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Abstract

The Cocks Identity Based Encryption (IBE) scheme, proposed in 2001
by Clifford Cocks, has been the standard for Quadratic Residue-based
IBE. It had been long believed that this IBE did not have enough struc-
ture to have homomorphic properties. In 2013, Clear, Hughes, and Tewari
(Africacrypt 2013) created a Cocks scheme derivative where they viewed
ciphertexts as polynomials modulo a quadratic. While the scheme was ho-
momorphic, it required sending twice as much information per ciphertext
as the original Cocks scheme. A recent result by Joye (PKC 2016) used
complex algebraic structures to demonstrate the fact that Cocks IBE, on
its own, is additively homomorphic.

In this work, we build upon the results from CHT and Joye. We take
the simple intuition from CHT, that ciphertexts can be seen as polyno-
mials, but also demonstrate that we only need to send as much data as in
the original Cocks scheme. This perspective leads to better intuition as to
why these ciphertexts are homomorphic and to explicit efficient algorithms
for computing this homomorphic addition.

We believe that our approach will facilitate other extensions of Cocks
IBE. As an example, we exhibit a two-way proxy re-encryption algorithm,
which arises as a simple consequence of the structure we propose. That is,
given a re-encryption key, we can securely convert a ciphertext under one
key to a ciphertext under the other key and vice-versa (hence two-way).

1 Introduction

Identity-Based Encryption (IBE) is a special kind of public key encryption that
lets any string be a public key. The first two IBE schemes were the elliptic-
curve pairing based scheme by Boneh and Franklin, and the Quadratic Residue
(QR) based scheme by Cocks, both in 2001 [BF01, Coc01]. In 2008, Gentry,
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Peikert, and Vaikuntanathan got an IBE from lattices [GPV08]. Unlike pairings
and lattices, QR-based schemes rely on the same simple algebra as RSA, and
the security assumption is the first assumption used in probabilistic encryp-
tion (Goldwasser-Micali [GM84]). However, while pairing-based and lattice-
based IBE constructions have been extended to Hierarchical IBE, Functional
Encryption, Predicate Encryption, etc., progress wtih QR-based IBEs has been
comparatively slow [BBG05, ABB10, BSW11, SW05, Boy13, AFV11, GVW15,
GPSW06]. Our goal in this paper is to uncover the surprising simple structure
in Cocks IBE, extending the results of Clear, Hughes, and Tewari [CHT13], and
Joye [Joy16].

In 2013, Clear, Hughes, and Tewari [CHT13] made the major observation
that a Cocks ciphertext c can be viewed as a polynomial modulo a quadratic,
i.e. a linear function 2x + c. Decryption is evaluating the polynomial at the
secret key and then taking the Jacobi symbol:

(
2r+c
N

)
= m. They created a

derivative IBE scheme (CHT) based on these linear functions. The advantage
of their framework was that the homomorphic properties were straightforward:
homomorphic addition was as simple as multiplying the two polynomials to-
gether and then taking them modulo the quadratic, resulting in another linear
ciphertext of the form ax + b. The downside of this variant is that it requires
twice as much bandwidth as the original Cocks scheme; users need to send 2
elements in ZN to describe a linear function, instead of just one.

This past year, Joye in [Joy16] demonstrated that the Cocks scheme already
has homomorphic properties without the CHT modifications. Here is a quick
look at how he accomplishes this. First, he shows that Cocks ciphertexts are
part of a multiplicative structure based on the algebraic torus [RS03]. This torus
is a group defined from a quadratic field extension. He is able to define a similar
multiplicative structure (although no longer a group) by “removing” the square
roots from the ring and then adding them back as an extension. Intuitively, this
scheme works because the multiplicative structure only breaks if we are able to
find a square root, and by the Quadratic Residuosity Assumption (QRA), this
happens only with negligible probability. By treating Cocks ciphertexts as a
multiplicative group (multiplying ciphertexts multiplies their Jacobi symbols in
decryption), he is able to homomorphically add ciphertexts.

Joye’s proof, while striking, is unfortunately complicated, which we believe
obscures some of its potential applications. In this paper, we will combine the
best of CHT and Joye’s work [CHT13, Joy16] by showing we can achieve Joye’s
homomorphic guarantees with a simpler analysis of Cocks’ scheme. And indeed,
this leads us to our new application: identity-based proxy re-encryption of Cocks
ciphertexts.

1.1 Our Results

Our contribution is two-fold. First, we demonstrate simple, length-preserving
homomorphic addition of Cocks ciphertexts. Our generalization goes through
the beautiful linear function lens proposed by CHT, and we show how to acheive
length-preservation with little effort. Our main technical lemma gives a way to
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re-randomize these linear function ciphertexts. We note that Joye goes through
a similar conceptual re-randomization step, but without proving convergence
(though intuitively it appears to work). We show that our rerandomization
step, with overwhelming probability, converges in an expected constant number
of iterations—in fact 2.

Our second contribution is an application: two-way proxy re-encryption of
Cocks ciphertexts. Two-way proxy re-encryption allows for a third party with
a re-encryption key for two public keys, R and R′, to convert a ciphertext
encrypted with R to a ciphertext encrypted with R′ and vice-versa, hence two-
way. This application relies on our ability to re-randomize a ciphertext and
convert from CHT ciphertexts to Cocks ciphertexts.

1.2 A Technical Overview

Cocks IBE and Linear Functions. We will start with describing the Cocks
IBE scheme. From there, we can show how a Cocks ciphertext can be seen as a
linear function as in CHT [CHT13], and then why this perspective is useful.

A Cocks IBE ciphertext consists of two values (c, ĉ) in ZN where N = pq
for primes p ≡ q ≡ 3 mod 4. c was encrypted under public key R and ĉ was
encrypted under −R. Since R is an element with Jacobi symbol 1, either it is
a square mod p and mod q, or a square in neither. Because p ≡ q ≡ 3 mod 4,
−1 is a non-square both mod p and mod q, meaning exactly one of R and −R
has a square root r. Thus exactly one of c and ĉ contains information about the
message. So, without loss of generality we will assume R = r2 and work only
with the c component of the ciphertext.

To encrypt a message m ∈ {±1} under a public key R = r2, we choose

a t
$← ZN so that

(
t
N

)
= m, and let c = t + R

t . We decrypt with
(
2r+c
N

)
.

The Cocks ciphertext, when viewed as a linear function as in CHT, is 2x + c.
Similarly, if we have a linear function ciphertext ax + b and a = 2, then we
could treat it as a Cocks ciphertext and only need to send the constant term in
a ciphertext – the linear term is assumed to be 2.

Consider two Cocks ciphertexts c and c′ encryptions of m and m′ respec-
tively. If we multiply their linear function forms together, we get a polynomial
g(x) = (2x + c) · (2x + c′) = 4x2 + 2(c + c′)x + cc′. Notice that if we then
mod g(x) out by x2 − R to get ḡ(x), g(r) = ḡ(r). So, for linear function
ḡ(x) = 2(c+ c′)x+ cc′ + 4R, when we decrypt(

ḡ(r)

N

)
=

(
g(r)

N

)
=

(
2r + c

N

)
·
(

2r + c′

N

)
= m ·m′.

However, ḡ(x) is no longer a Cocks ciphertext. It is a linear function of the
form ax + b. We need some way to normalize it so that we only need to send

the constant term in our ciphertext. If
(
a/2
N

)
= 1, then we can divide through

by a/2 to get 2x+ 2b/a as a ciphertext (corresponding to the Cocks ciphertext
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2b/a), and when we decrypt, we get(
2r + 2b/a

N

)
=

(
2/a

N

)
·
(
ar + b

N

)
= 1 ·m.

If a/2 does not have Jacobi symbol 1, we will need some way to re-randomize
the ciphertext so that, with constant probability, we change the linear term. Our
re-randomization step is that for input ax + b, we can multiply by a random
square (cx + d)2 and 1/t where t has Jacobi symbol 1 to get ex + f = (ax +
b)(cx+d)2/t (mod x2−R). This leads us to our main technical lemma. Lemma
1, states that for almost all elements ax+ b in Zn[x]/(x2 − R), then the linear
term after this re-randomization will have Jacobi symbol 1 with probability
almost exactly 1/2.

With this lemma, we can re-randomize almost any ciphertext in ZN [x]/(x2−
R) and are guaranteed with probability half that the symbol of the linear term
will change. Note that a negligible fraction of possible ciphertexts do not have
this property, which we show in remark 4.2, and so we need to prove this
lemma. Our other main lemma, lemma 2, shows this re-randomization step
truly re-randomizes a ciphertext, which is necessary for our application, proxy
re-encryption.

Overview of Proxy Re-encryption. Proxy re-encryption was introduced
in 1998 by Blaze, Bleumer, and Strauss (BBS), where they provided some in-
formal definitions and a technique for bidirectional re-encryption of ElGamal
ciphertexts [BBS98]. Proxy re-encryption allows a proxy P to re-encrypt mes-
sages given a re-encryption key. If P is given the re-encryption key from Alice to
Bob, then P can take a message encrypted under Alices public key and output
the same message encrypted under Bob’s public key without learning anything
about their secret keys or the message. If P can also re-encrypt messages from
Bob to be messages from Alice, this scheme is called bidirectional. If P can only
re-encrypt one way, the scheme is called unidirectional.

Proxy re-encryption is quite useful. Take, for example, key escrow. A key
escrow service might contain re-encryption keys for user keys to the FBI’s key.
The service could then mediate which user messages the FBI could decrypt
without learning anything about the user messages or user secret keys. Without
re-encryption, users would need to trust the escrow service with their secret keys.
Another simple application is just having a server that can distribute encrypted
files to many users under many different keys. The load of re-encrypting and
distributing these files falls on the server, which will only have the encrypted files
and re-encryption keys – no secret keys. So, even if the server were compromised,
no important information is leaked.

So far, we have seen that bidirectional and unidirectional proxy re-encryption
exist for some regular PKE and IBE schemes [BBS98, SC09]. For regular PKE,
we have bi- and unidirectional proxy re-encryption for both pairing-based and
Diffie-Hellman-based schemes [AFGH06, CH07, SC09]. In the IBE case, we are
able to get both bi- and unidirectional proxy re-encryption under the DBDH
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assumption [AFGH06, CH07]. In 2006, Ateniese et al. showed their schemes
were CPA secure [AFGH06, GA07], and provided new definitions for what it
meant to be CPA secure. A year later, Canetti and Hohenberger formalized
CCA security for proxy re-encryption [CH07]. So far, however, these results are
only for IBE schemes based on DBDH. In this work, we provide bidirectional
proxy re-encryption keys for an IBE based on QRA, Cocks.

Our re-encryption scheme is surprisingly simple. Ciphertexts from CHT are
of the form ax + b where decryption is taking the symbol using a secret key r:(
ar+b
N

)
. To generate a re-encryption key from R = r2 to R′ = r′2, we output

T = r/r′, just the ratio between the secret keys. Now, we take our ciphertext
ax+ b and can just transform it into aTx+ b. Then, when we decrypt, we have
that (

aTr′ + b

N

)
=

(
a(r/r′)r′ + b

N

)
=

(
ar + b

N

)
.

Since we have the ability to take a linear function ciphertext from CHT and
convert it into a Cocks ciphertext, we can just take aTx+b and convert that back
into a standard Cocks ciphertext under the appropriate public key. In practice,
we will want to hide the re-encryption key, which will involve re-randomizing
the CHT ciphertext, invoking lemma 2, but this is the main idea.

1.3 Other Related Work

One derivative of the Cocks scheme, generalized to higher power residue sym-
bols, was created by Boneh, LaVigne, and Sabin [BLS13]. In this scheme, several
bits can be sent at once, but at the cost of greatly increasing the ciphertext size.
This work used a representation of ciphertexts similar to that in CHT. It was
discovered that the ciphertext size was, unfortunately, much less efficient than
the original Cocks scheme. The representation of ciphertexts as polynomials is
key in this work, and although the homomorphic properties of this derivation
were not explored, much like in CHT, they are there.

Another quadratic residue IBE is the one developed by Boneh, Gentry and
Hamburg (BGH) in 2007 [BGH07], which was able to increase the bandwidth.
Cocks scheme sends one bit at a time, while BGH can send polynomially many
with the ciphertext size increasing by one bit for each bit sent. The price is
that the secret and public keys increase by one element in ZN for each bit, and
that encryption time is relatively expensive (quartic). And while this scheme is
able to significantly decrease the size of ciphertexts, it does not seem to have
homomorphic properties.

Proxy re-encryption was introduced in 1998 by Blaze, Bleumer, and Strauss
for ElGamal ciphertexts [BBS98]. Their construction was for two-way (bidi-
rectional) proxy re-encryption. Later, proxy re-encryption was defined in the
one-way (unidirectional) sense for some pairings-based cryptosystems [AFGH06,
CH07], and in 2009, Shao and Cao got unidirectional proxy-reencryption un-
der the DDH assumption [SC09]. Our security game will be based on the one
developed by Green et al. in 2006 for Chosen Plaintext Attack (CPA) security
[GA07, AFGH06]. We will have to modify the game slightly since our proxy
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re-encryption is not adaptively, only selectively, secure. We will also use the
definitions introduced by Canetti and Hohenberger in 2007, where they give an
explicit construction for a bidirectional, Chosen-Ciphertext-Attack secure public
key encryption scheme based on Decisional Bilinear Diffie Hellman [CH07].

2 Review of Cocks IBE

2.1 Definition of IBE

First, we need to define what an IBE scheme is. Let M be the message space,
and ID be the space of identities. An IBE scheme consists of a tuple of four
algorithms:

• Setup(1k). Outputs the master secret MSK and public parameters PP .
MSK is kept secret inside of a trusted third party.

• Keygen(MSK,PP, id). The trusted third party outputs a secret key skid
for an identity id.

• Enc(PP, id,m ∈ M). Outputs c, an encryption of a message under the
identity id.

• Dec(PP, id, c, skid). Outputs m, a decryption of c.

The correction constraint is that Dec(PP, id,Enc(PP, id,m), skid) = m.

2.2 Definition of Cocks IBE

This is a quick review of the Cocks IBE scheme, detailed in [Coc01]. Look at
the original paper for proofs of correctness and security. Assume that we have
access to a global secure hash function H : ID → Z×N (where ID is the space
of identities for the Cocks scheme).

The IBE consists of a tuple of algorithms:

• Setup(1k). Outputs a modulus N = pq and a non-square u with Jacobi
symbol 1 as the master public key and p, q as the master secret key where
|N | = k.

• Keygen(N, p, q, id). Takes H(id) = R. If R is a square, we compute a
square root r so that r2 = R mod N (possible given the factorization of
N). If R is a non-square, we compute the square root of uR, finding r so
that r2 = uR. We output r as the secret key.

• Enc(N, id,m ∈ {±1}). Find two random t1, t2
$← Z×N so that

(
t1
N

)
=(

t2
N

)
= m.

Let c1 = t1 + R
t1

and c2 = t2 + uR
t2

. Output the ciphertext c = (c1, c2).

• Dec(N, r, c = (c1, c2)). If R = H(id) is a square, compute m =
(
c1+2r
N

)
.

If R is not a square, compute m =
(
c2+2r
N

)
.
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In Cocks original description of the scheme, he uses p = q = 3 mod 4, and
u = −1. This is a generalization to any odd p and q that Joye shows works just
as well [Joy16].

2.3 Simplified Cocks Ciphertexts

The way that we are able to add two ciphertexts (in Joye’s paper, CHT, and
this work [Joy16, CHT13]) is to consider each ciphertext c = (c1, c2) and c′ =
(c′1, c

′
2), and then perform some function Hom on the components to get

c′′ = (Hom(c1, c
′
1),Hom(c2, c

′
2)).

However, it is cumbersome to always consider a Cocks ciphertext as two
separate pieces, one corresponding to the public key R (c1 = t1 + R

t1
) and the

other corresponding to uR (c2 = t2 + uR
t2

), where u is a non-square. Assume
without loss of generality that R is a square. Note that for c2, all information
about the Jacobi symbol t2 is lost information theoretically, and therefore, no
amount of adding components of other ciphertexts together will ever recover the
symbol of t2. So, while discussing the mathematical structure behind Cocks, we
assume that R is a square, and that t+ R

t is a ciphertext for public key R.

3 The ciphertext as a linear function

Here we define how to see a Cocks ciphertext as a linear function. This per-
spective was pointed out in CHT [CHT13].

Consider a simplified Cocks ciphertext (defined in 2.3) c = t+R
t . We define a

linear function f(x) = 2x+c. To decrypt, we simply take
(
f(r)
N

)
. The following

is a descryption for why this works; this is a warmup for how homomorphically
adding ciphertexts will work.

To generate f , we take t
$← Z∗N so that

(
t
N

)
= m. Then we let g(x) =

(t− x)2 = t2 + 2tx+ x2 and define

f(x) =
g(x) (mod x2 −R)

t
=
t2 +R+ 2tx

t
= t+

R

t
+ 2x.

This perspective on the Cocks ciphertext makes it clear why decryption is
correct. We see that g(x) is always a square regardless of the value of x, but
when we take ḡ(x) = g(x) (mod x2 − R), ḡ(x) is not necessarily equal to g(x)
except when x satisfies x2−R. In particular ḡ(r) = g(r) + (r2−R)h(r) = g(r).
So, when we decrypt,

f(r) =
ḡ(r)

t
=
g(r)

t
=⇒

(
f(r)

N

)
=

(
t

N

)
·
(
g(r)

N

)
=

(
t

N

)
= m.
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3.1 Additive homomorphisms among linear function ci-
phertexts

If we view Cocks ciphertexts as linear functions, f1(x) = 2x + c1 and f2(x) =
2x+ c2, and let f ′3(x) = f1(x) · f2(x) (mod x2 −R), then f ′3(x) “decrypts” into
the product of the first and second messages:(

f ′3(r)

N

)
=

(
f1(r) · f2(r)

N

)
=

(
f1(r)

N

)
·
(
f2(r)

N

)
.

Again, we are using the fact that for any polynomial g(x), g(r) = g(r) (mod x2−
R).

Notice, though, that f ′3(x) = c1c2 + 4R + 2(c1 + c2)x is in general not a
proper Cocks ciphertext. In the next section, section 4, we will show that we
can re-randomize a ciphertext so that

(
c1+c2
N

)
= 1. Once we have that, we can

divide f ′3 by c1 + c2 to get a Cocks ciphertext with a linear function of the form
f3(x) = c3 + 2x, where

c3 =
c1c2 + 4R

c1 + c2
.

Notice that c3 is exactly the expression for homomorphically adding ciphertexts
as described by Joye [Joy16]. Joye has one way of “re-randomizing” the ci-
phertext c1. We will take a slightly different approach using the linear function
representation of ciphertexts, a la CHT [CHT13].

4 Adding Cocks Ciphertexts

The basic algorithm for adding ciphertexts c1 and c2, simplified ciphertexts as
defined in section 2.3, will be to multiply their linear function forms together,
ax+b = (2x+c1)·(2x+c2) and then to rerandomize the resulting linear function

ax+ b until we can divide by a/2, e.g. until
(
a/2
N

)
= 1.

4.1 Converting ciphertexts: from a linear function to Cocks
ciphertext

Recall a linear ciphertext is of the form ax + b and is decrypted by taking the
Jacobi symbol after plugging r into x:

(
ar+b
N

)
. We want to convert this into a

Cocks ciphertext of the linear form 2x + c. If
(

2/a′

N

)
= 1, then we can simply

multiply ax+ b through by 2/a which does not change the symbol. If not, then
we need some way to re-randomize this linear ciphertext.

This re-randomizing step will be to homomorphically add an encryption of
1 as linear functions (as in CHT [CHT13]). We will prove that this changes the
linear coefficient and with probability very close to 1/2, the new linear coefficient
will have the correct Jacobi symbol.
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Algorithm 1: Convert(N,R, ax+ b)

Input: Public parameter N , public key R, and linear function
ciphertext ax+ b

Output: Cocks Ciphertext c

1 while
(

2/a
N

)
6= 1 do

2 ax+ b← Rerand(ax+ b);
3 end
4 return c = 2b/a

Algorithm 2: Rerand(N,R, ax+ b)

Input: Public parameter N , public key R, and linear ciphertext a′x+ b′

Output: Linear ciphertext a′x+ b′

1 Let c, d
$← ZN ;

2 Let t
$← ZN so that

(
t
N

)
= 1;

3 Compute a′x+ b′ = (ax+ b) (cx+d)2

t (mod x2 −R);
4 return a′x+ b′

4.1.1 Rerand is correct

Quickly we will show that this algorithm is correct. Recall that for any polyno-
mial g(x), g(r) = g(r) (mod x2 −R). So,(

(a′r + b′)

N

)
=

(
(ar + b)(cr + d)2/t

N

)
=

(
ar + b

N

)
·
(
cr + d

N

)2

·
(
t

N

)
=

(
a′r + b′

N

)
.

4.1.2 Convert is correct

This is also straightforward. Once
(

2/a
N

)
= 1, then when we return c = 2a/b,

we are really computing (2/a)(ax+ b) = 2x+ 2b/a and returning the constant
term. So, when we decrypt c like a Cocks ciphertext, we get(

2r + c

N

)
=

(
2r + 2a/b

N

)
=

(
2/a

N

)
·
(
ar + b

N

)
=

(
ar + b

N

)
,

which is exactly the decryption of the linear function ciphertext.

4.2 Why Convert runs quickly

First, we will remark on why it is not obvious that re-randomization just works.
For an element ax+b ∈ ZN [x]/(x2−R) where b/a = r, then for any cx+d ∈ RN ,

ex+ f = (ax+ b)(cx+ d)2 (mod x2 −R) has
( e
N

)
=
( a
N

)
.
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Proof. Let ax+ b ∈ R have b = ar. We have that ax+ b = a(x+ r). Now, for
any cx+ d ∈ R,

(ax+ b)(cx+ d)2 (mod x2 −R) = a(x+ r)(2cdx+Rc2 + d2)

= a
(
(Rc2 + d2 + 2crd)x+ r(Rc2 + d2) + 2Rcd

)
.

We can factor the linear term a(Rc2 +d2 +2crd) = a(rc+d)2, and so the Jacobi

symbol of this term is always
(
a(rc+d)2

N

)
=
(
a
N

)
.

There are some elements ax + b that will never terminate in Convert. The
elements described in remark 4.2 are elements in ZN [x]/(x2 − R) that do not
have inverses, which is a small set within the ring. We will show that there
very few elements that could cause Convert to loop forever; in fact, it is only
the elements ax+ b that do not have multiplicative inverses in ZN [x]/(x2 −R)
that cause problems in Convert. This is proved by lemma 1.

Lemma 1. If ax+ b ∈ ZN [x]/(x2 −R) has a multiplicative inverse,

Pr
c,d

$←Z∗N ,t
$←J1

[( e
N

)
= 1 where ex+ f = (ax+ b)

(cx+ d)2

t

]
=

1

2
.

Sketch of Proof Consider the case where ax+ b is invertibale and a square
in ZN [x]/(x2 − R). So, we can write ax+ b = (a′x+ b′)2 mod x2 − R. ax+ b
has a multiplicative inverse, and so a′x + b′ also has a multiplicative inverse.
Since cx+ d is a uniformly random element in ZN [x]/(x2−R), (cx+ d)2 is just
as likely to be produced as ((a′x+ b′)(cx+ d))2 = (ax+ b)(cx+ d)2. So, we just
need to show that (cx+ d)2/t has the correct distribution of linear terms.

When we expand (cx+ d)2/t we get the linear term is 2cd/t. Since c, d, and
t are all chosen independently, we get that 2cd/t is uniformly distributed over
Z∗N , and so the Jacobi symbol of 2cd/t is also randomly distributed over ±1.

The other cases, where ax+b is not a square, behave similarly, but have some
subtlety. We need to work mod p, mod q, expressing ax+b as a square or a square
times a non-square, and then invoke the Chinese Remainder Theorem.

The full proof of this lemma is involved and requires a lot of extra notation,
and so is formally proved in appendix A.1.

Given this lemma, Convert is expected to loop only a constant number of
times. Explicitely, since with overwhelming probability the input ax + b will
have an inverse mod x2 − R, and both c and d from line 1 of Rerand will be in
Z∗N , theorem 1 states that with probability 1/2, Rerand will re-randomize the
linear term so that it passes the while loop. Thus, Convert is expected to loop
twice.

4.3 The homomorphic algorithm

Given two Cocks ciphertexts c1 and c2, here is how we can add them:
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Algorithm 3: Hom(N,R, c1, c2)

Input: Public parameter N , public key R, and Cocks ciphertexts c1 and
c2

Output: Cocks ciphertext c3
1 Compute a′x+ b′ = (2x+ c1)(2x+ c2) (mod x2 −R);
2 c3 ← Convert(N,R, a′x+ b′);
3 return c3

We know that our converting algorithm Convert 1 runs quickly and cor-
rectly, and so proving correctness is simply another application of g(r) = g(r)
(mod x2 −R) for all polynomials g, explained in section 3.

4.4 Full Cocks Ciphertext Homomorphism

So far we have been working with simplified Cocks ciphertexts 2.3. Consider full
Cocks ciphertexts of the form c1 = (c1, c

′
1) and c2 = (c2, c

′
2), where c1 and c2 are

encrypted under public key R and c1 and c′1 are encrypted under public key uR
– where u is a known non-square of Jacobi symbol 1. The homomorphic addition
is simply Hom(N,R, uR, c1, c2) = (Hom(N,R, c1, c2),Hom(N, uR, c′1, c

′
2)) = c3.

We just consider each component of the Cocks ciphertext separately.

5 Application: Bidirectional Proxy Re-encryption

Because we now can see these ciphertexts as linear functions, we get the following
method for two-way proxy re-encryption for simplified Cocks ciphertexts, as in
section 2.3.

For two secret keys r and r′ with public keys R = r2 and R′ = r′2 respec-
tively, we let our re-encryption key be T = r/r′.

Algorithm 4: ReEncrypt(N,R,R′, c, T )

Input: Public parameter N , public keys R and R′ to re-encrypt
between, Cocks ciphertext c encrypted under R, and proxy
re-encryption key T

Output: Cocks ciphertext c′ encrypted under R′

1 a′x+ b′ ← Rerand(N,R′, 2Tx+ c);
2 c′ ← Convert(N,R′, a′x+ b′);
3 return c′

Correctness of ReEncrypt

Correctness of this algorithm is simple. When we attempt to decrypt c′, we

get
(

2r′+c′

N

)
=
(
a′r′+b′

N

)
from the correctness of Convert under public key R′.
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Then, by correctness of Rerand,
(
a′r′+b′

N

)
=
(

2Tr′+c
N

)
. Now, if T = r/r′, as it

should,
(

2(r/r′)r′+c
N

)
=
(
2r+c
N

)
. Thus,

(
2r′+c′

N

)
=
(
2r+c
N

)
.

Soundness of ReEncrypt

The soundness property is that T is not leaked by the new ciphertext. We need
lemma 2, which tells us we sufficiently re-randomize a ciphertext after applying
the re-encryption key. Let

(
ZN [x]/(x2 −R)

)∗
denote the multiplicative group

within the ring ZN [x]/(x2−R), and “decrypting” be evaluating at r and taking
the Jacobi symbol. Let J1 ⊂ Z∗N be the elements of ZN with Jacobi symbol 1.
We define the distribution D to be statistically close to the output of Rerand
given input ax+ b:

Dax+b :=

{
(ax+ b)

(cx+ d)2

t
: cx+ d

$←
(
ZN [x]/(x2 −R)

)∗
, t

$← J1
}
.

The subscript will be omitted when it is clear.

Lemma 2. If (ax+ b) ∈
(
ZN [x]/(x2 −R)

)∗
decrypts to 1, then

Dax+b ≡
{

uniform ex+ f where

(
er + f

N

)
= 1

}
.

If (ax+ b) ∈
(
ZN [x]/(x2 −R)

)∗
decrypts to −1, then

Dax+b ≡
{

uniform ex+ f where

(
er + f

N

)
= −1

}
.

Sketch of Proof We will only go through the proof of one specific case in
this sketch. The other cases are proved in a similar manner in appendix A.2.

Consider just the case where ax+b decrypts to 1 and is a square in ZN [x]/(x2−
R): we can write ax+ b = (a′x+ b′)2 (mod x2 −R). Now, we get that the dis-
tribution produced by D is equally likely to output (cx+d)2/t as it is to output
((a′x + b′)(cx + d))2/t. So, we just consider D choosing cx + d uniformly at
random from

(
ZN [x]/(x2 −R)

)∗
.

For this proof sketch, assume that all ex+ f that decrypt to 1 are always of

the form (e′x+ f ′)2/t′ for
(
t′

N

)
= 1. This is proved in lemma 5 in appendix A.

Consider the case where both t and t′ are squares. This means, we are choosing
(cx+d)2 so that it is equal to t

t′ (e
′x+f ′)2. And since t

t′ = k2 is a square we can
re-write t

t′ (e
′x+ f ′)2 = (ke′x+ kf ′)2. So, over all possible choices of cx+ d in

the multiplicative group, there are 4 possible solutions (cx+d)2 = (ke′x+kf ′)2

by the Chinese Remainder Theorem. Now, when considering this probability,

12



we need to ensure that t is a square, otherwise there does not exist any solution:

Pr
cx+d,t

$←J1

[
(cx+ d)2

t
=

(e′x+ f ′)2

t′

]
=

∑
T is a square

Pr
t

$←J1
[t = T ] · Pr

cx+d

[
(cx+ d)2 =

T

t′
(e′x+ f ′)2

]

=
∑

T is a square

2

φ(N)
· 4

| (ZN [x]/(x2 −R))
∗ |

=

(
φ(N)

4
· 2

φ(N)

)
· 4

| (ZN [x]/(x2 −R))
∗ |

=
2

| (ZN [x]/(x2 −R))
∗ |
.

In this case, we get the probability is exactly uniform, since half of the elements
in
(
ZN [x]/(x2 −R)

)∗
decrypt to 1. In the case where t′ in (e′x + f ′)2/t′ is a

non-square, t must also be a non-square in order for there to exist a solution
cx + d (so (cx + d)2 = t/t′(e′x + f ′)2). So, the only thing that changes in this
part of the proof from the last is that we sum over non-squares T , and so we
get the same probability, 2

|(ZN [x]/(x2−R))∗| , that D produces ex+ f .

The other cases, where ax+ b decrypts to −1 or is not a square, are handled
by looking at ax+ b mod p and mod q separately.

The full proof is detailed in the appendix A.2.
This lemma means that the output of Rerand a′x + b′ looks like a fresh

ciphertext encrypted under R′ that decrypts to the same thing as 2x + c with
all but negligible probability, and hence the new ciphertext (even after Convert)
contains no information about T .

5.1 Proving Selective Security

Security is subtle in this case. With two-way re-encryption keys, we can view
each of these keys as an edge in a graph between public keys/identities. If a
user has a secret key to any identity and a set of re-encryption keys, that user
can decrypt any message encrypted by a public key in the connected component
containing that user’s key.

5.1.1 Definition of Security

We will adapt the security game from Green and Ateniese [GA07] (section 3),
which gives us selective security against a chosen plaintext attack. Let A be an
adversary. This will be under the random oracle model: we answer queries for
H(id) with a random oracle.

1. Setup. Run Setup(1k) to get the msk and mpk. Give mpk to A.
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Figure 1: How we should visualize the re-encryption keys Ti,j . Given a secret
key for any node and a set of reencryption keys, we get all of the secret keys in
that connected component, but we should get no more information about the
other keys. For example, if an adversary has the secret key to R2 and all of the
shown Ti,j , the adversary can also get secret keys to R1, R3, and R4, but not
the secret keys for R5, R6, or R7.

2. Commit. A commits to an identity id∗ that it will attack.

3. Query. Allow A to make polynomially many secret-key, public key, and
re-encryption key queries. All of these queries must be made at once.1

(a) For a re-encryption key query from A of the form id1, id2, we return
rk1,2 = RKGen(sk1, sk2) with the exception that A is not allowed
to query for a re-encryption key that allows A to trivially decrypt
messages under id∗ using re-encryption keys.

(b) For id query from A, we return skid = Keygen(mpk,msk, id) with
the exception that A is not allowed to query for secret keys in a
connected component with id∗.

4. Challenge. A outputs (m0,m1). We choose a random b
$← {0, 1} and give

A the ciphertext c = Enc(mpk, id,mb).

5. Guess. A outputs a bit b′ ∈ {0, 1}. If b = b′, then A wins.

The scheme is secure under this model if the advantage the adversary A has
is negligible. That is,∣∣Pr

[
A(1k) = 1 : b = 1

]
− Pr

[
A(1k) = 1 : b = 0

]∣∣ < negl(k).

5.1.2 Playing the Security Game

Here we will show that if there is an adversary who can break our security game,
then this adversary can break the Quadratic Residuosity assumption 3.

1The Cocks’ IBE can get away with having some of these queries be adaptive. As long as
we know if an id is in a connected component with the challenge id∗.
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Definition 3. The Quadratic Residuosity Assumption states that for all
PPT adversaries A, if A is given a composite RSA modulus N = pq, and an
element a ∈ Z×N such that

(
a
N

)
= 1, then

|Pr [A(N, a) = 1 : a ∈ QRN ]− Pr [A(N, a) = 1 : a 6∈ QRN ]| < negl(|N |).

So, assume A can break the security game. We will construct an adversary
B to complete the reduction.

1. B gets N and an element R∗ with Jacobi symbol 1.

2. Setup for A. B inputs public parameter N to A.

3. Commit for A. A commits to a public identity id∗ that it will attack.

4. Query for A. A outputs a polynomially-sized set of re-encryption key,
public key, and secret key queries.

• B separates re-encryption key queries into those in a connected com-
ponent with id∗ and those in other components.

• For each edge in re-encryption key queries in the connected com-
ponent with id∗, B simulates the hashes of the public keys in the
following manner. B builds each re-encryption key as an edge in the
component and defines the public keys based off of them.

– Let H(id∗) = R∗

– If the edge is not completing a cycle, then we are connecting
a node id to a new node id′. Denote H(id) = R, we choose

T
$← Z×N and let H(id′) = R

T 2 .

– If the edge is completing a cycle, then we consider the nodes, in
the cycle labeled in order 1, 2, · · · , k with public keys R1, · · · , Rk.
We have Ti translates between Ri and Ri+1, and given the pre-
vious construction, Ri+1 = Ri

T 2
i

.

We define Tk = 1
T1T2···Tk−1

.

• For each id not in a connected component, we just generate secret

key-public key pairs, r
$← Z×N and R = r2 and we let H(id) = R.

We answer secret key queries on id with r, public key query with R,
and for a re-encryption key query between id and id′, we return r

r′ ,
a correct translate key.

5. Challenge for A. Since we can only encrypt a single bit, A outputs (0, 1).

B chooses a random b
$← {0, 1}. B then chooses a random t

$← Z×N so that(
t
N

)
= (−1)b and produces the ciphertext c = t+ R∗

t . B gives c to A.

6. Guess for A. A outputs a bit b′.

7. Guess for B. If b′ = b, then B outputs 1. Otherwise, B outputs 0.
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In order for this to work, we need to make the case that we are correctly sim-
ulating responses to the public key, private key, and re-encryption key queries.
For each re-encryption key query, T between public keys R and R′, T must be
the ratio of the (arbitrary) square roots of R and R′. That is, T 2 = R

R′ .

• If R and R′ are not part of the connected component with T , then we
have direct access to the roots, r and r′, and correctly output T = r

r′ .

• If R and R′ are part of the connected component with T , then we have two
cases. If T was adding a new node, then R′ was chosen so that R′ = R

T 2 ,

and hence T 2 = R
R′ .

If T was connecting a cycle, then we label T as Tk, the translate key
between R1 and Rk, and look at the entire cycle used to define Tk ,
R1, · · · , Rk. Expanding T 2

k , we get, as desired,

T 2
k =

1

T 2
1 T

2
2 · · ·T 2

k−1
=

1

T 2
1

· · · 1

T 2
k−1

=
R2

R1
· R3

R2
· · · Rk

Rk−1
=
Rk
R1

.

Since we will never answer secret key queries about the connected component
with id∗, we can simulate answers to all of A’s queries.

5.2 Re-encryption of Full Cocks Ciphertexts

Throughout this section, we have shown how to re-encrypt a simplified Cocks
ciphertext 2.3. Re-encrypting a full Cocks ciphertext, c = (c1, c2), requires more
subtlety than just applying ReEncrypt to each component. In particular, given
two public keys R = h(id) and R′ = h(id′) and the re-encryption key between
them T = r/r′, we do not know if R or uR is a square or if R′ or uR′ is a
square. So, we must include an extra bit in T : if R and R′ are both squares or
non-squares, the bit is 0, and the bit is 1 otherwise. The algorithm is detailed
in RKGen, below.

Algorithm 5: RKGen(N, u,R, r,R′, r′)

Input: Public parameters N and u, public key R and corresponding
secret key r, public key R′ and corresponding secret key r′

Output: Re-encryption key from public key R to R′, (T, b)
1 Let b = 0;
2 if r2r′2 = uRR′ then
3 Let b = 1;
4 end
5 Let T ← r

r′ ;
6 return (T, b)

Now, the re-encryption algorithm for a Cocks ciphertext needs to re-encrypt
the component corresponding to the square to the component corresponding to
the other square. So, the full proxy re-encryption algorithm is in ReEncrypt Full.
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Algorithm 6: ReEncrypt Full(N, u,R,R′, (T, b), c = (c1, c2))

Input: Public parameters N and u, public keys R and R′, the
re-encryption key from R to R′ and bit (T, b), and the full Cocks
ciphertext c encrypted under R.

Output: Full Cocks ciphertext c′ encrypted under R′.
1 if b = 0 then
2 Let c′ = (ReEncrypt(N,R,R′, c1, T ),ReEncrypt(N, uR, uR′, c2, T ));
3 end
4 if b = 1 then
5 Let c′ = (ReEncrypt(N, uR,R′, c2, T ),ReEncrypt(N,R, uR′, c1, T ));
6 end
7 return c′

ReEncrypt Full is correct.

There are four cases to consider depending which of R, uR,R′, and uR′ are
squares.

• R andR′ are both squares. RKGen will output (T = r/r′, 0). ReEncrypt Full
assigns c′ = (c′1, c

′
2). We will decrypt with r′ using c′1. Since R and R′

are both squares and ReEncrypt is correct, we correctly decrypt c′1 as we
decrypt c1.

• R and R′ are both non-squares. RKGen will output (T = r/r′, 0), as in
the first case. However, when we decrypt with r′, we will decrypt the
second component, c′2. Since uR and uR′ are both squares in this case
and ReEncrypt is correct, we correctly decrypt c′2 with r′ as we decrypt c2
with r.

• R is a non-square and R′ is a square. This means uR and R′ are both
squares and we want to decrypt using the first component, c′1. RKGen
outputs (T = r/r′, 1). Because ReEncrypt is correct, when we decrypt c′1
with r′ as though we were decrypting c2 with r.

• R is a square and R′ is a non-square. This means R and uR′ are both
squares and we will want to decrypt using the second component of c′,
c′2. RKGen outputs (T, 1). Because ReEncrypt is correct, when we try to
decrypt the output of ReEncrypt Full, we correctly decrypt c′2 with r′ as
though we were decrypting c1 with r.

6 Conclusion

Although it was already known that Cocks ciphertexts had homomorphic prop-
erties, we identified the simple structure that makes homomorphic addition
possible. We also demonstrated how to use this structure to get bidirectional
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proxy re-encryption. We showed how to statistically re-randomize a ciphertext.
The structure revealed in the proof of re-randomizing, we believe, is powerful. It
shows that the multiplicative group of ciphertexts behaves well with respect to
Jacobi symbols and squares. Perhaps these concepts can lead to other applica-
tions, like functional encryption, or be applied to other QR schemes, like BGH
[BGH07]. In particular, maybe BGH has homomorphic properties as well.
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A Technical details of Convert and Rerand.

Here we go through some technical lemmas for why algorithms Convert and
Rerand work. In particular, our goal is to show first that Rerand randomizes the
Jacobi symbol of the linear term of a CHT ciphertext, and then that Rerand
actually statistically re-randomizes a linear ciphertext. We will need a few
lemmas along the way.

Notation and the ring of ciphertexts.

Within ZN , we let J1 denote elements with Jacobi symbol 1 and J−1 denote the
elements with Jacobi symbol −1. Squares mod N are QRN and squares mod p
are QRp.

All of our operations done in this linear-function model will be in the ring
ZN [x]/(x2 − R). Let RN = ZN [x]/(x2 − R), and Rp = Zp[x]/(x2 − R). To
denote the multiplicative groups of these rings, we write R∗N and R∗p. Note that
|R∗N | = |R∗p| · |R∗q | = (p2 − 2p + 1)(q2 − 2q + 1). So R∗N is the overwhelmingly
large fraction or RN , which has order p2q2; almost all elements in RN have
multiplicative inverses.

A ciphertext ax + b decrypts to 1 if
(
ar+b
N

)
= 1 and to −1 if

(
ar+b
N

)
= −1.

We denote the set of ciphertexts in R∗N that decrypt to 1 as C1 and those that
decrypt to −1 to be C−1. Note that when using C1 and C−1, we are only referring
to ciphertexts in the multiplicative group R∗N .
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Working Modulo a Prime p

Lemma 4. If ar + b is a square mod a prime p, then we can write ax + b as
(cx+ d)2 in R∗p. If ar+ b is a non-square mod a prime p, then we can take any
u 6∈ QRp and write ax+ b as u(cx+ d)2 (mod x2 −R).

Proof. Let u ∈ Z∗p, but u 6∈ QRp.
All squares in R∗p can be written as (cx+d)2. Notice that u(cx+d)2 cannot

be a square in R∗p. Since squares account for exactly half of R∗p, we can write
all non-squares as u(cx + d)2 – u as a member of the group is a bijection as a
multiplicative map from Rp to itself, and thus u(cx + d)2 maps to a different
non-square for each square (cx+ d)2.

For a contradiction, assume ar + b ∈ QRp, but ax+ b is not a square. This
means ax+b = u(cx+d)2 (mod x2−R) for some cx+d. But, when we evaluate
at r, (ar + b) = u(cr + b)2,(

u(cr + b)2

p

)
=

(
u

p

)
·
(
cr + b

p

)2

= −1 6=
(
ar + b

p

)
.

This is a contradiction, and so ar + b being a quadratic residue mod p implies
ax+ b is a sqaure in R∗p.

If we let ar+b 6∈ QRp. We get that ax+b = u(cx+d)2 for the same reason:
if ax+ b = (cx+ d)2, then evaluation at r results in a contradiction.

Working In RN

Lemma 5. All ax+ b ∈ C1 are of the form (a′x+b′)2

t where
(
t
N

)
= 1. Similarly,

all linear function encryptions ax + b ∈ C−1 are of the form (a′x+b′)2

t where(
t
N

)
= −1.

Proof. First, assume ax+ b ∈ C1. We have two cases of decryption to deal with:
one where ar + b is a square in both Zp and Zq and the other where it is a
square in neither.

• ar+b ∈ QRp and QRq. From lemma 4, we know that ax+b is a square in
bothR∗p andR∗q . This means that mod p, we can write ax+b = (cpx+dp)

2

and mod q, ax + b = (cqx + dq)
2. By the Chinese Remainder Theorem

(CRT) , we can thus write ax+ b = (cx+ d)2. Now let γ ∈ Z∗N ,

ax+ b =
(γcx+ γd)2

γ2
=

(a′x+ b′)2

γ2
,

and γ2 is guaranteed to have Jacobi symbol 1 because it is a square.

• ar + b 6∈ QRp or QRq. Again from lemma 4, ax + b is neither a square
in R∗p or R∗q . Again by CRT and lemma 4, ax+ b = u(cx+ d)2. Now, we
can do the same trick as before, to get

ax+ b =
(γcx+ γd)2

γ2/u
=

(a′x+ b′)2

γ2/u
.
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Notice that γ2/u is neither a square mod p or mod q and thus has Jacobi
symbol 1 mod N .

The case where ax+ b ∈ C−1 is similar. Now, without loss of generality, we
can assume ar + b ∈ QRp and ar + b 6∈ QRq. Lemma 3 tells us that mod p,
ax + b = 1 · (cpx + dp)

2 mod p and ax + b = uq(cqx + dq)
2 mod q. By the

Chinese Remainder Theorem, we can find a t ∈ ZN so that t ≡ 1 mod p and
t ≡ 1/uq mod q, as well as a′ ≡ cp mod p and cq mod q and b′ ≡ dp mod p
and dq mod q. We can rewrite

ax+ b ≡N
(a′x+ b′)2

t
(mod x2 −R).

Now we have
(
t
N

)
=
(

1
p

)
·
(
uq

q

)
= −1 as desired.

A.1 Proving lemma 1

Now we can prove lemma 1, which shows that algorithm Convert terminates in
polynomial time.
Proof of Lemma 1

This proof will be re-writing ax+ b in terms of being a square in Rp and Rq
or not.

First, we know that we can rewrite ax+ b = (a′x+b′)2

t′ where
(
t′

N

)
=
(
ar+b
N

)
by lemma 5. Now, the term in our probability (ax + b)

(
(cx+d)2

t

)
becomes

((a′x+b′)(cx+d))2

tt′ . Since a′x + b′ will also have an inverse in RN , and we are
choosing cx + d at random, we are just as likely to choose c, d as we are to
choose c′, d′ where (c′x + d′) = (a′x + b′)(cx + d) (mod x2 − R). The term we

are trying to bound the probability on is (cx+d)
t where

(
t′

N

)
=
(
ar+b
N

)
.

Let m =
(
ar+b
N

)
, the decryption of our ciphertext. We now have that the

probability we are looking at is

Pr
c,d

$←Z∗N ,t
$←J1

[( e
N

)
= 1 where ex+ f = (ax+ b)

(cx+ d)2

t

]

= Pr
c,d

$←Z∗N ,t
$←Jm

[( e
N

)
= 1 where ex+ f =

(cx+ d)2

t

]
.

Now, we expand 1
t · (cx+ d)2 (mod x2−R), our linear term is just 2

t cd. We

22



can analyze

Pr
c,d

$←Z∗N ,t
$←Jm

[(
2cd/t

N

)
= 1

]
=
∑
γ∈J1

Pr
c,d

$←Z∗N ,t
$←Jm

[
2cd

t
= γ

]

=
∑
γ∈J1

∑
T∈Jm

Pr
t∈Jm

[t = T ]
∑
C∈Z∗N

Pr
c∈Z∗N

[c = C] · Pr
d∈Z∗N

[
d =

Tγ

2C

]

=
∑
γ∈J1

∑
T∈Jm

2

φ(N)

∑
A∈Z∗N

1

φ(N)
· 1

φ(N)

=
φ(N)

2
·
(
φ(N)

2

2

φ(N)

)(
φ(N) · 1

φ(N)

)
· 1

φ(N)
=

1

2
.

Lemma 1 means that any linear ciphertext ax+ b decrypted by
(
ar+b
N

)
can

be converted into a Cocks ciphertext by algorithm 1 Convert , which employs a
re-randomizing algorithm 2 Rerand.

A.2 Proof of lemma 2

We now have enough machinery to prove lemma 2: Rerand statistically re-
randomizes ciphertexts.

First, recall the distribution Dax+b, defined on an element in RN .

Dax+b :=

{
(ax+ b)

(cx+ d)2

t
: cx+ d

$← R∗N , t
$← J1

}
,

which is statistically close to the output of Rerand. We say statistically close
becauase c and d are chosen randomly from ZN . With overwhelming probability,
cx + d will have a multiplicative inverse in R∗N . So, we will prove that D
randomizes ciphertexts that have inverses, and because the distribution from D
is statistically close to the actual output of Rerand and the set of ciphertexts that
have inverses is statistically close to the set of all ciphertexts, Rerand statistically
re-randomizes a ciphertext.
Proof of Lemma 2 Recall that our goal is to show that if ax+ b ∈ C1, then

D ≡
{
ex+ f where ex+ f

$← C1
}
,

and if ax+ b ∈ C−1, then

D ≡
{
ex+ f where ex+ f

$← C−1
}
.

We will define an alternative distribution. Let m =
(
ar+b
N

)
, and let D′ be

D′ :=

{
(cx+ d)2

t
: cx+ d

$← C1, t
$← Jm

}
.
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We will first show that D ≡ D′. As in the proof of theorem 1, we can rewrite

ax+b = (a′x+b′)2

t′ for some t with Jacobi symbol 1 using lemma 5. So, expanding

our output from D, (ax+ b) = ((a′x+b′)(cx+d))2

tt′ . Since we are choosing (cx+ d)
from the multiplicative group R∗N at random and a′x + b′ is also in R∗N , the
probability of D chooses (cx + d) for its output is the same as the probability

D chooses (a′x+ b′)(cx+ d) (mod x2 −R). Since
(
tt′

N

)
=
(
t
N

)
, the probability

D outputs a specific (cx+d)2

t with
(
t
N

)
= m is equivalent to the probability D′

outputs that element in R∗N .
Our goal now is to show that D′ outputs, uniformly, a ciphertext that de-

crypts to
(
ar+b
N

)
. Note that, by counting, |C1| = |R∗N |/2, since exactly half of

the elements in R∗N are squares divided by elements of Jacobi symbol 1 and the
other half are squares divided by elements of Jacobi symbol −1. This means
the probability that a uniform distribution on C1 outputs ex+ f is 2

|R∗N |
.

Let ex + f ∈ C1. We will analyze the probability D′ outputs ex + f . By

lemma 5, ex + f = (e′x+f ′)2

γ where γ ∈ J1. We have two cases, γ ∈ QRN and
γ 6∈ QRN :

• γ ∈ QRN . The probability that D′ outputs ex+ f is the probability that
(cx+d)2

t = (e′x+f ′)2

γ when we randomly choose cx+ d ∈ R∗N and t ∈ J1:

Pr
cx+d

$←R∗N ,t
$←J1

[
(cx+ d)2

t
=

(e′x+ f ′)2

γ

]
=
∑
T∈J1

Pr
t

$←J1
[t = T ] · Pr

cx+d
$←R∗N

[
(cx+ d)2 =

T

γ
(e′x+ f ′)2

]
.

Notice that this equation only has a solution in cx + d if t ∈ QRN .
Otherwise, we are trying to solve (cx+ d)2 = t

γ (e′x+ f ′)2 (mod x2 −R)

when (cx+ d)2 is a square, but t
γ (e′x+ f ′)2 is not.

Now, assuming that T
γ ∈ QRN , we can let k2 = T

γ and rewrite k2(e′x +

f ′2) = (ke′x+ kf ′)2 = (êx+ f̂)2. We are looking for the probability that

a random cx+ d is a solution to (cx+ d)2 = (êx+ f̂)2 (mod x2 −R). We
need to know how many solutions there are to this. We will use CRT.

Mod p, there are exactly two solutions cx+ d ∈ R∗p to (êx+ f̂)2: at least

two because ±(êx+ f̂) are both solutions, and no more than two because
the size of squares is exactly half of R∗p. Mod q there are also exactly two
solutions. This means, mod N there are 4 total solutions. Now, when we
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continue to analyze this probability, we have∑
T∈J1

Pr
t

$←J1
[t = T ] · Pr

cx+d
$←R∗N

[
(cx+ d)2 =

T

γ
(e′x+ f ′)2

]
=

∑
T∈QRN

2

φ(N)
· 4

|R∗N |

=

(
φ(N)

4
· 2

φ(N)

)
· 4

|R∗N |

=
2

|R∗N |
.

So, in this case, the distribution D′ is the same as uniform.

• γ 6∈ QRN . We can use the same analysis tricks, except T must also not
be in QRN , but still must have Jacobi symbol 1. So,

Pr
cx+d

$←R∗N ,t
$←J−1

[
(cx+ d)2

t
=

(e′x+ f ′)2

γ

]
=

∑
T 6∈QRN

2

φ(N)
· 4

|R∗N |

=

(
φ(N)

4
· 2

φ(N)

)
· 4

|R∗N |

=
2

|R∗N |
.

The case where ax+b, ex+f ∈ C−1 is proved in exactly the same manner.
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