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Abstract. We present the first signature schemes whose security relies on com-
putational assumptions relating to isogeny graphs of supersingular elliptic curves.
We give two schemes. The first one is obtained from an interactive identification
protocol due to De Feo, Jao and Plût. The second signature scheme uses novel
ideas that have not been used in cryptography previously, and is based on a more
standard and potentially stronger computational problem.

1 Introduction

A recent research area is cryptosystems whose security is based on the difficulty of
finding a path in the isogeny graph of supersingular elliptic curves [12, 13, 16, 22, 23].
Unlike other elliptic curve cryptosystems, the only known quantum algorithm for these
problems, due to Biasse-Jao-Sankar [6], has exponential complexity. Hence, additional
motivation for the study of these cryptosystems is that they are possibly suitable for
post-quantum cryptography.

Currently there is not a full suite of cryptographic functions available based on
isogeny assumptions. The work of Charles-Goren-Lauter [12] gave a collision-resistant
hash function. Jao-De Feo [22] gave a key exchange protocol, De Feo-Jao-Plût [16]
gave a public key encryption scheme and an interactive identification protocol, Jao-
Soukharev [23] gave an undeniable signature, and Xi-Tian-Wang [38] gave a desig-
nated verifier signature. Among the cryptographic functions not yet available, the most
obvious and important omission is digital signatures.

In this paper we present two public key signature schemes whose security relies on
computational problems related to finding a path in the isogeny graph of supersingular
elliptic curves.

The first scheme is obtained relatively simply from the De Feo-Jao-Plût [16] in-
teractive identification protocol by using the Fiat-Shamir transform to turn it into a
non-interactive signature scheme. This scheme has the advantage of being simple to
describe, at least to a reader who is familiar with the previous work in the subject, and
easy to implement. On the other hand, it inherits the disadvantages of [16], in partic-
ular it relies on a non-standard isogeny problem using small isogeny degrees, reveals
auxiliary points, and uses special primes.

The fastest classical attack on this scheme has heuristic running time of Õ(p1/4)
bit operations, and the fastest quantum attack also has running time of Õ(p1/4). The



recent paper by Galbraith-Petit-Shani-Ti [19] shows that revealing auxiliary points may
be dangerous in certain contexts. It is therefore highly advisable to build cryptographic
schemes on the most general, standard and potentially hardest isogeny problems.

Our second scheme uses completely different ideas and relies on the difficulty of a
more standard computational problem, namely the problem of computing the endomor-
phism ring of a supersingular elliptic curve. This computational problem has heuristic
classical complexity of Õ(p1/2) bit operations, and quantum complexity Õ(p1/4). The
scheme is based on a sigma protocol that is very similar to the proof of graph isomor-
phism. One obtains a signature scheme from the Fiat-Shamir protocol in the usual way.

We now briefly sketch the main ideas behind our second scheme. The public key is
a pair of elliptic curves (E0, E1) and the private key is an isogeny φ : E0 → E1. To
interactively prove knowledge of φ one chooses a random isogeny ψ : E1 → E2 and
sends E2 to the verifier. The verifier sends a bit b. If b = 0 the prover reveals ψ. If b = 1
the prover reveals an isogeny µ : E0 → E2. In either case, the verifier checks that the
response is correct. The interaction is repeated a number of times until the verifier is
convinced that the prover knows an isogeny from E0 to E1. However, the subtlety is
that we cannot just set µ = ψ ◦ φ, as then E1 would appear on the path in the graph
from E0 to E2 and so we would have leaked the private key. The crucial idea is to use
the algorithm of Kohel-Lauter-Petit-Tignol [27] to produce an isogeny µ : E0 → E2

that is completely independent of φ. The mathematics behind the algorithm of Kohel-
Lauter-Petit-Tignol goes beyond what usually arises in elliptic curve cryptography.

The paper is organized as follows. In Section 2 we give preliminaries on isogeny
problems, random walks in isogeny graphs, security definitions and the Fiat-Shamir
transform. Sections 3 and 4 describe our two signature schemes and Section 5 concludes
the paper. In a first reading to get the intuition of our schemes without all implemen-
tation details, one can safely skip parts of the paper, namely Sections 2.2, 2.3, 4.3 and
4.4.

2 Preliminaries

2.1 Hard Problem Candidates Related to Isogenies

Let E,E′ be two elliptic curves over a finite field Fq . An isogeny ϕ : E → E′ is a non-
constant morphism fromE toE′ that maps the neutral element into the neutral element.
The degree of an isogeny ϕ is the degree of ϕ as a morphism. An isogeny of degree `
is called an `-isogeny. If ϕ is separable, then degϕ = # kerϕ. If there is a separable
isogeny between two curves, we say that they are isogenous. Two curves E,E′ over Fq
are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

An isogeny can be identified with its kernel [37]. Given a subgroup G of E, we can
use Vélu’s formulae [33] to explicitly obtain an isogeny ϕ : E → E′ with kernel G and
such that E′ ∼= E/G. These formulas involve sums overG, so using them is efficient as
long as #G is small or powersmooth. Given a prime `, the torsion group E[`] contains
exactly `+1 cyclic subgroups of order `, each one corresponding to a different isogeny.

A composition of n separable isogenies of degrees `i for 1 ≤ i ≤ n gives an
isogeny of degree N =

∏
i `i with kernel a group G of order N . For any permutation
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σ on {1, . . . , n}, by considering appropriate subgroups of G, one can write the isogeny
as a composition of isogenies of degree `σi. Hence, there is no loss of generality in the
protocols in our paper of considering chains of isogenies of increasing degree.

For each isogeny ϕ : E → E′, there is a unique isogeny ϕ̂ : E′ → E, which is
called the dual isogeny of ϕ, and which verifies that ϕϕ̂ = ϕ̂ϕ = [degϕ].

If we have two isogenies ϕ : E → E′ and ϕ′ : E′ → E such that ϕϕ′ and ϕ′ϕ
are the identity in their respective curves, we say that ϕ,ϕ′ are isomorphisms, and that
E,E′ are isomorphic. Isomorphism classes of elliptic curves over Fq can be labeled
with their j-invariant [31, III.1.4(b)].

An isogeny ϕ : E → E′ such that E = E′ is called an endomorphism. The set of
endomorphisms of an elliptic curve, denoted by End(E), has a ring structure with the
operations point-wise addition and function composition.

Elliptic curves can be classified according to their endomorphism ring. Over the
algebraic closure of the field, End(E) is either an order in a quadratic imaginary field
or a maximal order in a quaternion algebra. In the first case, we say that the curve is
ordinary, whereas in the second case we say that the curve is supersingular. Indeed, the
endomorphism ring of a supersingular curve over a field of characteristic p is a maximal
order O in the quaternion algebra Bp,∞ ramified at p and∞.

In the case of supersingular elliptic curves, there is always one curve in the iso-
morphism class defined over Fp2 , and the j-invariant of the class is also an element of
Fp2 .

A theorem by Deuring [15] gives an equivalence of categories between the j-invariants
of elliptic curves over Fp2 up to Galois conjugacy in Fp2 , and the maximal orders in the
quaternion algebra Bp,∞ up to the equivalence relation given by O ∼ O′ if and only
if O = α−1O′α for some α ∈ B∗p,∞. Specifically, the equivalence of categories asso-
ciates to every j-invariant a maximal order that is isomorphic to the endomorphism ring
of any curve with that j-invariant.

Furthermore, if E0 is an elliptic curve with End(E0) = O0, there is a one-to-
one correspondence (which we call the Deuring correspondence) between isogenies
ψ : E0 → E and left O0-modules I .

We now present some hard problem candidates related to supersingular elliptic
curves, and discuss the related algebraic problems in the light of the theorem above.

Problem 1 Let p, ` be distinct prime numbers. Let E,E′ be two supersingular elliptic
curves over Fp2 with #E(Fp2) = #E′(Fp2) = (p+ 1)2, chosen uniformly at random.
Find k ∈ N and an isogeny of degree `k from E to E′.

The fastest known classical algorithm for this problem has heuristic running time of
Õ(p1/2) bit operations.

Problem 2 Let p, ` be distinct prime numbers. Let E be a supersingular elliptic curve
over Fp2 , chosen uniformly at random. Find k1, k2 ∈ N, a supersingular elliptic curve
E′ over Fp2 , and two distinct isogenies of degrees `k1 and `k2 , respectively, from E to
E′.

The hardness assumption of the second problem has been used in [12] to prove
collision-resistance of a proposed hash function. Slightly different versions of the first
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problem, in which some extra information is provided, were used in [16] to build an
identification scheme, a key exchange protocol and a public-key encryption scheme.

More precisely, the identification protocol of De Feo-Jao-Plût [16] relies on prob-
lems 3 and 4 below (which De Feo-Jao-Plût call the Computational Supersingular
Isogeny (CSSI) and Decisional Supersingular Product (DSSP) problems). In order to
state them we need to introduce some notation. Let p be a prime of the form `e11 `

e2
2 ·f±1,

and let E0 be a supersingular elliptic curve over Fp2 . Let {R1, S1} and {R2, S2} be
bases for E0[`e11 ] and E0[`e22 ], respectively.

Problem 3 (Computational Supersingular Isogeny - CSSI) Let φ1 : E0 → E1 be
an isogeny with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1 are chosen uniformly at ran-
dom from Z/`e11 Z, and not both divisible by `1. GivenE1 and the values φ1(R2), φ1(S2),
find a generator of 〈[m1]R1 + [n1]S1〉.

The fastest known algorithm for this problem has heuristic running time of Õ(`
e1/2
1 )

bit operations, which is Õ(p1/4) in the context of De Feo-Jao-Plût [16].

Problem 4 (Decisional Supersingular Product - DSSP) LetE0, E1 be supersingular
elliptic curves over Fp2 such that there exists an isogeny φ : E0 → E1 of degree `e11 .
Consider the two distributions of pairs (E2, E3) as follows:

– (E2, E3) such that there is a cyclic group G ⊆ E0[`e22 ] of order `e22 and E2
∼=

E0/G and E3
∼= E1/φ(G).

– (E2, E3) where E2 is chosen at random among the curves having the same cardi-
nality as E0, and φ′ : E2 → E3 is a random `e11 -isogeny.

The problem is, given (E0, E1) and the various auxiliary points, plus a pair (E2, E3),
to determine from which distribution the pair is sampled.

We stress that Problems 3 and 4 are potentially weaker than Problems 1 and 2 be-
cause special primes are used, extra points are revealed, and particularly small degree
isogenies exist between the curves. The following problem, on the other hand, offers
better foundations for cryptography based on supersingular isogeny problems.

Problem 5 Let p be a prime number. Let E be a supersingular elliptic curve over Fp2 ,
chosen uniformly at random. Find the endomorphism ring of E.

Note that it is essential that the curve is chosen randomly in this problem, as for
special curves the endomorphism ring is easy to compute. Essentially, Problem 5 is
the same as explicitly computing the forward direction of Deuring’s correspondence.
This problem was studied in [26], in which an algorithm to solve it was obtained, but
with expected running time Õ(p). It was later improved by Galbraith to Õ(p

1
2 ), under

heuristic assumptions [18]. Interestingly, the best quantum algorithm for this problem
runs in time Õ(p

1
4 ), only providing a quadratic speedup over classical algorithms. This

has largely motivated the use of supersingular isogeny problems in cryptography.

Problem 6 Let p be a prime number. Let E,E′ be supersingular elliptic curves over
Fp2 , chosen uniformly at random. Find an isogeny E → E′.
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Heuristically, if we can solve Problem 1 or Problem 6, then we can solve Problem 5.
If we can compute isogenies, we can fix E0 = E1 to obtain endomorphisms, and in this
case it is easy to find four endomorphisms that are linearly independent, thus generating
a subring of End(E0), and this subring is likely to be of full index so that the full ring
can be recovered.

For the converse, suppose that we can compute the endomorphism rings of both E0

andE1. The strategy is to compute a module I that is a left ideal of End(E0) and a right
ideal of End(E1) of appropriate norm, and to translate it back to the geometric setting
to obtain an isogeny. This approach motivated the quaternion `-isogeny algorithm of
Kohel-Lauter-Petit-Tignol [27, 30], which solves the following problem:

Problem 7 Let p, ` be distinct prime numbers. Let O0,O1 be two maximal orders in
Bp,∞, chosen uniformly at random. Find k ∈ N and an ideal I of norm `k such that I
is a left O0-ideal and its right order is isomorphic to O1.

The algorithm can be adapted to produce ideals of B-powersmooth norm for B ≈
7
2 log p and O(log p) different prime powers, instead of ideals of norm a power of `.
This is in fact the version that we will use in our second signature scheme.

For completeness we mention that ordinary curve versions of Problems 1 and 5 are
not known to be equivalent, and in fact there is a subexponential algorithm for comput-
ing the endomorphism ring of ordinary curves [7], whereas the best known algorithms
for computing isogenies are still exponential. There is, however, a subexponential quan-
tum algorithm for computing isogeny between ordinary curves [6].

2.2 Random Walks in Isogeny Graphs

Let p ≥ 5 be a prime number. There are Np := p
12 + εp supersingular j-invariants

in characteristic p, with εp = 0, 1, 1, 2 when p = 1, 5, 7, 11 mod 12 respectively. For
any prime ` 6= p, one can construct a so-called isogeny graph, where each vertex is
associated to a supersingular j-invariant, and an edge between two vertices is associated
to a degree ` isogeny between the corresponding vertices.

Isogeny graphs are regular with regularity degree `+ 1; they are undirected since to
any isogeny from j1 to j2 corresponds a dual isogeny from j2 to j1. Isogeny graphs are
also very good expander graphs [21]; in fact they are optimal expander graphs in the
following sense:

Definition 1 (Ramanujan graph) Let G be a k-regular graph, and let 1, λ2, · · · , λr
be the eigenvalues of the normalized adjacency matrix sorted by decreasing order of
the absolute value. Then G is a Ramanujan graph if

λ2 ≤
2
√
k − 1

k
.

This is optimal by the Alon-Boppana bound: given a family {GN} of k-regular graphs
as above, and denoting by λ2,N the corresponding second eigenvalue of each graph
GN , we have lim infN→∞ λ2,N ≥ 2

√
k−1
k . The Ramanujan property of isogeny graphs

follows from the Weil conjectures (proved by Deligne).
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Let p and ` be as above, and let j be a supersingular invariant in characteristic p.
We define a random step of degree ` from j as the process of randomly and uniformly
choosing a neighbour of j in the `-isogeny graph, and returning that vertex. For a com-
posite degree n =

∏
i `i, we define a random walk of degree n from j0 as a sequence of

j-invariants ji such that ji is a random step of degree `i from ji−1. We do not require
the primes `i to be distinct.

The output of random walks in expander graphs converge quickly to a uniform
distribution. In our second signature scheme we will be using random walks of B-
powersmooth degree n, namely n =

∏
i `
ei
i , with all prime powers `eii smaller than

some bound B, with B as small as possible. To analyze the ouptut distribution of these
walks we will use the following generalization3 of classical random walk theorems [21]:

Theorem 1 (Random walk theorem). Let p be a prime number, and let j0 be a su-
persingular invariant in characteristic p. Let j be the final j-invariant reached by a
random walk of degree n =

∏
i `
ei
i from j0. Then for every j-invariant j̃ we have∣∣∣∣Pr[j = j̃]− 1

Np

∣∣∣∣ ≤∏
i

(
2
√
`i

`i + 1

)ei
.

PROOF: Let vkj be the probability that the outcome of the first k random steps is a
given vertex j, and let vk = (vkj)j be vectors encoding these probabilities. Let A`i
be the normalized adjacency matrix of the `i-isogeny graph. Clearly A`i is a stochastic
matrix, so its largest eigenvalue is 1. By the Ramanujan property the second largest
eigenvalue is smaller than 1 in absolute value, so the eigenspace associated to λ1 = 1 is
of dimension 1 and generated by the vector u := (N−1p )j corresponding to the uniform
distribution. Let λ2i be the second largest eigenvalue of A`i in absolute value.

If step k is of degree `i we have vk = A`ivk−1. Moreover we have ||vk − u||2 ≤
λ2i||vk−1 − u||2 since the eigenspace associated to 1 is of dimension 1. Iterating on all
steps we deduce

||vk − u||2 ≤
∏
i

λei2i||v0 − u||2 ≤
∏
i

|λ2i|ei

since ||v0−u||22 = (1− 1
Np

)2+
Np−1
Np

( 1
Np

)2 =
(Np−1)2+(Np−1)

N2
p

=
Np−1
Np
≤ 1. (XXXX I

think this is wrong: second equality does not hold. I suggest it is≤ 1−2/N+2/N2 < 1.
XXXXXX) Finally we have∣∣∣∣Pr[j = j̃]− 1

Np

∣∣∣∣ = ||vk − u||∞ ≤ ||vk − u||2 ≤
∏
i

|λ2i|ei ≤
∏
i

(
2
√
`i

`i + 1

)ei
,

where we have used the Ramanujan property to bound the eigenvalues. �

In our protocols we will want the right-hand term to be smaller than 1
2Np
≈ 6

p , and
at the same time we will want the powersmooth bound B to be as small as possible.
The following lemma shows that taking B ≈ 2 log p suffices asymptotically.

3 Random walks theorems are usually stated for a single graph whereas our walks will switch
from one graph to another, all with the same vertex set but different edges.
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Lemma 1 There is a function cp = c(p) such that limp→∞ cp = 2, and, for each p,∏
`i prime

ei:=max{e|`ei<cp log p}

(
`i + 1

2
√
`i

)ei
>
p

6
.

We refer to Appendix A for the proof of this lemma. For concrete values, in particular
for p of length 128 and 256, it is easy to verify that the inequality holds for B = c log p,
for the values c = 2.07 and c = 1.93, respectively.

2.3 Efficient Representations of Isogeny Paths and Other Data

Our schemes require representing/transmitting elliptic curves and isogenies. In this sec-
tion we first explain how to represent certain mathematical objects appearing in our
protocol as bitstrings in a canonical way so that minimal data needs to be sent and
stored. Next, we discuss different representations of isogeny paths and their impact on
the efficiency of our signature schemes. As these paths will be sent from one party to
another, the second party needs an efficient way to verify that the bitstring received
corresponds to an isogeny path between the right curves.

Let p be a prime number. Every supersingular j-invariant is defined over Fp2 . A
canonical representation of Fp2 -elements is obtained via a canonical choice of de-
gree 2 irreducible polynomial over Fp. Canonical representations in any other extension
fields are defined in a similar way. Although there are only about p/12 supersingular
j-invariants in characteristic p, we are not aware of an efficient method to encode these
invariants into log p bits, so we represent supersingular j-invariants with the 2 log p bits
it takes to represent an arbitrary Fp2 -element.

Elliptic curves are defined by their j-invariant up to isomorphism. Hence, rather
than sending the coefficients of the elliptic curve equation, it suffices to send the j-
invariant. For any invariant j there is a canonical elliptic curve equation Ej : y2 =
x3 + 3j

1728−jx+ 2j
1728−j when j 6= 0, 1728, y2 = x3 + 1 when j = 0, and y2 = x3 + x

when j = 1728. The last one will be of particular interest in our second signature
scheme.

We now turn to representing chains E0, E1, . . . , En of isogenies φi : Ei−1 → Ei
each of prime degree `i where 1 ≤ i ≤ n. A useful feature of our protocols is that
isogeny chains can always be chosen such that the isogeny degrees are increasing `i ≥
`i−1. First we need to discuss how to represent the sequence of isogeny degrees. If all
degrees are equal to a constant ` (e.g., ` = 2) then there is nothing to send. If the degrees
are different then the most compact representation seems to be to compute

N =

n∏
i=1

`i.

This representation is possible due to our convention the isogeny degrees are increasing
and since the degrees are all small. To obtain the sequence of isogeny degrees from N
one factors using trial division and processes the primes in order of size.

Now we discuss how to represent the curves themselves in the chain of isogenies.
We give several methods.
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1. There are two naive representations. One is to send all the j-invariants ji = j(Ei)
for 0 ≤ i ≤ n. This requires 2(n+ 1) log2(p) bits.
Note that the verifier is able to check the correctness of the isogeny chain by check-
ing that Φ`i(ji−1, ji) = 0 for all 1 ≤ i ≤ n, where Φ`i is the `i-th modular
polynomial. The advantage of this method is that verification is relatively quick
(just evaluating a polynomial that can be precomputed and stored).
The other naive method is to send the x-coordinate of a kernel point Pi ∈ Eji
on the canonical curve. Given ji−1 and the kernel point Pi−1 one computes the
isogeny φi : Eji−1

→ Eji using the Vélu formula and hence deduces ji. Note that
the kernel point is not unique (indeed, in some rare cases there can be more than
one subgroup that corresponds to an isogeny Eji−1 → Eji ).
Both these methods require huge bandwidth.
A refinement of the second method is used in our first signature scheme, where ` is
fixed and one can publish a point that defines the kernel of the entire isogeny chain.
Precisely a curve E and points R,S ∈ E[`n] are fixed. Each integer 0 ≤ α < `n

defines a subgroup 〈R+[α]S〉 and hence an `n isogeny. It suffices to send α, which
requires log2(`n) bits. In the case ` = 2 this is just n bits, which is smaller than all
the other suggestions in this section.

2. One can improve upon the naive method in several simple ways. One method is to
send every second j-invariant. The Verifier accepts this as a valid path if the greatest
common divisor over Fp2 [y]

gcd(Φ`i(ji−1, y), Φ`i+1
(y, ji+1)

is a linear polynomial (y − α) for some α (which is therefore ji).
Another method is to send only some least significant bits (more than log2(`i+1) of
them) of the ji instead of the entire value. The verifier reconstructs the isogeny path
by factoring Φ`i(ji−1, y) over Fp2 (it will always split completely in the supersin-
gular case) and then selecting ji to be the root that has the correct least significant
bits.

3. An optimal compression method seems to be to define a well-ordering on Fp2 (e.g.,
lexicographic order on the binary representation of the element). Instead of ji one
sends the index k such that when the `i+1 roots of Φ`i(ji−1, y) are written in order,
ji is the k-th root. It is clear that the verifier can reconstruct the value ji and hence
can reconstruct the whole chain from this information. The sequence of integers k
can be encoded as a single integer in terms of a “base

∏i
j=1(`i+1)” representation.

If the walk is non-backtracking and the primes `i are repeated then one can remove
the factor (y − ji−2) that corresponds to the dual isogeny of the previous step, this
can save some bandwidth.
We call this method “optimal” since it is hard to imagine doing better than log2(`i+
1) bits for each step in general.4 Though we have no proof that one cannot do bet-
ter. However, note that the verifier now needs to perform polynomial factorisation,
which may cause some overhead in a protocol. Note that in the case where all

4 In the most general case, when all primes `i are distinct, then there are
∏

i(`i + 1) possi-
ble isogeny paths and thus one cannot expect to represent an arbitrary path using fewer than
log2(

∏
i `i) bits.
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`i = 2 and the walk is non-backtracking then this method also requires n bits,
which matches the method we use in our first signature scheme (mentioned in item
1 above).

4. A variant of the optimal method is to use an ordering on points/subgroups rather
than j-invariants. At each step one sends an index k such that the isogeny φ :
Ei−1 → Ei is defined by the k-th cyclic subgroup of Eji−1 [`i]. Again the verifier
can reconstruct the path, but this requires factoring `i-division polynomials.
To be precise: Given a canonical ordering on the field of definition of E[`], one
can define a canonical ordering of the cyclic kernels, hence represent them by a
single integer in {0, . . . , `}. One can extend this canonical ordering to kernels of
composite degrees in various simple ways (see also [4, Section 3.2]). If two curves
are connected by two distinct isogenies of the same degree then either one can be
chosen (it makes no difference in our protocols), so the ambiguity in exceptional
cases is never a problem for us.
In practice, since these points may be defined over an extension of Fp2 , in practice
we believe that ordering the roots of Φ`i(ji−1, y) is significantly more efficient than
ordering kernel subgroups.

When p = 3 mod 4, the quaternion algebra Bp,∞ ramified at p and ∞ can be
canonically represented as Q〈i, j〉, where i2 = −1, j2 = −p and k := ij = −ji.
The maximal order O0 with Z-basis {1, i, 1+k2 , i+j2 } corresponds to the curve E0 with
j-invariant j0 := 1728 under Deuring’s correspondence, and there is an isomorphism
of quaternion algebras θ : Bp,∞ → End(E0) ⊗ Q sending (1, i, j, k) to (1, φ, π, πφ)
where π : (x, y)→ (xp, yp) is the Frobenius endomorphism, and φ : (x, y)→ (−x, ιy)
with ι2 = −1 mod p.

We now give a brief analysis of the complexity of the operations, assuming fast
(quasi-linear) modular and polynomial arithmetic.

As discussed above, an isogeny step of prime degree ` can be described by a sin-
gle integer in {0, . . . , `}. Similarly, by combining integers in a product, an isogeny of
degree

∏
i `
ei
i can be described by a single positive integer smaller than

∏
i(`i + 1)ei .

This integer can define either a list of subgroups (specified in terms of some order-
ing), or a list of supersingular j-invariants (specified in terms of an ordering on the
roots of the modular polynomial). In the first case, the verifier will need at each step
given a j-invariant to compute the curve equation, then its full `i torsion (which may
be over a large field extension), then to sort with respect to some canonical ordering the
cyclic subgroups of order `i to identify the correct one, and finally to compute the next
j-invariant with Vélu’s formulae [36]. In the second case the verifier will need at each
step given a j-invariant, to specialize one variable of the `i-th modular polynomial, then
to compute all roots of the resulting univariate polynomial and finally to sort the roots
to identify the correct one. The second method is more efficient as it does not require
running Vélu’s formulae over some large field extension, and the root-finding and sort-
ing routines are applied on smaller inputs. We assume that the modular polynomials are
precomputed.

In our second signature scheme we will have `eii = O(log p). The cost of com-
puting an isogeny increases with the size of `i. Hence it suffices to analyse the larger
case, for which ei = 1 and `i = O(log p). Assuming precomputation of the modular
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polynomials and using [35] for polynomial factorization, the most expensive part of
an isogeny step is evaluating the modular polynomials Φ`i(x, y) at x = ji−1: as these
polynomials are bivariate with degree `i in each variable they have O(`2i ) monomials
and so this requires O(log2 p) field operations for a total cost of Õ(log3 p) bit opera-
tions since j-invariants are defined over Fp2 . In our first signature scheme based on the
De Feo-Jao-Plût protocol we have `i = O(1) so each isogeny step costs Õ(log p) bit
operations.

Alternatively, isogeny paths can be given as a sequence of j-invariants. To verify
the path is correct one still must compute Φ`i(ji−1, ji), which still requires Õ(log p) bit
operations. However, in practice it would be much quicker to not require root-finding
algorithms. Also, all the steps can be checked in parallel, and all the steps of a same
degree are checked using the same polynomial, so we expect many implementation
optimizations to be possible.

2.4 Security Definitions

An identification protocol will define the interaction between two parties, called a
prover P and a verifier V , in which P tries to prove to V that they know the se-
cret key corresponding to a given public key, without revealing any additional infor-
mation about the secret. We use the terminology and notation of Abdalla-An-Bellare-
Namprempre [1] (also see Bellare-Poettering-Stebila [5]).

A identification scheme is called canonical (or three-move) if is has the form of
sigma-protocol between prover and verifier where the prover first sends a commitment
Y , then receives a challenge c from the verifier, and answers with a response z. The
scheme is called non-trivial if c is chosen from an exponentially large set in terms of
the security parameter. See [1, 5] for more discussion.

We want an identification protocol to satisfy the following properties:

– Correctness (or completeness): if the prover really knows the secret, he should be
able to convince the verifier.

– Soundness: if the prover does not know the secret, he should not be able to con-
vince the verifier.

– Honest Verifier Zero-knowledge: the interaction does not reveal any information
about the secret.

To define soundness, we use the notion of n-special soundness, which essentially
says that given a fixed commitment and n valid answers to n different challenges, it is
possible to recover the witness efficiently. This captures the idea that if the prover had
not known the secret, he would not have been able to produce valid answers.

For zero-knowledge, the idea is that if it is possible, given the challenge, to simu-
late the whole protocol without actually knowing the secret, then the protocol leaks no
information about the secret. A simulator should be able to produce transcripts of the
interaction that have indistinguishable distribution from the real interactions.

An identification scheme can be repeated several times in parallel to obtain another
identification scheme with better soundness guarantees.
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For signature schemes we use the standard definition of existential unforgeability
under chosen message attacks [25]. An adversary can ask for polynomially many sig-
natures of messages of his choice to a signing oracle Signsk(·). Then, the attack is
considered successful if the attacker is able to produce a valid pair of message and
signature for a message different from those queried to the oracle.

2.5 Fiat-Shamir Transform

We use a common construction to build a signature scheme from an identification
scheme, introduced by Fiat-Shamir [17].

The Fiat-Shamir idea is to make the interactive protocol non-interactive by using
a random oracle to produce challenges and use the answers to the challenges as the
signature.

The public key and secret key are the public key and the secret key from the identifi-
cation protocol, respectively. In our basic identification schemes challenges are just one
bit. To make our schemes non-trivial we will repeat the identification protocol t times
in parallel, so we have a list of commitments {ai}ti=1, challenges {ci}ti=1, where each
ci is a bit, and responses {zi}ti=1. The signature scheme derived from the identification
protocol is as follows. Let H be a random oracle that outputs a bit string of length t.

– Gen(λ): this is the same as in the identification protocol.
– Sign(sk,m): compute the commitments {ai}ti=1 and then compute h = H(m, {ai}ti=1).

Consider each bit of the hash as a challenge ci to the corresponding ai, and produce
an answer zi. The signature is (σ1, σ2) = ({ai}ti=1, {zi}ti=1).

– Verify(m,σ, pk): computeH(m, {ai}ti=1), and check whether each zi is a valid an-
swer for the commitment ai and the corresponding bit of the hash as the challenge.
If the answers are valid for all i = 1, . . . , t, output 1, otherwise output 0.

Abdalla-An-Bellare-Namprempre [1] (also see Bellare-Poettering-Stebila [5]) have
proved the security of the Fiat-Shamir transform to a high degree of generality.

Theorem 2. Let ID be a non-trivial canonical identification protocol that is secure
against impersonation under passive attacks. Let S be the signature scheme derived
from ID using the Fiat-Shamir transform. Then S is secure against chosen-message
attacks in the random oracle model.

Remark 1. With identification schemes of a certain type there is a major reduction in
signature size which does not affect the security proof. Suppose that one can recover the
values ai from the public key and the values h and zi. Then one can get the following
signature scheme.

– Gen(λ): this is the same as in the identification protocol.
– Sign(sk,m): compute the commitments {ai}ti=1 and then compute h = H(m, {ai}ti=1).

Consider each bit of the hash as a challenge to the corresponding ai, and produce
an answer zi. The signature is (h, σ2) = (h, {zi}ti=1).

– Verify(m,σ, pk): compute {ai}ti=1 from the public key and the signature. Compute
h′ = H(m, {ai}ti=1), and accept the signature if h′ = h.
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An attacker against this signature scheme can be turned into an attacker on the
original signature scheme (and vice versa), which shows that both schemes have the
same security.

There is interesting ongoing research on the security of Fiat-Shamir-type signatures
against quantum computers. Clearly preimages, second preimages and collisions can
be computed faster using quantum computers than with classical computers [10, 20]
so the hash function output size must be increased accordingly. Some quantum attack
models grant the attacker with the ability to perform signature queries in superposition,
in which case many constructions that are secure classically become insecure [9, 24].
The quantum random oracle model was introduced as a replacement for the classical
random oracle model, but adapting some classical proofs to this model has appeared to
be very challenging [8]. Current research aims at proving or disproving the security of
Fiat-Shamir signatures in this model [3, 8, 14], and at offering easy alternative ways to
convert interactive identification schemes into secure signature schemes [32]. Of course
even classically, a proof in the random oracle model can at best be considered as a
security argument as the model is not sound in general [11].

In this paper our focus is on how to build signature schemes based on supersingular
isogeny problems, so we leave these independent considerations aside and we focus on
the classical security of our schemes, in the random oracle model.

3 First Signature Scheme

This section presents a signature scheme obtained from the interactive identification
protocol of De Feo-Jao-Plût [16]. First we describe their scheme.

3.1 De Feo-Jao-Plût Interactive Protocol

Let p be a large prime of the form `e11 `
e2
2 ·f±1, where `1, `2 are small primes (typically

`1 = 2 and `2 = 3). We start with a supersingular elliptic curve E0 defined over Fp2
with #E0(Fp2) = `e11 `

e2
2 ·f and a primitive `e11 -torsion pointP1. DefineE1 = E0/〈P1〉.

The secret is an `e11 -isogeny φ : E0 → E1, whereas both these curves are public. A
pair of generators R2, S2 of E0[`e22 ], and the images φ(R2), φ(S2) are also public.

The interaction goes as follows:

1. The prover chooses a random primitive `e22 -torsion point P2, defines the curves
E2 = E0/〈P2〉 and E3 = E0/〈P1, P2〉, and uses Vélu’s formulae to compute the
diagram

E0 E1

E2 E3

φ

ψ′ψ

φ′
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and reveals E2 and E3 to the verifier.
2. The verifier challenges the prover with a random bit b← {0, 1}.
3. If b = 0, the prover reveals P2 and φ′(P2).

If b = 1, the prover reveals ψ(P1).

In both cases, the verifier accepts the proof if the points revealed have the right
order and are the kernels of isogenies between the right curves. We iterate this process
to reduce the cheating probability.

The following theorem is proved by De Feo-Jao-Plût [16].

Theorem 3. If Problems 3 and 4 are computationally hard, then the interactive proto-
col defined above is an identification protocol.

For future reference we sketch the ideas in the proof: Completeness is straightfor-
ward. For soundness: Suppose A is an adversary that takes as input the public key and
succeeds in the identification protocol with a non-negligible advantage. Given a chal-
lenge instance (E0, E1, R1, S1, R2, S2, φ(R2), φ(S2)) for Problem 3 we run A on this
tuple as the public key. We choose one of the sessions of the interactive protocol, where
A sends E2, E3 and receives a bit b. Suppose that A can answer both challenges b = 0
and b = 1 successfully (since A has non-negligible advantage there is some such ses-
sion with non-negligible probability). By the standard oracle replay attack on A we get
consistent responses to both challenges, and hence the following diagram.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

From this, one has an explicit description of an isogeny φ̃ from E0 to E1. The
degree of φ̃ is `e11 `

2e2
2 . One can determine ker(φ̃)∩E0[`e11 ] by iteratively testing points

in E0[`j1] for j = 1, 2, . . . . Hence, one determines the kernel of φ, as desired.
Finally we need to prove zero-knowledge. For this one simulates transcripts of the

protocol without knowing the private key. When b = 0 we simulate correctly by choos-
ing u, v ∈ Z`e22 and setting E2 = E0/〈uR2 + vS2〉 and E3 = E1/〈uφ(R2) + vφ(S2)〉.
When b = 1 we choose a random curve E2 and a random point R ∈ E2[`e11 ] and we
publish E2, E3 = E2/〈R〉 and answer with the point R (hence defining the isogeny).
Although (E2, E3) are a priori not distributed correctly, the computational assumption
of Problem 4 implies it is computationally hard to distinguish the simulation from the
real game. Hence the scheme has computational zero knowledge.
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3.2 Signature Scheme based on De Feo-Jao-Plût Identification Protocol

We now fully specify our signature scheme based on De Feo-Jao-Plût identification
protocol.

Our main focus is to minimise signature size. Hence, we use the most space-efficient
variant of the Fiat-Shamir transform. Next we need to consider how to minimise the
amount of data that needs to be sent to specify the isogenies. Several approaches were
considered in Section 2.3. For the pair of vertical isogenies it seems to be most com-
pact to represent them using a representation of the kernel (this is more efficient than
specifying two paths in the isogeny graph), however this requires additional points in
the public key. For the horizontal isogeny there are several possible approaches, but we
think the most compact is to use the representation in terms of specifying roots of the
modular polynomial.

Key Generation Algorithm Gen: On input a security parameter λ generate a prime p
with at least 4λ bits, such that p = `e11 `

e2
2 f ± 1, with `1, `2, f small (ideally f = 1,

`1 = 2, `2 = 3) and `e11 ≈ `e22 . Choose5 a supersingular elliptic curve E0 with j-
invariant j0. Fix pointsR2, S2 ∈ E0(Fp2)[`e22 ] and a random primitive `e11 -torsion point
P1 ∈ E0[`e11 ]. Compute the isogeny φ : E0 → E1 with kernel generated by P1, and
let j1 be the j-invariant of the image curve. Set R′2 = φ(R2), S′2 = φ(S2). Choose a
hash function H with t = t(λ) bits of output (depending on the security requirements
we may choose t = λ or t = 2λ). The secret key is (E0, P1), and the public key is
(p, j0, j1, R2, S2, R

′
2, S
′
2, H).

Signature Algorithm Sign: For i = 1, . . . , t, choose random integers 0 ≤ αi < `e22 .
Compute the isogeny ψi : E0 → E2,i with kernel generated by R2 + [αi]S2 and let
j2,i = j(E2,i). Compute the isogeny ψ′i : E1 → E3,i with kernel generated by R′2 +
[αi]S

′
2 and let j3,i = j(E3,i). Compute h = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) and

parse the output as t challenge bits bi. For i = 1, . . . , t, if bi = 0 then set zi = αi. If bi =
1 then compute ψi(P1) and compute a representation zi of the j-invariant j2,i ∈ Fp2
and the isogeny with kernel generated by ψi(P1) (for example, as a sequence of integers
representing which roots of the `1-division polynomial to choose at each step of a non-
backtracking walk). φ′i into a bitstring zi. Return the signature σ = (h, z1, . . . , zt).

Verification Algorithm Verify: On input a message m, a signature σ and a public key
PK, recover the parameters p,E0, E1. For each 1 ≤ i ≤ t, using the information
provided by zi, one recomputes the j-invariants j2,i, j3,i. In the case bi = 0 this is done
using zi = αi by computing the isogeny from E0 with kernel generated by R2 +[αi]S2

and the isogeny from E1 with generated by R′2 + [αi]S
′
2. When bi = 1 then the value

j2,i is provided as part of zi, together with a description of the isogeny from E2,i to
E3,i.

One then computes

h′ = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t)

5 Costello-Longa-Naehrig [13] choose a special j-invariant in Fp for efficiency reasons in their
implementation of the supersingular key exchange protocol. One could also choose a random
j-invariant by performing a random isogeny walk from any fixed j-invariant.
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and checks that the value equals h from the signature. The signature is accepted if this
is true and is rejected otherwise.

Theorem 4. The first signature scheme is secure in the random oracle model under a
chosen message attack.

PROOF: This follows immediately from Theorem 2 and Theorem 3. �

Efficiency As isogenies are of degree roughly
√
p, the scheme requires to use primes

p of size 4λ to defeat meet-in-the-middle attacks. Assuming H is some fixed hash
function and therefore not sent, the secret key is simply x(P1) ∈ Fp2 and so requires
2 log p = 8λ bits.

The public key is p and then j0, j1, x(R2), x(S2), x(R′2), x(S′2) ∈ Fp2 which re-
quires 13 log2(p) ≈ 52λ bits. The signature size is analysed in Lemma 1.

In terms of computational complexity. The basic operations are repeatedO(λ) times
(one for each challenge bit) and each operation requires computing isogenies that are
a composition of around O(λ) isogenies of degree `1 or `2, each of which is a small
number of field operations. Assuming quasi-linear cost Õ(log(p2)) = Õ(λ) for the
field operations, the computational complexity of the signing and verifying algorithms
is Õ(λ3) bit operations.

Remark 2. The question of the output length t of the hash function depends on the
security requirements. For non-repudiation it is necessary that H be collision-resistant,
and so one takes t = 2λ. But if one is only concerned with security against forgery then
one can take t = λ. This is similar to the case of Schnorr signatures, as mentioned by
Schnorr and discussed in detail by Neven-Smart-Warinschi [28]. In both settings, the
choice of hash function should be made carefully.

Lemma 1. The average signature size of this scheme is

t + t
2dlog2(`e22 )e+ t

2 (2dlog2(p)e+ dlog2(`e11 )e)

bits. The minimum signature size for λ bits of security is approximately 6λ2 bits.

PROOF: On average half the bits bi of the hash value are zero and half are one.
When bi = 0 we send an integer αi such that 0 ≤ αi < `e22 , which requires dlog2(`e22 )e
bits. When bi = 1 we need to send j2,i ∈ Fp2 , which requires 2dlog2(p)e bits, followed
by a representation of the isogeny. One can represent a generator of the kernel of the
isogeny with respect to some canonical generators P ′1, Q

′
1 of E2,i[`

e1
1 ] as βi such that

0 ≤ βi < `e11 , thus requiring dlog2(`e11 )e bits. Alternatively one can represent the non-
backtracking sequence of j-invariants in terms of an ordering on the roots of the `1-th
modular polynomial. This also can be done in dlog2(`e11 )e bits.

For security level λ one can take t = λ, `e11 ≈ `e22 ≈ 2λ and so p ≈ 24λ. Hence the
signature size is, at best, approximately (λ/2)(2λ+ 8λ+ 2λ) = 6λ2 bits. �
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4 Second Signature Scheme

We now present our main result. The main advantage of this scheme compared with the
one in the previous section is that its security is based on the general problem of com-
puting an isogeny between two supersingular curves, or equivalently on computing the
endomorphism ring of a supersingular elliptic curve. Unlike the scheme in the previous
section, the prime has no special property and no auxiliary points is revealed.

4.1 New Protocol Based on Endomorphism Ring Computation

The concept is similar to the graph isomorphism zero-knowledge protocol, in which
we reveal one of two graph isomorphisms, but never enough information to deduce the
secret isomorphism.

As recalled in Section 2.3 although it is believed that computing endomorphism
rings of supersingular elliptic curves is a hard computational problem in general, there
are some particular curves for which it is easy. Therefore let E0 be a curve for which
computing the endomorphism ring is easy. Take a random isogeny (walk in the graph)
ϕ : E0 → E1 and, using this knowldege, compute End(E1). The public information
is (E0, E1) and the secret is End(E1). Under the assumption that computing the endo-
morphism ring is hard, the secret key is secure.

Our signature scheme will require three algorithms, that are explained in detail in
later sections.

Translate isogeny path to ideal: Given E0, O0 = End(E0) and a chain of isogenies
from E0 to E1, to compute O1 = End(E1) and a left-O0-ideal I whose right order
is O1.

Find new path: Given an ideal I corresponding to an isogeny E0 → E2, to produce
a new ideal J corresponding to a “random” isogeny E0 → E2 of powersmooth
degree.

Translate ideal to isogeny path: GivenE0, O0, E2, I to compute a sequence of prime
degree isogenies giving the path from E0 to E2.

We now sketch the interaction between the prover and the verifier.

1. The prover performs a random walk of sufficiently large degree in the graph, ob-
taining a curve E2 and an isogeny ψ : E1 → E2, and reveals E2 to the verifier.

2. The verifier challenges the prover with a random bit b← {0, 1}.
3. If b = 0, the prover answers with ψ.

If b = 1, the prover does the following:
– Compute End(E2) and translate the isogeny path between E0 and E2 into a

corresponding ideal I giving the path in the quaternion algebra.
– Use the powersmooth version of the quaternion `-isogeny algorithm to com-

pute another path between End(E0) and End(E2) in the quaternion algebra,
which is independent of E1, represented by an ideal J .

– Translate the ideal J to an isogeny path η from E0 to E2.
4. The verifier accepts the proof if the answer to the challenge is indeed an isogeny

between E1 and E2 or between E0 and E2, respectively.
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The isogenies involved in this protocol are summarized in the following diagram:

E0 E1

E2

ϕ

ψ
η

The two translation algorithms mentioned above in the b = 1 case will be described
in Section 4.4. They rely on the fact that End(E0), End(E1) and End(E2) are known.
The algorithms are efficient when the degree of the random walk is powersmooth. For
this reason all isogenies in our protocols will be of powersmooth degree. The pow-
ersmooth version of the quaternion isogeny algorithm of Kohel-Lauter-Petit-Tignol will
be described and analyzed in Section 4.3. The random walks are taken of sufficiently
large degree such that their output has close to uniform distribution, by Theorem 1 and
Lemma 1.

We repeat the process to reduce the cheating probability. The computational hard-
ness of Problem 5 remains essentially the same if the curves are chosen according to a
distribution that is close to uniform. We can then prove:

Theorem 5. If Problem 6 is computationally hard, then the interactive protocol defined
above is an identification protocol.

The advantage of this protocol over the protocol proposed in the previous section is
that it relies on a more standard and potentially harder computational problem.

In the remainder of this section we first give a proof of Theorem 5, then we provide
details of the algorithms involved in our identification protocol, and finally we describe
the resulting signature scheme.

4.2 Proof of Theorem 5

We shall prove that the protocol above is complete, 2-special sound and zero-knowledge.

Completeness. Let ϕ be an isogeny between E0 and E1 ofB-powersmooth degree,
for B = O(log p). If the challenge received is b = 0, it is clear that the prover knows
a valid isogeny ψ : E1 → E2, so the verifier accepts the proof. If b = 1, the prover
follows the procedure describe above and the verifier accepts. In the next subsections
we will show that this procedure is polynomial time.

2-special soundness. Let A be a forger against the identification scheme. We de-
scribe an extractor algorithm that takes two curves (E0, E1) and computes a path be-
tween them. Run A on input (E0, E1) so that it outputs a commitment E2. The ex-
tractor answers with challenge b = 0 and then re-winds A and answers with challenge
b = 1. With non-negligible probability A outputs two valid answers ψ : E1 → E2,
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η : E0 → E2 to these challenges. Given these two valid answers an extraction algo-
rithm can compute an isogeny φ : E0 → E1 as φ = ψ̂ ◦ η, where ψ̂ is the dual isogeny
of ψ. This is summarized in the following diagram:

E0 E1

E2

ψ
η

Zero-knowledge. We shall prove that there exists a probabilistic polynomial time
simulator S that outputs transcripts indistinguishable from transcripts of interactions
with an honest verifier.

– If b = 0, take a random walk from E1 of length L, obtaining a curve E2 and an
isogeny ψ : E1 → E2. The simulator outputs the transcript (E2, 0, ψ).

E0 E1

E2

ψ

In this case, it is clear that the distributions of every element in the transcript is
the same as in the real interaction, as they are generated in the same way. This is
possible because, when b = 0, the secret is not required for the prover to answer
the challenge.

– If b = 1, take a random walk from E0 of length L to obtain a curve E2 and an
isogeny µ : E0 → E2, then proceed as in Step 3 of the protocol to produce another
isogeny η : E0 → E2. The simulator outputs the transcript (E2, 1, η).

E0 E1

E2

µ

η
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The reason to output η instead of µ is to ensure that the transcript distributions are
indistinguishable from the distributions of real interaction transcripts.

We first study the distribution of E2. Let Xr be the output of the random walk from
E1 to produce E2 in the real interaction, and let Xs be the output of the random walk
from E0 to produce E2 in the simulation.

By Theorem 1, we have, for any curve E in the graph and Np ≈ p/12 the number
of vertices in the graph:∣∣∣∣Pr(Xr = E)− 1

Np

∣∣∣∣ ≤ 1

2Np
,

∣∣∣∣Pr(Xs = E)− 1

Np

∣∣∣∣ ≤ 1

2Np
.

Therefore

|Pr(Xr = E)− Pr(Xs = E)| =
∣∣∣∣Pr(Xr = E)− 1

Np
−
(

Pr(Xs = E)− 1

Np

)∣∣∣∣ ≤
≤
∣∣∣∣Pr(Xr = E)− 1

Np

∣∣∣∣+

∣∣∣∣Pr(Xs = E)− 1

Np

∣∣∣∣ ≤
≤ 1

2Np
+

1

2Np
=

1

Np
= negl(log p).

Therefore the distributions of E2 are indistinguishable. Now, since η is produced in
the same way from E0 and E2, we have that the distributions of η in both cases are
indistinguishable.

4.3 Quaternion Isogeny Path Algorithm

In this section we sketch the quaternion isogeny algorithm from Kohel-Lauter-Petit-
Tignol [27] and we evaluate its complexity when p = 3 mod 4. (In the original paper
the algorithm is only claimed to run in heuristic probabilistic polynomial time.)

XXX Our analysis only heuristic too right??
The algorithm takes as input two maximal orders O,O′ in the quaternion algebra

Bp,∞, and it returns a sequence of O-left ideals I0 = O ⊂ I1 ⊂ . . . ⊂ Ie such that
the right order of Ie is in the same equivalence class as O′. In addition, the output is
such that the index of Ii+1 in Ii is a small prime for all i. The authors focus on the
case where the norm of Ie is `e for some integer e, but they mention that the algorithm
can be extended to the case of powersmooth norms. We will only describe and use
the powersmooth version. In our application there are some efficiency advantages from
using isogenies whose degree is a product of small powers of distinct primes, rather
than a large power of a small prime. We stress that these powersmooth isogeny degrees
are chosen by the signer and do not rely on any smoothness heuristics.

Note that the ideals returned by the quaternion isogeny path algorithm (or equiva-
lently the right orders of these ideals) correspond to vertices of the path in the quaternion
algebra graph, and to a sequence of j-invariants by Deuring’s correspondence. In the
next subsection we will describe how to make this correspondence explicit; here we
focus on the quaternion algorithm itself.

An important feature of the algorithm is that paths between two arbitrary maximal
orders O and O′ are always constructed as a concatenation of two paths from each
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maximal order to a special maximal order, which in our protocol we take equal toO0 =
〈1, i, 1+k2 , i+j2 〉.

We focus on the case where O = O0, and assume that instead of a second maximal
O′ we are given the corresponding left O0-ideal I as input. This will be sufficient for
our use of the algorithm. We assume that I is given by a Z basis of elements in O0.
The equivalence class on maximal orders defines an equivalence class of O0-ideals,
where two ideals I and J are in the same class if and only if I = Jq with q ∈ Bo,∞.
Therefore our goal is, given a left O0 ideal I , to compute another left O0 ideal J with
powersmooth norm. The algorithm proceeds as follows:

1. Compute an ideal I ′ = Iδ̄/n(I) of prime norm N .
2. Find β ∈ I ′ with norm NS where S is powersmooth.
3. Output J = I ′β̄/N .

Steps 1 and 3 of this algorithm rely on the following simple result [27, Lemma 5]:
if I is a left O-ideal of reduced norm N and α is an element of I , then Iᾱ/N is a left
O-ideal of norm n(α)/N . Clearly, I and J are in the same equivalence class.

To compute δ in Step 1, first a Minkowski-reduced basis {α1, α2, α3, α4} of I is
computed and then random elements δ =

∑
i xiαi are generated with integers xi in an

interval [−m,m], until the norm of δ is equal to n(I) times a prime. Taking m polyno-
mial in log p suffices in practice, and with a very large probability it leads toN prime of
size Õ(

√
p) after O(log p) random trials [27, Section 3.1]. The Minkowski basis can be

computed in O(log2B), where B is a bound on the coefficients of the basis elements
given as inputs for I [29]. In our signature scheme we will have logB = O(log p). A
probable prime suffices in this context (actually Step 1 is not strictly needed but aims to
simplify Step 2), so we can use Miller-Rabin test to discard composite numbers with a
large probability. The test requires a single modular exponentiation (modulo number of
size Õ(

√
p)), is passed by composite numbers with a probability at most 1/4, and can

be repeated r times to decrease this probability to 1/4r. Assuming heuristically that the
number tested are random the test will only be repeated a significant amount of times
on actual prime numbers, so in total it will be repeated O(log p) times. This leads to a
total complexity of Õ(log3 p) bit operations for Step 1.

Step 2 is the core of the algorithm and actually consists of the following substeps:

2a. Find α such that I ′ = O0N +O0α.
2b. Find β1 ∈ O0 with powersmooth norm S1.
2c. Find β2 ∈ Z[j, k] such that α = β1β2 mod NO0.
2d. Find β′2 and λ ∈ Z∗N with powersmooth norm S2 such that β′2 = λβ2 mod NO0.
2e. Set β = β1β

′
2.

Step 2a is easy as most elements in I will be suitable α; in fact at least one basis
element of I will work.

(XXXX What is “large enough” in the below? How does this relate to the 7
2 log(p)

issue? XXX)
In Step 2b the algorithm actually searches for β1 = a+bi+cj+dk. A large enough

powersmooth number S1 is fixed a priori, then the algorithm generates small random
values of c, d until the norm equation a2+b2 = S1−p(c2+d2) can be solved efficiently
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using Cornacchia’s algorithm (for example, until the right hand side is a prime equal to 1
modulo 4). Heuristically it is sufficient to take S1 = Õ(p), and O(log p) approximately
random numbers of this size must be tested for primality [27]. As shown above this has
a cost of Õ(log3 p) bit operations. Cornacchia’s algorithm then requires Õ(log2 p) bit
operations to run.

Step 2c is just linear algebra modulo N ≈ Õ(
√
p) and its cost can be neglected. As

argued in [27] it has a negligible chance of failure, in which case one can just go back
to Step 2b.

(XXXX Ditto “large enough” XXXXXX)
In Step 2d the algorithm a priori fixes S2 large enough, then searches for integers

a, b, c, d, λ with λ /∈ NZ such that N2(a2 + b2) + p
(
(λC + cN)2 + (λD + dN)2

)
=

S2 where we have β2 = Cj +Dk. If necessary S2 is multiplied by a small prime such
that (C2 +D2)S2 is a square modulo N , after which the equation is solved modulo N ,
leading to two solutions for λ. An arbitrary solution is chosen, and then looking at the
equation modulo N2 leads to a linear space of solutions for (c, d) ∈ ZN . The algorithm
chooses random solutions until the equation a2+b2 =

(
S2 − p2

(
(λC + cN)2 + (λD + dN)2

))
/N2

can be efficiently solved with Cornacchia’s algorithm. Heuristically one can take S2 =
Õ(p3), and O(log p) approximately random numbers of size Õ(p2) will be tested for
primality [27]. The overall cost of this step is therefore Õ(log3 p) bit operations.

The costs of Step 2e and Step 3 can be neglected, leading to a cost of Õ(log3 p) bit
operations for the whole algorithm.

Remark 3. We stress that the output of this algorithm only depends on the ideal class
of I but not on I itself. This is true since the algorithm first computes a Minkowski-
reduced basis. It is important since in our use of the algorithm, the secret isogeny ϕ
could easily be recovered from I .

4.4 Step-by-Step Deuring Correspondence

We now discuss algorithms to convert isogeny paths into paths in the quaternion algebra,
and vice versa. This will be necessary in our protocols to be able to use the quaternion
isogeny algorithm.

All the isogeny paths that we will need to translate in our signature scheme will start
from the special j-invariant j0 = 1728 mentioned above. We recall from Section 2.3
that this corresponds to the curve E0 with equation y2 = x3 + x and endomorphism
ring End(E0) := 〈1, φ, 1+πφ2 , π+φ2 〉. Moreover there is an isomorphism of quaternion
algebras sending (1, i, j, k) to (1, φ, π, πφ).

For any isogeny ϕ : E0 → E1 of degree n, we can associate a left End(E0)-ideal
I = Hom(E1, E0)ϕ of norm n, corresponding to a left O0-ideal with the same norm
in the quaternion algebra Bp,∞. Conversely every left O0-ideal arises in this way [26,
Section 5.3]. In our protocol we will need to make this correspondence explicit, namely
we will need to pair up each isogeny from E0 with the correct O0 ideal. Moreover we
need to do this for “large” degree isogenies to ensure a good distribution via our random
walk theorem.

21



Translating ideal to isogeny path Let E0 and O0 = End(E0) be given, together with
a left O0 ideal I corresponding to an isogeny of degree n. The main idea to determine
the corresponding isogeny explicitly is to determine its kernel [37].

Let {αj1, αj2, αj3, αj4} be a basis for the left O0-ideal I of norm n. Each element
αjk ∈ 〈1, i, (1 + k)/2, (i + j)/2〉 can be written as u + vi + wj + xk for some
u, v, w, x ∈ Q. We need to be able to determine, for a given point P , if αjk(P ) = 0.
The main issues is the denominators. Writing this as α = (u′ + v′i+w′j + x′k)/z for
some u′, v′, w′, x′, z ∈ Z we choose a point P ′ such that [z]P ′ = P . Then α(P ) = 0 if
and only if [u′]P ′ + [v′]φ(P ′) + [w′]π(P ′) + [x′]π(φ(P ′)) = 0.

To determine the complexity of such a computation it is necessary to bound the
denominators, since the field of definition of the point P ′ depends on this.

XXXX TO DO: How to bound the denominators???
Precisely, one can compute generators Pi, i = 0, . . . , n for all cyclic subgroups

of E0[n], each one uniquely defining a degree n isogeny which can be computed with
Vélu’s formulae.

The generator Pi then corresponds to the basisBj if and only if Pj is in the kernel of
all corresponding basis maps. This algorithm requires at least Õ(n2 log p) bit operations
just to compute E0[n], hence its cost is prohibitive for large n.

When n = `e the degree n isogeny can be decomposed into e degree ` isogenies.
If I is the corresponding left O0-ideal of norm `e, then Ii := I mod O0`

i is a left O0-
ideal of norm `i corresponding to the first i isogenies. Similarly if P is a generator for
the kernel of the degree `e isogeny then `e−i+1P is the kernel of the degree `i isogeny
corresponding to the first i steps. One can therefore perform the identification step-
by-step with successive approximations of I or P respectively. This algorithm is more
efficient than the previous one, but it still requires to compute `e torsion points, which
in general may be defined over an `e-extension of Fp2 . To ensure that the `e torsion is
defined over Fp2 one can choose p such that `e | (p ± 1) as in the De Feo-Jao-Plût
protocols; however for general p this translation algorithm will still be too expensive.

We solve this efficiency issue by using powersmooth degree isogenies in our proto-
cols. When n =

∏
i `
ei
i with distinct primes `i, one reduces to the prime power case as

follows. The isogeny of degree n can be decomposed into a sequence of prime degree
isogenies. For simplicity we assume the isogeny steps are always performed in increas-
ing degree order; we can indeed require that this is indeed the case in our protocols.
Let ni :=

∏
j≤i `

ej
j . If I is the left O0-ideal of norm n, then Ii := I mod O0ni is a

left O0-ideal of norm ni corresponding to the isogeny ϕi which is a composition of all
isogenies of degrees up to `i. Using a Chinese Theorem-like representation, points in
E0[n] can be represented as a sequence of points in E0[`eii ]. Given a left-O0 ideal I , the
following algorithm progressively identifies the corresponding isogeny sequence:

1. Let ϕ0 be the identity endomorphism on E0.
2. For each i:

(a) Compute a generator Pij for each cyclic subgroup of order `eii in E0[`eii ].
(b) Compute a basis Bi = {αi1, αi2, αi3, αi4} for I mod O0`

ei
i .

(c) Find j such that Pij is in the intersection kernel of the endomorphism maps
corresponding to αik.

(d) Compute ϕi−1(Pij).
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(e) Compute the isogeny φi with kernel generated by ϕi−1(Pij).
(f) Formally let ϕi = φi ◦ ϕi−1.

Translating an isogeny path to an ideal Let E0, E1, . . . , En an isogeny path and
suppose ϕi : E0 → Ei of degree ni (XX IS this right?? Is this what ni denotes???).
The following algorithm progressively identifies the corresponding left-O0 ideal I:

1. Let I0 = O0.
2. For each i:

(a) Compute a generator Pij for each cyclic subgroup of order `eii in E0[`eii ].
(b) Compute ϕi−1(Pij) for all j.
(c) Find j such that ϕi−1(Pij) is the kernel of the given isogeny of degree `eii .
(d) Compute a basis Bik = {αik1, αik2, αik3, αik4} for each left O0-ideal Iik of

norm ni such that Ii−1 = Iik mod O0ni−1.
(e) Find k such that the intersection kernel of the corresponding endomorphism

maps contains Pij , and let Ii := Iik.

One can perform Step 2d of this algorithm as follows. Compute an embedding µ` :
Bp,∞ ↪→M2(Q`) sendingO0 toM2(Z`). This essentially requires to compute a square
root of p in Z`. Any left ideal of M2(Z`) with norm `e is equal to M2(Z`)mk with
mk ∈

{(
`e−f r
0 `f

)
: 0 ≤ f ≤ e , 0 ≤ r < `f

}
[34, Theorem 2.2.3]. By computing

µ−1` (mk) mod O0`
ei
i for mk a matrix as above, we obtain elements αk ∈ Bp,∞, which

can be used to compute Iik := Ii−1αk + Ii−1`
ei
i . Note that elements in Z`, including

the embedding itself, need only be computed with precision `e.
In our protocols we will have `eii = O(log n) = O(log p); moreover we will be

using O(log p) different primes. As we do not want to use special primes `eii torsion
points will generally be defined over `eii degree extension fields, hence they will be of
O(log2 p) size. Isogenies of degree `eii can be evaluated using O(`eii ) field operations.
Each loop in the first algorithm above (from quaternion ideals to isogenies) therefore
requires O(log2 p) field operations hence Õ(log4 p) bit operations, and the whole al-
gorithm will require Õ(log5 p) bit operations. A loop in the second algorithm above
(from isogenies to quaternion ideals) requires O(log3 p) field operations as such. This
cost can be decreased to O(log2 p) field operations if instead of applying isogenies to
all generators in Step 2b, we only apply them on a basis of the `eii -torsion, then deduce
the other values by linear combinations. Therefore the cost of both algorithms becomes
Õ(log5 p) bit operations.

4.5 Signature Scheme based on Endomorphism Ring Computation

In this section we give the details of our second signature scheme based on our new
identification protocol, with security relying on computing the endomorphism ring of a
supersingular elliptic curve.
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Key Generation Algorithm Gen: On input a security parameter λ generate a prime p
with 2λ bits, which is congruent to 3 modulo 4. FixB, S1, S2 as small as possible6 such

that Sk :=
∏
i `
ek,i

k,i , `ek,i

k,i < B, gcd(S1, S2) = 1, and
∏( 2

√
`k,i

`k,i+1

)ek,i

< 6
p . Perform a

random isogeny walk of degree S1 from the curve E0 with j-invariant j0 = 1728 to a
curve E1 with j-invariant j1. Compute O1 = End(E1) and the ideal I corresponding
to this isogeny. Choose a hash function H with at least t = t(λ) bits of output (in
practice, depending on the security requirement, either t = λ or t = 2λ). The public
key is (p, j0, j1, H) and the secret key is E0, E1, O1, I).

Signature Algorithm Sign: On input a message m and keys (SK,PK), recover the
parameters p and j1. For i = 1, . . . , t, generate a random isogeny walk wi of degree S2,
ending at a j-invariant j2,i. Compute h := H(m, j2,1, . . . , j2,t) and parse the output
as t challenge bits bi. For i = 1, . . . , t, if bi = 1 use wi and the first algorithm of
Section 4.4 to compute the corresponding path in the quaternion algebra, then use the
algorithm of Section 4.3 to compute a “fresh” path between O0 and O2,i, and finally
use the second algorithm of Section 4.4 to compute an isogeny path w′i from j0 to j2,i.
If bi = 0 set zi := wi, otherwise set zi := w′i. Return the signature σ = (h, z1, . . . , zt).

Verification Algorithm Verify: On input a message m, a signature σ and a public key
PK, recover the parameters p and j1. For each 1 ≤ i ≤ t one uses zi to compute the
image curve E2,i of the isogeny. Hence the verifier recovers the signature components
j2,i for 1 ≤ i ≤ t. The verifier then recomputes the hash H(m, j2,1, . . . , j2,t) and
checks that the value is equal to h, accepting the signature if this is the case and rejecting
otherwise.

Efficiency: (XXX BELOW NEEDS TO BE RE-WRITTEN. NOT DONE YET XXX)
As the best algorithm for computing the endomorphism ring of a supersingular

elliptic curve runs in time Õ(
√
p) one can take log p = 2λ. By Lemma 1 taking

B ≈ logSi ≈ 2 log p ensures that the outputs of random walks are distributed uni-
formly enough. Random walks then require 2 log p bits to represent, so signatures are
2 log p ·λ+ 2λ+λ 1

2 (2 log p+ 7
2 log p) ≈ 23

2 λ
2 bits on average, depending on the chal-

lenge bits, private keys are 2λ bits and public keys are 3 log p = 6λ bits. A signature
mostly requires 2λ calls to the Algorithm of Sections 4.3 and 4.4, for a total cost of
Õ(λ6). Verification requires to check O(λ) isogeny walks, each one comprising O(λ)
steps with a cost Õ(λ3) each, hence a total cost of Õ(λ5) bit operations.

Optimization with Non Backtracking Walks: In our description of the signature scheme
we have allowed isogeny paths to “backtrack”. We made this choice to simplify the
convergence analysis of random walks and because it does not affect the asymptotic
complexity of our schemes significantly. However in practice at any concrete security
parameter, it will be better to use non-backtracking random walks as they will converge
more quickly to a uniform distribution [2].

6 The exact procedure is irrelevant here.
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5 Conclusion

We have presented the first two signature schemes based on supersingular isogeny prob-
lems. Both schemes are built from a parallel execution of an identification scheme with
bounded soundness, using the Fiat-Shamir transform. Our first scheme is built directly
from the De Feo-Jao-Plût identification protocol with some optimization, the second
one is more involved and crucially relies on the quaternion `-isogeny algorithm of
Kohel-Lauter-Petit-Tignol. The first scheme is significantly more efficient, but the sec-
ond one is based on an arguably more standard and potentially harder computational
problem.

Figures 1 and 2 compare the performance of our schemes with RSA and ECDSA
signatures (assuming asymptotically optimal arithmetic), two dominant signature schemes
in current cryptography architectures. Our signature sizes use the optimisation of Re-
mark 1, but not the optimisation of Remark 2. Asymptotically, both our signature
schemes compare favorably to RSA, except in verification costs for our second signa-
ture scheme and when a small public key exponent is used in RSA. At 128 and 256-bit
security levels private keys are the same size as ECDSA private keys, and public key
sizes are between ECC and RSA public keys. Signature sizes are somewhat large, even
though asymptotically they will be smaller than RSA signatures. We find these first
estimations encouraging and hope that future work will reduce them further.

Private Key Size Public Key Size Signature Size Signing Costs Verification Costs
RSA O(λ3) O(λ3) O(λ3) Õ(λ6) Õ(λ3)

ECDSA 2λ 2λ 4λ Õ(λ2) Õ(λ2)

Section 3 2λ 20λ 6λ2 Õ(λ3) Õ(λ3)

Section 4 2λ 6λ 11λ2 Õ(λ6) Õ(λ5)

Fig. 1. Asymptotic efficiency comparison between our signature schemes, RSA and ECDSA,
as a function of the security parameter λ. All sizes are in bits and computation costs are in
bit operations. For RSA signatures we assume that small public key exponents are used, and
for ECDSA we assume that a standardized curve is used and points are represented by their
x-coordinates.

Our schemes rely on problems that can potentially resist to quantum algorithms.
However this family of problems are also are rather new in cryptography. Among all of
them, we believe that the problem of computing the endomorphism ring of a supersin-
gular elliptic curve (on which our second signature scheme relies) is the most natural
one to consider from an algorithmic theory point of view, and it was the subject of Ko-
hel’s PhD thesis in 1996. The problem is also potentially harder than Problems 3 and 4
considered in previous works (and used in our first signature scheme). Yet, even that
problem is far from having received the same scrutiny as more established cryptogra-
phy problems like discrete logarithms or integer factoring. We hope that this paper will
encourage the community to study its complexity.
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128 bit 256 bit
Private Key Public Key Signature Private Key Public Key Signature

RSA 3248 3248 3248 15424 15424 15424
ECDSA 256 256 256 512 512 512
Section 3 256 2560 311296 512 5120 1245184
Section 4 256 768 188416 512 3072 753664

Fig. 2. Concrete efficiency comparison between our signature schemes, RSA and ECDSA, at
security levels of 128 and 256 bits. For RSA we used ECRYPT II’s key length recommendations
as computed by www.keylength.com. All sizes are in bits.
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8. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. IACR Cryptology ePrint Archive, 2010:428,
2010.

9. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quan-
tum computing world. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 361–
379, 2013.

10. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem.
In Encyclopedia of Algorithms, pages 1662–1664. 2016.

26

www.keylength.com


11. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, 2004.

12. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions
from expander graphs. J. Cryptology, 22(1):93–113, 2009.

13. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for supersingular
isogeny diffie-hellman. In Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I, pages 572–601, 2016.
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A Proof of Lemma 1

We have ∏
`
ei
i <B
`i prime
ei maximal

(
`i + 1

2
√
`i

)ei
>

∏
`i<B
`i prime

(
`i + 1

2
√
`i

)
>

∏
`i<B
`i prime

(√
`i

2

)
.

Taking logarithm, using the prime number theorem and replacing the sum by an integral
we have

log
∏
`i<B
`i prime

(√
`i

2

)
=
∑
`i<B
`i prime

1

2
log `i −

∑
`i<B
`i prime

log 2 ≈ 1

2

∫ B

1

log x
1

log x
dx− B

logB
=

=
1

2
B − B

logB
≈ 1

2
B.

if B is large enough. Then, we choose c = 2, obtaining 1
2B = log p.

28


	Signature Schemes based on Supersingular Isogeny Problems

