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Abstract. Evaluation of side channel vulnerability of a cryptosystem
has seen significant advancement in recent years. Researchers have pro-
posed several metrics like Test Vector Leakage Assessment Methodology
(TVLA), Normalized Inter Class Variance (NICV), Signal to Noise Ratio
(SNR), Guessing Entropy to determine side channel security of crypto-
implementations. Among these, TVLA has emerged as the front-runner
as it can determine side channel vulnerability of a crypto-system irrespec-
tive of the underlying leakage model and hence can be integrated into
the testing mechanism very easily. TVLA which is actually similar to
statistical t-test acts as a powerful tool which provides a pass-fail testing
mechanism of crypto-implementations. More precisely it can determine
whether the system is secure or not, it does not quantify the security of
the crypto-implementations in terms of number of side channel traces
required or signal-to-noise ratio (SNR) of the crypro-implementations.
Statistical F test, on the other hand, can easily compute the SNR, which
in turn can quantify the side channel vulnerability in terms of number of
side channel traces required. In this work, we aim to connect the TVLA
metric to the computation of SNR, leading to establishing lower bound
for the number of traces for a successful attack. This work will also show
the equivalence of the required existing side channel evaluation metrics.

1 Introduction

Since the seminal work by Kocher et al. [1], side channels have emerged as a
serious threat to implementations of cryptographic algorithms in the past two
decades, with the ability to render even mathematically robust cryptographic
algorithms vulnerable. A side-channel adversary observes the physical properties
of a cryptographic implementation, such as timing, power or electromagnetic
emanations, and tries to infer the secret key by modeling a sensitive intermediate



state of the design which is then correlated with these physical properties.
Cryptographic designs must therefore provide security guarantees against such
threats. In this context, efficient validation and evaluation methodology for
testing side channel vulnerability has gathered significant interest in the research
community. In particular, there exist today two popular security certification
programs - Common Criteria (CC) [2] and FIPS [3] that recommend crypto-
implementations to be secure against side channel attacks. Each of these programs
follows two distinct testing methodologies, namely evaluation-style testing and
conformance-style testing.

Evaluation-Style Testing. The Common Criteria (CC) certification is a
prime example of evaluation-style testing. CC is essentially a set of security
guidelines (ISO-15408) that define a common framework for evaluating crypto-
implementations using a standard set of pre-defined evaluation assurance levels.
From the point of view of detecting side channel vulnerabilities, it recommends
evaluating the system against all state-of-the-art attack strategies, with the
knowledge of the threat model. An ever-increasing list of attack strategies, to-
gether with a large number of models characterizing different leakage profiles of
the device, often renders such a testing methodology cumbersome, costly and
limited by the testing expertise available at hand. Additionally, the success of
evaluation-style testing methodologies depends strongly on appropriate choices
of the leakage models, and an error of judgement in this regard could cause a
potentially vulnerable crypto-implementation to pass the test. This makes evalu-
ation style testing mechanisms less favourable for testing crypto-implementations
against side channel vulnerability.

Conformance-Style Testing. Unlike CC, FIPS [3] certification is an example
of conformance-style testing that uses a cryptographic module validation program
(CMVP) to validate a design in terms of whether it meets the necessary security
levels or not, rather than an exact evaluation of its vulnerability. With respect to
side channels, it employs a simplified approach of merely detecting the presence
of any leakage, independent of attack methodologies and leakage models. This
makes it possible to have structured conformance-style testing methodologies
that are cost-effective and consistent across different testing labs with varied
testing expertise. Fortifications with precise security specifications and test plan
coverage have the potential to make this style of testing against side-channel
vulnerabilities highly efficient and suitable for wide-scale use.

Test Vector Leakage Assessment (TVLA) [4] which was proposed at NIST spon-
sored NIAT workshop 2011, is one of such conformance style testing mechanism
which has gained huge popularity among the researchers and specially the practi-
tioners due to its robustness, applicability to different crypto-implementations
and easy integrability with the exiting testing methodologies. Multiple research
papers on side channel attacks have used this tool to show the effectiveness of their
proposed attacks and countermeasures. TVLA exploits well known Welch’s t-test
which is actually statistical hypothesis testing mechanism. It can be classified



into two different categories: non-specific and specific [4]. In case of non-specific
TVLA, the validator does not need to have the knowledge of the secret key. He
just needs to collect the side channel traces of the crypto-implementations and
classifies them into two different classes: one with fixed test-vector (plain-text) as
input and another with random test-vectors as input. He then requires to perform
Welch’s t-test (also known as Student’s t-test) on these two classes and compute
the t-value. If the t-value crosses the pre-defined threshold (which for TVLA
is ±4.5 [4]), the crypto-implementation is considered to be vulnerable to side
channel attacks. In case of specific TVLA, the validator needs to know the secret
key of the crypto-implementation as the classification of the side channel traces
is done depending upon the intermediate value of the crypto-designs. There are
various types of specific TVLA test which we will discuss in details in section 2.
It has been shown in [5] that non-specific TVLA outperforms specific TVLA
as the number of false positives will be less in case of non-specific TVLA. It
must be noted that in case of TVLA the focus is on identifying statistically
significant information leakage and not on key extraction. Hence, observation
of TVLA leakage may or may not lead to successful key extraction. Key extrac-
tion procedure depends upon the complexity of the attacks and correctness of
hypothetical leakage model which again varies from device to device. Hence, it
may happen that key extraction procedure fails due to wrong assumption of or
high complexity of the hypothetical power model in-spite of having high TVLA
leakage [6].

More elaborately, TVLA does not lead to key extraction neither it quantifies
the side channel vulnerability. It is a Pass-Fail test which determines whether the
crypto-implementation is safe or not. However, in some cases, it would be useful to
know how unsafe the design is, which demands the need of quantification of side
channel vulnerability. For example, a correct feedback on potential vulnerability
to designers of crypto-systems, can lead to better implementations. However, in
current form, TVLA fails to report side-channel vulnerabilities and evaluation
based testing are too costly and expertise dependent to be deployed for this
objective.

Related Work: Prior to TVLA, few information theoretic tests [7, 8] tests
were proposed to analyse side channel vulnerability of crypto-systems. These
tests are based on mutual information and can not be scaled to higher order
attacks [9]. Additionally, these tests are complex and require computation of
probability distribution of leakage and hence suffers from similar disadvantages
of evaluation based testing. TVLA was first proposed in [4] where authors anal-
ysed validity of TVLA on AES. Subsequently, TVLA was applied to RSA [10]
to show its effectiveness on public key cryptography. In this context, recently
in [11] the authors have shown how to apply TVLA to asses horizontal attack
vulnerabilities. In [5], results of [4] and [10] are brought together and superiority
of non-specific TVLA over specific TVLA is established. TVLA is compared
with mutual information based analysis techniques in [12] and comparative anal-
ysis between them is presented. In [9], authors have focussed on applicability



of TVLA. They have extended application of TVLA to higher order attacks.
Moreover, they have presented efficient algorithms for on-line computation of
TVLA. An improved version of TVLA, based on matched pair t-test is presented
in [13]. The advantage of TVLA is that it can detect leakage of any order and is
independent of underlying architecture and hypothetical power model. It does not
give any information regarding the ease of actual attack or exploitable leakage
model. Hence, TVLA can not be extended to evaluation based testing which is a
requirement for quantification of side channel vulnerability of crypto-designs.

Evaluation based testing requires the evaluator to check whether he can
retrieve the secret key or not. Success of such evaluation based testing can be
measured by two metrics: Success Rate [14] and Guessing Entropy [15]. Success
rate of a specific side channel attack is defined as the probability of successful
secret key retrieval. In simple mathematical notation, success rate (𝑆𝑅) of a side
channel attack (𝐴) is presented as follows:

𝑆𝑅 = 𝑃𝑟[𝐴(𝐸𝑘0
, 𝐿) = 𝑘0] (1)

where 𝑘0 is the correct key used in the encryption process, denoted as 𝐹𝑘0 , 𝐿
is the leakage obtained from side channel traces. Lower the 𝑆𝑅, higher is the
resistance of crypto-implementation against the side channel attack 𝐴. It must
be noted that 𝑆𝑅 indicates efficiency of a particular side channel attack and not
the security of the design. In literature, multiple statistical distinguishers have
been proposed to differentiate the correct key from the wrong key guesses. Most
notable among them are Difference of Mean (DoM) and Pearson’s correlation
coefficient [16]. There have been multiple works which have analysed SR from
the point of view of statistical distinguisher. In [14], the authors have defined SR
for difference of mean (DoM) attack as follows:

𝑆𝑅 = 𝑃𝑟[𝛿𝑘0 > 𝛿<𝑘0>
] (2)

where 𝑘0 is the correct key, < 𝑘0 > is the set of wrong key guesses and 𝛿𝑘𝑖

indicates DoM value of each key guess 𝑘𝑖. This definition was extended to
address correlation power attack (CPA) in [17]. Additionally, authors in [14] have
introduced a new parameter confusion coefficient which is used to estimate SR
in terms side channel traces required to learn the secret key of the crypto-system
for either DoM and CPA. SR of a side channel attack is often characterized by
the order of the SR. For side channel attacks using either DoM or CPA, we
rank all the possible candidate keys according to their DoM or correlation value
where the key with highest DoM or correlation value is ranked 1. SR of order o
indicates that rank of correct key is not more than 𝑜. Guessing entropy on the
other hand is the measure of the post attack workload. It indicates the number
of key hypothesises required to be tested after the side channel attack. Lower the
guessing entropy, higher the success rate of the attack.

Generally, all sampling points on a side channel trace do not have equivalent
leakage. There are some sampling points which provide more information leakage
compared to others. Quality of sampling points from information leakage point
of view is measured by a parameter known as Signal to Noise ratio (SNR). As



an adversary, it is beneficial to focus only on the sampling points with high
SNR as it increases the efficiency of the attacks by reducing the number of ghost
peaks (wrong key guesses getting lower rank compared to correct key guess) [18,
19]. Additionally, for Template Attack [20], the complexity of attack increases
significantly for side channel traces with large sampling points. In this context, it
is extremely important to reduce the length of the side channel traces by focussing
only on the high SNR sampling point of side channel trace. Various statistical and
machine learning based techniques have been produced for such purpose. In [20],
authors have used a template based approach which involves building templates
for 𝑛 different value of sub-key. High SNR points are then obtained by taking
pairwise difference between these templates where high difference indicates high
information leakage. This approach was improved in [21] where the authors have
deployed sum of squared difference (SOSD) instead of pairwise difference of built
templates. They have further modified their approach by executing Student’s
t-test on the templates to find out high SNR points.

From perspective of machine learning, compression of side channel traces to
find out high SNR (or leakage) points leads to the problem of dimensionality
reduction. In this context, authors in [22] proposed usage of Principal Component
Analysis (PCA) whose goal is to gather all the information from high leakage
points and reflect them on a new time basis with few points. This actually
reduces the length of the side channel trace significantly which helps in efficient
computation of the covariance noise matrix. Further, in [23], authors have used
Linear Discriminant Analysis (LDA) with the objective of reaching optimal
limits of a non-profiled CPA. In [24], the authors also support that LDA indeed
leads to optimal dimensionality reduction.

On the other hand, template attacks need to have access to the cloned device,
where adversary can build profiles of templates for different value of the sub-key.
This may be a strong assumption in certain scenarios where such profiling is not
feasible. Hence it is imperative to have some methodology which will bring out
the high SNR leakage points without an explicit profiling step, thus not requiring
access to a clone of the device. Such a strategy was proposed in [25] where
authors introduced a new parameter Normalized Inter Class Variance (NICV)
which can be used to estimate SNR of the sample points of side channel traces
without any access to a cloned device. NICV is actually output of statistical
F-test (also known as ANOVA (ANalysis Of VAriance)). It was shown in [25]
that NICV approaches (squared) Pearson’s correlation coefficient in absence of
noise. Additionally, we can compute SR from NICV value which relates SNR
with the success rate (SR).

From the above discussion, it is clear that till now the research for validation
and evaluation of side channel vulnerabilities of a crypto-implementation has
followed independent paths. Testing for validation for side channel vulnerability
can not quantify the side channel security whereas evaluation based testing is
costly and expertise dependent. For quantification of side channel security, various
metrics like SR, Guessing Entropy and SNR have been already proposed in the
literature. On the other hand, recently proposed metric TVLA which is used for



validation of side channel vulnerability has gathered significant interest among
the researchers as it is independent of attack methodology and hypothetical power
model. Nonetheless, till now any relationship between TVLA and evaluation
style based testing metrics (SR,GE and SNR) are not explored in the literature.
Such relationship is actually of great importance as this will help quantify side
channel security from TVLA value and as a result extend its scope. In this paper,
we try to formulate the relationship between TVLA and SNR and there after
estimate the lower bounds of the side channel traces required to break a given
crypto-implementation.

Our Contribution: The main contribution of this paper are as follows:

– In this paper, we show how to formulate SNR of a crypto-implementation
from the TVLA metric. This allows us to estimate the SR from the TVLA
value, which in turn let us quantify side channel vulnerability of vulnerable
designs.

– We will show that non-specific TVLA actually captures only a fraction of
the total SNR. On the other hand, from specific TVLA, we can compute the
total SNR from TVLA.

– With the above results, we will extend the TVLA based testing mechanism,
to also quantify the side channel vulnerability in terms of number of side
channel traces to attack. Our results also unify side channel metrics for
both validation and evaluation and shows that all these metrics are actually
equivalent.

The rest of the paper is organized as follows: section 2 briefly describes the
mathematics behind different metrics for validation and evaluation of side channel
vulnerabilities. Next, section 3, derives the relationship between Welch’s t-test
based TVLA and ANOVA based NICV (and SNR). The derived relationship is
experimentally validated in section 4 followed by application to AES in section 5.
Finally in section 6 the conclusions are drawn.

2 Preliminaries

In this section we will provide a brief description of statistical hypothesis testing.
As we have mentioned in the previous section, both TVLA, which is validation
based testing mechanism and NICV which is an evaluation based testing mecha-
nism are actually built on Welch’s t-test and ANOVA respectively. We will follow
this discussion with a short note on SR and SNR.

2.1 Statistical Hypothesis Testing

Statistical tests often require to make decisions about a statistical population on
the basis of sample observations. For example, given a random sample, it may
be required to decide whether the population from which the sample has been
obtained, is a normal distribution with a specific mean and standard deviation.
Any statement or assertion about a statistical population or its parameters is



called a Statistical Hypothesis. The procedure which enables us to decide whether
a certain hypothesis is true or not is called Test of Significance or Statistical
Hypothesis Testing.

A statistical hypothesis which is set up (i.e. assumed) and whose validity is
tested for possible rejection on the basis of sample observations is called Null
Hypothesis. It is denoted as 𝐻0 and tested for acceptance or rejection. On the
other-hand, an Alternative Hypothesis is a statistical hypothesis which differs
from the null hypothesis, and is denoted as 𝐻1. This hypothesis is not tested,
its acceptance (or rejection) depends on the rejection (or acceptance) of that
of the null hypothesis. The sample is then analysed to decide whether to reject
or accept the null hypothesis. For this purpose, a suitable statistic, called Test
Statistic is chosen. Its sampling distribution is determined, assuming that the
null hypothesis is true. The observed value of the statistic would be in general
different from the expected value because of sampling fluctuations. However
if the difference is very large then the null hypothesis is rejected, Whereas, if
the differences is less than a tolerable limit then 𝐻0 is not rejected. Thus it is
necessary to formally determine these limits.

Assuming the null hypothesis to be true, the probability of obtaining a
difference equal to or greater than the observed difference is computed. If this
probability is found to be small, say less than 0.05, the conclusion is that the
observed value of the statistic is rather unusual, and has arisen because the
underlying assumption, i.e. the null hypothesis is not true. We say that the
observed difference is significant at 5 per cent level of significance, and hence
the null hypothesis is rejected at 5 per cent level of significance. The level of
significance, say 𝛼 also corresponds to a (1 − 𝛼) level of confidence. If however
this probability is not very small, say more than 0.05, the observed difference
cannot be considered unusual and is attributed to sampling fluctuations only.
The difference, now is not significant at 5 per cent level of significance. The region
in which null hypothesis is rejected is known as the critical region.

To formulate the above discussion mathematically, we need to introduce a
term Standard Error (SE). SE is defined as the standard deviation of sampling
distribution. We state formally a subsequent result on standard errors which will
be useful to understand the subsequent discussion on the detection test.

Theorem 1. Consider two independent simple samples of sizes 𝑛1 and 𝑛2, with
means 𝜇1 and 𝜇2, and standard deviations 𝜎1 and 𝜎2 respectively, then:

𝑆𝐸(𝜇1 − 𝜇2) =

√︃
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
(3)

Once we have defined the critical region and level of significance (𝛼), we compute
the following parameter

𝑧 =
(Observed Value) − (Expected Value)

Standard Error (SE)
(4)



We will assume the null hypothesis 𝐻0 to be true if it gets rejected with 𝛼 percent
of level of significance. If the percentage of rejection goes beyond 𝛼, we assume
the null hypothesis 𝐻0 is false.

There are different methods for computation of parameter 𝑧. In the next
subsection, we will focus on two such test: Welch’s t-test and ANOVA.

2.2 Welch’s t-test

Welch’s t-test is essentially a test of equality of two moments drawn independently
and randomly from two populations. The starting point is the first moment,
where equality of two means from the two samples are tested for equality. In this
case, the null hypothesis is 𝐻0(𝜇1 = 𝜇2), where 𝜇1 and 𝜇2 are the two means for
the two independent samples. As discussed, the standard error of the difference

of means 𝜇1 − 𝜇2 is 𝑆𝐸(𝜇1 − 𝜇2) =
√︁

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
. We denote the output of Welch’s

t-test as 𝑡 and it is computed as follows:

𝑡 =𝜇1−𝜇2√︂
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

(5)

where 𝜎1 and 𝜎2 are the standard deviations of two independent random samples.
For a large distribution, the test statistic 𝑡 follows standard normal distribution.
However, for tests with any sample sizes, a more exact sampling distribution for
𝑡 is the 𝑡-distribution, and this gives rise to the Welch’s t-test. The statistic 𝑡
then follows the 𝑡-distribution with degrees of freedom calculated according to

Welch-Satterthwaite, as 𝑣 = 𝑆𝐸(𝜇1−𝜇2)
(𝜎2

1/𝑛1)

𝑛1−1 +
(𝜎2

2/𝑛2)

𝑛2−1

.

2.3 ANOVA

In the previous section, we have introduced Welch’s t-test for statistical hypothesis
testing. Welch’s t-test is applicable when the number of independent samples
classes are two. However, for many real life scenarios, the number of independent
sample classes could be more than two. In such cases, to test null hypothesis , we
need to apply t-test multiple times. Alternatively, we can execute a single F-test
to check the null hypothesis. In statistical terms, F-test is defined as follows

𝐹 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=

𝐼𝑛𝑡𝑒𝑟 − 𝐶𝑙𝑎𝑠𝑠 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐼𝑛𝑡𝑟𝑎− 𝐶𝑙𝑎𝑠𝑠 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒
(6)

This F-Test is also known as ANOVA (ANalysis Of VAriance). Computation
of F-test or ANOVA involves computation of two terms: error sum of squares
(𝑆𝑆𝑒𝑟𝑟) and treatment sum of squares (𝑆𝑆𝑡𝑟𝑒𝑎𝑡) [26]. Before we define these
parameters, we need to define the statistical experiment on which we will enact
F-test. In this study, we want to analyse behaviour of a population 𝒴, whose
variation depends upon a random variable 𝑋. The domain of this random variable
is denotes as 𝒳 . From side channel perspective, 𝒴 can be considered as side



channel information leakage whose variation depends upon leakage model (e.g.
Hamming weight or Hamming distance ) which can be denoted as 𝑋. We also
assume that cardinality of 𝒳 is 𝑄. The first step is to sample the population of 𝒴
and partition those samples into 𝑄 number of groups. We assume that 𝑖𝑡ℎ group
has 𝑛𝑖 number of elements where 𝑖 ∈ NQ. We denote each element of these groups
as 𝑌𝑖,𝑗 where 𝑖 indicates the group and 𝑗 indicates the element inside the group
𝑖. We also create another group by accumulating all elements together denoted
as Y = {𝑌1,1, . . . , 𝑌1,𝑛1

, . . . , 𝑌𝑄,1, . . . , 𝑌𝑄,𝑛𝑄
}. The mean of Y is denoted as 𝜇,

whereas mean of individual groups are denoted as 𝜇𝑖, 𝑖 ∈ {1, 2, . . . , 𝑄}. With this
definitions in mind, we now define parameters 𝑆𝑆𝑒𝑟𝑟 and 𝑆𝑆𝑡𝑟𝑒𝑎𝑡 as follows:

𝑆𝑆𝑒𝑟𝑟 =
∑︁
𝑥∈𝒳

𝑛𝑥∑︁
𝑖=1

(𝑌𝑥,𝑖 − 𝜇𝑥)2 (7)

𝑆𝑆𝑡𝑟𝑒𝑎𝑡 =
∑︁
𝑥∈𝒳

𝑛𝑥(𝜇𝑥 − 𝜇)2 (8)

The value of F-test is computed as follows

𝐹 =
𝑆𝑆𝑡𝑟𝑒𝑎𝑡 × (𝑁 −𝑄)

(𝑄− 1) × 𝑆𝑆𝑒𝑟𝑟
, 𝑁 =

∑︁
𝑥∈𝒳

𝑛𝑥 (9)

Like Welch’s t-test, the objective of F-test also is to check the validity of null
hypothesis 𝐻0, which in this case is defined as follows

𝐻0 : 𝜇1 = 𝜇2 = . . . = 𝜇𝑘 (10)

Given a level of significance 𝛼, we determine the region of rejection from the
F-distribution table. If the result of F-test belongs to the region of rejection we
reject the null hypothesis 𝐻0, otherwise we accept it.

For side channel vulnerability measurement, we are not interested in the
exact value of F-test. However, in subsection 2.5 we will show that the concept of
ANOVA helps us to build a very useful metric Normalized Intra Class Variance
which we can directly relate to SNR. But before that in the next subsection we
will introduce TVLA.

2.4 Test Vector Leakage Assessment (TVLA)

In section 2.2, we have introduced Welch’s t-test as statistical hypothesis testing
mechanism. As we have mentioned in section 1, Test Vector Leakage Assessment
(TVLA) is direct application of Welch’s t-test on side channel traces for validation
of side channel vulnerabilities.

TVLA methodology can be classified in to two different categories: non-
specific TVLA and specific TVLA. For both the cases, one must acquire two sets
of traces. In case of non-specific TVLA, one set corresponds to a fixed key and
fixed plain-text as input to the cryptographic IP, the second set collects traces
corresponding to same fixed key and random plain-text. We consider the side



channel information leakage as a random variable 𝒴 and the set of side channel
traces captured is denoted by 𝑌 . The captured side channel traces are then
partitioned into two different sets: 𝑌 𝑓 (fixed plain-text as input) and 𝑌 𝑟 (random
plain-text as input). Thereafter a hypothesis testing performed by assuming a null
hypothesis that the these two sets of traces have identical means and variance.
If the null hypothesis is accepted, it signifies that the traces carry no sensitive
information. On the other hand, a rejected null hypothesis indicates presence of
exploitable leakage. This can be expressed as:

𝑇𝑉 𝐿𝐴 =
𝜇𝑟 − 𝜇𝑓√︂
𝜎2
𝑟

𝑛𝑟
+

𝜎2
𝑓

𝑛𝑓

, (11)

where 𝑛𝑟, 𝑛𝑓 signifies the number of traces in set 𝑌 𝑟, 𝑌 𝑓 respectively. The mean
and standard deviation of set 𝑌𝑟 is denoted by 𝜇𝑟 and 𝜎𝑟. Similarly, 𝜇𝑓 and 𝜎𝑓

refer to mean and standard deviation of 𝑌 𝑓 . The null hypothesis of two equal
means is rejected when the TVLA exceeds a threshold of ±4.5, which ensures with
degrees of freedom > 100, 𝑃 [|𝑇𝑉 𝐿𝐴| > 4.5] < 0.00001, this threshold leads to a
confidence of 0.99999. Thus, if the TVLA value is within ±4.5, we can claim that
the crypto-implementation is secure with high confidence. Otherwise, we reject
the null hypothesis and declare the crypto-implementation to leak exploitable
side-channel information.

In case of non-specific TVLA, we partition the side channel traces according
to the plain-text. Hence, knowledge of secret key is not required for performing
non-specific TVLA. However, for specific TVLA, knowledge of secret key is
required as in this case the traces are partitioned depending upon the value of
some intermediate data of crypto-execution [4]. Depending upon the choice of
intermediate data, there could be multiple way to do this partitioning.

– In the first case, a particular round is selected and the intermediate data
is computed by xoring the input and output of that round. Then, for each
bit of the computed intermediate data, we partition the side channel traces
depending upon whether that particular bit is zero or one. TVLA is computed
for each bit of the intermediate data and its value should be within ±4.5 for
all of them. Similar analysis can be carried out by considering S-Box output
or a particular round output as the intermediate data.

– In the second case, we consider the first byte of a particular round output
as the intermediate data. ∀𝑖 ∈ Z256, we partition the traces into two groups
depending upon whether the value of intermediate data is equal to 𝑖 or not.
Once the partitioning is done, we compute TVLA for each value of 𝑖.

2.5 Normalized Inter Class Variance

Normalized Inter-Class Variance (NICV) is a technique which was designed to
detect relevant point of interest (PoI) in an SCA trace [25]. This is an extremely
useful tool for side channel trace compression and dimensionality reduction. NICV



is based on ANOVA, introduced in section 2.3. The advantage of NICV is that,
like non-specific TVLA, NICV can be applied with the knowledge of only plain-
text and cipher-text and does not require knowledge of target implementation
or secret key. A side-channel adversary acquired leakage measurement 𝑌 ∈ R
corresponding to a public parameter 𝑋 (lets say a byte of plaintext or ciphertext
i.e 𝒳 = F8

2). For this paper we consider the public parameter 𝑋 is a 𝑘 bit
parameter, having 2𝑘 possible values. The leakage prediction function is denoted
as 𝐿 which takes public parameter 𝑋 as input. As shown in [25, 27],we can define
the following relation

𝜌2 [𝐿(𝑋);𝑌 ] = 𝜌2 [𝐿(𝑋);E [𝑌 |𝑋]]⏟  ⏞  
0≤ · ≤1

×𝜌2 [E [𝑌 |𝑋] ;𝑌 ] . (12)

Here, E and Var denotes the expectation and the variance respectively, whereas
𝜌 represents correlation. Eq. (12) was further simplified in [25, 27] to derive:

𝜌2 [E [𝑌 |𝑋] ;𝑌 ] =
Var [E [𝑌 |𝑋]]

Var [𝑌 ]
, (13)

The term in Eq. (13) is further called as the normalized inter-class variance
(NICV). NICV can also be expressed in terms of the result of F-test or ANOVA,
introduced in section 2.3, as it is a ratio between the explained variance and the
total variance. F-test depends upon two parameter: 𝑆𝑆𝑡𝑟𝑒𝑎𝑡 and 𝑆𝑆𝑒𝑟𝑟𝑜𝑟. For the
computation of NICV, we define another term 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 below

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑡𝑟𝑒𝑎𝑡 + 𝑆𝑆𝑒𝑟𝑟

=
∑︁
𝑥∈𝒳

𝑛𝑥(𝜇𝑥 − 𝜇)2 +
∑︁
𝑥∈𝒳

𝑛𝑥∑︁
𝑖=1

(𝑌𝑥,𝑖 − 𝜇𝑥)2

=
∑︁
𝑥∈𝒳

𝑛𝑥∑︁
𝑖=1

(𝑌𝑥,𝑖 − 𝜇)2

= 𝑁 × Var [𝑌 ] (14)

𝑆𝑆𝑡𝑟𝑒𝑎𝑡 =

∑︀
𝑥∈𝒳 𝑛𝑥(𝜇𝑥 − 𝜇)2∑︀

𝑥∈𝒳 𝑛𝑥
×
∑︁
𝑥∈𝒳

𝑛𝑥

= 𝑁 × Var [E [𝑌 |𝑋]] (15)

The different symbols used in the above equations are defined in section 2.3.
From equation (14) and equation (15), we can define NICV as below:

𝑁𝐼𝐶𝑉 =
Var [E [𝑌 |𝑋]]

Var [𝑌 ]
=

𝑆𝑆𝑡𝑟𝑒𝑎𝑡

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
(16)



Combining equation (9) and equation (16), we can derive the relation between
the F-test and NICV which is given in equation (17).

𝐹 =
𝑁𝐼𝐶𝑉 × (𝑁 −𝑄)

(1 −𝑁𝐼𝐶𝑉 ) × (𝑄− 1)
(17)

In [25], the authors have shown that NICV is the maximum of all possible
correlation from 𝑋 with 𝑌 . Also in the same paper, the authors have given the
relationship between NICV and SNR which is shown in equation (18).

NICV =
Var [E [𝑌 |𝑋]]

Var [𝑌 ]
=

1

1 + 1
SNR

, (18)

For details of this derivation, the readers may refer to [25]. The value Var [E [𝑌 |𝑋]]
constitutes signal of the SNR. On the other hand, Var [𝑌 ]−Var [E [𝑌 |𝑋]] denotes
the noise part. Equation (18) is actually a very useful expression as it relates
NICV with SNR, which itself is related with SR. In the next subsection, we focus
on this relationship

2.6 SNR and SR

We have already presented the relationship between SNR and NICV in the
previous subsection. In [14, 17], the authors have proposed following formulation
for computation of SR

𝑆𝑅 = 𝜑(
√
𝑚𝛴−1/2𝜇) (19)

where 𝜑 is a multivariate Gaussian cumiliative distributive function, 𝑚 denotes
number of side channel traces captured. Additionally, assuming 𝑁𝑘 is the total
number of candidate keys, 𝛴 is a (𝑁𝑘−1)× (𝑁𝑘−1) matrix. 𝜇 is a column vector
of cardinality 𝑁𝑘 − 1, whose elements are function of confusion coefficient [14,
17]. 𝛴 is actually covariance matrix whose value depends upon the difference of
correlation value between correct key and wrong keys. In [25], the authors have
further simplified equation (19) which gives us the following relationship

𝑆𝑅 = 𝜑

(︃√︂
𝑚× 𝜅0 − 𝜅1

2𝜎2

)︃
(20)

Here 𝜅0 is the generalized confusion coefficient and 𝜎2 is the variance of the noise.
The term 𝜅0−𝜅1

𝜎2 is actually the SNR of the side channel leakage [25]. Hence we
can rewrite equation (20) as below

𝑆𝑅 = 𝜑
(︁√

𝑚× 2 × 𝑆𝑁𝑅
)︁

(21)

𝑚 =
2

𝑆𝑁𝑅
× (𝜑−1(𝑆𝑅))2 (22)



This value of 𝑚 denotes the minimum number of traces that a side channel
adversary must capture to get access to the corresponding key byte. It must be
noted that in [25], the authors have formulated equation (20) with the assumption
that the correct key will have a significantly larger correlation value compared to
the wrong key guesses. In actual attack, due to the occurrence of ghost peaks
for wrong key guesses, the number of traces required to do CPA would be larger
compared to 𝑚. Hence the value of 𝑚 is the lower bound to the number of side
channel traces required. For 80% SR, 𝜑−1(𝑆𝑅 = 80%) can be computed as .9056
from error function table. Thus Eq. (21) simplifies to 𝑚𝑆𝑅(80%) = 1.64

𝑆𝑁𝑅 .

To take a global look on the previous work, NICV is shown directly related
with the SNR, which in turn is a key input for computing the minimum number
of side channel traces required for performing successful CPA. However, no such
formulation exist in case of TVLA. In the subsequent section, we will establish
the relationship between TVLA and SNR so that we can extend the testing
mechanism of TVLA based conformance standards.

3 Equivalence of TVLA and NICV

The objective of this section is to establish relationship between TVLA and
NICV, which will be the first step in connecting TVLA with SNR. We follow
the same methodology as TVLA i.e. dividing data into two groups followed by
application of NICV (and SNR) to it.

Let us assume that an adversary has collected 𝑛 side channel traces. The
entire set of side channel traces is designated as 𝑌 and individual side channel
trace is denoted as 𝑌𝑖, where 𝑖 ∈ [1, 𝑛] is the index of the corresponding side
channel trace. Next following the TVLA approach, the traces are partitioned
into two groups: 𝑌 𝐺1 and 𝑌 𝐺2, having cardinality 𝑛1 and 𝑛2 (𝑛 = 𝑛1 + 𝑛2)
respectively. Mean and variance of group 𝑌 𝐺1 and group 𝑌 𝐺2 are denoted by
𝜇1, 𝜎2

1 and 𝜇2, 𝜎2
2 respectively. Moreover, mean and variance of the entire set

𝑌 are denoted as 𝜇 and 𝜎2. The objective is to derive the relationship between
TVLA and NICV metric. Since, we are dealing with only two groups in this case,
the corresponding two group NICV is denoted as 𝑁𝐼𝐶𝑉2. This 𝑁𝐼𝐶𝑉2 will be
generalized in the following subsection.

Theorem 2. Consider two group of side channel traces 𝑌1 and 𝑌2 with cardi-
nality 𝑛1 and 𝑛2. The computation of TVLA and 𝑁𝐼𝐶𝑉2 on these two groups
are related by the following formula

𝑁𝐼𝐶𝑉2 =
1

𝑛

𝑇𝑉 𝐿𝐴2
+

𝑛

𝐶

(︀
𝜎2
1 − 𝜎2

2

)︀ (︃ 1

𝑛2

−
1

𝑛1

)︃
+ 1

(23)

where 𝐶 =
(︀
𝜇2
1 − 𝜇2

2

)︀2



Proof. From equation (16) we can write 𝑁𝐼𝐶𝑉2 as below:

𝑁𝐼𝐶𝑉2 =

1
𝑛

2∑︀
𝑖=1

𝑛𝑖(𝜇𝑖 − 𝜇)2

1
𝑛

2∑︀
𝑖=1

∑︀𝑛𝑖

𝑗=1(𝑌𝑖,𝑗 − 𝜇)2

=

1
𝑛

2∑︀
𝑖=1

𝑛𝑖(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
(24)

From equation (11) we can write TVLA as follows:

𝑇𝑉 𝐿𝐴 =
𝜇1 − 𝜇2√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

𝑇𝑉 𝐿𝐴2 =
(𝜇1 − 𝜇2)2

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

=
𝐶

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

(25)

where 𝐶 = (𝜇1 − 𝜇2)2. Now we will consider only the numerator part of the
𝑁𝐼𝐶𝑉2 formulation which is

1

𝑛

2∑︁
𝑖=1

𝑛𝑖 (𝜇𝑖 − 𝜇)
2

=
1

𝑛

(︁
𝑛1 (𝜇1 − 𝜇)

2
+ 𝑛2 (𝜇2 − 𝜇)

2
)︁

=
1

𝑛

(︃
𝑛1

(︂
𝜇1 −

𝑛1𝜇1 + 𝑛2𝜇2

𝑛

)︂2

+ 𝑛2

(︂
𝜇2 −

𝑛1𝜇1 + 𝑛2𝜇2

𝑛

)︂2
)︃

=
1

𝑛

(︃
𝑛1

(︂
𝑛1𝜇1 + 𝑛2𝜇1 − 𝑛1𝜇1 − 𝑛2𝜇2

𝑛

)︂2

+ 𝑛2

(︂
𝑛1𝜇2 + 𝑛2𝜇2 − 𝑛1𝜇1 − 𝑛2𝜇2

𝑛

)︂2
)︃

=
1

𝑛

(︂
𝑛1𝑛

2
2

𝑛2
(𝜇1 − 𝜇2)

2
+

𝑛2
1𝑛2

𝑛2
(𝜇1 − 𝜇2)

2

)︂
=

𝑛1𝑛2

𝑛3

(︀
𝑛2(𝜇1 − 𝜇2)2 + 𝑛1(𝜇1 − 𝜇2)2

)︀
=

𝑛1𝑛2(𝑛1 + 𝑛2)

𝑛3
𝐶

=
𝑛1𝑛2

𝑛2
𝐶 (26)



Next we will consider the denominator part of the 𝑁𝐼𝐶𝑉 computation which is
as follows:

1

𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝜇)
2

=
1

𝑛

𝑛∑︁
𝑖=1

(︂
𝑌𝑖 −

𝑛1𝜇1 + 𝑛2𝜇2

𝑛

)︂2

=
1

𝑛

𝑛∑︁
𝑖=1

(︃
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

)︃

=
1

𝑛

𝑛∑︁
𝑖=1

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛

)︂
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛

)︂
+

1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛

)︂
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛− 𝑛2)𝜇1 + 2𝑌𝑖𝑛2𝜇2

𝑛

)︂
+

1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(︂
𝑌 2
𝑖 − 2𝑌𝑖𝑛1𝜇1 + 2𝑌𝑖 (𝑛− 𝑛1)𝜇2

𝑛

)︂

+
(𝑛1𝜇1 + 𝑛2𝜇2)

2

𝑛2

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(︂
𝑌 2
𝑖 − 2𝑌𝑖𝜇1 + 𝜇2

1 +

(︂
2𝑌𝑖𝑛2 (𝜇1 − 𝜇2)

𝑛
− 𝜇2

1

)︂)︂

+
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(︂
𝑌 2
𝑖 − 2𝑌𝑖𝜇2 + 𝜇2

2 +

(︂
2𝑌𝑖𝑛1 (𝜇2 − 𝜇1)

𝑛
− 𝜇2

1

)︂)︂
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(𝑌𝑖 − 𝜇1)
2

+
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(𝑌𝑖 − 𝜇2)
2 − 𝑛1

𝑛
𝜇2
1 −

𝑛2

𝑛
𝜇2
2

+
2𝑛2 (𝜇1 − 𝜇2)

𝑛2

∑︁
𝑌𝑖∈𝑌 𝐺1

𝑌𝑖 +
2𝑛1 (𝜇2 − 𝜇1)

𝑛2

∑︁
𝑌𝑖∈𝑌 𝐺2

𝑌𝑖 +
(𝑛1𝜇1 + 𝑛2𝜇2)

2

𝑛2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 −

𝑛1

𝑛
𝜇2
1 −

𝑛2

𝑛
𝜇2
2 +

2𝑛1𝑛2𝜇1 (𝜇1 − 𝜇2)

𝑛2
+

2𝑛1𝑛2𝜇2 (𝜇2 − 𝜇1)

𝑛2
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 −

𝑛1

𝑛
𝜇2
1 −

𝑛2

𝑛
𝜇2
2 +

2𝑛1𝑛2

𝑛2
(𝜇1 − 𝜇2)

2
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 +

−𝜇2
1𝑛1(𝑛1 + 𝑛2) − 𝜇2

2𝑛2(𝑛1 + 𝑛2) + 2𝑛1𝑛2(𝜇1 − 𝜇2)2 + (𝑛2
1𝜇

2
1 + 𝑛2

2𝜇
2
2 + 2𝑛1𝑛2𝜇1𝜇2)

𝑛2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 +

𝑛1𝑛2

𝑛2
(𝜇1 − 𝜇2)2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 +

𝑛1𝑛2

𝑛
𝐶 (27)



We can now combine equation (15), (25), (26) and (27) to achieve the desired
formulation

𝑁𝐼𝐶𝑉2 =
𝑛1𝑛2

𝑛2 𝐶
𝑛1

𝑛 𝜎2
1 + 𝑛2

𝑛 𝜎2
2 + 𝑛1𝑛2

𝑛2 𝐶

=
𝐶

𝑛
𝑛2

𝜎2
1 + 𝑛

𝑛1
𝜎2
2 + 𝑛1𝑛2

𝑛2 𝐶

=
𝐶

𝑛
(︁

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
+ 𝜎2

1

(︁
1
𝑛2

− 1
𝑛1

)︁
+ 𝜎2

2

(︁
1
𝑛1

− 1
𝑛2

)︁)︁
+ 𝐶

=
1

𝑛

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

𝐶
+

𝑛

𝐶
(𝜎2

1 − 𝜎2
2)

(︃
1

𝑛2
−

1

𝑛1

)︃
+ 1

Thus we can write 𝑁𝐼𝐶𝑉2 as

𝑁𝐼𝐶𝑉2 =
1

𝑛

𝑇𝑉 𝐿𝐴2
+

𝑛

𝐶

(︀
𝜎2
1 − 𝜎2

2

)︀ (︃ 1

𝑛2

−
1

𝑛1

)︃
+ 1

Corollary 1. If both the group have same number of side channel traces (𝑛1 =
𝑛1 = 𝑛

2 ), equation (23) transforms into

𝑁𝐼𝐶𝑉2 =
1

𝑛

𝑇𝑉 𝐿𝐴2
+ 1

(28)

3.1 Generalizing the NICV Computation

The relationship between TVLA and 𝑁𝐼𝐶𝑉2 (2-class NICV ) was derived previ-
ously. However, the general application of NICV (or SNR) is not restricted to
two classes. In this section, the relation between TVLA is extented from 𝑁𝐼𝐶𝑉2

to a generic k-class NICV (𝑁𝐼𝐶𝑉𝑘).
Let us now assume that 𝑛 number of side channel traces can be partitioned

into 𝑘 number of groups where 𝑖𝑡ℎ group contains 𝑛𝑖 number of traces. A generic
example in case of ciphers like AES, where byte-wise computation is performed
and the desired value 𝑘 is 256. 𝑁𝐼𝐶𝑉𝑘 can be directly computed from 𝑁𝐼𝐶𝑉2 by
following an iterative approach. For the derived 𝑘 groups, pairwise computation
of (k-1) different 𝑁𝐼𝐶𝑉2 is performed and the results are combined as follows:

– ∀𝑖 ∈ Z𝑘, create two groups: the first group contains the side channel traces
with particular byte of the plain-text equal to 𝑖, the other group will contain
the side channel traces with that particular byte value not equal to 𝑖. The
mean of these two groups are denoted as 𝜇𝑖 and 𝜇𝑖 respectively.



– Compute 𝑁𝐼𝐶𝑉2 for each of these two groups. We denote this as 𝑁𝐼𝐶𝑉 𝑖
2 .

Theorem 3. The computation of 𝑁𝐼𝐶𝑉𝑘 and 𝑁𝐼𝐶𝑉 𝑖
2 are related by the follow-

ing formula if all 𝑘 groups have same number of side channel traces

𝑁𝐼𝐶𝑉𝑘 =
𝑘 − 1

𝑘

𝑘∑︁
𝑖=1

𝑁𝐼𝐶𝑉 𝑖
2 (29)

Proof. From equation (15), we can compute 𝑁𝐼𝐶𝑉 𝑖
2 as below

𝑁𝐼𝐶𝑉 𝑖
2 =

1
𝑛

(︁
𝑛𝑖 (𝜇𝑖 − 𝜇)

2
+ (𝑛− 𝑛𝑖) (𝜇𝑖 − 𝜇)

2
)︁

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

1
𝑛

⎛⎜⎝𝑛𝑖 (𝜇𝑖 − 𝜇)
2

+ (𝑛− 𝑛𝑖)

⎛⎜⎝𝑛
𝑘∑︀

𝑗=1,𝑗 ̸=𝑖

𝑛𝑗𝜇𝑗−(𝑛−𝑛𝑖)
𝑗=𝑘∑︀
𝑗=1

𝑛𝑗𝜇𝑗

𝑛(𝑛−𝑛𝑖)

⎞⎟⎠
2⎞⎟⎠

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

1
𝑛

⎛⎜⎝𝑛𝑖 (𝜇𝑖 − 𝜇)
2

+ 1
𝑛−𝑛𝑖

⎛⎜⎝𝑛𝑖

𝑗=𝑘∑︀
𝑗=1

𝑛𝑗𝜇𝑗−𝑛𝑛𝑖𝜇𝑖

𝑛

⎞⎟⎠
2⎞⎟⎠

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

1
𝑛

(︁
𝑛𝑖 (𝜇𝑖 − 𝜇)

2
+

𝑛2
𝑖

𝑛−𝑛𝑖
(𝜇𝑖 − 𝜇)

2
)︁

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=
𝑛𝑖

𝑛−𝑛𝑖
(𝜇𝑖 − 𝜇)

2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
(30)

Let us further assume that each group has same number of side channel traces.
equation (30) becomes

𝑁𝐼𝐶𝑉 𝑖
2 =

1
𝑘−1 (𝜇𝑖 − 𝜇)

2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
(31)

Now if we add each 𝑁𝐼𝐶𝑉 𝑖
2 , we will get the following relationship

𝑘∑︁
𝑖=1

𝑁𝐼𝐶𝑉 𝑖
2 =

1
𝑘−1

𝑘∑︀
𝑖=1

(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2



Algorithm 1: Computing SNR and 𝑚𝑆𝑅(90%) from TVLA

Input: Side channel traces and corresponding intermediate state
Output: SNR, 𝑚𝑆𝑅(80%) for chosen sub-key

1 for 𝑖 = 0 to 𝑘 do
2 Partition the side channel traces into two groups: 𝐺1 and 𝐺2

3 𝐺1: Side channel traces where 𝑗𝑡ℎ byte of the intermediate data = 𝑖

4 𝐺2: Side channel traces where 𝑗𝑡ℎ byte of the intermediate data ̸= 𝑖
5 Apply TVLA on groups 𝐺1 and 𝐺2

6 Compute 𝑁𝐼𝐶𝑉 𝑖
2 from the TVLA value by using equation (23)

7 Compute 𝑁𝐼𝐶𝑉𝑘 = 𝑘−1
𝑘

𝑘∑︀
𝑖=1

𝑁𝐼𝐶𝑉 𝑖
2

8 Compute 𝑆𝑁𝑅 = 1
1

𝑁𝐼𝐶𝑉𝑘
−1

9 𝑚𝑆𝑅(80%) =
1.64
𝑆𝑁𝑅

10 Return 𝑆𝑁𝑅, 𝑚𝑆𝑅(80%)

=

𝑘
𝑘−1

1
𝑘

𝑘∑︀
𝑖=1

(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=
𝑘

𝑘 − 1
𝑁𝐼𝐶𝑉𝑘 (32)

From Eq. (32) this we can simply derive Eq. (29). It must be noted that 𝑁𝐼𝐶𝑉𝑘

is actually the generalized NICV which was introduced in [25].

3.2 Extending TVLA flow to Side-Channel Analysis

Side channel analysis works using divide and conquer approach. For instance,
SPN cipher where each 𝑏× 𝑏 S-box handle 𝑏 bits of the entire key bits, the attack
focuses on each of these 𝑏 bit groups separately. In case of AES-128, 𝑏 = 8 which
means that the attack is applied on 8-bits or one byte of the secret key, also
known as sub-key. The attack is repeated 16 times to recover all the key bytes
in AES-128. This reduces the complexity of the attack significantly. The same
applies to to SNR and NICV. One can compute SNR or NICV byte-wise to zero
down the leakage zone of each key byte and apply the attack. Thus in this case,
the value of 𝑘 reduces to

Now we present the methodology to extend the TVLA computation to recover
SNR. As SNR is a main component in Eq. (21), one can directly use TVLA
results to derive the lower bound on minimum number of traces required for a
successful side-channel attack. The methodology is presented in Algorithm 1.
The algorithm is repeated for each sub-key to recover the whole secret key.

It must be noted that partitioning the side channel traces, depending upon a
particular byte value of the intermediate state was deployed for specific TVLA



also. Steps 1 and 2 of algorithm 1 are actually application of specific TVLA.
Thus using the formalization approach presented in this and previous sections,
we can compute SNR of the crypto-system from specific TVLA computation.
For non-specific TVLA, the traces are partitioned depending upon the entire
plain-text value, where one group contains traces with fixed plain-text and other
contains traces with random plain-text. Thus, if we want to extend our approach
to non-specific TVLA, we need to follow the following steps.

– Choose a plain-text value
– Collect side channel traces and partition them into two groups, one group

contains traces with the chosen plain-text and the other group contains traces
with random plain-text

– Apply TVLA on these two groups
– Repeat this procedure for all possible values of plain-text

The last step is practically infeasible. It would need combinination of all
possible 𝑁𝐼𝐶𝑉2 value for computation of generalized NICV which is equivalent
to brute force. Hence the 𝑖𝑡ℎ instance of non-specific TVLA captures only 𝑁𝐼𝐶𝑉 𝑖

2

which leads to only a fraction of SNR, whereas using specific TVLA we can
compute the SNR for each sub-key. Finally, SNR leads to (lower-bound) success-
rate of by side-channel attack following Eq. (21).

4 Experimental Verification of Derived TVLA and NICV
Relation

The derived relation between specific TVLA and SNR (or NICV ) will be ex-
perimentally validated in this section on an AES-128 implementation (without
side-channel countermeasures) running on an FPGA.

4.1 Experimental Setup

The AES design is implemented on a SASEBO-GII platform [28]. SASEBO-GII
has two FPGAs, one for controlling communication with the board (SPARTAN-3A
(XC3S400A)) and another for execution of cryptographic operations (VIRTEX-5
(XC5VLX50)). Thus the AES is implemented on Virtex-5. The power measure-
ments are taken using a Tektronix MSO4034B mixed signal oscilloscope with
sampling frequency 2.5 𝐺𝐻𝑧. 10000 traces corresponding to randomly generated
plain-text are measured and used for the following computation. A sample trace
is shown in Fig. 1 (a), while its worst case TVLA and NICV plots are shown
in Fig. 1 (b) and (c). It is obvious that the AES has exploitable leakage as the
TVLA value is more than the threshold of 4.5.

4.2 Validation of TVLA and 𝑁𝐼𝐶𝑉2 Relationship

TVLA and 𝑁𝐼𝐶𝑉2 are related by Eq. (23). It is verified on the previously collected
power measurement for AES on FPGA. We start with partitioning the traces
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Fig. 1: TVLA and 𝑁𝐼𝐶𝑉2 on AES

based on the first byte value (𝑘 = 256) of the intermediate state (round output),
following step 1 of Algo. 1. Next we compute TVLA and 𝑁𝐼𝐶𝑉2 from the
partitions again following Algo. 1. The results are shown in Fig. 2. An example
specific TVLA trace is shown in Fig. 2 (a).Next the TVLA trace in Fig. 2 (a)
is used to compute 𝑁𝐼𝐶𝑉2 using Eq. (23) and shown in Fig. 2 (b). We also
compute 𝑁𝐼𝐶𝑉2 from power measurement as shown in Fig. 2 (c). The error
between predicted and computed 𝑁𝐼𝐶𝑉2 is in the order of 10−16 i.e. negligible
(Fig. 2 (d)). Thus, the correctness of the Eq. (23) is verified.

4.3 Validation of 𝑁𝐼𝐶𝑉𝑘 and 𝑁𝐼𝐶𝑉2 relationship

Similar validation is also done for Eq. (29) that relates 𝑁𝐼𝐶𝑉2 and 𝑁𝐼𝐶𝑉𝑘.
Using the same set of traces and no. of partitions (𝑘 = 256), we compute 𝑁𝐼𝐶𝑉𝑘

from the traces and predict it from previously computed 𝑁𝐼𝐶𝑉2. The results
are shown in Fig. 3. As the computed 𝑁𝐼𝐶𝑉𝑘(Fig. 3 (a)) follows closely the
predicted 𝑁𝐼𝐶𝑉𝑘 (Fig. 3 (b)), the prediction error (Fig. 3 (c)) also stays in the
range of 10−15.

5 Case Study: Application to AES

The equivalence of TVLA and SNR theoretically derived and experimentally
verified in the previous sections. The step by step procedure to compute SNR
from the specific TVLA value was also presented in Algo. 1. In this section, we
will focus on the application of these relations towards testing an unprotected
AES-128 design.

5.1 Under Simulated Setting

The first result that we will present in this section is built on simulated AES side
channel traces, with the assumption of 32 bit micro-controller as implementation
platform. The side channel traces are built using Hamming weight leakage model,
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Fig. 2: Equivalence of TVLA and 𝑁𝐼𝐶𝑉2

where the information leakage is proportional to the sum of bits set to ′1′. We
also assume that the side channel traces are contaminated with a zero mean
Gaussian noise (𝒩 (0, 𝜎)), where 𝜎 denotes the standard deviation of the noise
distribution. Thus the side channel trace can be represented as 𝑌 = 𝐻𝑊 (𝑥) +𝒩 ,
where 𝑥 is the chosen intermediate value, which in our case is first 32-bits of
round 9 output and 𝜎 ∈ [0.0, 0.4, 0.8, 1.2, 1.6, 2.0].

Next, we directly apply Algo. 1 to first derive SNR followed by 𝑚𝑆𝑅(80%). A
practical CPA attack is also performed on the set of the traces to compare actual
number of traces against predicted lower bound for 𝑆𝑅 = 80%. The procedure to
compute the number of side channel traces required for a given success rate 𝑆𝑅
for a given noise variance 𝜎 is given in Appendix A. In our experimentation, we
apply this algorithm to compute the number of side channel traces required for
𝑆𝑅 = 80%. The corresponding result is shown in Fig 4 and Fig. 5. As expected
the SNR reduces at higher noise 𝜎 (refer Fig. 4). Fig. 5 plots the predicted value

of 𝑚𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑆𝑅(80%) as derived from Algo. 1 as a function of 𝜎. The traces were also

attacked using CPA to find 𝑚𝑎𝑐𝑡𝑢𝑎𝑙
𝑆𝑅(80%) i.e. the actual number of traces to achieve
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Fig. 3: Prediction of 𝑁𝐼𝐶𝑉𝑘

80% 𝑆𝑅 are also plotted in Fig. 5. It can be clearly observed that the actual
and predicted number of traces differ by a significant margin which deepens
as noise increases. The prediction error comes from several sources. One major
source of error is the assumption that wrong key have near zero correlation,
which is not true in actual attack. Moreover, the confusion coefficient in the
formula of 𝑚𝑆𝑅 is dependant on leakage model. Thus inaccurate estimation of
leakage model would further increase the error. This phenomena will be stronger
in real measurements as the leakage model will have some estimation error due
to underlying non-linearities.
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5.2 On Real FPGA Target

The computation of SNR and SR from TVLA is performed on real power
measurements. Power measurements are acquired from a SASEBO-GII board



Fig. 5: Comparison Between Predicted Lower Bound and Actual Trace Required

running AES-128 on Virtex-5 FPGA using Tektronix MSO4034B mixed signal
oscilloscope with sampling frequency 2.5 𝐺𝐻𝑧. Two versions of AES are tested:
unprotected AES, AES with a Linear Feedback Shift Register (LFSR) based noise
generator. Only last round of AES is recorded to reduce the attack complexity.
LFSR based noise generator aims at reducing the SNR, thus increasing the
number of traces to perform the attack. However, introducing LFSR to increase
the noise in the circuit actually is not a very sound countermeasure and can be
broken by a doing the attack on few additional traces. Hence, both unprotected
AES and LFSR based AES will fail the TVLA test as shown in Fig 6(a) and
Fig 6(b). The corresponding SNR, which we have computed from the TVLA
value, are shown in Fig. 6(c) and Fig. 6(d). The maximum SNR value for normal
AES execution is 0.0660 whereas for noise injected AES, SNR reduces to 0.0650,
indicating higher side channel resistance. The lowest bound of side channel traces
required for 80% success rate is found to be 32.45 for noise injected AES, whereas
for normal AES, this value is 31.635. According to our proposed methodology,
this indicates that noise injected AES is more resistant against CPA compared
to normal AES, however the difference of lower bound is too low to be considered
as a viable countermeasure. This claim is supported by Fig. 6(e) and 6(f) where
we have deployed CPA on the acquired traces to compute the number of traces
required for 80% SR. Normal AES provides 80% SR within 1000 traces. However,
noise injected AES provides 80% SR after 7000 traces.

Thus we verified the extended TVLA test on AES in simulated as well as
practical settings to recover SNR values and lower bound on the side channel
traces required for a given success rate.

5.3 Further Discussions

Although 𝑚𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑆𝑅(80%) and 𝑚𝑎𝑐𝑡𝑢𝑎𝑙

𝑆𝑅(80%) were following an expected trend, there was

a huge prediction error as shown in Fig. 5, Fig 6(e) and Fig 6(f). Under a real
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Fig. 6: Comparing Side Channel Vulnerabilities of unprotected AES and LFSR-
based AES

evaluation scenario, this leads to under-estimation of security (false positives)
which is not desirable from a customer/designer view-point. This error can



be owing to certain underlying strong assumption, as a result of which the
lower bound of side channel traces is much below compared to actual traces
required for achieving the given 𝑆𝑅. First factor, as previously mentioned, is
the assumption in Eq. (21). This equation assumes that the wrong key will have
null correlation, which is not true in a real attack. Thus further improvements of
Eq. (21) towards reduction in prediction error will enhance the applicability of
proposed methodology in an evaluation laboratory. The other and a dominant
source of error is the leakage model. When the evaluation was carried out under
simulated setting with perfect leakage model, the prediction error was low.
However, in FPGA where the leakage model is non-optimal, the prediction error
increases drastically. This is owing to the confusion coefficient term in Eq. (21),
which is model dependant, thus leading to high error in prediction. Thus further
work on better modelling capabilities will further reduce the prediction error.

6 Conclusion

TVLA based testing methodology is gaining popularity in recent years. Designed
as a PASS/ FAIL test, it does not give much information about the side-channel
resistance of the target. In this paper, we make a first attempt to extend the
TVLA based testing methodology beyond its current scope. Analytic relationship
between TVLA and SNR is derived for this purpose. The computed SNR is used
in determining the lower bound of side-channel traces in order to mount an attack
at a desired success rate. The methodology is applied on AES in a simulated
and practical setting. Predicted number of side-channel traces were compared
against actual attack results, reporting some prediction error. Further relaxation
of assumptions on the derived formulae is desired to reduce the prediction error.
Bridging this gap between the lower bound of trace and actual trace requirement
is an interesting research problem.

References

1. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual International Cryptology Conference, pages 388–397. Springer, 1999.

2. The Common Criteria. https://www.commoncriteriaportal.org/. Accessed: 2016-
09-25.

3. FIPS 1403 DRAFT Security Requirements for Cryptographic Modules
(Revised Draft). http://csrc.nist.gov/publications/drafts/fips1403/

reviseddraftfips1403_PDFzip_documentannexAtoannexG.zip.

4. Jaffe J. Goodwill G., Jun B. and Rohatgi P. A testing methodology
for side-channel resistance validation. http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf, 2011.

5. E. DeMulder G. Goodwill J. Jaffe G. Kenworthy T. Kouzminov A. Leiserson
M.Marson P. Rohatgi G. Becker, J. Cooper and S. Saab. Test Vector Leakage Assess-
ment (TVLA) methodology in practice. http://icmc-2013.org/wp/wp-content/
uploads/2013/09/Rohatgi_Test-Vector-Leakage-Assessment.pdf, 2013.



6. François Durvaux and François-Xavier Standaert. From improved leakage detection
to the detection of points of interests in leakage traces. IACR Cryptology ePrint
Archive, 2015:536, 2015.

7. Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. Statistical mea-
surement of information leakage. In Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, pages 390–404, 2010.

8. T. Chothia and A. Guha. A statistical test for information leaks using continuous
mutual information. In 2011 IEEE 24th Computer Security Foundations Symposium,
pages 177–190, June 2011.

9. Tobias Schneider and Amir Moradi. Leakage assessment methodology - extended
version. J. Cryptographic Engineering, 6(2):85–99, 2016.

10. Rohatgi P. Jaffe J. and Witteman M. Efficient side-channel testing for
public key algorithms:RSA case study. http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf, 2011.
11. Michael Tunstall and Gilbert Goodwill. Applying TVLA to public key cryptographic

algorithms. IACR Cryptology ePrint Archive, 2016:513, 2016.
12. Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does my
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Algorithm 2: Computing Number of Side Channel Traces for a Given 𝑆𝑅
and 𝜎
Input: Side channel traces and corresponding cipher text, 𝑆𝑅, 𝜎
Output: 𝑚𝑎𝑐𝑡𝑢𝑎𝑙

𝑆𝑅

1 1. Initialize SR=zeros(Number of Traces,1);
2 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0 to 𝐼 do
3 2. Generate Gaussian Noise distribution (𝒩 (0, 𝜎))
4 3. Generate simulated trace 𝑌 = 𝐻𝑊 (𝑥) +𝒩 by adding the Gaussian noise

𝒩
5 for 𝑟𝑢𝑛 = 1 to Number of traces do
6 4. 𝐾𝑒𝑦𝐶𝑃𝐴=CPA(T(1:run),cipher-text)
7 5. if (𝐾𝑒𝑦𝐶𝑃𝐴==Correct Key) then
8 SR(run)+=1

9 for i=1 to Number of Traces do
10 if (𝑆𝑅(𝑖) ≥ 𝐼× 𝑆𝑅) then

11 𝑚𝑎𝑐𝑡𝑢𝑎𝑙
𝑆𝑅 = 𝑖

12 break

13 Return 𝑚𝑎𝑐𝑡𝑢𝑎𝑙
𝑆𝑅

A Computation of Success Rate from CPA


