
Signature Schemes Based On Supersingular Isogeny
Problems

Steven D. Galbraith1, Christophe Petit2, and Javier Silva2

1 Mathematics Department, University of Auckland, NZ.
s.galbraith@auckland.ac.nz

2 Mathematical Institute, Oxford University, Oxford OX2 6GG, UK.
christophe.petit@maths.ox.ac.uk,javier.silva@upf.edu

Abstract. We present the first signature schemes whose security relies on com-
putational assumptions relating to isogeny graphs of supersingular elliptic curves.
We give two schemes. The first one is obtained from an interactive identification
protocol due to De Feo, Jao and Plût. The second signature scheme uses novel
ideas that have not been used in cryptography previously, and is based on a more
standard and potentially stronger computational problem.

1 Introduction

A recent research area is cryptosystems whose security is based on the difficulty of
finding a path in the isogeny graph of supersingular elliptic curves [7, 9, 12, 18, 19].
Unlike other elliptic curve cryptosystems, the only known quantum algorithm for these
problems, due to Biasse-Jao-Sankar [5], has exponential complexity. Hence, additional
motivation for the study of these cryptosystems is that they are possibly suitable for
post-quantum cryptography.

Currently there is not a full suite of cryptographic functions available based on
isogeny assumptions. The work of Charles-Goren-Lauter [7] gave a collision-resistant
hash function. Jao-De Feo [18] gave a key exchange protocol, De Feo-Jao-Plût [12]
gave a public key encryption scheme and an interactive identification protocol, Jao-
Soukharev [19] gave an undeniable signature, and Xi-Tian-Wang [32] gave a desig-
nated verifier signature. Among the cryptographic functions not yet available, the most
obvious and important omission is digital signatures.

In this paper we present two public key signature schemes whose security relies on
computational problems related to finding a path in the isogeny graph of supersingular
elliptic curves.

The first scheme is obtained relatively simply from the De Feo-Jao-Plût [12] inter-
active identification protocol by using the Fiat-Shamir transform to turn it into a non-
interactive signature scheme. We also use a variant of the Fiat-Shamir transform due
to Unruh to obtain a post-quantum signature scheme. This scheme has the advantage
of being simple to describe, at least to a reader who is familiar with the previous work
in the subject, and easy to implement. On the other hand, it inherits the disadvantages
of [12], in particular it relies on a non-standard isogeny problem using small isogeny
degrees, reveals auxiliary points, and uses special primes.

The fastest classical attack on this scheme has heuristic running time of Õ(p1/4)
bit operations, and the fastest quantum attack (see Section 5.1 of [12]) has running
time of Õ(p1/6). The recent paper by Galbraith-Petit-Shani-Ti [15] shows that revealing
auxiliary points may be dangerous in certain contexts. It is therefore highly advisable
to build cryptographic schemes on the most general, standard and potentially hardest
isogeny problems.

Our second scheme uses completely different ideas and relies on the difficulty of
a more standard computational problem, namely the problem of computing the endo-
morphism ring of a supersingular elliptic curve (equivalently, computing an isogeny
between two given elliptic curves). This computational problem has heuristic classical
complexity of Õ(p1/2) bit operations, and quantum complexity Õ(p1/4). The scheme is
based on a sigma protocol that is very similar to the proof of graph isomorphism. One
obtains a signature scheme by applying the Fiat-Shamir transform or Unruh’s trans-
form. We now briefly sketch the main ideas behind our second scheme. The public key
is a pair of elliptic curves (E0, E1) and the private key is an isogeny φ : E0 → E1. To
interactively prove knowledge of φ one chooses a random isogeny ψ : E1 → E2 and
sends E2 to the verifier. The verifier sends a bit b. If b = 0 the prover reveals ψ. If b = 1
the prover reveals an isogeny µ : E0 → E2. In either case, the verifier checks that the
response is correct. The interaction is repeated a number of times until the verifier is
convinced that the prover knows an isogeny from E0 to E1. However, the subtlety is
that we cannot just set µ = ψ ◦ φ, as then E1 would appear on the path in the graph
from E0 to E2 and so we would have leaked the private key. The crucial idea is to use
the algorithm of Kohel-Lauter-Petit-Tignol [23] to produce an isogeny µ : E0 → E2

that is completely independent of φ. The mathematics behind the algorithm of Kohel-
Lauter-Petit-Tignol goes beyond what usually arises in elliptic curve cryptography.

The paper is organized as follows. In Section 2 we give preliminaries on isogeny
problems, random walks in isogeny graphs, security definitions and the Fiat-Shamir
transform. Sections 3 and 4 describe our two signature schemes and Section 5 concludes
the paper. In a first reading to get the intuition of our schemes without all implementa-
tion details, one can safely skip parts of the paper, namely Sections 2.2, 2.3, 2.4, 2.6,
4.3 and 4.4.

2 Preliminaries

2.1 Hard Problem Candidates Related to Isogenies

Let E,E′ be two elliptic curves over a finite field Fq . An isogeny ϕ : E → E′ is a non-
constant morphism fromE toE′ that maps the neutral element into the neutral element.
The degree of an isogeny ϕ is the degree of ϕ as a morphism. An isogeny of degree `
is called an `-isogeny. If ϕ is separable, then degϕ = # kerϕ. If there is a separable
isogeny between two curves, we say that they are isogenous. Tate’s theorem is that two
curves E,E′ over Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

An isogeny can be identified with its kernel [31]. Given a subgroup G of E, we
can use Vélu’s formulae [30] to explicitly obtain an isogeny ϕ : E → E′ with ker-
nel G and such that E′ ∼= E/G. These formulas involve sums over points in G, so

2

using them is efficient as long as #G is small. Kohel [22] and Dewaghe [11] have (in-
dependently) given formulae for the Vélu isogeny in terms of the coefficients of the
polynomial defining the kernel, rather than in terms of the points in the kernel. Given a
prime `, the torsion group E[`] contains exactly `+ 1 cyclic subgroups of order `, each
one corresponding to a different isogeny.

A composition of n separable isogenies of degrees `i for 1 ≤ i ≤ n gives an isogeny
of degree N =

∏
i `i with kernel a group G of order N . Conversely any isogeny whose

kernel is a group of smooth order can be composed as a sequence of isogenies of small
degree, hence can be computed efficiently. For any permutation σ on {1, . . . , n}, by
considering appropriate subgroups of G, one can write the isogeny as a composition of
isogenies of degree `σ(i). Hence, there is no loss of generality in the protocols in our
paper of considering chains of isogenies of increasing degree.

For each isogeny ϕ : E → E′, there is a unique isogeny ϕ̂ : E′ → E, which is
called the dual isogeny of ϕ, and which satisfies ϕϕ̂ = ϕ̂ϕ = [degϕ]. If we have two
isogenies ϕ : E → E′ and ϕ′ : E′ → E such that ϕϕ′ and ϕ′ϕ are the identity in their
respective curves, we say that ϕ,ϕ′ are isomorphisms, and that E,E′ are isomorphic.
Isomorphism classes of elliptic curves over Fq can be labeled with their j-invariant [27,
III.1.4(b)]. An isogeny ϕ : E → E′ such that E = E′ is called an endomorphism.
The set of endomorphisms of an elliptic curve, denoted by End(E), has a ring structure
with the operations point-wise addition and function composition.

Elliptic curves can be classified according to their endomorphism ring. Over the
algebraic closure of the field, End(E) is either an order in a quadratic imaginary field
or a maximal order in a quaternion algebra. In the first case, we say that the curve is
ordinary, whereas in the second case we say that the curve is supersingular. Indeed, the
endomorphism ring of a supersingular curve over a field of characteristic p is a maximal
order O in the quaternion algebra Bp,∞ ramified at p and∞.

In the case of supersingular elliptic curves, there is always a curve in the isomor-
phism class defined over Fp2 , and the j-invariant of the class is also an element of Fp2 .
A theorem by Deuring [10] gives an equivalence of categories between the j-invariants
of supersingular elliptic curves over Fp2 up to Galois conjugacy in Fp2 , and the max-
imal orders in the quaternion algebra Bp,∞ up to the equivalence relation given by
O ∼ O′ if and only if O = α−1O′α for some α ∈ B∗p,∞. Specifically, the equivalence
of categories associates to every j-invariant a maximal order that is isomorphic to the
endomorphism ring of any curve with that j-invariant. Furthermore, if E0 is an elliptic
curve with End(E0) = O0, there is a one-to-one correspondence (which we call the
Deuring correspondence) between isogenies ψ : E0 → E and left O0-modules I .

We now present some hard problem candidates related to supersingular elliptic
curves, and discuss the related algebraic problems in the light of the Deuring corre-
spondence.

Problem 1 Let p, ` be distinct prime numbers. Let E,E′ be two supersingular elliptic
curves over Fp2 with #E(Fp2) = #E′(Fp2) = (p+ 1)2, chosen uniformly at random.
Find k ∈ N and an isogeny of degree `k from E to E′.

The fastest classical algorithm known for this problem has heuristic running time of
Õ(p1/2) bit operations.

3

Problem 2 Let p, ` be distinct prime numbers. Let E be a supersingular elliptic curve
over Fp2 , chosen uniformly at random. Find k1, k2 ∈ N, a supersingular elliptic curve
E′ over Fp2 , and two distinct isogenies of degrees `k1 and `k2 , respectively, from E to
E′.

The hardness assumption of the second problem has been used in [7] to prove
collision-resistance of a proposed hash function. Slightly different versions of the first
problem, in which some extra information is provided, were used in [12] to build an
identification scheme, a key exchange protocol and a public-key encryption scheme.

More precisely, the identification protocol of De Feo-Jao-Plût [12] relies on prob-
lems 3 and 4 below (which De Feo, Jao and Plût call the Computational Supersingular
Isogeny (CSSI) and Decisional Supersingular Product (DSSP) problems). In order to
state them we need to introduce some notation. Let p be a prime of the form `e11 `

e2
2 ·f±1,

and let E0 be a supersingular elliptic curve over Fp2 . Let {R1, S1} and {R2, S2} be
bases for E0[`e11] and E0[`e22], respectively.

Problem 3 (Computational Supersingular Isogeny - CSSI) Let φ1 : E0 → E1 be
an isogeny with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1 are chosen uniformly at ran-
dom from Z/`e11 Z, and not both divisible by `1. GivenE1 and the values φ1(R2), φ1(S2),
find a generator of 〈[m1]R1 + [n1]S1〉.

The fastest known classical algorithm for this problem has heuristic running time of
Õ(`

e1/2
1) bit operations, which is Õ(p1/4) in the context of De Feo-Jao-Plût [12].

Problem 4 (Decisional Supersingular Product - DSSP) LetE0, E1 be supersingular
elliptic curves over Fp2 such that there exists an isogeny φ : E0 → E1 of degree `e11 .
Fix generators R2, S2 ∈ E0[`e22] and suppose φ(R2) and φ(S2) are given. Consider
the two distributions of pairs (E2, E3) as follows:

– (E2, E3) such that there is a cyclic group G ⊆ E0[`e22] of order `e22 and E2
∼=

E0/G and E3
∼= E1/φ(G).

– (E2, E3) where E2 is chosen at random among the curves having the same cardi-
nality as E0, and φ′ : E2 → E3 is a random `e11 -isogeny.

The problem is, given (E0, E1) and the auxiliary points (R2, S2, φ(R2), φ(S2)) , plus
a pair (E2, E3), to determine from which distribution the pair is sampled.

We stress that Problems 3 and 4 are potentially weaker than Problems 1 and 2 be-
cause special primes are used, extra points are revealed, and particularly small degree
isogenies exist between the curves. The following problem, on the other hand, offers
better foundations for cryptography based on supersingular isogeny problems.

Problem 5 Let p be a prime number. Let E be a supersingular elliptic curve over Fp2 ,
chosen uniformly at random. Determine the endomorphism ring of E.

Note that it is essential that the curve is chosen randomly in this problem, as for
special curves the endomorphism ring is easy to compute. Essentially, Problem 5 is

4

the same as explicitly computing the forward direction of Deuring’s correspondence.
This problem was studied in [22], in which an algorithm to solve it was obtained, but
with expected running time Õ(p). It was later improved by Galbraith to Õ(p

1
2), under

heuristic assumptions [14]. Interestingly, the best quantum algorithm for this problem
runs in time Õ(p

1
4), only providing a quadratic speedup over classical algorithms. This

has largely motivated the use of supersingular isogeny problems in cryptography.

Problem 6 Let p be a prime number. Let E,E′ be supersingular elliptic curves over
Fp2 , chosen uniformly at random. Find an isogeny E → E′.

Heuristically, if we can solve Problem 1 or Problem 6, then we can solve Problem 5.
If we can compute isogenies, we can fix E0 = E1 to obtain endomorphisms, and in this
case it is easy to find four endomorphisms that are linearly independent, thus generating
a subring of End(E0), and this subring is likely to be of small index so that the full ring
can be recovered.

For the converse, suppose that we can compute the endomorphism rings of both E0

andE1. The strategy is to compute a module I that is a left ideal of End(E0) and a right
ideal of End(E1) of appropriate norm, and to translate it back to the geometric setting
to obtain an isogeny. This approach motivated the quaternion `-isogeny algorithm of
Kohel-Lauter-Petit-Tignol [23, 26], which solves the following problem:

Problem 7 Let p, ` be distinct prime numbers. Let O0,O1 be two maximal orders in
Bp,∞, chosen uniformly at random. Find k ∈ N and an ideal I of norm `k such that I
is a left O0-ideal and its right order is isomorphic to O1.

The algorithm can be adapted to produce ideals of B-powersmooth norm (meaning
the norm is

∏
i `
ei
i where the `i are distinct primes and `eii ≤ B) for B ≈ 7

2 log p and
usingO(log p) different primes, instead of ideals of norm a power of `. We will use that
version in our second signature scheme.

For completeness we mention that ordinary curve versions of Problems 1 and 5 are
not known to be equivalent, and in fact there is a subexponential algorithm for comput-
ing the endomorphism ring of ordinary curves [6], whereas the best clasical algorithm
known for computing isogenies is still exponential. There is, however, a subexponen-
tial quantum algorithm for computing an isogeny between ordinary curves [8], which is
why the main interest in cryptography is the supersingular case.

2.2 Random Walks in Isogeny Graphs

Let p ≥ 5 be a prime number. There are Np := p
12 + εp supersingular j-invariants

in characteristic p, with εp = 0, 1, 1, 2 when p = 1, 5, 7, 11 mod 12 respectively. For
any prime ` 6= p, one can construct a so-called isogeny graph, where each vertex is
associated to a supersingular j-invariant, and an edge between two vertices is associated
to a degree ` isogeny between the corresponding vertices.

Isogeny graphs are regular3 with regularity degree ` + 1; they are undirected since
to any isogeny from j1 to j2 corresponds a dual isogeny from j2 to j1. Isogeny graphs

3 One needs to pay close attention to the cases j = 0 and j = 1728 when counting isogenies,
but this has no effect on our general schemes.

5

are also very good expander graphs [17]; in fact they are optimal expander graphs in
the following sense:

Definition 1 (Ramanujan graph) Let G be a k-regular graph, and let 1, λ2, · · · , λr
be the eigenvalues of the normalized adjacency matrix sorted by decreasing order of
the absolute value. Then G is a Ramanujan graph if

λ2 ≤
2
√
k − 1

k
.

This is optimal by the Alon-Boppana bound: given a family {GN} of k-regular graphs
as above, and denoting by λ2,N the corresponding second eigenvalue of each graph
GN , we have lim infN→∞ λ2,N ≥ 2

√
k−1
k . The Ramanujan property of isogeny graphs

follows from the Weil conjectures (proved by Deligne).
Let p and ` be as above, and let j be a supersingular invariant in characteristic p.

We define a random step of degree ` from j as the process of randomly and uniformly
choosing a neighbour of j in the `-isogeny graph, and returning that vertex. For a com-
posite degree n =

∏
i `i, we define a random walk of degree n from j0 as a sequence of

j-invariants ji such that ji is a random step of degree `i from ji−1. We do not require
the primes `i to be distinct.

The output of random walks in expander graphs converge quickly to a uniform
distribution. In our second signature scheme we will be using random walks of B-
powersmooth degree n, namely n =

∏
i `
ei
i , with all prime powers `eii smaller than

some bound B, with B as small as possible. To analyze the ouptut distribution of these
walks we will use the following generalization4 of classical random walk theorems [17]:

Theorem 1 (Random walk theorem). Let p be a prime number, and let j0 be a su-
persingular invariant in characteristic p. Let j be the final j-invariant reached by a
random walk of degree n =

∏
i `
ei
i from j0. Then for every j-invariant j̃ we have∣∣∣∣Pr[j = j̃]− 1

Np

∣∣∣∣ ≤∏
i

(
2
√
`i

`i + 1

)ei
.

PROOF: Let vkj be the probability that the outcome of the first k random steps is a
given vertex j, and let vk = (vkj)j be vectors encoding these probabilities. Let A`i
be the normalized adjacency matrix of the `i-isogeny graph. Clearly A`i is a stochastic
matrix, so its largest eigenvalue is 1. By the Ramanujan property the second largest
eigenvalue is smaller than 1 in absolute value, so the eigenspace associated to λ1 = 1 is
of dimension 1 and generated by the vector u := (N−1

p)j corresponding to the uniform
distribution. Let λ2i be the second largest eigenvalue of A`i in absolute value.

If step k is of degree `i we have vk = A`ivk−1. Moreover we have ||vk − u||2 ≤
λ2i||vk−1 − u||2 since the eigenspace associated to 1 is of dimension 1. Iterating on all
steps we deduce

||vk − u||2 ≤
∏
i

λei2i||v0 − u||2 ≤
∏
i

|λ2i|ei

4 Random walks theorems are usually stated for a single graph whereas our walks will switch
from one graph to another, all with the same vertex set but different edges.

6

since ||v0 − u||22 = (1− 1
Np

)2 +
Np−1
Np

(1
Np

)2 ≤ 1− 2
N + 2

N2 < 1. Finally we have∣∣∣∣Pr[j = j̃]− 1

Np

∣∣∣∣ = ||vk − u||∞ ≤ ||vk − u||2 ≤
∏
i

|λ2i|ei ≤
∏
i

(
2
√
`i

`i + 1

)ei
,

where we have used the Ramanujan property to bound the eigenvalues. �

In our security proof we will want the right-hand term to be smaller than 1
2N2

p
≈ 72

p2 ,
and at the same time we will want the powersmooth boundB to be as small as possible.
The following lemma shows that taking B ≈ 4 log p suffices asymptotically.

Lemma 1 There is a function cp = c(p) such that limp→∞ cp = 4, and, for each p,

∏
`i prime

ei:=max{e|`ei<cp log p}

(
`i + 1

2
√
`i

)ei
>
p2

72
.

We refer to Appendix A for the proof of this lemma. In our later schemes, for security
parameter λ, we will choose p such that log p = 2λ. For concrete values, in particular
for λ = 128 and λ = 256, it is easy to verify that the inequality holds if one takes the
product of all prime powers up to B = c log p, for the values c = 3.71 and c = 3.56,
respectively.

2.3 Efficient Representations of Isogeny Paths and Other Data

Our schemes require representing/transmitting elliptic curves and isogenies. In this sec-
tion we first explain how to represent certain mathematical objects appearing in our
protocol as bitstrings in a canonical way so that minimal data needs to be sent and
stored. Next, we discuss different representations of isogeny paths and their impact on
the efficiency of our signature schemes. As these paths will be sent from one party to
another, the second party needs an efficient way to verify that the bitstring received
corresponds to an isogeny path between the right curves.

Let p be a prime number. Every supersingular j-invariant is defined over Fp2 . A
canonical representation of Fp2 -elements is obtained via a canonical choice of de-
gree 2 irreducible polynomial over Fp. Canonical representations in any other extension
fields are defined in a similar way. Although there are only about p/12 supersingular
j-invariants in characteristic p, we are not aware of an efficient method to encode these
invariants into log p bits, so we represent supersingular j-invariants with the 2 log p bits
it takes to represent an arbitrary Fp2 -element.

Elliptic curves are defined by their j-invariant up to isomorphism. Hence, rather
than sending the coefficients of the elliptic curve equation, it suffices to send the j-
invariant. For any invariant j there is a canonical elliptic curve equation Ej : y2 =
x3 + 3j

1728−jx+ 2j
1728−j when j 6= 0, 1728, y2 = x3 + 1 when j = 0, and y2 = x3 + x

when j = 1728. The last one will be of particular interest in our second signature
scheme.

7

We now turn to representing chains E0, E1, . . . , En of isogenies φi : Ei−1 → Ei
each of prime degree `i where 1 ≤ i ≤ n. Here `i are always very small primes.
A useful feature of our protocols is that isogeny chains can always be chosen such
that the isogeny degrees are increasing `i ≥ `i−1. First we need to discuss how to
represent the sequence of isogeny degrees. If all degrees are equal to a constant ` (e.g.,
` = 2) then there is nothing to send. If the degrees are different then the most compact
representation seems to be to compute and send

N =

n∏
i=1

`i.

The receiver can recover the sequence of isogeny degrees from N by factoring using
trial division and ordering the primes by size. This representation is possible due to our
convention the isogeny degrees are increasing and since the degrees are all small.

Now we discuss how to represent the curves themselves in the chain of isogenies.
We give several methods.

1. There are two naive representations. One is to send all the j-invariants ji = j(Ei)
for 0 ≤ i ≤ n. This requires 2(n+ 1) log2(p) bits.
Note that the verifier is able to check the correctness of the isogeny chain by check-
ing that Φ`i(ji−1, ji) = 0 for all 1 ≤ i ≤ n, where Φ`i is the `i-th modular
polynomial. The advantage of this method is that verification is relatively quick
(just evaluating a polynomial that can be precomputed and stored).
The other naive method is to send the x-coordinate of a kernel point Pi ∈ Eji
on the canonical curve. Given ji−1 and the kernel point Pi−1 one computes the
isogeny φi : Eji−1

→ Eji using the Vélu formula and hence deduces ji. Note that
the kernel point is not unique (indeed, in some rare cases there can be more than
one subgroup that corresponds to an isogeny Eji−1 → Eji).
Both these methods require huge bandwidth.
A refinement of the second method is used in our first signature scheme, where ` is
fixed and one can publish a point that defines the kernel of the entire isogeny chain.
Precisely a curve E and points R,S ∈ E[`n] are fixed. Each integer 0 ≤ α < `n

defines a subgroup 〈R+[α]S〉 and hence an `n isogeny. It suffices to send α, which
requires log2(`n) bits. In the case ` = 2 this is just n bits, which is smaller than all
the other suggestions in this section.

2. One can improve upon the naive method in several simple ways. One method is to
send every second j-invariant. The Verifier accepts this as a valid path if, for all odd
integers i, the greatest common divisor over Fp2 [y]

gcd(Φ`i(ji−1, y), Φ`i+1(y, ji+1))

is a linear polynomial (y − α) for some α (which is therefore ji).
Another method is to send only some least significant bits (more than log2(`i+1) of
them) of the ji instead of the entire value. The verifier reconstructs the isogeny path
by factoring Φ`i(ji−1, y) over Fp2 (it will always split completely in the supersin-
gular case) and then selecting ji to be the root that has the correct least significant
bits.

8

3. An optimal compression method seems to be to define a well-ordering on Fp2 (e.g.,
lexicographic order on the binary representation of the element). Instead of ji one
sends the index k such that when the `i+1 roots of Φ`i(ji−1, y) are written in order,
ji is the k-th root. It is clear that the verifier can reconstruct the value ji and hence
can reconstruct the whole chain from this information. The sequence of integers k
can be encoded as a single integer in terms of a “base

∏i
j=1(`i+1)” representation.

If the walk is non-backtracking and the primes `i are repeated then one can remove
the factor (y − ji−2) that corresponds to the dual isogeny of the previous step, this
can save some bandwidth.
We call this method “optimal” since it is hard to imagine doing better than log2(`i+
1) bits for each step in general.5 Though we have no proof that one cannot do bet-
ter. However, note that the verifier now needs to perform polynomial factorisation,
which may cause some overhead in a protocol. Note that in the case where all
`i = 2 and the walk is non-backtracking then this method also requires n bits,
which matches the method we use in our first signature scheme (mentioned in item
1 above).

4. A variant of the optimal method is to use an ordering on points/subgroups rather
than j-invariants. At each step one sends an index k such that the isogeny φ :
Ei−1 → Ei is defined by the k-th cyclic subgroup of Eji−1 [`i]. Again the verifier
can reconstruct the path, but this requires factoring `i-division polynomials.
To be precise: Given a canonical ordering on the field of definition of E[`], one
can define a canonical ordering of the cyclic kernels, hence represent them by a
single integer in {0, . . . , `}. One can extend this canonical ordering to kernels of
composite degrees in various simple ways (see also [3, Section 3.2]). If two curves
are connected by two distinct isogenies of the same degree then either one can be
chosen (it makes no difference in our protocols), so the ambiguity in exceptional
cases is never a problem for us.
In practice, since these points may be defined over an extension of Fp2 , we believe
that ordering the roots of Φ`i(ji−1, y) is significantly more efficient than ordering
kernel subgroups.

When p = 3 mod 4, the quaternion algebra Bp,∞ ramified at p and ∞ can be
canonically represented as Q〈i, j〉, where i2 = −1, j2 = −p and k := ij = −ji. The
maximal order O0 with Z-basis {1, i, 1+k

2 , i+j
2 } corresponds to the curve E0 with j-

invariant j0 := 1728 under Deuring’s correspondence, and there is an isomorphism of
quaternion algebras θ : Bp,∞ → End(E0)⊗Q sending (1, i, j,k) to (1, φ, π, πφ) where
π : (x, y) → (xp, yp) is the Frobenius endomorphism, and φ : (x, y) → (−x, ιy) with
ι2 = −1 mod p.

We now give a brief analysis of the complexity of the operations, assuming fast
(quasi-linear) modular and polynomial arithmetic.

As discussed above, an isogeny step of prime degree ` can be described by a sin-
gle integer in {0, . . . , `}. Similarly, by combining integers in a product, an isogeny of
degree

∏
i `
ei
i can be described by a single positive integer smaller than

∏
i(`i + 1)ei .

5 In the most general case, when all primes `i are distinct, then there are
∏
i(`i + 1) possi-

ble isogeny paths and thus one cannot expect to represent an arbitrary path using fewer than
log2(

∏
i `i) bits.

9

This integer can define either a list of subgroups (specified in terms of some order-
ing), or a list of supersingular j-invariants (specified in terms of an ordering on the
roots of the modular polynomial). In the first case, the verifier will need at each step
given a j-invariant to compute the curve equation, then its full `i torsion (which may
be over a large field extension), then to sort with respect to some canonical ordering the
cyclic subgroups of order `i to identify the correct one, and finally to compute the next
j-invariant with Vélu’s formulae [30]. In the second case the verifier will need at each
step given a j-invariant, to specialize one variable of the `i-th modular polynomial, then
to compute all roots of the resulting univariate polynomial and finally to sort the roots
to identify the correct one. The second method is more efficient as it does not require
running Vélu’s formulae over some large field extension, and the root-finding and sort-
ing routines are applied on smaller inputs. We assume that the modular polynomials are
precomputed.

In our second signature scheme we will have `eii = O(log p). The cost of com-
puting an isogeny increases with the size of `i. Hence it suffices to analyse the larger
case, for which ei = 1 and `i = O(log p). Assuming precomputation of the modular
polynomials and using [29] for polynomial factorization, the most expensive part of
an isogeny step is evaluating the modular polynomials Φ`i(x, y) at x = ji−1: as these
polynomials are bivariate with degree `i in each variable they have O(`2i) monomials
and so this requires O(log2 p) field operations for a total cost of Õ(log3 p) bit opera-
tions since j-invariants are defined over Fp2 . In our first signature scheme based on the
De Feo-Jao-Plût protocol we have `i = O(1) so each isogeny step costs Õ(log p) bit
operations.

Alternatively, isogeny paths can be given as a sequence of j-invariants. To verify
the path is correct one still must compute Φ`i(ji−1, ji), which still requires Õ(log p) bit
operations. However, in practice it would be much quicker to not require root-finding
algorithms. Also, all the steps can be checked in parallel, and all the steps of a same
degree are checked using the same polynomial, so we expect many implementation
optimizations to be possible.

2.4 Identification Schemes and Security Definitions

An identification scheme is an interactive protocol between two parties (a Prover and a
Verifier). We use the terminology and notation of Abdalla-An-Bellare-Namprempre [1]
(also see Bellare-Poettering-Stebila [4]). We also introduce a notion of “recoverability”
which is implicit in the Schnorr signature scheme and seems to be folklore in the field.

Definition 1. A canonical identification scheme is ID = (K,P,V, c) where K is a
randomised algorithm (key generation) that on input a security parameter λ outputs a
pair (PK, SK); P is an algorithm taking input SK, random coins r and state information
ST and returns a message, c is the length of the challenge (a function of the parameter
k) and V is a deterministic verification algorithm that takes as input PK and a transcript
and outputs 0 or 1. A transcript of an honest execution of the scheme ID is the sequence:
CMT ← P(SK, r), CH ← {0, 1}c, RSP ← P(SK, r, CMT‖CH). On an honest execution
we require that V(PK, CMT‖CH‖RSP) = 1.

10

An impersonator for ID is an algorithm I that plays the following game: I takes
as input a public key PK and a set of transcripts of honest executions of the scheme
ID; I outputs CMT, receives CH ← {0, 1}c and outputs RSP. We say that I wins if
V(PK, CMT‖CH‖RSP) = 1. The advantage of I is |Pr(I wins)− 1

2c |. We say that ID is
secure against impersonation under passive attacks if the advantage is negligible for all
proababilistic polynomial-time adversaries.

An ID-scheme ID is non-trivial if c ≥ λ.
An ID-scheme is recoverable if there is a deterministic algorithm Rec such that for

any transcript CMT‖CH‖RSP of an honest execution we have Rec(PK, CH, RSP) = CMT.

One can also formulate an ID-scheme as a special case of a sigma-protocol with
respect to the relation given by (PK, SK) ← K, where we think of SK as a witness. In
the language of sigma protocols the following properties are standard:

– Correctness (or completeness): if the prover knows the secret, then the verifier
will accept.

– Soundness: if an adversary does not know the secret SK, he should not be able to
convince a verifier.

– Honest Verifier Zero-knowledge: A transcript of an honest execution does not
reveal any information about the secret.

To formalise soundness, we use the notion of n-special soundness, which essentially
says that given a fixed commitment and n valid answers to n different challenges, there
exists an algorithm to recover the witness efficiently. This captures the idea that if the
prover had not known the secret, he would not have been able to produce valid answers.
Honest verifier zero-knowledge is proved by showing that one can simulate transcripts
of honest executions without knowledge of SK.

For future reference we give precise definitions for two of these properties.

Definition 2. Let ID = (K,P,V, c) be an identification scheme, viewed as a sigma
protocol. Let R be the relation (PK, SK) given by the outputs of the key generation
function K.

– ID is n-special sound if there exists a probabilistic polynomial time algorithm X
such that for all probabilistic polynomial time adversaries A, we have∣∣∣∣∣∣∣Pr

 PK ← K(1λ); (PK, CMT, {CHi}ni=1, {RSPi}ni=1)← A(PK);

V(PK, CMT‖CHi‖RSPi) = 1 ∀i ∈ {1, . . . , n};
SK ← X (PK, CMT, {CHi}ni=1, {RSPi}ni=1) : (PK, SK) ∈ R

− 1

∣∣∣∣∣∣∣ ≤ negl(λ).

– ID is honest verifier zero-knowledge if there exists a probabilistic polynomial time
simulator S such that for all probabilistic polynomial time adversaries A, we have

|Pr[(PK, SK)← K(1λ), r ← $; CH ← A(PK); CMT ← P(SK, r);

RSP ← P(SK, r, CMT‖CH) : A(CMT, RSP) = 1]

−Pr[PK ← K(1λ); CH ← A(PK); (CMT, RSP)← S(PK, CH) : A(CMT, RSP) = 1]| ≤ negl(λ).

11

One can transform any ID scheme into a non-trivial scheme by running t sessions
in parallel: One first generates CMTi ← P(SK, ri) for 1 ≤ i ≤ t. One then samples
CH ← {0, 1}ct and parses it as CHi ∈ {0, 1}c for 1 ≤ i ≤ t. Finally one computes
RSPi ← P (SK, ri, CMTi‖CHi). We define

V(PK, CMT1‖ · · · CMTt‖CH‖RSP1‖ · · · ‖RSPt) = 1

if and only if V(PK, CMTi‖CHi‖RSPi) = 1 for all 1 ≤ i ≤ t. The successful cheating
probability is then improved to 1/2ct, which is non-trivial when t ≥ λ/c.

2.5 Signatures and the Fiat-Shamir Transform

For signature schemes we use the standard definition of existential unforgeability under
chosen message attacks [20] (we sometimes abbreviate this to secure). An adversary
can ask for polynomially many signatures of messages of his choice to a signing oracle
SignSK(·). Then, the attack is considered successful if the attacker is able to produce a
valid pair of message and signature for a message different from those queried to the
oracle.

We now discuss the Fiat-Shamir transform [13] to build a signature scheme from an
identification scheme. The idea is to make the interactive protocol ID = (K,P,V, c)
non-interactive by using a random oracle to produce the challenges. Suppose the proto-
col IDmust be executed in parallel t times to be non-trivial (with soundness probability
1/2tc). Let H be a random oracle that outputs a bit string of length ct.

– (PK, SK)← K(λ): this is the same as in the identification protocol. The public key
and secret key are the public key and the secret key from key generation algorithm
K of the identification protocol.

– Sign(SK,m): Compute the commitments CMTi ← P(SK, ri) for 1 ≤ i ≤ t.
Compute h = H(m, CMT1‖ · · · ‖CMTt). Parse h as the t values CHi ∈ {0, 1}c.
Compute RSPi ← P(SK, ri, CMTi‖CHi) for 1 ≤ i ≤ t. Output the signature
σ = (CMT1, . . . , CMTt, RSP1, . . . , RSPt).

– Verify(m,σ, PK): compute h = H(m, CMT1‖ · · · ‖CMTt). Parse h as the t values
CHi ∈ {0, 1}c. Check that V(PK, CMTi‖CHi‖RSPi) = 1 for all 1 ≤ i ≤ t. If V
returns 1 for all i then output 1, else output 0.

Abdalla-An-Bellare-Namprempre [1] (also see Bellare-Poettering-Stebila [4]) have
proved the security of the Fiat-Shamir transform to a high degree of generality.

Theorem 2. Let ID be a non-trivial canonical identification protocol that is secure
against impersonation under passive attacks. Let S be the signature scheme derived
from ID using the Fiat-Shamir transform. Then S is secure against chosen-message
attacks in the random oracle model.

Remark 1. If the ID-scheme ID is recoverable then one can obtain a more compact
signature scheme. Recall that “recoverable” means there is a deterministic algorithm
Rec such that for any transcript of an honest execution we have Rec(PK, CH, RSP) =
CMT. We now describe the signature scheme.

12

– (PK, SK)← K(λ).
– Sign(SK,m): Compute the commitments CMTi ← P(SK, ri) for 1 ≤ i ≤ t.

Compute h = H(m, CMT1‖ · · · ‖CMTt). Parse h as the t values CHi ∈ {0, 1}c.
Compute RSPi ← P(SK, ri, CMTi‖CHi) for 1 ≤ i ≤ t. Output the signature
σ = (h, RSP1, . . . , RSPt).

– Verify(m,σ, PK): Parse h as the t values CHi ∈ {0, 1}c. Compute CMTi = Rec(PK, CHi, RSPi)
for 1 ≤ i ≤ t. Check that h = H(m, CMT1‖ · · · ‖CMTt) and that V(PK, CMTi‖CHi‖RSPi) =
1 for all 1 ≤ i ≤ t. If V returns 1 for all i then output 1, else output 0.

An attacker against this signature scheme can be turned into an attacker on the
original signature scheme (and vice versa), which shows that both schemes have the
same security. This is addressed in the following result.

Theorem 3. Let ID be a non-trivial canonical recoverable identification protocol that
is secure against impersonation under passive attacks. Let S be the signature scheme
derived from ID using the Fiat-Shamir transform of Remark 1. Then S is secure against
chosen-message attacks in the random oracle model.

PROOF: Let A be an algorithm that forges signatures against the signature scheme
of Remark 1. We will convert A into an algorithm B that forges signatures for the
original Fiat-Shamir signature scheme that is proved secure in Theorem 2.

Let B be given as input a public key PK, and call A on that key. When A makes a
sign query or a hash query, pass these on as queries made by B. Results of hash queries
are forwarded to A. When B gets back a signature (CMT1, . . . , CMTt, RSP1, . . . , RSPt)
for message m we compute h = H(m, CMT1‖ . . . ‖CMTt,) and return to A the signa-
ture σ = (h, RSP1, . . . , RSPt).

Finally A outputs a forgery σ∗ = (h∗, RSP∗1, . . . , RSP∗t) on message m. This is dif-
ferent from previous outputs of the sign oracle, which means that σ 6= (h, RSP1, . . . , RSPt)
for every output of the sign oracle. Note that this non-equality means either RSP∗i 6=
RSPi for some i or h 6= h∗. Compute CMT∗i = Rec(PK, CH∗i , RSP∗i) for 1 ≤ i ≤ t and
return (CMT∗1, . . . , CMT∗t , RSP∗1, . . . , RSP∗t) as a forgery on message m for the original
scheme. We claim that this is also distinct from all other signatures that have been re-
turned to B: if equal to some previous signature (CMT1, . . . , CMTt, RSP1, . . . , RSPt) on
message m then RSP∗i = RSPi and h∗ = H(m, CMT∗1‖ . . . ‖CMT∗t) = h, which violates
the fact that σ∗ was a valid forgery on m. �

2.6 Post-Quantum Fiat Shamir Transformations

We now discuss variants of the Fiat-Shamir transform that provide full security against
quantum adversaries. This is an active area of research and more efficient transforms
may yet be discovered.

Unruh [28] has given a transform that converts a secure interactive identification
scheme into a signature scheme that is secure against a quantum adversary. His trans-
form is also discussed by Goldfeder, Chase and Zaverucha [16]. The basic transform
(Figure 1 of [28]) takes a identification scheme ID = (K,P, V, c) with keys (PK, SK)

13

given as a sigma protocol (to be executed in parallel t times) with transcripts CMT ←
P (SK, r), CH ← {0, 1}c, RSP ← P (SK, r, CMT‖CH). The additional requirement is
a random permutation G and a hash function H that outputs tc bits. The signature
scheme has public key PK and private key SK. The signer computes the commitments
CMTi ← P (SK, ri) for 1 ≤ i ≤ t. Now, for every possible challenge CHj ∈ {0, 1}c
compute all responses RSPi,j ← P (SK, ri, CMTi‖CHj) and gi,j = G(RSPi,j) (note
that this is t2c values). Let h = H(m, CMT1, . . . , CMTt, g1,1, . . . , gt,2c) and parse as
CH1, . . . , CHt ∈ {0, 1}c. The signature is

σ = (CMT1, . . . , CMTt, RSP1,CH1
, . . . , RSPt,CHt

, g1,1, . . . , gt,2c).

The verification algorithm is obvious.
Theorems 13 and 18 of [28] prove that if ID is honest-verifier zero knowledge and

has n-special soundness then the resulting signature scheme is existentially unforgeable
under a chosen-message attack.

3 First Signature Scheme

This section presents a signature scheme obtained from the interactive identification
protocol of De Feo-Jao-Plût [12]. First we describe their scheme.

3.1 De Feo-Jao-Plût Identification Scheme

Let p be a large prime of the form `e11 `
e2
2 ·f±1, where `1, `2 are small primes (typically

`1 = 2 and `2 = 3). We start with a supersingular elliptic curve E0 defined over Fp2
with #E0(Fp2) = `e11 `

e2
2 ·f and a primitive `e11 -torsion point P1. DefineE1 = E0/〈P1〉

and denote the corresponding `e11 -isogeny by φ : E0 → E1.
LetR2, S2 be a pair of generators ofE0[`e22]. The public key is (E0, E1, R2, S2, φ(R2), φ(S2)).

The private key is the point P1. The interaction goes as follows:

1. The prover chooses a random primitive `e22 -torsion point P2 as P2 = aR2 + bS2

for some integers 0 ≤ a, b < `e22 . Note that φ(P2) = aφ(R2) + bφ(S2). The prover
defines the curves E2 = E0/〈P2〉 and E3 = E1/〈φ(P2)〉 = E0/〈P1, P2〉, and uses
Vélu’s formulae to compute the following diagram.

E0 E1

E2 E3

φ

ψ′ψ

φ′

The prover sends E2 and E3 to the verifier.

14

2. The verifier challenges the prover with a random bit CH ← {0, 1}.
3. If CH = 0, the prover reveals P2 and φ(P2).

If CH = 1, the prover reveals ψ(P1).

In both cases, the verifier accepts the proof if the points revealed have the right
order and are the kernels of isogenies between the right curves. We iterate this process
to reduce the cheating probability.

The following theorem is the main security result for this section. The basic ideas
of the proof are by De Feo-Jao-Plût [12], but we give a slightly different formalisation
that is required for our signature proof.

Theorem 4. If Problems 3 and 4 are computationally hard, then the interactive proto-
col defined above, repeated t times in parallel for a suitable parameter t, is a non-trivial
canonical identification protocol that is secure against impersonation under passive at-
tacks.

PROOF: It is straightforward to check that the scheme is correct (in other words,
the sigma protocol is complete). We now show that parallel executions of the signma
protocol are sound and honest verifier zero knowledge.

For soundness: Suppose A is an adversary that takes as input the public key and
succeeds in the identification protocol with noticeable probability ε. Given a challenge
instance (E0, E1, R1, S1, R2, S2, φ(R2), φ(S2)) for Problem 3 we run A on this tuple
as the public key. In the first round, A outputs commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t.
We then send a challenge CH ∈ {0, 1}t to A and, with probability ε outputs a response
RSP that satisfies the verification algorithm. Now, we use the standard replay technique:
Rewind A to the point where it had output its commitments and then respond with a
different challenge CH′ ∈ {0, 1}t. With probability ε, A outputs a valid response RSP′.

Now, choose some index i such that CHi 6= CH′i. We now restrict our focus to
the components CMTi, RSPi and RSP′i. It means A sent E2, E3 and can answer both
challenges CH = 0 and CH = 1 successfully. Hence we have the following diagram.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

From this, one has an explicit description of an isogeny φ̃ = ψ̂′ ◦ φ′ ◦ ψ from E0

to E1. The degree of φ̃ is `e11 `
2e2
2 . One can determine ker(φ̃) ∩ E0[`e11] by iteratively

testing points in E0[`j1] for j = 1, 2, Hence, one determines the kernel of φ, as
desired. This proves soundness.

Now we show honest verifier zero-knowledge. For this it suffices to show that one
can simulate transcripts of the protocol without knowing the private key. When b = 0

15

we simulate correctly by choosing u, v ∈ Z`e22 and setting E2 = E0/〈uR2 + vS2〉
and E3 = E1/〈uφ(R2) + vφ(S2)〉. When b = 1 we choose a random curve E2 and
a random point R ∈ E2[`e11] and we publish E2, E3 = E2/〈R〉 and answer with the
point R (hence defining the isogeny). Although (E2, E3) are a priori not distributed
correctly, the computational assumption of Problem 4 implies it is computationally hard
to distinguish the simulation from the real game. Hence the scheme has computational
zero knowledge.

Finally we prove the identification scheme is secure against impersonation under
passive attacks. Let I be an impersonator for the scheme. Given a challenge instance
(E0, E1, R1, S1, R2, S2, φ(R2), φ(S2)) for Problem 3 we run I on this tuple as the pub-
lic key. We are required to provide I with a set of transcripts of honest executions of the
scheme, but this is done using the simulation method used to show the sigma protocol
has honest verifier zero knowledge. If I is able to succeed in its impersonation game
then it breaks the soundness of the sigma protocol. We have already shown that if an
adversary can break soundness then we can solve Problem 3. This completes the proof.
�

3.2 Signature Scheme based on De Feo-Jao-Plût Identification Protocol

One can apply the Fiat-Shamir transform from Section 2.5 to the De Feo-Jao-Plût iden-
tification scheme to obtain a signature scheme. One can also check that the scheme is
recoverable and so one can apply the Fiat-Shamir variant from Remark 1. In this sec-
tion we fully specify the signature scheme resulting from the transform of Remark 1,
together with some optimisations.

Our main focus is to minimise signature size. Hence, we use the most space-efficient
variant of the Fiat-Shamir transform. Next we need to consider how to minimise the
amount of data that needs to be sent to specify the isogenies. Several approaches were
considered in Section 2.3. For the pair of vertical isogenies it seems to be most com-
pact to represent them using a representation of the kernel (this is more efficient than
specifying two paths in the isogeny graph), however this requires additional points in
the public key. For the horizontal isogeny there are several possible approaches, but
we think the most compact is to use the representation in terms of specifying roots of
the modular polynomial. One can easily find other implementations that allow different
tradeoffs of public key size versus signature size.

Key Generation Algorithm: On input a security parameter λ generate a prime p with at
least 4λ bits, such that p = `e11 `

e2
2 f±1, with `1, `2, f small (ideally f = 1, `1 = 2, `2 =

3) and `e11 ≈ `e22 . Choose6 a supersingular elliptic curve E0 with j-invariant j0. Fix
points R2, S2 ∈ E0(Fp2)[`e22] and a random primitive `e11 -torsion point P1 ∈ E0[`e11].
Compute the isogeny φ : E0 → E1 with kernel generated by P1, and let j1 be the j-
invariant of the image curve. Set R′2 = φ(R2), S′2 = φ(S2). Choose a hash function H

6 Costello-Longa-Naehrig [9] choose a special j-invariant in Fp for efficiency reasons in their
implementation of the supersingular key exchange protocol. One could also choose a random
j-invariant by performing a random isogeny walk from any fixed j-invariant.

16

with t = t(λ) bits of output (depending on the security requirements we may choose t =
λ or t = 2λ). The secret key is P1, and the public key is (p, j0, j1, R2, S2, R

′
2, S
′
2, H).

One can reduce the size of the public key by using different representations of isogeny
paths, but for simplicity we use this variant.

Signature Algorithm: For i = 1, . . . , t, choose random integers 0 ≤ αi < `e22 . Compute
the isogeny ψi : E0 → E2,i with kernel generated byR2+[αi]S2 and let j2,i = j(E2,i).
Compute the isogeny ψ′i : E1 → E3,i with kernel generated by R′2 + [αi]S

′
2 and let

j3,i = j(E3,i). Compute h = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) and parse the output
as t challenge bits bi. For i = 1, . . . , t, if bi = 0 then set zi = αi. If bi = 1 then compute
ψi(P1) and compute a representation zi of the j-invariant j2,i ∈ Fp2 and the isogeny
with kernel generated by ψi(P1) (for example, as a sequence of integers representing
which roots of the `1-division polynomial to choose at each step of a non-backtracking
walk, or using a compact representation of ψi(P1) in reference to a canonical basis of
E2,i[`

e1
1]). Return the signature σ = (h, z1, . . . , zt).

Verification Algorithm: On input a message m, a signature σ and a public key PK,
recover the parameters p,E0, E1. For each 1 ≤ i ≤ t, using the information provided
by zi, one recomputes the j-invariants j2,i, j3,i. In the case bi = 0 this is done using
zi = αi by computing the isogeny from E0 with kernel generated by R2 + [αi]S2 and
the isogeny from E1 with generated by R′2 + [αi]S

′
2. When bi = 1 then the value j2,i is

provided as part of zi, together with a description of the isogeny from E2,i to E3,i.
One then computes

h′ = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t)

and checks that the value equals h from the signature. The signature is accepted if this
is true and is rejected otherwise.

Theorem 5. If Problems 3 and 4 are computationally hard then the first signature
scheme is secure in the random oracle model under a chosen message attack.

PROOF: This follows immediately from Theorem 3 and Theorem 4. �

One can also apply the Unruh transform described in Section 2.6 to obtain a signa-
ture scheme that is proven secure against quantum adversaries.

Theorem 6. If Problems 3 and 4 are computationally hard for a quantum computer
then the signature scheme obtained from the Unruh transform on the sigma protocol of
Section 3.1 is a secure signature scheme against quantum adversaries in the random
oracle model.

Efficiency As isogenies are of degree roughly
√
p, the scheme requires to use primes

p of size 4λ to defeat meet-in-the-middle attacks. Assuming H is some fixed hash
function and therefore not sent, the secret key is simply x(P1) ∈ Fp2 and so requires
2 log p = 8λ bits.

The public key is p and then j0, j1, x(R2), x(S2), x(R′2), x(S′2) ∈ Fp2 which re-
quires 13 log2(p) ≈ 52λ bits. The signature size is analysed in Lemma 2.

17

In terms of computational complexity. The basic operations are repeatedO(λ) times
(one for each challenge bit) and each operation requires computing isogenies that are
a composition of around O(λ) isogenies of degree `1 or `2, each of which is a small
number of field operations. Assuming quasi-linear cost Õ(log(p2)) = Õ(λ) for the
field operations, the computational complexity of the signing and verifying algorithms
is Õ(λ3) bit operations.

Remark 2. The question of the output length t of the hash function depends on the
security requirements. For non-repudiation it is necessary that H be collision-resistant,
and so one takes t = 2λ. But if one is only concerned with security against forgery then
one can take t = λ. This is similar to the case of Schnorr signatures, as mentioned by
Schnorr and discussed in detail by Neven-Smart-Warinschi [24]. In both settings, the
choice of hash function should be made carefully.

Lemma 2 The average signature size of this scheme is

t + t
2dlog2(`e22)e+ t

2 (2dlog2(p)e+ dlog2(`e11)e)

bits. The minimum signature size for λ bits of security is approximately 6λ2 bits. If non-
repudiation is required then the minimum signature size is approximately 12λ2 bits.

PROOF: On average half the bits bi of the hash value are zero and half are one.
When bi = 0 we send an integer αi such that 0 ≤ αi < `e22 , which requires dlog2(`e22)e
bits. When bi = 1 we need to send j2,i ∈ Fp2 , which requires 2dlog2(p)e bits, followed
by a representation of the isogeny. One can represent a generator of the kernel of the
isogeny with respect to some canonical generators P ′1, Q

′
1 of E2,i[`

e1
1] as βi such that

0 ≤ βi < `e11 , thus requiring dlog2(`e11)e bits. Alternatively one can represent the non-
backtracking sequence of j-invariants in terms of an ordering on the roots of the `1-th
modular polynomial. This also can be done in dlog2(`e11)e bits.

For security level λ one can take t = λ, `e11 ≈ `e22 ≈ 22λ and so p ≈ 24λ. Hence
the signature size is, at best, approximately (λ/2)(2λ+ 8λ+ 2λ) = 6λ2 bits. �

4 Second Signature Scheme

We now present our main result. The main advantage of this scheme compared with the
one in the previous section is that its security is based on the general problem of com-
puting an isogeny between two supersingular curves, or equivalently on computing the
endomorphism ring of a supersingular elliptic curve. Unlike the scheme in the previous
section, the prime has no special property and no auxiliary points are revealed.

4.1 Identification Scheme Based on Endomorphism Ring Computation

The concept is similar to the graph isomorphism zero-knowledge protocol, in which
we reveal one of two graph isomorphisms, but never enough information to deduce the
secret isomorphism.

18

As recalled in Section 2.3, although it is believed that computing endomorphism
rings of supersingular elliptic curves is a hard computational problem in general, there
are some particular curves for which it is easy. Therefore let E0 be a curve for which
computing the endomorphism ring is easy. Take a random isogeny (walk in the graph)
ϕ : E0 → E1 and, using this knowldege, compute End(E1). The public information
is (E0, E1) and the secret is End(E1). Under the assumption that computing the endo-
morphism ring is hard, the secret key is secure.

Our scheme will require three algorithms, that are explained in detail in later sec-
tions.

Translate isogeny path to ideal: Given E0, O0 = End(E0) and a chain of isogenies
from E0 to E1, to compute O1 = End(E1) and a left-O0-ideal I whose right order
is O1.

Find new path: Given an ideal I corresponding to an isogeny E0 → E2, to produce
a new ideal J corresponding to a “random” isogeny E0 → E2 of powersmooth
degree.

Translate ideal to isogeny path: GivenE0, O0, E2, I to compute a sequence of prime
degree isogenies giving the path from E0 to E2.

Figure 1 gives the interaction between the prover and the verifier. Let L be the
product of prime powers `e up to B = 4 log(p). In other words, let `1, . . . , `r be the list
of all primes up to B and let L =

∏r
i=1 `

ei
i where `eii ≤ B < `ei+1

i . One can see that
this is a canonical, recoverable identification protocol, but it is not non-trivial.

1. The prover performs a random walk of degree L in the graph, obtaining a curve E2 and an
isogeny ψ : E1 → E2, and reveals E2 to the verifier.

2. The verifier challenges the prover with a random bit b← {0, 1}.
3. If b = 0, the prover answers with ψ.

If b = 1, the prover does the following:
– Compute End(E2) and translate the isogeny path between E0 and E2 into a corre-

sponding ideal I giving the path in the quaternion algebra.
– Use the powersmooth version of the quaternion `-isogeny algorithm to compute another

path between End(E0) and End(E2) in the quaternion algebra, which is independent
of E1, represented by an ideal J .

– Translate the ideal J to an isogeny path η from E0 to E2.
4. The verifier accepts the proof if the answer to the challenge is indeed an isogeny between
E1 and E2 or between E0 and E2, respectively.

Fig. 1. New Identification Scheme

The isogenies involved in this protocol are summarized in the following diagram:

19

E0 E1

E2

ϕ

ψ
η

The two translation algorithms mentioned above in the b = 1 case will be described
in Section 4.4. They rely on the fact that End(E0), End(E1) and End(E2) are known.
The algorithms are efficient when the degree of the random walk is powersmooth. For
this reason all isogenies in our protocols will be of powersmooth degree. The pow-
ersmooth version of the quaternion isogeny algorithm of Kohel-Lauter-Petit-Tignol will
be described and analyzed in Section 4.3. The random walks are taken of sufficiently
large degree such that their output has close to uniform distribution, by Theorem 1 and
Lemma 1.

We repeat the process to reduce the cheating probability. The computational hard-
ness of Problem 5 remains essentially the same if the curves are chosen according to a
distribution that is close to uniform. We can then prove:

Theorem 7. Let λ be a security parameter and t ≥ λ. If Problem 6 is computationally
hard, then the identification scheme obtained from t parallel executions of the protocol
in Figure 1 is a non-trivial, canonical, recoverable identification scheme that is secure
against impersonation under passive attacks.

The advantage of this protocol over the protocol proposed in the previous section is
that it relies on a more standard and potentially harder computational problem.

In the rest of this section we first give a proof of Theorem 7, then we provide details
of the algorithms involved in our scheme, and finally in Section 4.5 we describe the
resulting signature scheme.

4.2 Proof of Theorem 7

We shall prove that the protocol in Figure 1 is complete, 2-special sound and zero-
knowledge.

Completeness. Let ϕ be an isogeny between E0 and E1 ofB-powersmooth degree,
for B = O(log p). If the challenge received is b = 0, it is clear that the prover knows
a valid isogeny ψ : E1 → E2, so the verifier accepts the proof. If b = 1, the prover
follows the procedure describe above and the verifier accepts. In the next subsections
we will show that this procedure is polynomial time.

2-special soundness. Let A be a forger against the identification scheme that plays
the 2-soundness game specified in Definition 2. We describe an extractor algorithm
that takes two curves (E0, E1) and computes a path between them. Run A on input
(E0, E1). ThenA outputs (CMT, {CH1, CH2}, {RSP1, RSP2}) such that V(PK, CMT‖CHi‖RSPi) =

20

1 for all i ∈ {1, . . . , n}. Since CH1 6= CH2 there is a location j such that CH1,j 6= CH2,j .
The corresponding components of the responses RSP1 and RSP2 therefore give two iso-
genies ψ : E1 → E2, η : E0 → E2. Given these two valid answers an extraction algo-
rithm can compute an isogeny φ : E0 → E1 as φ = ψ̂ ◦ η, where ψ̂ is the dual isogeny
of ψ. The extractor outputs φ, which satisfies the relation (E0, E1, φ : E0 → E1)
corresponding to solutions of Problem 6. This is summarized in the following diagram.

E0 E1

E2

ψ
η

Honest-verifier zero-knowledge. We shall prove that there exists a probabilistic
polynomial time simulator S that outputs transcripts indistinguishable from transcripts
of interactions with an honest verifier, in the sense that the two distributions are statis-
tically close. The simulator starts by taking a random coin b← {0, 1}.

– If b = 0, take a random walk from E1 of length L, obtaining a curve E2 and an
isogeny ψ : E1 → E2. The simulator outputs the transcript (E2, 0, ψ).

E0 E1

E2

ψ

In this case, it is clear that the distributions of every element in the transcript are
the same as in the real interaction, as they are generated in the same way. This is
possible because, when b = 0, the secret is not required for the prover to answer
the challenge.

– If b = 1, take a random walk from E0 of length L to obtain a curve E2 and an
isogeny µ : E0 → E2, then proceed as in Step 3 of Figure 1 to produce another
isogeny η : E0 → E2. The simulator outputs the transcript (E2, 1, η).

21

E0 E1

E2

µ

η

The reason to output η instead of µ is to ensure that the transcript distributions are
indistinguishable from the distributions in the real scheme.

We first study the distribution of E2. Let Xr be the output of the random walk from
E1 to produce E2 in the real interaction, and let Xs be the output of the random walk
from E0 to produce E2 in the simulation.

By Theorem 1, we have, for any curve Ei in the graph (here Np ≈ p/12 is the
number of vertices in the graph)∣∣∣∣Pr(Xr = Ei)−

1

Np

∣∣∣∣ ≤ 1

2N2
p

,

∣∣∣∣Pr(Xs = Ei)−
1

Np

∣∣∣∣ ≤ 1

2N2
p

.

Therefore∑
i

|Pr(Xr = Ei)− Pr(Xs = Ei)| ≤ Np ·max
i
|Pr(Xr = Ei)− Pr(Xs = Ei)| ≤

≤ Np ·
(

1

2N2
p

+
1

2N2
p

)
=

1

Np
= negl(log p).

In other words, the statistical distance, between the distribution ofE2 in the real signing
algorithm and the simulation, is negligible. Now, since η is produced in the same way
from E0 and E2 as in the real scheme, we have that the statistical distance between the
distributions of η is also negligible. This follows from Lemma 3 in Section 4.3, which
states that the output of the quaternion path algorithm does not depend on the input
ideal, only on its ideal class.

4.3 Quaternion Isogeny Path Algorithm

In this section we sketch the quaternion isogeny algorithm from Kohel-Lauter-Petit-
Tignol [23] and we evaluate its complexity when p = 3 mod 4. (In the original paper
the algorithm is only claimed to run in heuristic probabilistic polynomial time.)

The algorithm takes as input two maximal orders O,O′ in the quaternion algebra
Bp,∞, and it returns a sequence of left O-ideals I0 = O ⊂ I1 ⊂ . . . ⊂ Ie such that
the right order of Ie is in the same equivalence class as O′. In addition, the output is
such that the index of Ii+1 in Ii is a small prime for all i. The authors focus on the
case where the norm of Ie is `e for some integer e, but they mention that the algorithm
can be extended to the case of powersmooth norms. We will only describe and use
the powersmooth version. In our application there are some efficiency advantages from

22

using isogenies whose degree is a product of small powers of distinct primes, rather
than a large power of a small prime.

Note that the ideals returned by the quaternion isogeny path algorithm (or equiva-
lently the right orders of these ideals) correspond to vertices of the path in the quaternion
algebra graph, and to a sequence of j-invariants by Deuring’s correspondence. In the
next subsection we will describe how to make this correspondence explicit; here we
focus on the quaternion algorithm itself.

An important feature of the algorithm is that paths between two arbitrary maximal
orders O and O′ are always constructed as a concatenation of two paths from each
maximal order to a special maximal order, which in our protocol we take equal toO0 =
〈1, i, 1+k

2 , i+j
2 〉.

We focus on the case wrhere O = O0, and assume that instead of a second maximal
O′ we are given the corresponding leftO0-ideal I as input. This will be sufficient for our
use of the algorithm. We assume that I is given by a Z basis of elements in O0. Denote
by n(α) and n(I) the reduced norm of an element or ideal respectively. The equivalence
class of maximal orders defines an equivalence class of O0-ideals, where two ideals I
and J are in the same class if and only if I = Jq with q ∈ B∗p,∞. Therefore our goal
is, given a left O0 ideal I , to compute another left O0 ideal J with powersmooth norm.
Without loss of generality we assume there is no integer s > 1 such that I ⊂ sO0, and
that I 6= O0. The algorithm proceeds as follows:

1. Compute an element δ ∈ I and an ideal I ′ = Iδ̄/n(I) of prime norm N .
2. Find β ∈ I ′ with norm NS where S is powersmooth.
3. Output J = I ′β̄/N .

Steps 1 and 3 of this algorithm rely on the following simple result [23, Lemma 5]:
if I is a left O-ideal of reduced norm N and α is an element of I , then Iᾱ/N is a left
O-ideal of norm n(α)/N . Clearly, I and J are in the same equivalence class.

To compute δ in Step 1, first a Minkowski-reduced basis {α1, α2, α3, α4} of I is
computed. To obtain Lemma 3 below we make sure that the Minkowski basis is uni-
formly randomly chosen among all such bases. Then random elements δ =

∑
i xiαi are

generated with integers xi in an interval [−m,m], until the norm of δ is equal to n(I)
times a prime. A probable prime suffices in this context (actually Step 1 is not strictly
needed but aims to simplify Step 2), so we can use the Miller-Rabin test to discard
composite numbers with a large probability.

Step 2 is the core of the algorithm and actually consists of the following substeps:

2a. Find α such that I ′ = O0N +O0α.
2b. Find β1 ∈ O0 with powersmooth norm S1.
2c. Find β2 ∈ Zj + Zk such that α = β1β2 mod NO0.
2d. Find β′2 and λ ∈ Z∗N with powersmooth norm S2 such that β′2 = λβ2 mod NO0.
2e. Set β = β1β

′
2.

In Step 2a we need α ∈ I such that gcd(n(α), N2) = N . This is easily achieved
by starting with some α /∈ Z, checking the gcd condition and dividing by some factor
if necessary.

In Step 2b the algorithm actually searches for β1 = a+bi+cj+dk. A large enough
powersmooth number S1 is fixed a priori, then the algorithm generates small random

23

values of c, d until the norm equation a2+b2 = S1−p(c2+d2) can be solved efficiently
using Cornacchia’s algorithm (for example, until the right hand side is a prime equal to
1 modulo 4).

Step 2c is just linear algebra moduloN . As argued in [23] it has a negligible chance
of failure, in which case one can just go back to Step 2b.

In Step 2d the algorithm a priori fixes S2 large enough, then searches for integers
a, b, c, d, λ with λ /∈ NZ such that N2(a2 + b2) + p

(
(λC + cN)2 + (λD + dN)2

)
=

S2 where we have β2 = Cj +Dk. If necessary S2 is multiplied by a small prime such
that (C2 +D2)S2 is a square modulo N , after which the equation is solved modulo N ,
leading to two solutions for λ. An arbitrary solution is chosen, and then looking at the
equation modulo N2 leads to a linear space of solutions for (c, d) ∈ ZN . The algorithm
chooses random solutions until the equation

a2 + b2 =
(
S2 − p2

(
(λC + cN)2 + (λD + dN)2

))
/N2

can be efficiently solved with Cornacchia’s algorithm.
The overall algorithm is summarized in Algorithm 1. We now prove two lemmas

on this algorithm. The first lemma shows that the output of this algorithm only depends
on the ideal class of I but not on I itself. This is important in our second signature
scheme, as otherwise part of the secret isogeny ϕ could potentially be recovered from
η. The second lemma gives a precise complexity analysis of the algorithm, where [23]
only showed probabilistic polynomial time complexity. Both lemmas are of independent
interest.

Lemma 3 The output distribution of the quaternion isogeny path algorithm only de-
pends on the equivalence class of its input. (In particular, the output distribution does
not depend on the particular ideal class representative chosen for this input.)

PROOF: Let I1 and I2 be two leftO0-ideals in the same equivalence class, namely there
exists q ∈ B∗p,∞ such that I2 = I1q. We show that the distribution of the ideal I ′

computed in Step 1 of the algorithm is identical for I1 and I2. As the inputs are not
used anymore in the remaining of the algorithm this will prove the lemma.

In the first step the algorithm computes a Minkowski basis of its input, uniformly
chosen among all possible Minkowski bases. Let B1 = {α11, α12, α13, α14} be a
Minkowski basis of I1. Then by multiplicativity of the norm we have thatB2 = {α11q, α12q, α13q, α14q}
is a Minkowski basis of I2. The algorithm then computes random elements δ =

∑
i xiαi

for integers xi in an interval [−m,m]. Clearly, for any element δ1 computed when the
input is I1, there corresponds an element δ2 = δ1q computed when the input is I2. This
is repeated until the norm of δ is a prime times n(I). As n(I2) = n(I1)n(q) the stop-
ping condition is equivalent for both. Finally, an ideal I of prime norm is computed as
Iδ̄/n(I). Clearly when δ2 = δ1q we have I2δ̄2

n(I2) = I1qq̄δ̄1
n(q)n(I1) = I1δ̄1

n(I1) . This shows that
the prime norm ideal computed in Step 1 only depends on the equivalence class of the
input. �

24

Algorithm 1 Quaternion isogeny path algorithm
Input: O0 = 〈1, i, 1+k

2
, i+j

2
〉, I a left O0 ideal.

Output: J left O0-ideal of powersmooth norm such that I = Jq for some q ∈ Bp,∞.
1: {α1, α2, α3, α4}Minkowski-reduced basis of I .
2: αi ← {±αi} for i = 1, 2, 3, 4.
3: loop
4: {x1, x2, x3, x4} ← [−m,m]4. Start with m = dlog pe and do exhaustive

search in the box, increasing m if necessary.
5: δ :=

∑4
i=1 xiαi

6: if N := n(δ)/n(I) is prime then return N, I ′ := Iδ/n(I)
7: Set an a priori powersmooth bound s = 7

2
log p, and numbers S1, S2 with S1 > p log p,

S2 > p3 log p and s-powersmooth product S1S2.
8: Write I ′ = O0N +O0α.
9: while a, b are not found do

10: c, d← [−m,m]2, for m = b
√
S1/2pc. Increase S1 and s if necessary.

11: a, b ← Solution of a2 + b2 = S1 − p(c2 + d2) (solve using Cornacchia’s
algorithm).

12: β1 = a+ bi+ cj+ dk
13: Set β2 as a solution of α = β1β2 mod NO0.
14: Write β2 = Cj + Dk. Try small primes r in increasing order until we find one such that(

(C2+D2)S2r
N

)
= 1, and set S2 = S2r. Update s accordingly.

15: λ← Solution of pλ2(C2 +D2) = S2 mod N .
16: while a, b are not found do
17: c, d← Solution of pλ2(C2 +D2) + 2pλN(Cc+Dd) = S2 mod N2.
18: a, b ← Solution of a2 + b2 =

(
S2 − p2

(
(λC + cN)2 + (λD + dN)2

))
/N2

(solve using Cornacchia’s algorithm). Increase S2 and s if necessary.
19: β′2 = a+ bi+ cj+ dk
20: J = I ′β1β′2/N

Lemma 4 LetX := max |cij |where cij ∈ Z are integers such that ci1+ci2i+ci3
i+k

2 +

ci4
i+j
2 for 1 ≤ i ≤ 4 forms a Z-basis for I . If logX = O(log p) then under heuristic

smoothness assumptions Algorithm 1 runs in time Õ(log3 p), and produces an output
of norm S with log(S) ≈ 7

2 log(p) which is (7
2 log p)-powersmooth.

PROOF: The Minkowski basis can be computed in O(log2X), for example using the
algorithm of [25].

As shown in [23, Section 3.1] for generic ideals the norms of all Minkowski basis
elements are in O(

√
p). In the first loop we initially set m = dlog pe. Assuming heuris-

tically that the numbers N generated behave like random numbers we expect the box to
produce some prime number. The resulting N will be in Õ(

√
p). For some non generic

ideals the Minkowski basis may contain two pairs of elements with norms respectively
significantly smaller or larger than O(

√
p); in that case we can expect to finish the loop

for smaller values of m by setting x3 = x4 = 0, and to obtain some N of a smaller
size.

Rabin’s pseudo-primality test performs a single modular exponentiation (modulo
a number of size Õ(

√
p)), and is passed by composite numbers with a probability at

25

most 1/4, and can be repeated r times to decrease this probability to 1/4r. Assuming
heuristically that the numbers tested behave like random numbers the test will only be
repeated a significant amount of times on actual prime numbers, so in total it will be
repeatedO(log p) times. This leads to a total complexity of Õ(log3 p) bit operations for
the first loop.

The other two loops involve solving equations of the form x2 + y2 = M . For such
an equation to have solutions it is sufficient that M is a prime with M = 1 mod 4,
a condition that is heuristically satisfied after 2 logM random trials. Choosing S1 and
S2 as in the algorithm ensures that the right-hand term of the equation is positive, and
(assuming this term behaves like a random number of the same size) is of the desired
form for some choices (c, d), at least heuristically. Cornacchia’s algorithm runs in time
Õ(log2M), which is also Õ(log2 p) in the algorithm. The pseudo-primality tests will
require Õ(log3 p) operations in total, and their cost will dominate both loops.

Computing β2 is just linear algebra modulo N ≈ Õ(
√
p) and this cost can be

neglected. The last two steps can similarly be neglected.
As a result, we get an overall cost of Õ(log3 p) bit operations for the whole algo-

rithm.
Let s = 7

2 log p. We have n(J) = n(I ′)n(β1)n(β′2)/N2 so log n(J) ≈ 1
2 log p +

log p+ 3 log p− log p = 7
2 log p. Moreover

∏
p
ei
i <s

peii ≈ (s)s/ log s ≈ p7/2 so we can
expect to find S1S2 that is s-powersmooth and of the correct size. �

4.4 Step-by-Step Deuring Correspondence

We now discuss algorithms to convert isogeny paths into paths in the quaternion algebra,
and vice versa. This will be necessary in our protocols as we are sending curves and
isogenies, whereas the process uses the quaternion isogeny algorithm.

All the isogeny paths that we will need to translate in our signature scheme will start
from the special j-invariant j0 = 1728 mentioned above. We recall from Section 2.3
that this corresponds to the curve E0 with equation y2 = x3 + x and endomorphism
ring End(E0) := 〈1, φ, 1+πφ

2 , π+φ
2 〉. Moreover there is an isomorphism of quaternion

algebras sending (1, i, j,k) to (1, φ, π, πφ).
For any isogeny ϕ : E0 → E1 of degree n, we can associate a left End(E0)-ideal

I = Hom(E1, E0)ϕ of norm n, corresponding to a left O0-ideal with the same norm
in the quaternion algebra Bp,∞. Conversely every left O0-ideal arises in this way [22,
Section 5.3]. In our protocol we will need to make this correspondence explicit, namely
we will need to pair up each isogeny from E0 with the correct O0 ideal. Moreover we
need to do this for “large” degree isogenies to ensure a good distribution via our random
walk theorem.

Translating an ideal to an isogeny path Let E0 and O0 = End(E0) be given, to-
gether with a left O0-ideal I corresponding to an isogeny of degree n. We assume I is
given as a Z-basis {α1, . . . , α4}. The main idea to determine the corresponding isogeny
explicitly is to determine its kernel [31].

26

Assume for the moment that n is a small prime. One can compute generators for
all cyclic subgroups of E0[n], each one uniquely defining a degree n isogeny which
can be computed with Vélu’s formulae. A generator P then corresponds to the basis
{α1, . . . , α4} if and only if αj(P) = 0 for all 1 ≤ j ≤ 4. To evaluate α(P) with α ∈ I
and P ∈ E0[n], we first write α = (u + vi + wj + xk)/2, then we compute P ′ such
that [2]P ′ = P and finally we evaluate [u]P ′ + [v]φ(P ′) + [w]π(P ′) + [x]π(φ(P ′)).
As this algorithm potentially tests all possible cyclic subgroups of order n, its cost is
prohibitive for large n.

When n = `e the degree n isogeny can be decomposed into a composition of e
degree ` isogenies. If I is the corresponding left O0-ideal of norm `e, then Ii := I mod
O0`

i is a left O0-ideal of norm `i corresponding to the first i isogenies. Similarly if
P is a generator for the kernel of the degree `e isogeny then `e−i+1P is the kernel
of the degree `i isogeny corresponding to the first i steps. One can therefore perform
the matching of ideals with kernels step-by-step with successive approximations of I
or P respectively. This algorithm is more efficient than the previous one, but it still
requires to compute `e torsion points, which in general may be defined over a degree
`e extension of Fp2 . To ensure that the `e torsion is defined over Fp2 one can choose p
such that `e | (p ± 1) as in the De Feo-Jao-Plût protocols; however for general p this
translation algorithm will still be too expensive.

We solve this efficiency issue by using powersmooth degree isogenies in our proto-
cols. When n =

∏
i `
ei
i with distinct primes `i, one reduces to the prime power case as

follows. For simplicity we assume that 2 does not divide n. The isogeny of degree n can
be decomposed into a sequence of prime degree isogenies. For simplicity we assume the
isogeny steps are always performed in increasing degree order; we can require that this
is indeed the case in our protocols. Let ni :=

∏
j≤i `

ej
j . If I is the left O0-ideal of norm

n, then Ii := I mod O0ni is a left O0-ideal of norm ni corresponding to the isogeny
ϕi which is a composition of all isogenies of degrees up to `i. Using a Chinese Re-
mainder Theorem-like representation, points in E0[n] can be represented as a sequence
of points in E0[`eii]. Given a left-O0 ideal I , Algorithm 2 progressively identifies the
corresponding isogeny sequence.

In our protocols we will have `eii = O(log n) = O(log p); moreover we will be
using O(log p) different primes. The complexity of Algorithm 2 under these assump-
tions is given by the following lemma. Note that almost all primes `i are such that√
B < `i ≤ B and so ei = 1, hence we ignore the obvious `-adic speedups that can be

obtained in the rare cases when `i is small.

Lemma 5 Let n =
∏
`eii with log n, `eii = O(log p). Then Algorithm 2 can be imple-

mented to run in time Õ(log5 p) bit operations for the first loop, and Õ(log4 p) for the
rest of the algorithm.

PROOF: Without any assumption on p the `eii torsion points will generally be defined
over `eii degree extension fields, hence they will be of O(log2 p) size. However the
isogenies themselves will be rational, i.e. defined over Fp2 . This means their kernel is
defined by a polynomial over Fp2 . Isogenies over Fp2 of degree d can be evaluated at
any point in Fp2 using O(d) field operations in Fp2 .

Let d = `eii . To compute a basis of the d-torsion, we first factor the division polyno-
mial over Fp2 . This polynomial has degree O(d2) = O(log(p)2). Using the algorithm

27

Algorithm 2 Translating ideal to isogeny path
Input: O0 = End(E0) = 〈1, ψ, 1+πψ

2
, π+ψ

2
〉, I = 〈α1, α2, α3, α4〉, n =

∏r
i=1 `

ei
i with 2 6 | n.

Output: the isogeny corresponding to I through Deuring’s correspondence.
for i = 1, . . . , r do

Compute a basis {Pi1, Pi2} for the `eii torsion on E0

for j = 1, 2 do
Compute P ′ij such that Pij = [2]P ′ij

ϕ0 = [1]E0

for i = 1, . . . , r do
for k = 1, 2, 3, 4 do

αik = αk with its coefficients reduced modulo `eii .
Write αik = (uik + viki+ wikj+ xikk)/2.
for j = 1, 2 do

Pijk = [uik]P
′
ij + [vik]φ(P

′
ij) + [wik]π(P

′
ij) + [xik]π(φ(P

′
ij))

Solve ECDLP to compute Qi of order `eii such that αik(Qi) = 0 for all k
Compute φi = Isogeny with kernel 〈Qi〉 (compute with Vélu’s formulae).
Set ϕi = φiϕi−1

Output ϕ0, φ1, . . . , φr .

in [21] this can be done in Õ(log4 p) bit operations. Since the isogenies are defined
over Fp2 , this will give factors of degree at most (d−1)/2, each one corresponding to a
cyclic subgroup. We then randomly choose some factor with a probability proportional
to its degree, and we factor it over its splitting field, until we have found a basis of
the d-torsion. After O(1) random choices we will have a basis of the d-torsion. Each
factorization costs Õ(log5 p) using the algorithm in [29], and verifying that two points
generate the d-torsion can be done with O(d) field operations. It then takes O(d) field
operations to compute generators for all kernels. As r = O(log p) we deduce that the
first loop requires Õ(log5 p) bit operations.

ComputingPijk involves Frobenius operations and multiplications by scalars bounded
by d (and so O(log p) bits). This requires O(log p) field operations, that is a total of
Õ(log3 p) bit operations. Any cyclic subgroup of order `eii is generated by a point
Qi = aPi1 + bPi2, and the image of this point by αik is aPi1k + bPi2k. One can
determine the integers a, b by an ECDLP computation or by testing random choices.
There are roughly `eii = O(log p) subgroups, and testing each of them requires at most
O(log log p) field operations, so finding Qi requires Õ(log p) field operations. Com-
puting the isogeny can be done in O(log p) field operations using Vélu’s formulae. As
r = O(log p) we deduce that the second loop requires Õ(log4 p) bit operations. �

We stress that in our signature algorithm, Algorithm 2 will be run O(log p) times.
However the torsion points are independent of both the messages and the keys, so they
can be precomputed. Hence the “online” running time of Algorithm 2 is Õ(log(p)4) bit
operations per execution.

Translating an isogeny path to an ideal Let E0, E1, . . . , Er an isogeny path and
suppose ϕi : E0 → Ei is of degree ni =

∏
j≤i `

ej
j . We define I0 = O0. Then for

28

i = 1, . . . , r we compute an element αi ∈ Ii−1 and an ideal Ii = Ii−1`
ei
i + Ii−1αi that

corresponds to the isogeny φi. At step i, we use a basis of Ii−1 to compute a quadratic
form fi that is the norm form of the ideal Ii−1. The roots of this quadratic form modulo
`eii correspond to candidates for αi and hence Ii. Note that this correspondence is not
injective: a priori there will be O((`eii)3) roots but there are only O(`eii) correspond-
ing ideals including the correct one. Our strategy is to pick random solutions to the
quadratic form until the maps αi and φi have the same kernels.

Algorithm 3 Translating isogeny path to ideal
Input: E0, E1, . . . , Er isogeny path, φi : Ei−1 → Ei of degree `eii .
Output: the ideal path I0, . . . , Ir corresponding to the isogeny path.
1: Let I0 = O0

2: for i = 1, . . . , r do
3: Find Qi of order `eii that generates the kernel of φi
4: Compute [β](Qi) for all β ∈ {1, i, i+j

2
, 1+k

2
}

5: Let {β1, β2, β3, β4} a basis of Ii−1

6: Let fi(w, x, y, z) = n(wβ1 + xβ2 + yβ3 + zβ4)
7: repeat
8: Pick a random solution to fi(w, x, y, z) = 0 mod `eii
9: Set αi = wβ1 + xβ2 + yβ3 + zβ4

10: until [αi](Qi) =∞
11: Set Ii = Ii−1`

ei
i + Ii−1αi

12: Perform basis reduction on Ii

In our protocols we will have `eii = O(log n) = O(log p); moreover we will be us-
ing O(log p) different primes. The complexity of Algorithm 3 under these assumptions
is given by the following lemma.

Lemma 6 Let n =
∏
`eii with log n, `eii = O(log p), and assume all the isogenies

are defined over Fp2 . Then Algorithm 3 can be implemented to run in expected time
Õ(log4 p).

PROOF: We remind that without any assumption on p the `eii torsion points will gener-
ally be defined over `eii degree extension fields, hence they will be of O(log2 p) size.
Isogenies of degree d can be evaluated at any point using O(d) field operations.

The isogeny φi is naturally given by a polynomial ψi such that the roots of ψi
correspond to the x-coordinates of affine points in kerϕi. To identify a generator Qi
we first factor ψi over Fp2 . Using the algorithm in [29] this can be done with Õ(log3 p)
bit operations. We choose a random irreducible factor with a probability proportional
to its degree, we use this polynomial to define a field extension of Fp2 , and we check
whether the corresponding point is of order `eii . If not we choose another irreducible
factor and we repeat. We expect to only need to repeat this O(1) times, and each step
requires Õ(log p) bit operations. So the total cost for Step 3 is Õ(log3 p).

Step 4 requiresO(log log p) field operations to compute a pointQ′i such that[2]Q′i =
Qi. After that it mostly requires O(log p) field operations to compute the Frobenius
map. The total cost of this step is therefore Õ(log3 p).

29

To compute a random solution to fi modulo `eii , we choose uniformly random val-
ues for w, x, y, and when the resulting quadratic equation in z has solutions we choose
a random one. As `eii = O(log p) the cost of this step can be neglected. Computing
[αi](Qi) requires O(log log p) operations over a field of size O(log2 p). On average we
expect to repeat the loopO(`eii) = O(log p) times, resulting in a total cost of Õ(log3 p).
Computing each fi costs Õ(log p) bit operations.

The value αi is represented as a Z-linear combination with respect to the Z-basis
of O0, and the size of the coefficients is increased by log2(`eii) over the size of the
coefficients in the representation of the βj . The product Ii−1αi thus has coefficients
more than doubled in bitlength. However, there exists a representation of the ideal with
small coefficients, since the degree of the ideal is bounded in terms of the degree of the
isogeny from E0 to Ei. Hence there exists a reduced basis with smaller coefficients.

Overall, one can show that all the coefficients of quaternion algebra elements in the
algorithm have size O(log(p)) bits. As r = O(log p) the total cost of the algorithm is
Õ(log4 p). �

Note that the output is an ideal represented with coefficients of size O(log p), and
so the required condition logB = O(log p) in Lemma 4 is satisfied.

4.5 Signature Scheme based on Endomorphism Ring Computation

In this section we give the details of our second signature scheme based on our new
identification protocol, with security relying on computing the endomorphism ring of a
supersingular elliptic curve.

Key Generation Algorithm: On input a security parameter λ generate a prime p with
2λ bits, which is congruent to 3 modulo 4. Fix B, S1, S2 as small as possible7 such that

Sk :=
∏
i `
ek,i

k,i , `ek,i

k,i < B, gcd(S1, S2) = 1, and
∏(2

√
`k,i

`k,i+1

)ek,i

< 72
p2 . Perform a

random isogeny walk of degree S1 from the curve E0 with j-invariant j0 = 1728 to a
curve E1 with j-invariant j1. Compute O1 = End(E1) and the ideal I corresponding
to this isogeny. Choose a hash function H with at least t = t(λ) bits of output (in
practice, depending on the security requirement, either t = λ or t = 2λ). The public
key is PK = (p, j0, j1, H) and the secret key is SK = (E0, E1, O1, I).

Signature Algorithm: On input a messagem and keys (PK, SK), recover the parameters
p and j1. For i = 1, . . . , t, generate a random isogeny walk wi of degree S2, ending at a
j-invariant j2,i. Compute h := H(m, j2,1, . . . , j2,t) and parse the output as t challenge
bits bi. For i = 1, . . . , t, if bi = 1 use wi and Algorithm 2 of Section 4.4 to compute the
corresponding path in the quaternion algebra, then use the algorithm of Section 4.3 to
compute a “fresh” path between O0 and O2,i, and finally use Algorithm 3 to compute
an isogeny pathw′i from j0 to j2,i. If bi = 0 set zi := wi, otherwise set zi := w′i. Return
the signature σ = (h, z1, . . . , zt).

7 The exact procedure is irrelevant here.

30

Verification Algorithm: On input a message m, a signature σ and a public key PK,
recover the parameters p and j1. For each 1 ≤ i ≤ t one uses zi to compute the image
curve E2,i of the isogeny. Hence the verifier recovers the signature components j2,i for
1 ≤ i ≤ t. The verifier then recomputes the hash H(m, j2,1, . . . , j2,t) and checks that
the value is equal to h, accepting the signature if this is the case and rejecting otherwise.

We now show that this scheme is a secure signature.

Theorem 8. If Problem 6 is computationally hard then the second signature scheme is
secure in the random oracle model under a chosen message attack.

PROOF: As shown in Section 4.2, if Problem 6 is computationally hard then the
identification scheme (sigma protocol) has 2-special soundness and honest-verifier zero-
knowledge. It follows by the same arguments as in Section 4 that the identification
scheme is secure against impersonation under passive attacks. Theorem 3 then implies
that the signature scheme is secure in the random oracle model. �

One can also apply the Unruh transform described in Section 2.6 to obtain a signa-
ture scheme that is proven secure against quantum adversaries.

Theorem 9. If Problem 6 is computationally hard for a quantum computer then the sig-
nature scheme obtained from the Unruh transform on the sigma protocol of Section 4.1
is a secure signature scheme against quantum adversaries in the random oracle model.

Efficiency: As the best classical algorithm for computing the endomorphism ring of a
supersingular elliptic curve runs in time Õ(

√
p) one can take log p = 2λ. By Lemma 1

taking B ≈ 4 log p ensures that the outputs of random walks are distributed uniformly
enough. Random walks then require 4 log p bits to represent, so signatures are

t+
t

2

(
4dlog pe+

7

2
dlog pe

)
bits on average, depending on the challenge bits. For λ bits of security, we choose
t = λ, so the signature length is approximately λ + (λ/2)(8λ + 7λ) ≈ 15λ2/2. For
non-repudiation, we choose t = 2λ, and the signature length is about 15λ2 bits.

Private keys are 2λ bits and public keys are 3 log p = 6λ bits. A signature mostly
requires 2λ calls to the Algorithm of Sections 4.3 and 4.4, for a total cost of Õ(λ5).
Verification requires to check O(λ) isogeny walks, each one comprising O(λ) steps
with a cost Õ(λ3) each, hence a total cost of Õ(λ5) bit operations.

Optimization with Non Backtracking Walks: In our description of the signature scheme
we have allowed isogeny paths to “backtrack”. We made this choice to simplify the
convergence analysis of random walks and because it does not affect the asymptotic
complexity of our schemes significantly. However in practice at any concrete security
parameter, it will be better to use non-backtracking random walks as they will converge
more quickly to a uniform distribution [2].

31

5 Conclusion

We have presented the first two signature schemes based on supersingular isogeny prob-
lems. Both schemes are built from a parallel execution of an identification scheme with
bounded soundness, using the Fiat-Shamir transform. Our first scheme is built directly
from the De Feo-Jao-Plût identification protocol with some optimization, the second
one is more involved and crucially relies on the quaternion `-isogeny algorithm of
Kohel-Lauter-Petit-Tignol. The first scheme is significantly more efficient, but the sec-
ond one is based on an arguably more standard and potentially harder computational
problem.

Our schemes rely on problems that can potentially resist to quantum algorithms.
However this family of problems are also are rather new in cryptography. Among all of
them, we believe that the problem of computing the endomorphism ring of a supersin-
gular elliptic curve (on which our second signature scheme relies) is the most natural
one to consider from an algorithmic theory point of view, and it was the subject of Ko-
hel’s PhD thesis in 1996. The problem is also potentially harder than Problems 3 and 4
considered in previous works (and used in our first signature scheme). Yet, even that
problem is far from having received the same scrutiny as more established cryptogra-
phy problems like discrete logarithms or integer factoring. We hope that this paper will
encourage the community to study its complexity.

References

1. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identifica-
tion to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Cryptographic Techniques, Am-
sterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture
Notes in Computer Science, pages 418–433. Springer, 2002.

2. Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random
walks mix faster. Communications in Contemporary Mathematics, 9(4):585–603, 2007.

3. Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi.
Key compression for isogeny-based cryptosystems. In Proceedings of the 3rd ACM Interna-
tional Workshop on ASIA Public-Key Cryptography, AsiaPKC ’16, pages 1–10, New York,
NY, USA, 2016. ACM.

4. Mihir Bellare, Bertram Poettering, and Douglas Stebila. From identification to signatures,
tightly: A framework and generic transforms. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016, volume 10032 of Lecture Notes in
Computer Science, pages 435–464. Springer, 2016.

5. Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm for computing
isogenies between supersingular elliptic curves. In Willi Meier and Debdeep Mukhopadhyay,
editors, Progress in Cryptology - INDOCRYPT 2014 - 15th International Conference on
Cryptology in India, New Delhi, India, December 14-17, 2014, Proceedings, volume 8885
of Lecture Notes in Computer Science, pages 428–442. Springer, 2014.

6. Gaetan Bisson and Andrew V. Sutherland. Computing the endomorphism ring of an ordinary
elliptic curve over a finite field. IACR Cryptology ePrint Archive, 2009:100, 2009.

7. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions
from expander graphs. J. Cryptology, 22(1):93–113, 2009.

32

8. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies
in quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29, 2014.

9. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part I, pages 572–601, 2016.

10. Max Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper. Abhandlun-
gen aus dem Mathematischen Seminar der Universität Hamburg, 14:197–272, 1941.

11. L. Dewaghe. Un corollaire aux formules de Vélu. Preprint, 1995.
12. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies. J. Mathematical Cryptology, 8(3):209–247, 2014.
13. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and

signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of Lecture Notes
in Computer Science, pages 186–194. Springer, 1986.

14. Steven D. Galbraith. Constructing Isogenies Between Elliptic Curves Over Finite Fields.
LMS J. Comput. Math, 2:118–138, 1999.

15. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of
supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016, volume 10031 of Lecture Notes in Computer
Science, pages 63–91. Springer, 2016.

16. Steven Goldfeder, Melissa Chase, and Greg Zaverucha. Efficient post-quantum zero-
knowledge and signatures (draft). eprint 2016/1110, 2016.

17. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43:439–561, 2006.

18. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In PQCrypto, pages 19–34, 2011.

19. David Jao and Vladimir Soukharev. Isogeny-based quantum-resistant undeniable signatures.
In Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo,
ON, Canada, October 1-3, 2014. Proceedings, pages 160–179, 2014.

20. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2014.
21. Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular com-

position. SIAM J. Comput., 40(6):1767–1802, 2011.
22. David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University

of California, Berkeley, 1996.
23. David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the quaternion `-

isogeny path problem. LMS Journal of Computation and Mathematics, 17A:418–432, 2014.
24. Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function requirements for

schnorr signatures. J. Mathematical Cryptology, 3(1):69–87, 2009.
25. Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis reduction revisited.

ACM Transactions on Algorithms, 5(4), 2009.
26. Christophe Petit. On the quaternion `-isogeny problem. Presentation slides from a talk at the

University of Neuchâtel, March 2015.
27. Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer Verlag, 1986.
28. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle

model. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, pages 755–784, 2015.

29. Joachim von zur Gathen and Victor Shoup. Computing Frobenius maps and factoring poly-
nomials. Computational Complexity, 2:187–224, 1992.

30. Jacques Vélu. Isogénies entre courbes elliptiques. Communications de l’Académie royale
des Sciences de Paris, 273:238–241, 1971.

33

31. William C. Waterhouse. Abelian varieties over finite fields. Annales scientifiques de l’E.N.S.,
2:521–560, 1969.

32. Sun Xi, Haibo Tian, and Yumin Wang. Toward quantum-resistant strong designated verifier
signature from isogenies. International Journal of Grid and Utility Computing, 5(2):292–
296, September 2012.

A Proof of Lemma 1

We have ∏
`
ei
i <B
`i prime
ei maximal

(
`i + 1

2
√
`i

)ei
>

∏
`i<B
`i prime

(
`i + 1

2
√
`i

)
>

∏
`i<B
`i prime

(√
`i

2

)
.

Taking logarithm, using the prime number theorem and replacing the sum by an integral
we have

log
∏
`i<B
`i prime

(√
`i

2

)
=
∑
`i<B
`i prime

1

2
log `i −

∑
`i<B
`i prime

log 2 ≈ 1

2

∫ B

1

log x
1

log x
dx− B

logB
=

=
1

2
B − B

logB
≈ 1

2
B.

if B is large enough. Then, we choose c = 4, obtaining 1
2B = 2 log p > log(p2/72).

34

	Signature Schemes Based On Supersingular Isogeny Problems

