PRAM requires large ST-complexity. In particular evaluation algorithms with low amortized complexity
such as those in this work were not considered. Percival also introduced the first, and currently most widely
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deployed, candidate MHF called scrypt. A full proof of security under a strong security definition remains
a central open problem in the area. However recently significant progress has been made in this direction
in [ACK+16]. It is interesting to note though that despite scrypt being data-dependent the (conditional)
lower bound in [ACK+16] still does not exceed the upper-bound of Section 6 on the best possible quality of
an iMHF.

Catena. In [FLW13] the authors of Catena restricted their analysis of its security to a sequential setting.
That is they restrict an adversary to only being able to evaluate one instance of the underlying function
H at a time. In this setting and for the case when λ = 1 the results of [LT82] show that, in a simplified
computational model, BRGn1 has ST-complexity Ω

(
n2
)
. Here ST-complexity denotes the product of the

space and time required by any algorithm which evaluates Catena Bit Reversal. The intuition being that
large ST-complexity implies large AT-complexity of any implementation in a custom chip.

Argon2. Argon2 [BDK15] was the winner of the Password Hashing Competition [PHC]. Argon2 is
equipped with a data-dependent mode of operation and an independent mode which is called Argon2i. The
authors recommend using Argon2i for password hashing due to its resistance to side channel attacks [BDK15].
Our attacks only apply to Argon2i, the data independent mode. Recently, Gibbs et al. [CGBS16] gave an
attack on Argon2i which reduces the cost of computing Argon2i by a factor of 4.

Balloon Hashing. In [CGBS16] the authors also proposed three iMHFs which resist their attack on
Argon2i. These are called Single-Buffer (SB), Double-Buffer and Linear and collectively referred to as the
Balloon Hashing iMHFs.10 Our attacks reduce the cost of computing both Argon2i and SB by a factor of
Ω̃
(
n1/4

)
.

A Provably Secure MHF. Currently, the only candidate MHF equipped with a full proof of security
is the one in [AS15]. There, the authors show an iMHF F for which the energy-complexity of the required
storage alone (i.e. disregarding the cost of evaluating the round function) is within a polylogarithmic factor
in n of the energy-complexity of the trivial algorithm triv. Moreover triv uses only a single instance of
H (i.e. it is sequential) which implies that, roughly speaking, any evaluation algorithm for F can have
E-quality = O(polylog(n)). The results in Section 6 show that this is optimal for any iMHF up to the
exponent in the polylogarithmic factor.

Attacking MHFs. The Catena Dragonfly iMHF has been attacked previously [BK15, AS15]. In partic-
ular, [AS15] demonstrated an attack on Catena Dragonfly BRGnλ=1 which has energy quality E-quality =
O
(√
n
)
. The attack from [BK15] has slightly worse quality O

(
n1/5

)
, but it applies even for Dragonfly

variants in which λ > 1. At a high level the ideas behind both of these attacks is to divide memory into seg-
ments, store the leading block in each segment and then recompute the remaining blocks as needed. These
attacks only work because the underlying Catena Dragonfly DAG BRGnλ allows for quick re-computation
of the remaining blocks. In this work we observe that this key idea can be generalized to attack any non
depth-robust iMHF. In particular, our techniques can be used to attack other iMHFs like Catena Butterfly,
Argon2i [BDK15] and SB [CGBS16]. In fact, our attacks can be extended to any iMHF because no DAG is
sufficiently depth-robust to resist at least some form of attack.

Memory-Bound Functions. An important precursor to memory-hard functions are memory-bound func-
tions. First introduced in [ABMW05] here the complexity measure of interest is the number of cache misses
required to evaluate the function. On the highest level the motivation is the same as that of memory-
hard functions; namely to build moderately hard functions which are more equally hard across different
computational devices (compared to the rather unbalanced notion of plain computational complexity). In

10Gibbs et al. [CGBS16] use “Balloon Hashing” as a title for their iMHF however this similarity with the balloon phase in
our evaluation algorithm is a slightly unfortunate coincidence.
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particular it was observed that while computational speeds may vary greatly between different devices the
same is not as true for memory latency speeds [DGN03]. In contrast memory-hard functions aim to achieve
egalitarian hardness by making the cost of custom hardware prohibitively large [Per09]. The first provably
secure memory-bound function was (implicitly) given in [DGN03] where it was used to construct a protocol
for fighting SPAM email. The construction was later improved in [DNW05] which was also the first result
in cryptography to make use of a version of the pebbling model of computation; a technique later adapted
in [AS15].

Password Storage. Recent high-profile security breaches (e.g., RockYou, Sony, LinkedIN, Ashley Madi-
son 11) highlight the importance of proper password storage practices like salting [Ale04] and key stretch-
ing [MT79]12. However, hash iteration, the technique used by password hash functions like PBKDF2 [Kal00]
and bcrypt [PM], is typically an insufficient defense against an adversary who could build customized hard-
ware to evaluate the underlying hash function. In particular, the cost of computing a hash function H
like SHA256 or MD5 on an ASIC is orders of magnitude smaller than the cost of computing H on tradi-
tional hardware [DGN03, NB+15]. By contrast, memory costs tend to be relatively stable across different
architectures [DGN03], which motivates the use of memory-hard functions for password hashing [Per09].

Several orthogonal lines of research have explored defenses such as: distributing the storage and/or
computation of a password hash across multiple servers (e.g., [BJKS03, CLN12]), storing fake password
hashes on the server (e.g., [JR13, BBBB10]), the inclusion of secret salt values (e.g., “pepper”) in password
hashes [Man96] and the inclusion of the solution(s) to hard AI challenges in password hashes [CHS06, DC08,
BBD13].

2 Preliminaries

We begin with some notation. Given a directed acyclic graph (DAG) G = (V,E) of size |V | = n and a subset
S ⊆ V we use G − S to denote the resulting DAG after removing all nodes in S. We denote by depth(G)
the length of the longest (directed) path in G and we denote by indeg(G) the maximum number of directed
edges entering a single node. For integers a ≤ b we write [a, b] as shorthand for the set {a, a+ 1, . . . , b} and
we write [a] for the set [1, a].

We use Hλ =
∑λ
i=1

1
i to denote the λ’th harmonic number. In particular Hλ can be approximated by

the natural logarithm Hλ ≈ lnλ.

2.1 Complexity and Quality of Attacks
We consider algorithms in the parallel random oracle model (pROM) [AS15] of computation.13 That is an
algorithm is repeatedly invoked. At invocation i ∈ {1, 2, . . .} the algorithm is given the state (bit-string)
σi−1 it produced at the end of the previous invocation. Next A can make a batch of calls qi = (q1,i, q2,i, . . .)
to the underlying round function H (modeled as a random oracle (RO)). Then it receives the response from
H and can perform arbitrary computation before finally outputting an updated state σi. The initial state σ0

contains the input to the computation which terminates once a special final state is produced by A. Apart
from the explicit states σ the algorithm may keep no other state between invocations. For a input x and
coins r we denote by A(x; r;H) the corresponding (deterministic) execution of A.

We define the runtime time(A) to be the maximum running time of A in any execution (over all choices
of x, r and H). Then the cumulative memory complexity (CMC) and cumulative RO complexity are defined
as

11See http://www.privacyrights.org/data-breach/ (Retrieved 9/1/2015).
12Users routinely select lower entropy password [Bon12], which are especially vulnerable to an offline attacker when the

underling password hash function is inexpensive to compute. Furthermore, stricter password restrictions (e.g., requiring a
mix of numbers and upper/lower case letters) [SS09] have not been found to greatly improve the entropy of the resulting
passwords [KSK+11, BKPS13]. In fact, sometime these policies reduced the entropy of user selected passwords [KSK+11].
These policies are often associated with high usability costs [FH10].

13Alternatively the results in this work also apply to the random access machine model of computation.
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cmc(A) = max
x,r,H

∑
i∈[T−1]

|σi| crc(A) = max
x,r,H

∑
i∈[T ]

|qi|

where |σ| is the bit-length of state σ, |q| is the dimension of the vector q and maxx,r,H denotes the
maximum over all possible executions of A. Similarly the absolute memory complexity (AMC) and absolute
RO complexity are defined to be (ARC)

amc(A) = max
x,r,H

max
i∈[T−1]

|σi| arc(A) = max
x,r,H

max
i∈[T ]

|qi|.

We remark that these complexity measures are stricter then is common, especially with respect to maximizing
over all random oracles H. However we use them to upper-bound the complexity of our attacks so this
strictness can only serve to strengthen the results.

Using these tools we can now define the complexity of an algorithm as follows.

Definition 2.1 (AT and Energy Complexities) Let A be a pROM algorithm which computes #inst(A)
instances of an iMHF in parallel. Then for any core-memory area ratio R > 0 and any core-memory energy
ratio R̄ > 0 the (amortized) AT-complexity and the (amortized) energy-complexity of A are defined to be

ATR(A) = [amc(A) +R · arc(A)]× time(A)

#inst(A)
ER̄(A) =

cmc(A) + R̄ · crc(A)

#inst(A)
.

Finally we can define the quality of an attack in terms of how much (if at all) it improves on the näıve
algorithm

Definition 2.2 (Attack Quality) Let f be an MHF with näıve algorithm N and let A be a pROM algorithm
for evaluating #inst(A) instance(s) of f . Then for any core-memory area ratio R > 0 and any core-memory
energy ratio R̄ > 0 the AT-quality and energy-quality of A is defined to be

AT-qualityR(A) =
ATR(N )

ATR(A)
E-qualityR̄(A) =

ER̄(N )

ER̄(A)
.

In particular if either quantity is less than 1 then we call A an attack on f .

Let f be an iMHF based on some DAG G of size n with constant in-degree. Observe f can always
be evaluated by computing one intermediate value at a time in topological order while never deleteing a
computed value. Clearly this always results in correctly computing f and it corresponds to a well defined
pROM algorithm triv for evaluating f . Moreover ATR(triv) = Θ(n(n + R)) and ER̄(triv) = Θ(n(n + R̄)).
Given a constant c > 0 we say that f is a c-ideal iMHF if, when triv = N is the näıve, for any attack A we
have AT-qualityR(A) ≥ c and E-qualityR̄(A) ≥ c. This is motivated by the observation that for any iMHF
algorithm triv is always a possible way to evaluate it. An ideal iMHF captures the property that triv is
(approximately) the best evaluation strategy possible.

Unfortunately we will later show that c-ideal iMHFs do not exist for any constant c > 0. As n→∞ we
will have AT-qualityR(A) = ω(1) and E-qualityR̄(A) = ω(1).

2.2 Pebbling and Graph Theory
We provide some shorthand for describing algorithms and give some useful graph theoretic definitions and
lemmas.

Graph Pebbling. To simplify exposition, our attacks are often described in the language of parallel graph
pebbling [AS15]. However, unlike in [AS15], we merely think of this as shorthand for describing an evaluation
strategy of an iMHF rather then describing an algorithm in a distinct model of computation.

In particular any iMHF f which we consider is based on some fixed underlying DAG G with (a single
source and sink node) which describes which values are used as inputs to which calls to the round function.
To compute f on some input x each node of G is assigned a value (bit-string). The source receives the value
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x. The value of any other node v is defined to be the output of the round function applied to the values of
the parent nodes of v. Finally f(x) is defined to be the value of the sink node.14

With this in mind, each round of pebbling corresponds to one invocation in an execution. Placing a pebble
on a node v in some round is shorthand for computing the value of v by computing the round function on
the values of v’s parents. Clearly this can only be done if (x1, . . . , xz) are stored in memory and so, if an
algorithm places a pebble on a node whose parents do not all contain a pebble then we call such a move
illegal. Thus we will always show that our pebbling strategies only produce legal pebblings in order to ensure
that they correspond to a feasible pROM algorithm for evaluating iMHF. Finally having a pebble on a node
at the end of a round corresponds to storing the value of that node in the state σ for that invocation.

Graph Theory. The key insight behind our attacks is that if a graph is not depth-robust enough then it
can be efficiently pebbled.

Definition 2.3 (Depth Robust and Depth Reducible DAGs) For e, d ∈ N a DAG G = (V,E) is
called (e, d)-depth-robust if

∀S ⊆ V : |S| ≤ e⇒ depth(G− S) ≥ d.

If G is not (e, d)-depth-robust then we say that G is (e, d)-reducible. For 0 ≤ β ≤ α ≤ 1 a DAG of size n is
(α, β)-fractionally depth-robust if it is (αn, βn)-depth-robust.

In order to prove the generic attack on any iMHF we rely on a lemma, originally due to Valiant [Val77],
to show that no graph is depth-robust enough not to permit at least some sort of attack.

3 Generic Attack

In this section we describe a general pebbling attack GenPeb against any (e, d)-reducible graph. GenPeb(G,S, g, d)
takes as input a DAG G = (V,D) and a set S ⊆ V of size e such that depth(G − S) ≤ d and a parameter
g ≥ d which we will define below. In every round GenPeb makes progress (i.e., places a pebble on node i in
the i’th round). Thus, time

(
GenPeb

)
= n as the algorithm will place a pebble on the final node n in the n’th

rounds. Intuitively, GenPeb is divided into two types of phases: Balloon Phases and a Light Phases. During
light phases we throw out most of the pebbles on the graph keeping only pebbles on nodes in S, the highest
pebbled node i and the parents of the nodes [i, i+ g] that we plan to pebble in the next g rounds. Every g
rounds we execute a balloon phase to ensure that we will always have pebbles placed on the parents of the
nodes that we plan to pebble in the next g rounds. Because we never remove pebbles on nodes in S and the
DAG G− S has depth ≤ d we will be able to accomplish this goal in at most d rounds. During light phases
we keep at most δg + e pebbles on the graph and we place at most one new pebble on G in every round.
Thus the total cost during all light phases is at most n

(
δg+ e+ R̄

)
. While we may incur higher costs during

a balloon phase we are only in the balloon phase for at most dn
g rounds.

We analyze the energy complexity GenPeb in terms of the depth reduction parameters e and d. These re-
sults are summarized in Theorem 3.4. While GenPeb will lead to attacks with good energy-quality E-qualityR̄
the attack may not necessarily have good AT-quality AT-qualityR. This is because GenPeb may still have
high absolute memory and RO complexity due to the balloon phase. However, we can easily circumvent this
problem by pebbling multiple copies of the DAG G in parallel, which corresponds to evaluating multiple
independent instances of the iMHF. In particular, PGenPeb pebbles bg/dc instances of G in parallel. We
stagger evaluation of the different iMHF instances so that at most one of the bg/dc pebbling instances is
in a balloon phase at any point in time. To accomplish this PGenPeb simply waits (i − 1)d steps to begin
pebbling the i’th instance of G. Thus, PGenPeb takes at most n + bg/dcd ≤ 2n steps to complete. The
absolute memory and RO complexity of PGenPeb is essentially just the cost of the balloon phase for a single
iMHF instance. Thus, PGenPeb leads to attacks with good AT-quality AT-qualityR because the cost of the
balloon phase can be amortizes among the bg/dc iMHF instances we compute. Theorem 3.5 states both

14For concreteness, though not relevant to this work, in most cases the round function is simply the compression function H
(with the exception of the Linear iMHF of [CGBS16]).
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the energy and AT complexity of PGenPeb. The energy complexity of PGenPeb is roughly equivalent to the
energy complexity of GenPeb, and the AT-complexity of PGenPeb is roughly twice the energy complexity of
PGenPeb.

In the rest of the paper we will consider several specific families of DAGs like the underlying DAGs
in the Catena and Argon2i iMHFs. For Catena, we can find a set S ⊆ V of size e = n/t such that
depth(G−S) = O(t) for every t > 1. For Argon2i we can find a set S with expected size O (n/t+ (n lnλ)/λ)
such that depth(G−S) ≤ t ·λ. Combined with Theorem 3.5 we will obtain an attack on Catena with quality
Ω
(
n1/3

)
and an attack on Argon2i with quality Ω

(
n1/4/ lnn

)
.

GenPeb makes use of two subroutines need and keep. In our complexity analysis we omit the cost of
computing these functions. However we stress that in all our attacks they are either trivial (constant) or
very easy to compute. By “easy to compute” we mean that the sets returned by these subroutines will have
a short description size (e.g., “all nodes” or [i, j]) and that it will be trivial to decide whether a given node
v is in these sets.

We begin with some useful notation. Fix a DAG G of size n and number its nodes in (arbitrary)
topological order from 1 to n. For i ∈ [n] and j ≥ i we write parents(i, j) for the set of nodes v with an edge
(v, u) for some u ∈ [i,min{j, n}]. Next we fix the class of functions from which need and keep must be chosen
in order to prove that GenPeb produces a legal pebbling (and thus defines a pROM evaluation algorithm).15

Algorithm 1: GenPeb (G, S, g, d)

Arguments : G = (V,E), S ⊆ V , g ∈ [depth(G− S), |V |], d ≥ depth(G− S)
Local Variables: n = |V |

1 for i = 1 to n do
2 Pebble node i.
3 l← bi/gc ∗ g + d+ 1
4 if i mod g ∈ [d] then // Balloon Phase

5 d′ ← d− (i mod g) + 1
6 N ← need(l, l + g, d′)
7 Pebble every v ∈ N which has all parents pebbled.
8 Remove pebble from any v 6∈ K where K ← S ∪ keep(i, i+ g) ∪ {n}.
9 else // Light Phase

10 K ← S ∪ parents(i, i+ g) ∪ {n}
11 Remove pebbles from all v 6∈ K.

12 end

13 end

Definition 3.1 (Needed Pebbles) Fix a subset of target nodes T ⊆ V and a pebbling configuration C ⊆ V
of G.16 Then a node v ∈ V is needed for T within d′ steps if there exists a completely unpebbled path P 17 of
length ≥ d′ from v to some node in T . We use NC,T,d′ to denote the set of all such nodes. We use KC,T to
denote the set of all nodes v ∈ C such that v ∈ T or v has a child v′ such that v′ ∈

⋃n
i=0NC,T,i.

Definition 3.2 (Valid need and keep) We say that the pair of functions need and keep is valid for GenPeb(G,S, d, g)
if we always have need(i, j, d′) ⊇ NC,[i,j],d′ and keep(i, j) ⊇ KC,[i,j] whenever GenPeb(G,S, depth(G− S), g)
queries need or keep.

In our generic iMHF attack we use use the trivial functions need and keep which always output V (e.g.,
during the balloon phase we pebble every node we can during each round and we never discard any pebbles).
The following fact is easy to see:

15Later on we instantiate need and keep in several ways but will always prove that they are valid for the inputs we use them
for.

16That is fix a set C of nodes of V which currently have a pebble on them.
17That is P ∩ C = ∅.
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Fact 3.3 (Generic Valid Subroutine) Fix a DAG G = (V,E) and let need and keep be the constant
function returning V . Then the pair need and keep is valid for GenPeb(G,S, d, g) for any set S ⊆ V and any
parameters g ≥ d ≥ depth(G− S).

While we would already obtain high quality attacks on Catena and Argon2i by using the generic need
and keep subroutines, we show how our attacks can be optimized further by defining the subroutines need
and keep more carefully.

We remark that by leaving need and keep undefined for now we leave some flexibility in the implementation
of the balloon phase in GenPeb(G,S, g, d). During each round of a balloon phase we may pebble any v ∈ V
which has all parents pebbled, but we are only required to add pebbles to these nodes once it becomes
absolutely necessary to finish the balloon phase in time (e.g., there are only d′ rounds left in the balloon
phase and the vertex v is part of an completely unpebbled path to T of length ≥ d′. Similarly, we are allowed
to remove pebbles provided that they are no longer needed for the balloon phase (e.g., every path to T from
that node has an intermediate pebble).

The easiest way to satisfy these conditions is to simply pebble every v ∈ V which has all parents pebbled,
and to never remove pebbles during the balloon phase (Fact 3.3). Indeed this is exactly what we do in
our general attack on iMHFs. However, we demonstrate that further optimizations are possible against the
Catena and Argon2i iMHFs (e.g., each of the new pebbles we add during a Catena balloon phase does not
need to remain on the DAG very long). In each case the subroutines need and keep will have very simple
instantiations — we will not need to perform complicated computations like breadth first search to find these
sets.

Fix any G, S, g and d and let M(G,S, g, d) be the largest number of pebbles simultaneously on G −
S − parents(i, i + g) during any round i which is in a Balloon phase of GenPeb(G,S, g, d).18. Similarly let
C(G,S, g, d) be the largest number of pebbles placed on G during any single round in a Balloon Phase. In
the following we prove that GenPeb always produces a legal pebbling. Thus it describes a well formed pROM
algorithm A for evaluating an iMHF based on G. We also show how to use M(G,S, g, d) and C(G,S, g, d) to
upper-bound the energy-complexity of A with hardcoded inputs (G,S, g, d).

Theorem 3.4 (Energy Complexity of GenPeb) Let G = (V,E) be a DAG, with indeg(G) = δ. Further
let S ⊆ V with |S| = e and d ≥ depth(G−S) and let integer g ∈ [d, n]. Fix any valid pair of subroutines need
and keep and let A be the pROM algorithm described by GenPeb with hardcoded inputs (G,S, g, d). Then A
produces a valid pebbling and for any core-memory energy ratio R̄ and M = M(G,S, g, d) and C = C(G,S, g, d)
it holds that:

cmc(A) ≤ n
(
d ·M
g

+ δg + e

)
crc(A) ≤ n

(
min{d · C, n}

g
+ 1

)
ER̄(A) ≤ n

(
d ·M + min{dC, n} · R̄

g
+ δg + e+ R̄

)
.

Proof. We first prove that GenPeb(G,S, g, d) produces a legal pebbling to ensure that A is a well defined
algorithm. Then we upper-bound its energy complexity.

Recall that pebbles can be removed at will and by definition, in Step 7, GenPeb only places a pebble if
it is legal to do so. Thus the only illegal move could come due to Step 2. Assume no illegal pebble has been
placed up to node i. To show that i is then also pebbled legally it suffices to show that each of its parents
P ⊆ V are have a pebble at the beginning of round i. The most recent Balloon Phase to have completed
before round i (if any) consisted of rounds B = [i′, i′ + d] where i − (i′ + d) ≤ g. Consider the partition
P1 = P ∩ [i′ + d+ 1, i− 1], P2 = P ∩ [i′, i′ + d] and P3 ∩ [1, i′ − 1] of the set of parents P . By assumption all
v ∈ P1 were pebbled (legally) in the previous g rounds using Step 2 and so were not removed (by definition
of K in Step 10). Moreover by assumption all nodes in P2 where pebbled by Step 2 during B and so were
not removed (by definition of K in Step 8 and the validity of the subroutine keep the pebble is not removed
during the balloon phase B = [i′, i′+d] and by definition of K in Step 10 the pebble was not removed during

18Recall that there are n/g Balloon Phases and the jth Balloon Phase consists of rounds {jg + 1, . . . , jg + d}
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rounds [i′ + d+ 1, i− 1]). Thus it suffices to prove that all v ∈ P3 contained a pebble at some point during
B since then by definition of K in Steps 2 and 10 they too will not be removed.

Let P4 be the subset of P3 which don’t contain a pebble at the start of B. (If it is empty we are done.)
Otherwise, for a given round j let pj be all paths which end with a node in P4 and are unpebbled at the
beginning of the round. Let lj be the length of the longest path in pj . We argue that ∀j ∈ [i′, i′ + d − 1]
then lj ≤ d− (j − i′). If this is the case then we are done. Entering the final round i′ + d− 1 the length of
the longest unpebbled path is li′+d−1 ≤ 1 so by the end of the final round of B all nodes P4 – the end points
of paths pj – are pebbled.

We argue that lj ≤ d− (j − i′) by induction. Clearly, this is true when j = i′ as lj ≤ depth(G− S) ≤ d.
Now assume that lj ≤ d − (j − i′) for some j ∈ [i′, i′ + d − 1], let p ∈ pj denote a longest path and let v
denote the starting node of p. We first observe that either the starting node v of p has no parents or they
are all pebbled.19 Second, we observe that, because need is valid, in round j we must either have v ∈ N
or we must have lj < d − (j − i′). In the latter case we have lj+1 ≤ lj ≤ d − (j + 1 − i′) — because keep
is valid we are not allowed to remove pebbles from any of the parents of v. In the former case we have
lj+1 ≤ lj−1 ≤ d− (j+1− i′) because v ∈ need

(
i′, i′+g, d′ = d− (j+1− i′)

)
by the validity of need. Thus in

Step 7 of round j node v is pebbled. Finally it remains there till the end of the round since v ∈ keep(j, j+ g)
because there is a completely unpebbled path from v’s children in p to [i′, i′ + g + d]. This completes the
proof that GenPeb produces a legal pebbling.

Recall that the energy-complexity of A can be computed as ER̄(A) = cmc(A) + R̄ · crc(A). To upper-
bound cmc(A) we can sum upper-bounds on the cmc of the Balloon phases and the cmc of the Light
phases. To compute the Balloon phase term notice that GenPeb is in a Balloon Phase for nd/g steps and
during each round i of a balloon phase there are, by definition, at most M(G,S, g, d) extra pebbles on
G− S − parents(i, i+ g). On the other hand, there are clearly at most n Light phase steps and at the start
of each round i of a light phase there are no pebbles on G− S − parents(i, i+ g). Finally, during each round
i we pay cumulative memory cost at most e to keep pebbles on nodes in S and at most δg to keep pebbles
on nodes in the set parents(i, i+ g), which can be of size at most δg. Adding these three terms and factoring

out an n term we get that cmc(A) ≤ n
(
d·M(G,S,g,d)

g + δg + e
)
.

Placing a pebbled on G corresponds to making a call to H. To upper-bound crc(A) we observe that in
any round of a Light phase only one pebble is ever placed on G (namely in Step 2). During each balloon
phase we place at most C(G,S, g, d) pebbles on the graph in each rounds, and at most n pebbles on the

graph in total. Thus we can write crc(A) ≤ n
(

min{n,d·C(G,S,g,d)}
g + 1

)
. Combing this with the bound on

cmc and rearranging terms we obtain the theorem. �

The following Theorem 3.5 upper-bounds the complexity of PGenPeb. The proof closely follows the
analysis of GenPeb in Theorem 3.4. The key difference is that we evaluate multiple instances, and at that at
most one of these instances is in a balloon phase at any point in time. Thus, we get a much tighter bound on
AT -complexity because the worst-case memory usage M is approximately the same as the average memory
usage of PGenPeb.

Theorem 3.5 (Complexity of PGenPeb) Let G = (V,E) be a DAG, with indeg(G) = δ. Further let S ⊆ V
with |S| = e and d ≥ depth(G − S) and let integer g ∈ [d, n]. Fix any valid pair of subroutines need and
keep and let A be the pROM algorithm described by PGenPeb with hardcoded inputs

(
G,S, g, d, b gdc

)
. Then

for any core-memory area and energy ratios R > 0 and R̄ > 0 and M = M(G,S, g, d) and C = C(G,S, g, d)
it holds that:

ATR(A) ≤ 2n

[
d(M +RC)

g
+ δg + e+R

]
ER̄(A) ≤ n

[
dM + min{dR̄C, nR̄})

g
+ δg + e+ R̄+ 1

]
19as otherwise it wouldn’t be a longest path in pj
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Algorithm 2: PGenPeb (G, S, g, d, k)

Arguments : G, S ⊆ V , g ∈ [depth(G− S), |V |] d ≥ depth(G− S), k ≤ b gdc
Local Variables: n = |V |, copies G1, . . . , Gk = G, S1, . . . , Sk = S

1 for t = 1 to n+ kd do
2 Parallel for j = max{1, t−nd } to min

{
k, t−1

d

}
do

3 i← t− jd
4 Pebble node i in Gj .
5 if i = n then
6 Remove pebbles from all v /∈ {n} in Gj
7 Break

8 end
9 l← bi/gc ∗ g + d+ 1

10 if i mod g ∈ [d] then // Balloon Phase

11 d′ ← d− (i mod g) + 1
12 Nj ← needj(l, l + g, d′)
13 Pebble any v ∈ Nj which has all parents pebbled.
14 Remove pebble from any v 6∈ Kj where Kj ← Sj ∪ keepj(i, i+ g) ∪ {n}.
15 else // Light Phase

16 Kj ← Sj ∪ parentsj(i, i+ g) ∪ {n}
17 Remove pebbles from all v 6∈ Kj .

18 end

19 end

20 end

Proof. Algorithm A evaluates #inst(A) = k = b gdc instances of our iMHF G1, . . . , Gk in parallel. The
validity of PGenPeb follows from the validity of GenPeb (Theorem 3.4). Thus A is a well-defined pROM
algorithm and we can focus on the AT and energy-complexities of A.

We begin with AT-complexity. We claim amc(A) ≤ k (e+ δg) + M where M = M(G,S, g, d). To see
this observe that during any time step t we are in the balloon phase for at most one iMHF instance Gj
(1 ≤ j ≤ k). By definition M upper bounds the number of pebbles on nodes in Vj − Sj during the balloon
phase, δg upper bounds the number of pebbles on nodes in Vj′ − Sj′ during the light phase for other iMHF
instances Gj′ at any point in time. Finally, at any point in time we can have at most k · e pebbles on nodes
in S1∪ . . .∪Sk. Similarly we observe that arc(A) ≤ C+ (k−1) (where C = C(G,S, g, d)) because each iMHF
instance makes exactly one query to H during a light phase and at most C queries to H during a balloon
phase. Thus we can write:

ATR(A) ≤ [(k − 1) (e+ δg) + M +R · C +R(k − 1)]× (n+ kd)

k

because A runs for n+ kd time steps. Rearanging terms and using the facts that (k − 1)/k < 1 and kd ≤ n
we get the first inequality in the theorem.

Now we turn to energy-complexity. For each of the k iMHF instances we use cumulative memory

n
(
d·M
g + δg + e

)
to compute the instance (Theorem 3.4) plus an extra cost of up to kd to store a pebble on

node n for up to kd steps once the iMHF instance finishes. Thus, thus cmc(A) ≤ kn
(
d·M
g + δg + e

)
+ k2d.

Moreover, for each of the k iMHF instances we place pebbles on the graph at most n
(
d·C
g + 1

)
times. Thus,

crc(A) ≤ kn
(
d·C
g + 1

)
which, (together with the fact that kd ≤ n) implies the second inequality of the

theorem. �
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4 Sandwich Graphs

In this section we focus on the two Catena hash functions [FLW13] as well as the second two Balloon Hashing
constructions of [CGBS16]. The first Catena iMHF is given by the Catena Bit Reversal Graph (which we
denote BRGnλ); an n node DAG which consists of a stack of λ ∈ N≥1 bit-reversal graphs [LT82]. Each node

in a layer is associated with a log2

(
n
λ+1

)
bit string and edges between layers correspond to the bit reversal

operation20. The Catena designers recommended choosing λ ∈ {1, 2, 3, 4} [FLW13]. The second Catena hash
function is an iMHF based on the Catena Double Butterfly Graph, denoted DBGnλ. It is an n node DAG
with O (λ log n) layers of nodes.

The “Double-Buffer” and “Linear” iMHFs of [CGBS16] consist of τ layers of σ nodes for a total of
n = τ ∗ σ nodes. Each layer is a path with its origin connected to the final node in the path of the previous
layer. Moreover all nodes at layers τ ≥ i ≥ 1 have 20 incoming edges from nodes selected uniformly and
independently in the previous layer. In the “Double-Buffer” construction the hash of a node is given by
hashing the concatenation of all parent node labels while in the “Linear” construction the parent node labels
are first XORed together before being hashed for greater throughput. However this difference will not affect
the results in this work.21

In this section we demonstrate that all of these DAGs can be computed with lower then hoped for
energy and AT complexities (simultaneously) regardless of the random choices made when constructing the
graphs. In particular, the iMHF corresponding to both BRGnλ and DBGnλ can be evaluated with amortized AT
complexity ATR(A) = O

(
n5/3 +Rn4/3

)
and energy complexity ER̄(A) = O

(
n5/3 +Rn4/3

)
for any value of

λ. In fact, our attacks hold for a more general class of graphs characterized by Definition 4.1 below. Thus,
to understand our attacks it is not critical to know the exact specification of these DAGs just that both
DAGs are strict sandwich graphs. We refer an interested reader to Appendix A for the actual definitions of
the Catena DAGs BRGnλ and DBGnλ.

Definition 4.1 ((Strict) λ-Stacked Sandwich Graphs) Let n, λ ∈ N≥1 be a integers such that λ + 1
divides n and let k = n/(1 + λ) and let G be a DAG with n nodes. We say that G is a λ-stacked sandwich
DAG if G contains a directed path of n nodes (v1, . . . , vn) with arbitrary additional edges connecting nodes
from lower layers Lj

.
= {vjk+1, . . . , vjk+k} with j ≤ i to the i + 1st layer Li+1. If the DAG has no edges of

the form (u, v) with u ∈ Lj and v ∈ Lj+2+i for i ≥ 0 then we say it is a strict λ-stacked sandwich DAG.

In particular, the Catena bit reversal graph BRGnλ is a strict λ-stacked sandwich DAG with n nodes and
maximum indegree indeg = 2 — see Fact A.1 in the appendix. The Catena double butterfly graph DBGnλ
is a strict

(
λ(2x − 1) + 1

)
-stacked sandwich DAG with n nodes, where x ≤ log n is the integer such that

n = 2x ·
(
λ(2x − 1) + 1

)
— see Fact A.2 in the appendix. Finally, for any parameters t and s, a randomly

chosen DAG for the Double-Buffer and Linear iMHFs is a strict t-stacked sandwich graph on n = ts nodes
with probability 1.

Summary of The Results in this Section. Lemma 4.2 upper-bounds the depth-robustness of any λ-
stacked sandwich DAG G — any λ-stacked sandwich DAG is (n/t, λt + t)-reducible. Thus we can apply
the generic attack (Theorem 3.5) to get an upper-bound on the energy and AT complexities of such graphs
(Theorem 4.5) and so, in particular, also for the 4 constructions mentioned above. Theorem 4.5 states
that there is an attack A with ATR(A) and energy complexity ER̄(A) = O

(
(λ+ δ)n5/3 + R̄n4/3

)
, where δ

denotes the maximum indegree of the DAG.
While these results will also be useful in the next section focused on Argon2i for the 4 constructions above

the results can be improved somewhat by observing that the constructions are actually a strict stacked

20The parameter λ in Catena is related to the parameter τ in Argon2i. The intended space complexity of Catena is σ =
2n/(λ+ 1) and the intended computation time is n. Thus, the intended energy complexity is 2n2/(λ+ 1).

21We remark that we have assumed that the thread count parameter p = 1. However we observe that for p > 1 the resulting
DAG has an almost identical distribution except that every s/pth edge along the path forming a layer is removed. This can
only make the job easier of an evaluation algorithm. In particular the complexity of our attacks for the case p = 1 are an
upper-bound on the complexities of these constructions for p > 1.

14



sandwich DAGs. In particular, we can further decrease the resulting complexity if we first define more
targeted need and keep functions and prove that they are valid for PGenPeb when G is a strict λ-stacked
sandwich DAG (Lemma 4.3). Theorem 4.6 says that there is an attackA with ATR(A) and energy complexity
ER̄(A) = O

(
δn5/3 + R̄n4/3

)
.

The following Lemma upper-bounds the depth-robustness of any λ-stacked sandwich DAG G. By com-
bining this observation with the generic attack from the previous section we can obtain strong attacks on
any λ-stacked sandwich DAG G.

Lemma 4.2 (Sandwich Graphs are Reducible) Let G be a λ-stacked sandwich DAG then for any in-
teger t ≥ 1 G is (n/t, λt+ t− λ− 1)-reducible.

Proof. Let S =
{
vit 1 ≤ i ≤ n/t

}
. We claim that depth(G−S) ≤ λt+ t−λ− 1. Consider any path P in

G− S. For each layer Lj the path P can contain at most t− 1 nodes from layer Lj because any sequence of
t consecutive nodes vi, vi+1 . . . , vi+1 must contain at least one node in S. Thus,

|P | ≤
λ∑
i=0

∣∣∣P⋂Lj

∣∣∣ ≤ (λ+ 1
)(
t− 1

)
.

�

Algorithm 3: Function: need(x, y, d′)

Arguments: x, y ≥ x, d′ ≥ 0
Constants : Pebbling round i, g, t.

1 j ← (i mod g) // Current Layer is Lbj/tc
2 Return Lbj/tc ∩

{
it+ j i ≤ n

t

}

Algorithm 4: Function: keep(x, y)

Arguments: x, y ≥ x
Constants : Pebbling round i, g, t.

1 j ← (i mod g)
2 `← bj/tc // Current Layer

3 Return L≥`−1

Lemma 4.3 (Valid need and keep for Strict Sandwich Graphs) Let G be a strict λ-stacked sandwich

DAG on n nodes, let S =
{
it i ≤ n

λ+1

}
, d = (λ + 1)t and g ≥ d then the functions need and keep from

Algorithm 3 and Algorithm 3 are valid for GenPeb(G,S, g, d).

Proof. Given a round i let li = bi/gc ∗ g+ d+ 1, let ji = i mod g, ki = bji/tc and let d′i = d− ji + 1. Let
B = [i′, i′ + d] denote the rounds of a balloon phase. We first claim that ∀i ∈ B the following is true at the
begining of the round i.

1. If ki ≥ 1 then Lki−1 is pebbled.

2. Lki ∩
{
it+ q i ≤ n

t ∧ 0 ≤ q < ji
}

is pebbled.

3. Any set L≥ki\
(
S ∪

{
it+ q i ≤ n

t ∧ 0 ≤ q < ji
})

is unpebbled.

15



Suppose for now that claims (1)–(3) hold for every round i ∈ B. Then at the beginning of round i there
is no unpebbled path from any node v ∈ L<ki to [li, li + g] as any such path must pass through layer Lki−1.
Similarly, there is no completely unpebbled path from any node v ∈ Lki ∩

{
it+ q i ≤ n

t ∧ 0 ≤ q < ji
}

to
[li, li + g] as every such v is pebbled already. Finally, the maximum length of a path to [li, li + g] starting
from any node in L≥ki\

(
Lki ∩

{
it+ ji i ≤ n

t

})
is less than d′i. Thus, any unpebbled path of length ≥ d′i

must start in the set Lbji/tc∩
{
it+ ji i ≤ n

t

}
returned by needli, li + g, d′i in round i. Similarly, any pebbled

node with a child v who has an unpebbled path to [li, li+ g] in Lbji/tc∩
{
it+ ji i ≤ n

t

}
cannot be in a layer

L<bji/tc−1.
Claims (1)–(3) trivially hold at the beginning of the balloon phase i = i′. If we assume that these claims

hold at the start of some round i then the query needli, li + g, d′i returns the set Lbji/tc ∩
{
it+ ji i ≤ n

t

}
.

Each v ∈ Lbji/tc∩
{
it+ ji i ≤ n

t

}
has all of its parents pebbled as any parent is either in layer Lbji/tc which

is completely pebbled or in Lbji/tc ∩
{
it+ ji − 1 i ≤ n

t

}
which is also completely pebbled. Thus, v will be

pebbled in Step 7 of GenPeb and this pebble will not be removed in Step 8 as v ∈ keep(i, li+g). Thus, Claim
(2) will hold at the start of round i+1. If ki = ki+1 then Claim (1) will clearly hold since we start round i with
pebbles on Lki−1 and Lki−1 ⊆ keep(i, li+g) so these pebbles won’t be removed. Otherwise if ki+1 = ki+1 then
we note that ji + 1 = t so we will have pebbles on every node in Lki ∩

{
it+ q i ≤ n

t ∧ 0 ≤ q ≤ t− 1
}

= Lki
by the end of round i. Hence, Claim (1) will still hold. Claim (3) will still hold because we do not start
with any pebbles on nodes Ni = L≥ki+1

\
(
S ∪

{
it+ q i ≤ n

t ∧ 0 ≤ q < ji+1

})
in round i, Ni+1 ⊆ Ni and

need(li, li + g, d′i) does not contain any nodes in Ni+1. �

Lemma 4.4 (Valid need and keep for Sandwich Graphs) Let G be a λ-stacked sandwich DAG on n

nodes, let S =
{
it i ≤ n

λ+1

}
, d = (λ+ 1)t and g ≥ d. Further, let keep be the constant function that returns

V and let need be the function from Algorithm 3. Then the pair need and keep are valid for GenPeb(G,S, g, d).

Proof. (Sketch) Essentially follows the proof of Lemma 4.3. The only change we make is to claim (1). We
will have pebbles on all nodes in L≤ki−1 at the start of round i instead of pebbles on just Lki−1. Observe
that V ⊃ V ′ for any set V ′ returned by the version of keep defined in Algorithm 3. Thus, claims (1)–(3)
follow as before. �

Theorem 4.5 follows easily from Theorem 3.5, Lemma 4.4 and Lemma 4.2 by setting g = n2/3 and
t = n1/3.

Theorem 4.5 (Complexity of Sandwich Graph) Let F be an iMHF based on DAG G; a λ-stacked
sandwich DAG on n nodes with λ < n1/3 and maximum indegree indeg(G) = δ. Then for any core-memory
area and energy ratios R and R̄ there exists an evaluation algorithm A with

ATR(A) ≤ 2n5/3

[
(1 + δ) + (λ+ 1) +

R

n1/3
+

2R+ (λ+ 1)R

n2/3

]
ER̄(A) ≤ n5/3

[
(λ+ 1) + (δ + 1) +

3R̄+ 1

n2/3
+

R̄

n1/3

]
Proof. First, assume that λ < n1/3. Let S = {it i ≤ n/t} denote the set S from the proof of Lemma 4.2
with size n/t and depth(G−S) ≤ λt+t−λ−1. A runs PGenPeb(G,S, g, d = λt+t) with the function need from
Algorithm 3 and the constant function keep(x, y) = V . By Lemma 4.4 and Theorem 3.4 A produces a valid

pebbling. Now we note that trivially M = M(G,S, g, d) ≤ n. We also have C = C(G,S, g, d) ≤
⌈

n
(λ+1)t

⌉
+ 1

because the sets returned by need have size at most |Lk ∩ {it+ j i ≤ n/t}| ≤
⌈

n
(λ+1)t

⌉
. Plugging these

bounds into Theorem 3.5 we get

ER̄(A) ≤ n

[
d(M + R̄C)

g
+ δg + e+ R̄+ 1

]

≤ n

 (λ+ 1)t
(
n+ R̄

⌈
n

(λ+1)t

⌉
+ R̄

)
g

+ δg +
n

t
+ R̄+ 1

 .
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In particular we can set t = n1/3 and g = n2/3 to obtain the final result.

ER̄(A) ≤ n

 (λ+ 1)t
(
n+ R̄

⌈
n

(λ+1)t

⌉
+ R̄

)
g

+ δg +
n

t
+ R̄+ 1


≤ n

 (λ+ 1)t
(
n+ R̄ n

(λ+1)t + 2R̄
)

n2/3
+ n2/3

(
δ + 1) + R̄+ 1


≤ n

[
(λ+ 1)

(
n2/3 +

2R̄

n1/3

)
+ R̄n1/3 +

(
δ + 1

)
n2/3 + R̄+ 1

]
≤ n5/3

[
(λ+ 1) + (δ + 1) +

2(λ+ 1)R̄

n
+

R̄

n1/3
+
R̄+ 1

n2/3

]
≤ n5/3

[
(λ+ 1) + (δ + 1) +

3R̄+ 1

n2/3
+

R̄

n1/3

]
.

Plugging the bounds on C(G,S, g, d) and M(G,S, g, d) into Theorem 3.5 for PGenPeb(G, s, g, d, k = g/d)
with g = n2/3, d = (λ+ 1)n1/3 and k = g/d = n1/3/(λ+ 1) we get that

ATR(A) ≤ 2n

k
[ke+ kδg + M(G,S, g, d) +R · C(G,S, g, d) +Rk]

≤ 2n(λ+ 1)

n1/3

[
nk

t
+ δkn2/3 + n+R · C(G,S, g, d) +Rk

]
≤ 2n(λ+ 1)

n1/3

[
1 + δ

λ+ 1
n+ n+R · n2/3

(λ+ 1)
+R(k + 2)

]
≤ 2n5/3(λ+ 1)

[
1 + δ

λ+ 1
+ 1 +R · n

−1/3

(λ+ 1)
+

2R+ kR

n

]
≤ 2n5/3

[
(1 + δ) + (λ+ 1) +

R

n1/3
+

2R+ (λ+ 1)R

n2/3

]

�

The following Theorem 4.6 for strict λ-stacked sandwich DAGs improves on the attack in Theorem 4.5
which applies to the more general class of λ-stacked sandwich DAGs. The only difference is that we use the
keep function from , which was proved to be valid in Lemma 4.3, instead of the constant function keep(·) = V
that returns all vertices.

Theorem 4.6 (Complexity of Strict Sandwich Graph) Let G be a strict λ-stacked sandwich DAG on
n nodes with λ < n1/3 and maximum indegree indeg(G) = δ then for any core-memory area and energy ratios
R and R̄ there exists an evaluation algorithm A for the corresponding iMHF with

ATR(A) ≤ 2n5/3 ×
[
3 + δ +

R

n1/3
+

3R

n2/3

]
, and

ER̄(A) ≤ n5/3 ×
[
3 + δ +

R̄

n1/3
+
R̄+ 1

n2/3

]
.

Theorem 4.6 follows easily from Theorem 3.5, Lemma 4.3 and Lemma 4.2 by setting t = n1/3 and
g = n2/3.
Proof of Theorem 4.6. First, assume that λ < n1/3. Let S = {it i ≤ n/t} denote the set S from the proof
of Lemma 4.2 with size n/t and depth(G−S) ≤ λt+ t−λ− 1. A runs PGenPeb(G,S, g, d = λt+ t) with the
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subroutine need from Algorithm 3 and the subroutine keep from Algorithm 3. By Lemma 4.3 A produces
a valid pebbling. Now we note that M := M(G,S, g, d) ≤ 2n

λ+1 because we only need to keep pebbles on at
most 2 layers in G at any given time (apart from pebbles on the set S and on the parents of the next g
nodes, but these pebbles do not count towards the value M). Plugging these bounds into Theorem 3.5 we
get

ER̄(A) ≤ n

[
dM + min{dC, n}R̄

g
+ δg + e+ R̄+ 1

]
≤ n

[
(λ+ 1)t 2n

λ+1 + nR̄

g
+ δg + e+ R̄+ 1

]

≤ n

[
2nt+ nR̄

g
+ δg + e+ R̄+ 1

]
.

In particular we can set t = n1/3 and g = n2/3 to obtain the final results.

ER̄(A) ≤ n

[
2nt+ nR̄

g
+ δg + e+ R̄+ 1

]
≤ n

[
2n2/3 + n1/3R̄+ δn2/3 + n2/3 + R̄+ 1

]
≤ n5/3

[
3 +

R̄

n1/3
+ δ +

R̄+ 1

n2/3

]
.

For the bound on ATR we observe that C := C(G,S, g, d) ≤
⌈

n
(λ+1)t

⌉
+ 1 because the sets returned by

need have size at most |Lk ∩ {it+ j i ≤ n/t}| ≤
⌈

n
(λ+1)t

⌉
. As before we will use PGenPeb(G,S, g, d, k) with

g = n2/3, d = (λ+ 1)n1/3 and k = n1/3/(λ+ 1)). From Theorem 3.5 we get that

ATR(A) ≤ 2n

[
d(M +RC)

g
+ δg + e+R

]
≤ 2n

[
(λ+ 1)(M +RC)

n1/3
+ δn2/3 + n2/3 +R

]

≤ 2n

 (λ+ 1)t
(

2n
λ+1 +RC

)
n2/3

+ δn2/3 + n2/3 +R


≤ 2n

[
2nt+ (λ+ 1)t (RC)

n2/3
+ δn2/3 + n2/3 +R

]
≤ 2n

[
2n2/3 +

(λ+ 1) (RC)

n1/3
+ δn2/3 + n2/3 +R

]
≤ 2n5/3

[
3 +

(λ+ 1) (RC)

n
+ δ +

R

n2/3

]

≤ 2n5/3

3 +
(λ+ 1)

(
R n

(λ+1)t + 2R
)

n
+ δ +

R

n2/3


≤ 2n5/3

[
3 +

(
Rn2/3 + 2(λ+ 1)R

)
n

+ δ +
R

n2/3

]

≤ 2n5/3

[
3 +

R

n1/3
+ δ +

3R

n2/3

]
.
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�
While Theorem 4.5 and Theorem 4.6 only hold for λ < n1/3 there is an trivial algorithm with complexity

O(n5/3) when λ > n1/3. See Theorem A.5 in Appendix A.
We remark that for special cases (e.g., λ = 1) an alternative implementation of GenPeb yields a better

upper bound on total memory. In particular, we will use need from Algorithm 3 and we will redefine keep to
simply return the exact same set as need in each round of GenPeb (so that we don’t immediately throw out
pebbles in step 14 of the same round). It is easy to show that the pair keep and need is valid whenever we run
GenPeb on λ = 1-stacked sandwich DAGs (see Lemma A.3 in Appendix A). This observation allows us to
immediately re-derive a result of [AS15] stating that for any λ = 1-sandwich DAG G with maximum indeg = 2
there is an algorithm A with cmc

(
A
)

= O(n1.5). In fact, Corollary A.4 in Appendix A generalizes the result
of [AS15]. We do not require that G has maximum indeg = 2. Furthermore, A also has amc(A) = O(

√
n),

arc(A) =
√
n and crc

(
A
)

= O(n1.5).

5 Random Graphs

In this section we demonstrate how to extend our attacks to two recent iMHF proposals. The first is the
Argon2i iMHF — the variant of Argon2 in which data access patterns are data independent [BDK15].
The authors recommended using Argon2i for password hashing applications to avoid potential side-channel
leakage through data dependent memory access patterns [BDK15]. The basic Argon2i DAG is a (pseudo)
randomly generated DAG with maximum indegree indeg = 2. Thus, we view the Argon2i DAG as a
distribution over n node DAGs — see Definition 5.1. The second iMHF considered is the Single-Buffer
(SB) construction of [CGBS16] (we considered the Double-Buffer and Linear iMHFs from [CGBS16] in
Section 4).

To ease exposition we have opted to analyze the single thread cases of Argon2i and the first construction
of [CGBS16]. However (as we briefly describe bellow) extending these results to multi-thread variants and
the remaining two constructions of [CGBS16] is straightforward.

We begin with the following definition which fixes a class of random graphs key to our analysis.

Definition 5.1 ((n, δ, w)-random DAG) Let n ∈ N, 1 < δ < n, and 1 ≤ w ≤ n such that w divides n.
An (n, δ, w)-random DAG is a randomly generated directed acyclic (multi)graph with n nodes v1, . . . , vn and
with maximum in-degree δ for each vertex. The graph has directed edges (vi, vi+1) for 1 ≤ i < n and random
forward edges (vr(i,1), vi), . . . , (vr(i,δ−1), vi) for each vertex vi. Here, r(i, j) is independently chosen uniformly
at random from the set [max{0, i− w}, i− 1].

We observe that a t-pass instance of Argon2i iMHF 22 is an (n, 2, n/t)-random DAG. Similarly the r-pass
“Single-Buffer” construction of [CGBS16] is based on an (n, 21, n/r)-random DAG.

We cannot directly apply our results from the previous section because a (n, δ, w)-random DAG will not
be λ-stacked sandwich DAG with high probability. However, we can show that these graphs are ‘close’ to
λ-stacked sandwich DAGs in the sense that, with high probability, there is a ‘small’ set S such that we can
turn G into a λ-stacked sandwich DAGs just by removing edges incident to vertices in S. Definition 5.2
formalizes this intuition.

Definition 5.2 ((m,λ)-Layered Graph) Let G be a DAG with n = kλ nodes v1, . . . , vn with directed edges
(vi, vi+1) for 1 ≤ i < n. Given a set S of nodes we use GS to denote the resulting DAG if we removed all
directed edges (v, v′) that are incident to nodes in S (e.g., v ∈ S or v′ ∈ S) except for edges of the form
(vi, vi+1). We say that G is a (m,λ)-layered DAG if we can find a set S with at most m nodes such that GS
is a λ-stacked sandwich DAG.

Demonstrating that a graph is (m,λ)-layered is useful because Theorem 5.4 upper-bounds the AT and
energy complexities of an iMHF based on such a graph. In particular, Theorem 5.4 relies on Lemma 5.3

22In the notation of [BDK15] the case when t = 1 corresponds to a single pass.
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which states that any layered graph is also depth reducible. In Lemma 5.5, for any given probability γ > 0 we
upper-bound the sizem when viewing an Argon2i graph as an (m,λ)-layered graph. Thus we get Corollary 5.6
which describes an evaluation algorithm for Argon2i and the Balloon Hashing algorithms and bound their
AT and energy complexities. In particular it states both their expected values and upper-bounds holding
with a given probability γ.

Lemma 5.3 (Layered Graphs are Reducible) Let G be a (m,λ)-layered DAG then for any integer t ≥ 1
G is (n/t+m,λt+ t− λ− 1))-reducible.

Proof. By definition there is a set S1 of m nodes such that GS1
is a λ-stacked sandwich DAG. Now by

Lemma 4.2 we can find a set S2 ⊆ V (G) of size n/t such that GS1
−S2 has depth at most depth

(
GS1
−S2

)
≤

λt+t−λ−1. Now we set S = S1

⋃
S2 we have |S| ≤ m+n/t and depth(G−S) ≤ depth(GS1

−S2) ≤ λt−λ−1.
�

The following theorem upper-bounds the complexity of a layered graph.

Theorem 5.4 (Complexity of Layered Graph) Let G be a (m,λ)-layered DAG on n nodes with λ <
n1/3 and maximum indegree indeg(G) = δ and fix any t > 0, g ≥ t(λ+1) then there exists an attack A on the
corresponding iMHF such that for any core-memory ratio R > 0 and R̄ > 0 the energy and AT complexities
of A are at most

ATR(A) ≤ 2n

[
n

t
+m+ δg +R+

(λ+ 1)t · (n+ 2R) +R · n
g

]
ER̄(A) ≤ n

[
(λ+ 1)t

(
n+ 2R̄

)
+ R̄ · n

g
+ δg +

n

t
+m+ R̄

]
.

Theorem 5.4 follows from Lemma 4.4, Lemma 5.3 and Theorem 3.4.
Proof of Theorem 5.4. First, assume that λ < n1/3. Let S = S1 ∪ S2 denote the set S from the proof of
Lemma 5.3 with size |S1| = |{it i ≤ n/t}| = n/t, |S2| = m and depth(G − S) ≤ λt + t − λ − 1. A runs
GenPeb(G,S, g, d = λt+t) with the function need from Algorithm 3 and the constant function keep(x, y) = V .
By Lemma 4.4 A produces a valid pebbling as GS2

is a λ-stacked sandwich graph. Now we note that trivially

M(G,S, g, d) ≤ n. We also have C(G,S, g, d) ≤
⌈

n
(λ+1)t

⌉
+ 1 because the sets returned by need have size at

most |Lk ∩ {it+ j i ≤ n/t}| ≤
⌈

n
(λ+1)t

⌉
. Plugging these bounds into Theorem 3.4 we get ER̄(A) ≤

≤ n

(
d
(
M(G,S,g,d)+R̄·C(G,S,g,d)

)
g + δg + e+ R̄

)
≤ n

(
(λ+1)t

(
n+2R̄

)
+R̄·n

g + δg + n
t +m+ R̄

)

Plugging the bounds on C(G,S, g, d) and M(G,S, g, d) into Theorem 3.5 for PGenPeb(G, s, g, d, k = g/d) we
get ATR(A) ≤

≤ 2n
k × [ke+ kδg + M(G,S, g, d) +R · C(G,S, g, d) +Rk]

≤ 2n×
[
n
t +m+ δg + M(G,S,g,d)+R·C(G,S,g,d)

k +R
]

≤ 2n×
[
n
t +m+ δg + dn+d·R·C(G,S,g,d)

g +R
]

≤ 2n×
[
n
t +m+ δg +R+ (λ+1)t·(n+2R)+R·n

g

]
.

�
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The following Lemma 5.5, is the key technical result in this section. It states that, in particular, for any
m ≤ n and any constants k and δ a (n, δ, w = n/k)-random DAG will be a

(
O
(
m log n

)
, O
(
n
m

))
-layered DAG

with high probability.
Recall that by Hλ we denote the λth harmonic number.

Lemma 5.5 ((n, δ, w)-random DAGs are Layered) Fix any λ ≥ 1 and let q = d n
λ+1e. Then a (n, δ, w =

n/k)-random DAG is a (m,λ)-layered DAG, where the random variable m has expected value E [m] = k(δ−

1)q + q + (δ−1)q·Hλ
2 . Furthermore, for any γ > e

−3

(
E[m]−q

)
/4

we have m ≤ E [m] +

√
3
(
E [m]− q

)
ln γ−1

except with probability γ.

To prove the lemma we show how to construct a set S of (expected) size O
(
m log n

)
. We note that our

construction is computationally efficient. Intuitively, we partition the nodes of G into equal sized layers of
consecutive nodes L0, . . . , Lλ. We add a node v ∈ Li to our set S if any of v’s parents are also in layer
Li. In the single pass case (w = n) we will add a vertex v ∈ Li to S with probability at most (δ − 1)/i.
Thus, in expectation we will add at most (δ − 1) |Li| /i nodes from layer Li to S. In total we add at most
n
λ+1

∑λ
i=1

1
i = nHλ

λ+1 nodes from layers L≥ 1 in expectation.
Proof of Lemma 5.5. Let G be a (n, δ, w = n/k)-random DAG with nodes v1, . . . , vn. For simplicity assume
that λ = n/q− 1 is an integer so that we can divide G into λ layers L0, . . . , Lλ of equal size q (If λ is not an
integer then the first dλe − 1 layers will contain q+ 1 nodes each and the last layer will contain ≤ q nodes.).
Layer Li contains nodes Li = {viq+1, . . . , v(i+1)q}.We construct S ⊆ V (G) as follows:

S =
⋃
i

{
vj ∈ Li ∃s ≤ d− 1.vr(j,s) ∈ Li

}
.

That is if any of v’s parents are in the same layer as v we add v to S.
Given vj ∈ Li we let xj denote the indicator random variable that is 1 if and only if vr(j,t) ∈ Li for some

index t ≤ δ − 1. We note that by linearity of expectation we have

E [|S|] ≤
λ∑
t=0

q∑
j=1

E [xiq+j ] .

Let λ′ = bwq c−1. Suppose first that i ≤ λ′ and 0 < j ≤ q so that iq+j ≤ w and viq+j ∈ Li (i > 0) then the

probability that we add viq+j to S because one of its parents is also in layer Li is at most (δ−1)(j−1)/(iq).
Thus, E [xiq+j ] ≤ (δ − 1)/i for each vj ∈ Li. Now suppose that iq + j > w then the probability that we add

vr(iq+j) to S because one of its parents is in the same layer is at most (δ− 1)(j− 1)/(w) = (δ− 1)(j− 1)k/n.
Thus, E [xiq+j ] ≤ (δ − 1)(q − 1)k/n. Thus, in expectation we have

E [|S|] ≤ q + (δ − 1)

λ∑
i=1

q∑
j=1

j − 1

im

≤ q + (δ − 1)

λ′∑
i=1

(q − 1)

2i
+ q(δ − 1)

λ∑
i=λ′+1

(q − 1)k

n

≤ q + (δ − 1)

λ′∑
i=1

(q − 1)

2i
+ q(δ − 1) (λ− λ′) (q − 1)k

n

≤ q + (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)k ,

where Hλ ≈ lnλ denotes the λ’th harmonic number and the last inequality follows because (q − 1)λ ≤ n.
Observe that the DAG GS with all directed edges originating in S deleted (i.e., delete edges of the form (v, v′)
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with v ∈ S) will be a λ-stacked sandwich graph because there are no forward edges within each layer apart
from the chain (vi, vi+1). Let X =

∑n
j=q+1 xj . Because the random variables xj ∈ {0, 1} are independent

standard concentration bounds imply that Pr
[
X ≥ E [X] + τ

]
≤ exp

( −τ2

2Var(X)+2τ/3

)
. In our case we have

Var(X) =

n∑
i=q+1

n∑
j=q+1

E [xixj ]− E [xi]E [xj ] =

n∑
i=q+1

E [xi]− E [xi]
2

≤ E [X] = (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)k .

Thus, for any γ > exp
(
−3E [X]/4

)
we can set τ =

√
3E [X] ln γ−1 to obtain

Pr
[
X ≥ E [X] + τ

]
≤ exp

(
−τ2

E [X] + 2τ/3

)
≤ exp

(
3E [X] ln γ

3E [X]

)
≤ γ .

Where the second inequality follows from the observation that 2τ/3 < E [X] whenever γ > exp
(
−3E [X]/4

)
.

As |S| = X + q we have

|S| ≤ q + (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)k +

√
3

(
(δ − 1)

(q − 1)Hλ′

2
+ q(δ − 1)k

)
ln γ−1

except with probability γ23. �
As an immediate consequence of Lemma 5.5 we get an attack on the static mode of operation of the

Password Hashing Competition winner Argon2. Specifically we can attack the Argon2i variant in which
memory accesses patterns are not input dependent — a desirable property to prevent side-channel attacks
based on cache timing. As another immediate consequence we also get an attack on the Single-Buffer
construction of [CGBS16].

Corollary 5.6 (Complexities of (n, δ, w)-random DAGs) Let G be a (n, δ, n/k)-random DAG on n nodes.
Then there exists an evaluation algorithm A for the corresponding iMHF such that for any core-memory ra-
tios R > 0 and R̄ > 0 the expected AT and energy complexities of A are at most

E [ATR(A)] ≤ 2n7/4

[
3 + δ +

(δ − 1)
(
Hn1/4 + 2k

)
2

+
R

n3/4
+

R√
n

+
2R

n

]

E [ER̄(A)] ≤ n7/4

[
3 + δ +

(δ − 1)
(
Hn1/4 + 2k

)
2

+
2R̄

n
+

2R̄√
n

]
.

Furthermore, except with probability γ > e−n
3/4(δ−1), we have

ATR(A) ≤ 2n7/4

3 + δ +

 (δ − 1)
(
Hn1/4 + 2k

)
2

+

√
3(δ − 1)

(
Hn1/4 + 2k

)
ln γ−1

2n3/4

+
R

n3/4
+

R√
n

+
2R

n


ER̄(A) ≤ n7/4

3 + δ +

 (δ − 1)
(
Hn1/4 + 2k

)
2

+

√
3(δ − 1)

(
Hn1/4 + 2k

)
ln γ−1

2n3/4

+
2R̄

n
+

2R̄√
n

 .
23If γ < exp

(
− 3E [X]/4

)
then we can set τ =

√
3E [X] ln γ−1 to obtain a slightly weaker concentration bound. However,

the term exp
(
−3E [X]/4

)
is already negligibly small in all of our applications.
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In a nutshell Corollary 5.6 is shown by setting q = n3/4 in Lemma 5.5 and λ = n1/4 − 1, g = n3/4 and
t = n1/4 in Theorem 5.4.
Proof of Theorem 6.3. Let constant R̂ = max(R, R̄) a δ = indeg(G). In Lemma 6.2 set t to be

t =

⌈
log

(
n log2 n

n− R̂ log2 n

)⌉
.

Thus for any constant ε̂ > 0 we obtain a set S of size

|S| ≤ tδn

log(n)− t
= o

(
δn

log1+ε̂ n

)
.

Moreover, the resulting depth d of G− S is

d ≤ n/2t = n

(
n log2 n

n− R̂ log2 n

)−1

=
n− R̂ log2 n

log2 n
.

Now we choose the parameter g in PGenPeb
(
G,S, g, d, g/d

)
and compute the resulting power-complexity

and quality of A.
We now fix g = n/ log1+ε(n) where we require that 1 > ε̂ > ε. We observe that g ∈ [d, n] as required.

Trivially, during any given round of a Balloon phase there can be no more then M(G,S, g) ≤ n pebbles on
G, nor are more than C(G,M, g) ≤ n pebbles ever placed on G during a single balloon phase. Thus we can
use Theorem 3.5 to bound

ER̄(A) ≤ n

[
n(R̄+ d)

g
+ δg + |S|+ R̄+ 1

]
= n

[
(R̂+ d) log1+ε(n) + δg + |S|+ R̄+ 1

]
≤ n

[
R̂ log1+ε(n) +

n− R̂ log2 n

log1−ε n
+ δg + |S|+ R̄+ 1

]

=
n2

log1−ε n
+

δn2

log1+ε n
+ o

(
δn2

log1+ε̂ n

)
+ nR̄+ n

= o

(
n

(
δn

log1−ε n
+ R̄

))
for any constants R̄ and R̂. A similar calculation for AT-complexity implies the theorem.

ATR(A) ≤ 2n

[
dn(R+ 1)

g
+ δg + |S|+R

]
= 2n

[
d(R+ 1) log1+ε(n) + δg + |S|+R

]
≤ 2n

[
(R+ 1)(n− R̂ log2 n)

log1−ε n
+ δg + |S|+R

]

≤ O

(
n2

log1−ε n

)
+

δn2

log1+ε n
+ o

(
δn2

log1+ε̂ n

)
+ 2nR

= o

(
n

(
δn

log1−ε n
+R

))
To see why this implies that E-quality(A) = Ω

(
δ−1 logε n

)
= AT-quality(A) note that the the näıve algorithm

triv has ER̄(N ) = n(n+ R̄) and ATR(N ) = n(n+ R̄). �
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6 Ideal iMHFs Don’t Exist

In this section we show that ideal iMHFs do not exist. More specifically we show that for every graph G
there exists node set S and positive integer g ≥ depth(G − S) such that the iMHF evaluation algorithm
A = PGenPeb(G,S, g, d, bg/dc) has AT and energy-complexity o(n2/ log1−ε n) for any constant ε > 0. In
particular, if we take the näıve algorithm to be N = triv then A is an attack with energy-quality ω(log1−ε n).
We first prove (Lemma 6.2 ) that all DAGs are reducible provided that the maximum indegree δ is sufficiently
small (e.g., δ ≤ log0.999 n). The proof of Lemma 6.2 follows from a result of Valiant [Val77]. Once we have
established that all DAGs are reducible we can use PGenPeb to obtain a high quality attack on any iMHF.

Lemma 6.1 ([Val77] Extension) Given a DAG G with m edges and depth depth(G) ≤ d = 2i there is a
set of m/i edges s.t. by deleting them we obtain a graph of depth at most d/2.

The statement of Lemma 6.1 is slightly different from the statement in [Val77]. Thus, while the proof of
Lemma 6.1 follows the argument of [Val77] exactly, we include it here for completeness.
Proof of L. et G be given. A proper labeling of G is a labeling of the nodes with nonnegative numbers such
that if (u, v) is an edge, then the label of node u is smaller than the label of node v. Because G has depth
at most d = 2i it is easy to find a proper labeling of G using labels from [0, d− 1]. Now we can partition the
edges of G into color classes E1, . . . , Ei s.t. an edge (u, v) ∈ Ej if and only if the most significant bit where
the labels of u and v differ in their binary representation is the j’th from the left. Because sets E1, . . . , Ei
partition the edges of G so we can always find some index j∗ for which |Ej∗| ≤ m/i. Now we claim that
depth

(
G−Ej∗

)
≤ d/2. Consider the labeling of G−Ej∗ obtained by deleting bit j∗. The resulting labeling

using at labels from [0, d/2− 1] and it is easy to verify that this is a proper labeling of G−Ej∗. Suppose for
contradiction that there is a directed edge (u, v) in G−Ej∗ such that the label of node u is not smaller than
the label of node v. Consider the labels for nodes u and v in the proper labeling of G. Because (u, v) /∈ Ej∗
the labels for u and v in the proper labeling of G must either have had the same value in bit j∗ or there
must have been some other more significant bit j < j∗ in which the labels differed. In either case we arrive
at an immediate contradiction: in our original labeling of G the label of u was not smaller than the label of
v so this labeling was not proper (Contradiction!). Thus, G− Ej∗ can have depth at most d/2. �

Lemma 6.2 (All DAGs are Reducible) Let G = (V,E) be an arbitrary DAG of size |V | = n = 2k

with indeg(G) = δ. Then for every integer t ≥ 1 there is a set S ⊆ V of size |S| ≤ tδn
log(n)−t such that

depth(G− S) ≤ 2k−t. Furthermore, there is an efficient algorithm to find S.

Lemma 6.2 follows by repeatedly invoking Lemma 6.1.
Proof of Lemma 6.2. Let G0 = G and let d0 = 2k ≥ depth(G0). To construct S we will start with S = ∅ and
apply Lemma 6.1 t times. In particular, let E0 denote the set of at most m/k edges such that G0 − E0 has
depth at most 2k−1. We note that the set E0 can be computed in polynomial time. Now let S0 denote the
set of origin vertices in E0 and observe that |S0| ≤ δ|E0| ≤ δn/ log d0. Let G1 = G0 − Si and let d1 = d0/2.
In general, let Gi+1 = Gi−Si, where Si denotes the origin vertices in Ei — the set from applying Lemma 6.1
to Gi. In particular, note that di+1 = di/2 ≥ depth

(
Gi+1

)
so after t applications of Lemma 6.1 we have

depth(Gt) ≤ dt = 2k−t. Now let S = S0 ∪ . . . ∪ St−1 then in the ith application of Lemma 6.1 the size of S
grows by at most

mi

log(di)
≤ δn

log(n/2i)
=

δn

log(n)− i
.

the final size of S is

|S| ≤
∑
i∈[t]

δn

log(n)− i
≤ tδn

log(n)− t
.

�
Theorem 6.3 now follows from Lemma 6.2 and Theorem 3.5.
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Theorem 6.3 (Complexities of any iMHF) Let F be an iMHF based on arbitrary DAG G = (V,E) of
size |V | = n with in-degree indeg(G) = δ. Then for every constant ε > 0 and fixed ratios R > 0 and R̄ > 0
there exists an evaluation algorithm A such that

ER̄(A) = o

(
n

(
δn

log1−ε + R̂

))
= ATR(A)

where R̂ = max{R, R̄}.
In particular if we let the näıve algorithm for F be N = triv then algorithm A is an attack with qualities

E-quality(A) = Ω

(
R̂+ n

R̂+ δn/ log1−ε n

)
= AT-quality(A)

or, for constant R and R̄, simply Ω
(
δ−1 log1−ε n

)
.

In a nutshell, in the proof we set t = O
(

log log n
)

in Lemma 6.2 and then we set g = n/ log1+ε(n) in
Theorem 3.5. The details follow.
Proof of Theorem 6.3. Let constant R̂ = max(R, R̄) a δ = indeg(G). In Lemma 6.2 set t to be

t =

⌈
log

(
n log2 n

n− R̂ log2 n

)⌉
.

Thus for any constant ε̂ > 0 we obtain a set S of size

|S| ≤ tδn

log(n)− t
= o

(
δn

log1+ε̂ n

)
.

Moreover, the resulting depth d of G− S is

d ≤ n/2t = n

(
n log2 n

n− R̂ log2 n

)−1

=
n− R̂ log2 n

log2 n
.

Now we choose the parameter g in PGenPeb
(
G,S, g, d, g/d

)
and compute the resulting power-complexity

and quality of A.
We now fix g = n/ log1+ε(n) where we require that 1 > ε̂ > ε. We observe that g ∈ [d, n] as required.

Trivially, during any given round of a Balloon phase there can be no more then M(G,S, g) ≤ n pebbles on
G, nor are more than C(G,M, g) ≤ n pebbles ever placed on G during a single balloon phase. Thus we can
use Theorem 3.5 to bound

ER̄(A) ≤ n

[
n(R̄+ d)

g
+ δg + |S|+ R̄+ 1

]
= n

[
(R̂+ d) log1+ε(n) + δg + |S|+ R̄+ 1

]
≤ n

[
R̂ log1+ε(n) +

n− R̂ log2 n

log1−ε n
+ δg + |S|+ R̄+ 1

]

=
n2

log1−ε n
+

δn2

log1+ε n
+ o

(
δn2

log1+ε̂ n

)
+ nR̄+ n

= o

(
n

(
δn

log1−ε n
+ R̄

))
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for any constants R̄ and R̂. A similar calculation for AT-complexity implies the theorem.

ATR(A) ≤ 2n

[
dn(R+ 1)

g
+ δg + |S|+R

]
= 2n

[
d(R+ 1) log1+ε(n) + δg + |S|+R

]
≤ 2n

[
(R+ 1)(n− R̂ log2 n)

log1−ε n
+ δg + |S|+R

]

≤ O

(
n2

log1−ε n

)
+

δn2

log1+ε n
+ o

(
δn2

log1+ε̂ n

)
+ 2nR

= o

(
n

(
δn

log1−ε n
+R

))
To see why this implies that E-quality(A) = Ω

(
δ−1 logε n

)
= AT-quality(A) note that the the näıve algorithm

triv has ER̄(N ) = n(n+ R̄) and ATR(N ) = n(n+ R̄). �

Remarks. We remark that for any constants δ and ε < 1 Theorem 6.3 yields an attack with quality

E-quality(A) = Ω
(

logε n
)

= AT-quality(A). Furthermore, provided that δ ≤ logε
′
n where ε′ < 1 Theorem 6.3

yields an attack with quality E-quality(A) = ω
(
1
)

= AT-quality(A). If R̄ 6= R then we can obtain separate
attacks A1 and A2 in which attack A1 has optimal energy quality

E-quality(A1) = Ω

(
R̄+ n

R̄+ δ2n/ logε n

)
and attack A2 has optimal AT quality

AT-quality(A) = Ω

(
R+ n

R+ δ2n/ logε n

)
.

Erdos et al. [EGS75] constructed a graph G of any size n with indeg(G) = O(log(n)) which is (α, β)-
fractionally node robust for some constants 0 < β < α < 1.24 This would imply that our bounds in
Theorem 6.3 and Lemma 6.2 are essentially tight. Alwen and Serbinenko [AS15] used the depth robust DAGs
from [MMV13] as a building block to construct a family of DAGs with provably high pebbling complexity
Ω̃
(
n2
)
. Thus, our general attack in Theorem 6.3 is optimal up to polylogarithmic factors.

7 Practical Considerations

In this section and Appendix B we investigate the exact (as opposed to asymptotic) complexity of the
PGenPeb for a variety of iMHFs and parameter settings.

To get an overview of when PGenPeb is in fact an attack we include Table 1 which shows the smallest
power of two value of n for which we can obtain attacks with quality > 1 for the case when R = R̄ = 3, 000
arbitray space-cost σ and time-cost τ subject to n = σ ∗ τ .25 For example, we have an attack on Argon2i,
the winner of the Password Hashing Competition, when n is only 218.

Next, we provide several graphs to show how various parameters affect the complexity of PGenPeb for
each iMHF. First, in Figure 1a, for Argon2i and the Single-Buffer (SB) constructions, we show the effect
of increasing the time-cost parameter τ while holding all other parameters fixed (in particular for a fixed
space-cost σ). We remark that AT-quality decreases as τ grows since the amount of memory needed and
number of RO implementations both stay the same. Thus as τ grows area stays constant and time begins

24In [MMV13] the authors give an explicit construction of a DAG which has indeg(G) = log2 n which is depth robust for any
α and β arbitrarily close to 1.

25Recall that the complexity of PGenPeb is the same for all values of space-cost σ and time-cost τ where n = σ ∗ τ .
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iMHF Equality(A) > 1 ATquality(A) > 1

Catena-BRGn1 215 216

Catena-BRGn3 218 219

Catena-BRGn5 220 221

Catena-DBGn1 225 226

Catena-DBGn3 229 230

Catena-DBGn5 231 232

Argon2iσ,τ : (Expected) 218 218

Argon2iσ,τ : γ = 0.1 218 218

Argon2iσ,τ : γ = 0.01 218 218

SBσ,τ : γ = 0.01 225 225

Ideal iMHF: indeg(G) = 2 255 255

Ideal iMHF: indeg(G) = 3 285 285

Ideal iMHF : indeg(G) = 4 2114 2114

Table 1: Minimum n = 2i with attack quality > 1. R = R̄ = 3000. n = σ ∗ τ .
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Figure 1: Complexity of PGenPeb for increasing time-cost τ and indegree δ. (R = R̄ = 3000)

to dominate the AT-complexity of both the näıve algorithm and PGenPeb. However since both algorithms
already run in minimal time the effect is to decrease the advantage of PGenPeb which has better area (esp.
memory) complexity. In other words, the quality is highest for the parameter which which makes these
iMHFs the most memory-hard.

Next, in Figure 1b we show what effect increasing the indegree δ of the underlying DAG has on the
complexity of PGenPeb evaluating an arbitrary iMHF. An interesting observation is that although asymptot-
ically the complexity is subquadratic, the exact security even δ > 3, could still be good enough for practical
values of n.

Additionally, we include a few extra plots in Appendix B. Figure 3a and Figure 3b show the effect
on PGenPeb’s complexity when increasing λ for Catena Dragonfly (BRGnλ) and Catena Butterfly (DBGnλ)
respectively26. Moreover for Argon2i and SB Figure 4a and Figure 4b show the effect (for the case τ = 1
and R = 3000) of decreasing the error probability γ which tells us how likely we are to have an attack with
at least the plotted quality. Finally Figure 5 shows the effect that different values of the core memory and

26In fact these plots actually show attack quality against any strict λ-stacked sandwich DAG. Thus, we do not include
separate plots for the Double-Buffer and the Linear functions of [CGBS16] because, like Catena, these iMHFs are based on
strict λ-stacked sandwich DAGs. Thus, our attack quality against these functions will be the same as our attack quality against
Catena.
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energy rations R and R̄ have on the complexity of PGenPeb when evaluating Argon2i. Intuitively, the plot
shows that attack quality increases as R, R̄ decrease, but as we would expect the effect is less significant for
larger values of n.

Parameter Optimization. We remark that we optimized the parameters of our attack for each specific
value of n in our plots. For example, we showed that any λ-stacked sandwich DAG is

(
n/t, t(λ+1)

)
-reducible

for any t ≥ 1. For each different value of n we ran a script to find the optimal values of t and g ≥ t(λ+ 1)
which minimize the energy complexity (resp. AT-complexity) of PGenPeb(G,S, g, d = t(λ+ 1), k = g/d). In
our general iMHF attack we used a script to find the optimal value of t in Lemma 6.2 and the optimal value
of g.

Näıve Algorithms. The näıve algorithmN for the Catena Butterfly iMHF has absolute memory complex-
ity amc(N ) = n/(λ log n) and energy complexity ER̄(N ) = n

(
amc(N )+R̄

)
. Similarly, the näıve algorithm N

for Catena Dragonfly has absolute memory complexity amc(N ) = n/(λ+ 1) and the näıve k-pass algorithm
for Argon2i and SB has absolute memory complexity amc(N ) = n/k. Thus, our attack quality decreases
with λ or k. We stress that this is not because our attacks becomes less efficient as λ and k increases, but
because the N algorithm requires less and less memory (thus, as λ, k increase the iMHFs become increas-
ingly less ideal). By contrast, the näıve algorithm N = triv for our general iMHF (and for Argon2i) has
ER̄(N ) = n(n+ R̄).

Customized Attack Architecture. We have outline efficient attacks on Catena, Argon2i and the Balloon
Hashing iMHFs in the theoretical Parallel Random Oracle Machine (pROM) model of computation. Because
pROM is a theoretical model of computation it is not obvious a priori that our attacks translate to practically
efficient attacks that could be implemented in real hardware because it can be difficult to dynamically
reallocate memory between processes in an ASIC (the amount of memory used during each round of a
balloon phase is significantly greater than the amount of memory used during each round of a light phase).
In Appendix 8 we argue that this architecture challenge would not be a fundamental barrier to an adversary.
In particular, we outline an architecture for our algorithm PGenPeb using Argon2i as an example.

Briefly, we execute n1/4 instances of the iMHF in parallel. Our architecture includes n1/4 “light phase”
chips and a single “Balloon Phase” chip which is responsible for executing all of the balloon phases in a
round robin fashion. Each light phase chip only needs O(n3/4 lnn) memory and a single instance of the
compression function H. The central balloon phase chip needs to have O(n lnn) memory and

√
n instances

of the compression functions H.

8 Towards A Practical Attack Architecture

In previous sections we demonstrated efficient attacks on the Catena, Argon2i and the Balloon Hashing
iMHFs in the Parallel Random Oracle Machine (pROM) model of computation. Because pROM is a the-
oretical model of computation it is not obvious a priori that our attacks translate to practically efficient
attacks that could be implemented in real hardware. In particular, the amount of memory used during each
round of a balloon phase is significantly greater than the amount of memory used during each round of a
light phase. However, in an ASIC it can be difficult to dynamically reallocate memory between processes.

In this section we argue that this challenge would not be fundamental barrier to an adversary. Our
attacks on these iMHFs will lead to practical attacks when implemented in real hardware. In the following
discussion we will focus on our attack PGenPeb(G,S, g, d, k) on Argon2i (i.e., |S| = O

(
n3/4 lnn

)
, g = n3/4,

d =
√
n and k = n1/4). However, the architecture we describe could easily be adapted for the Catena or

Balloon Hashing iMHFs.
Figure 2 contains a diagram of our proposed attack architecture. Specifically, we will evaluate multiple

iMHF instances in parallel. For each iMHF instance we will have a small dedicated chip to evaluate the light
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Figure 2: Argon2i: Attack Architecture

phases of that iMHF instance. We will use a single (larger) central unit which is dedicated to execute the
balloon phases for each iMHF instance in a round-robin fashion.

In particular, we evaluate k = O
(
n1/4

)
iMHF instances in parallel so we have k smaller dedicated chips.

Each of these smaller dedicated processing unit contains a dedicated memory of size O(n3/4 log n) and a
single instance of the underlying random oracle H. Thus, each dedicated processing unit contains sufficient
resources to execute a light phases, but not to execute a balloon phase in PGenPeb.

Our central chip will contain
√
n instances of the random oracle H and O

(
n lnn

)
memory. We will use

the central chip to execute balloon phases for each iMHF instance in a round robin fashion. The central chip
will store O

(
n3/4 lnn

)
random oracle values corresponding the the set Si for each iMHF instance i ≤ k —

O
(
n lnn

)
total memory. In addition, for each iMHF instance, the central chip will also store the g = O

(
n3/4

)
values associated with the parents of the next g nodes for that instance.

Each light phase unit will need to send the central chip the values in the set Si — we can send these values
as they are computed. After executing a balloon phase for instance i the central chip will need to send up to
g values (corresponding to the parents of the next g nodes to be pebbled) to the ith light phase chip. Thus, to
implement the attack we will also need to have dedicated communication channels between the central chip
and each dedicated light phase chip. However, each dedicated memory channel only needs to have constant
bandwidth. In particular, we don’t need to send all g values to the ith immediately. Instead, during each
pebbling round the central chip will send each dedicated light phase chip the values corresponding to the
parent(s) that are required to make progress in the next round. Similarly, every time a dedicated light phase
chip for iMHF instance i computes the value for a node v ∈ Si we will simply send that value to the central
chip.

9 Conclusions and Open Questions

We introduced the new measure of energy complexity. The AT and energy complexity of each of the
attacks in this work behave asymptotically the same as the number of evaluations #inst grows. However
when evaluating a single instance the energy complexity can be significantly lower then the AT complexity.
Intuitively, this occurs when an evaluation algorithm does not allow for making optimal use of available
hardware – that is significant amounts of the circuitry are not used during some of the computation. In
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particular, especially for MHFs based on (collision resistant) compression functions, it seems that while total
(i.e. non-amortized) AT complexity need not scale linearly in #inst their energy complexities do tend to.
One reason for this is that while implementations of H can be reused in parallel across concurrently running
evaluations of the MHF increasing neither time nor area of the chip (and so making AT complexity scale
badly) the domains/range subsets of H relevant to different inputs to the MHF remain disjunct. In other
words while evaluating an MHF may, during some periods, require many implementations of H in order to
achieve optimal AT efficiency it may be possible to reuse most of those H implementations for concurrent
evaluations during other periods. However it seems much easier to ensure that relevant input/output pairs
for H needed in one evaluation of the MHF are of no use when evaluating it on any different input.27

We gave a generic attack on any data independent iMHF with quality Ω
(
log0.999 n

)
, and we gave even

higher quality attacks against the Catena and Argon2i DAGs — the winner of the password hashing com-
petition. Furthermore, we demonstrated that our attacks on Catena and Argon2i could be highly effective
for realistic values of n. Thus, we would strongly advise against the use of the Argon2i and Catena iMHFs
for password hashing.

Currently, the only candidate iMHF equipped with a full proof of security is the one in [AS15]. Our results
suggest that, up to polylogarithmic factors, this iMHF is optimal. However, this iMHF has several downsides
for practical applications. First, the underlying DAGs do not known to have a practically succinct description.
Ideally, we would like a DAG G = (V = [n], E) with the property that for any vertex v ∈ [n] there is an
efficient algorithm to compute the set parents(v) so that G does not need to be stored in memory. Second,
the polylogarithmic factors are too large for the security bounds to be meaningful in practice. In particular,
the energy complexity is proved to be Ω

(
n2/
(

log10 n(log log n)2
))

), but for n < 223 the denominator is still
larger than the numerator. Could we find an iMHF based on a DAG G with a succinct description such
that for any pROM attacker A with energy complexity n2/ log n28? The log n factor might be acceptable for
practical values of n (e.g., n ≤ 240) especially considering that our attacks typically compute H more times
then the naive algorithm and the cost of storing a hash value in memory for 1 time step is about R̄ = 3, 000
cheaper than computing H.

Our results imply that depth-robustness is a necessary condition for a good iMHF, but we have not proved
that this property is sufficient. There exists a DAG G with indeg(G) = O(log n) such that G is (αn, βn)-depth
robust for some constants α, β > 0 [EGS75]. Could we prove that for any such (αn, βn)-depth robust DAG
G the corresponding iMHF has high energy complexity (e.g., say Ω

(
n2/ log n

)
)? Alternatively, could we find

an (αn, βn)-depth robust DAG G which has lower energy complexity (e.g., say O
(
n2/ log2 n

)
)? Another

interesting complexity theoretic question is to resolve the complexity of finding an (approximately) optimal
pebbling strategy A for a particular DAG G. If there were an efficient algorithm to find an (approximately)
optimal pebbling strategy in terms of energy or AT -complexity then we could use the algorithm to quickly
rule out bad iMHFs.29

Our attacks only apply to data independent iMHFs. Could we build ideal data dependent MHFs? For
example, scrypt [Per09] is a widely deployed data dependent MHF that provably has high ST-complexity.
However, the security proof does not rule out the possibility of attacks with low amortized AT or energy
complexity. What is the amortized energy complexity of scrypt? Can we develop data dependent MHFs
with (provably) high (e.g., Ω(n2)) energy and AT complexity? If so then it may be worthwhile to explore
alternative defenses (e.g., moving target defenses [JGS+11] or oblivious RAM [Gol87],[SCSL11]) to mitigate
the risks of side-channel attacks on data dependent MHFs. Another defense against side-channel attacks
would be to ensure that all memory accesses only depend on the cryptographic hash H(pwd‖salt) where
salt is a sufficiently long bit string. In this case an attacker who observes the memory access pattern will
not be able to infer the password as long as the value salt remains hidden30.

27This observation is analogous to the distinction between amortized CC pebbling complexity and amortized ST pebbling
complexity in the parallel pebbling game of [AS15].

28It is still possible that a tighter analysis of the construction from [AS15] might show that their DAG satisfies this property.
29On the other side if finding a good pebbling strategy is intractable, then it might be possible to build an iMHF for which

it is intractable to find a high quality attack (e.g., say Equality(A) = Ω
(

logn
)
) even when such an attack exists.

30However, if the adversary observes salt as well as the memory access pattern while the iMHF was being computed with
users password pwd as input then his task suddenly becomes much easier — he can eliminate password guesses as soon as
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Appendix

A Catena DAGs

The Catena Dragonfly iMHF [FLW13] is based on a stack of λ bit-reversal graphs: BRGnλ. More formally,
BRGnλ is an n = 2g(λ+ 1) node DAG G with nodes V = {1, . . . , n}. These nodes are partitioned into λ+ 1
layers L0, . . . , Lλ of size 2g. In particular, Li = [i · 2g + 1, (i+ 1)2g]. The DAG G includes directed edges
(i, i+ 1) for 1 ≤ i < n. Additionally, given x ∈ [0, 2g − 1] there is a directed edge from node u = i · 2g +x+ 1
in layer Li to (i + 1)2g + BR(x) + 1, where BR denotes the binary bit reversal function. For example,
if g = 3 and x = 6 then the binary representation of x is 110 so BR(110) = 011, which is 3 in decimal
representation.

From the definition it is easy to verify that this DAG is a strict λ-stacked sandwich DAG.

Fact A.1 Let n = 2g(λ + 1) then BRGnλ is a strict λ-stacked sandwich DAG with maximum indegree
indeg(BRGnλ) = 2.

The Catena Butterfly iMHF [FLW13] is based on a stack of λ double-butterfly DAGs: DBGnλ. In turn, each
double-butterfly DAG is based on the Cooley-Turkey Fast Fourier Transformation algorithm and consists
of O(log n) layers. Formally, a DBGnλ consists of n = 2g · (λ(2g − 1) + 1) nodes V = {1, . . . , n} and
included directed edges (i, i + 1) for each 1 ≤ i < n. Given 1 ≤ i ≤ λ(2g − 1) + 1 we will write Li =
{(i− 1)2g + 1, . . . , i · 2g}. Note that the layers L1, . . . , Lλ(2g−1)+1 partition V and each have size 2g. Given

parameters 1 ≤ k ≤ λ and 0 ≤ j ≤ 2g − 1 and 1 ≤ i ≤ 2g − 1 we will write vki,j to denote the node

(k−1)2gλ(2g−1)+i2gλ+j and we will write Lki = L(k−1)λ(2g−1)+i =
[
vki,0, v

k
i,2g−1

]
for notational convenience.

For each 1 ≤ k ≤ λ, 1 ≤ i ≤ 2g − 2 and 0 ≤ j ≤ 2g − 1 we will add vertical edges
(
vki,j , v

k
i+1,j

)
between

consecutive layers Lki and Lki+1. For each 1 ≤ k ≤ λ and 0 ≤ j ≤ 2g − 1 we will also add diagonal edges(
vki,j , v

k
i+1,j�2g−1−i

)
whenever 1 ≤ i ≤ g − 1 and we will add diagonal edges

(
vki,j , v

k
i+1,j�2i−g+1

)
whenever

g ≤ i ≤ 2g − 2. In both cases the edges always go between consecutive layers Lki and Lki+1. Here, x � y
denotes the bit wise XOR operation. For example, if x = 6 (i.e., x = 110 in binary) and y = 3 (i.e., x = 011
in binary) then x� y = 5 (i.e., 101 in binary).

It is easy to verify that DBGnλ is a strict λ(2g−1)-stacked sandwich DAG and that the maximum indegree
is indeg

(
DBGnλ

)
= 3.

Fact A.2 Let n = 2g · (λ(2g−1) + 1) then DBGnλ is a strict λ(2g−1)-stacked sandwich DAG with maximum
indegree indeg(BRGnλ) = 3.

A.1 Improved Attacks for Special Cases

For special cases (e.g., λ = 1) an alternative implementation of GenPeb yields a better upper bound on total
memory. In particular, we will use need from Algorithm 3 and we will define keep to simply return the
exact same set as need in each round of GenPeb so that we don’t immediately throw out pebbles in step
14 of the same round. Lemma A.3 states that the pair keep and need is valid whenever we run GenPeb on
λ = 1-stacked sandwich DAGs.

Lemma A.3 Let G be a λ = 1-stacked sandwich DAG on n nodes and maximum indegree indeg(G) = δ and
let S = {it i ≤ n/t} denote the set of size n/t such that depth(G− S) ≤ 2t. Let need denote the subroutine
from Algorithm 3 and let keep denote the subroutine that returns the same set as need in every pebbling round
j of GenPeb. Then the pair need and keep is valid for GenPeb(G,S, g, d) whenever g ≥ d ≥ 2t. Furthermore,
GenPeb(G,S, g, d) keeps at most n/t+ 1 + g(δ − 1) pebbles on G at any point in time.

Proof. (sketch) Consider round i of a balloon phase and let j = i mod g and let Ni denote the set
returned by both need and keep in round i. Any pebbled node v ∈ L0 during round i is either (1) the parent
of a node in [i, l+g], (2) in the set Ni or (3) not in Ni∪parents([i, i+g]). In the first case v ∈ parents([i, i+g])
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we do not need to include v in the set keep(i, i + g) as GenPeb already keeps these nodes by definition. In
the second case v ∈ Ni we do keep v by definition. In the third case we observe that there is no unpebbled
path from any child of v to any node in [i, i + g] — any such path must either travel through the pebbled
node i− 1 in layer L1 or through a pebbled node in Ni ∪ S in layer L0. This completes the proof that need
and keep are valid. We note that GenPeb discards any pebble that is not in the set S ∪Ni ∪ parents(i, i+ g).
Thus, we keep at most 1 + |S|+ |Ni|+ |parents(i, i+ g)| ≤ 1 + n/t+ n/(2t) + (δ − 1)g pebbles on the graph
at any point in time. � �

Corollary A.4 (Complexity of Catena) Let G be a 1-stacked sandwich DAG on n nodes and maximum
indegree indeg(G) = δ then there is an algorithm A with amc(A) = O(δ

√
n), arc(A) = O(

√
n), crc

(
A
)

=

O(n1.5) and cmc
(
A
)

= O(δn1.5). In particular for any core-memory area and energy ratios R and R̄ there
exists an evaluation algorithm A for the corresponding iMHF with

E-qualityR̄(A) = O

( √
n

R̄ · δ

)
, and AT-qualityR(A) = O

( √
n

R · δ

)
.

Proof. A runs GenPeb(G,S, g =
√
n, d =

√
n) with the pair need and keep from Lemma A.3. Lemma A.3

implies that we only need to keep O(gδ) pebbles on the graph at any point in time. Thus, amc(A) = O(δ
√
n)

and cmc
(
A
)

= O(δn1.5). At any point in time A places O(n/d) new pebbles on the graph. Thus, arc(A) =

O(
√
n) and crc

(
A
)

= O(n1.5). � �

While Theorem 4.6 and Theorem 4.5 only hold for λ < n1/3 there is an trivial algorithm with complexity
O(n5/3) when λ > n1/3.

Theorem A.5 (Complexity of Strict Sandwich Graph with Large λ.) Let G be a strict λ-stacked
sandwich DAG on n nodes with λ > n1/3 and maximum indegree indeg(G) = δ then for any core-memory
area and energy ratios R > 0 and R̄ > 0 there is an attack A on the corresponding iMHF with

ER̄(A) ≤ 2n2

λ
+ R̄n , and ATR(A) ≤ 2n2

λ
+Rn .

Proof. Let A be the algorithm that runs the näıve pebbling algorithm N with one simple optimization:
when A first place a pebble on some node i ∈ Lk in layer k then A throws out pebbles on nodes in layer
L≤k−1. The pebbling is valid for strict λ-stacked sandwich DAGs. In each round we place at most 1 new
pebble on the graph and the pebbling stops after n rounds. Thus, arc(A) ≤ 1 and crc(A) ≤ n. We also have

amc(A) ≤ 2n
λ+1 and cmc(A) ≤ 2n2

λ+1 . The result now follows immediately from the definitions of ATR(A) and
ER̄(A). � �

B Extra Plots
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Figure 3: Effect of varying λ on complexity of PGenPeb for Catena iMHFs.
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Figure 4: Effect of varying error probability γ on complexity of PGenPeb.
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