
SPECTRE:
Serialization of Proof-of-work Events: Confirming Transactions via

Recursive Elections

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel
{yoni sompo,yoadlew,avivz}@cs.huji.ac.il

Abstract

Bitcoin utilizes Nakamoto Consensus to achieve agreement on a consistent set of
transactions, in the permissionless setting, where anyone can participate in the protocol
anonymously. Since its rise, many other permissionless consensus protocols have been proposed.
We present SPECTRE, a new protocol for the consensus core of cryptocurrencies that remains
secure even under high throughput and fast confirmation times. At any throughput, SPECTRE
is resilient to attackers with up to 50% of the computational power (reaching the limit defined
by network congestion and bandwidth constraints). SPECTRE can operate at arbitrarily high
block creation rates, which implies that its transactions confirm in mere seconds (limited mostly
by the round-trip-time in the network).

SPECTRE’s underlying model falls into the category of partial synchronous networks: its
security depends on the existence of some bound on the delivery time of messages between
honest participants, but the protocol itself does not contain any parameter that depends on this
bound. Hence, while other protocols that do encode such parameters must operate with extreme
safety margins, SPECTRE converges according to the actual network delay.

Key to SPECTRE’s achievements is the fact that it satisfies weaker properties than classic
consensus requires. In the conventional paradigm, the order between any two transactions must
be decided and agreed upon by all non-corrupt nodes. In contrast, SPECTRE only satisfies
this with respect to transactions performed by honest users. We observe that in the context of
money, two conflicting payments that are published concurrently could only have been created
by a dishonest user, hence we can afford to delay the acceptance of such transactions without
harming the usability of the system. Our framework formalizes this weaker set of requirements
for a cryptocurrency’s distributed ledger. We then provide a formal proof that SPECTRE satisfies
these requirements.

1

1. INTRODUCTION

Bitcoin, which was invented and later deployed by Satoshi Nakamoto [17], represents the first
successful permissionless cryptocurrency system. In contrast to classic distributed systems, the
set of participants in the protocol is dynamic, anonymous, and a priori unknown. Nakamoto
utilized Proof-of-Work (PoW) [8], [12] to limit the behavior of pseudonymous participants in
the system and to counter possible Sybil attacks.

The Bitcoin protocol organizes transactions made in the currency in its public ledger, the
blockchain. Each block in the chain is a batch of transactions that were published by users of
the currency. The system is designed according to the replicated state machine approach [24]:
nodes have local replicas of the ledger, and they reach agreement on the full order of blocks
(and by extension on the full order of transactions).

Unfortunately, recent research has shown that the Nakamoto consensus has severe scalability
limitations [6], [25], [11], [18]. Increasing the system’s throughput (either via an increase in block
size or block creation rate) comes at the expense of security: Under high throughput, Nakamoto’s
original guarantee no longer holds, and attackers with less than 50% of the computational power
are able to disrupt the system. To avoid this, Bitcoin was set to operate at extremely low rates.
The protocol enforces a slow block creation rate, and small block sizes, extending the blockchain
only once every 10 minutes (in expectation) with a block containing up to 1 MB (roughly 2,000
transactions). Users must thus wait a long while to receive approval for their transfers.

In this paper we present SPECTRE (Serialization of Proof-of-work Events: Confirming
Transactions via Recursive Elections), a PoW-based protocol that can process a high throughput
of transactions and maintain fast confirmation times while remaining secure from attackers with
up to 50% of the computational power. SPECTRE relies on a data structure that generalizes
Nakamoto’s blockchain into a direct acyclic graph (a block DAG). By maintaining a full DAG
of blocks, SPECTRE can allow miners to create blocks concurrently and much more frequently.
This design is intended to avoid the need for nodes to reconcile their different world views
regarding the identity of a selected chain at the time of block creation. We provide extensive
theoretical analysis of the protocol, its security and scalability including simulation results that
demonstrate its advanced capabilities.
Network parameters. Our model of the system falls into the paradigm of partially synchronous
networks [7]. In SPECTRE, the mining operation is oblivious to the propagation delay of the
network, and no knowledge of it is required when running a full node. An assumption about
some upper bound on the propagation delay is only used in the analysis of the protocol. Users
who wish to estimate this may apply different bounds, according to their beliefs about recent
network conditions. In contrast, Nakamoto’s consensus requires that the block creation rate would
far exceed the delay in the system in order for it to be secure. Thus, in Bitcoin and its many
variants, an assumption on the propagation delay is fixed within the protocol (via the hardcoded
parameter regulating block creation). The decision regarding the value of this parameter must
account for possible future fluctuations in network delay (which may also be due to attacks
on the network) and must be extremely conservative. Bitcoin thus operates slowly even when

2

network conditions could allow it to operate faster. (This is related to the responsiveness metric
introduced recently in [20]).
Throughput. In SPECTRE, large and fast blocks can be created, even when others have not
fully propagated to all nodes. This process of extending the block DAG can be accelerated up to
the limit imposed by the bandwidth of nodes. An assumption on the available bandwidth is fixed
within the protocol, via the parameter that regulates the difficulty of block creation (w.r.t. this
parameter we adapt Bitcoin’s retargeting scheme, see Appendix C). For instance, if full nodes
are assumed to support a minimal bandwidth of 10 MBps, then the block creation rate can be
adjusted to 10 blocks per second, with block size limit of 1 MB, resulting in a throughput of
∼20,000 transactions per second, rivaling the global transaction rate of Visa at peak times.
Confirmation times. As mentioned above, the waiting time until a transaction recipient can
safely accept it depends on his belief regarding recent network conditions. Additionally, as in
Bitcoin, the user must assume an upper bound on the relative computational power of potential
attackers. Importantly, in SPECTRE, an attacker must actively engage with his victim and transfer
funds to him before executing the attack and reversing the payment. Consequently, users who
are not concerned by large miners defrauding them (e.g., merchants conducting transactions at
a physical point of sale), can accept transactions in SPECTRE extremely fast. In contrast, in
Bitcoin and its variants, a large attacker can disrupt the network and reverse multiple payments
without engaging with his victims, by overriding the main chain. Practically, these considerations
imply that transactions in SPECTRE can be accepted in mere seconds, under normal network
conditions, compared to Bitcoin’s tens of minutes.
Consensus properties. Nakamoto’s protocol satisfies both Liveness and Safety: the order between
any two transactions is decided, and this decision is not reversed, w.h.p. [11], [19]. When a total
order over transactions exists, it is simple to select a consistent set of transactions: reject all but
the first transaction (according to the order) of any conflicting set.

In contrast, SPECTRE satisfies a weaker version of Liveness, and guarantees only that the
decision w.r.t. some pairs of transactions is made. If two conflicting transactions were published
at about the same time, the identity of the prevailing transaction might remain undetermined for
arbitrarily long periods of time (this may occur only if an attack is actively taking place). Our
key insight is that, in the context of cryptocurrencies, transactions only conflict if they transfer
the exact same funds to two different locations, which implies that they were both generated by
the original owner of the funds (cryptographic signatures ensure that only the owner may move
his funds). Hence, an honest participant will never create such conflicts, and we can afford to
delay the decision regarding transactions that have been visibly double-spent. Thus, SPECTRE
in its current form is not well suited for general computation where the total order of inputs
is needed, e.g., in systems like Ethereum [1] (it is still applicable to other computations where
the order of inputs does not matter – one such example is voting, where the order of entered
votes does not affect the outcome). The main challenges that we address are first to provide
a PoW system with the weaker properties, but also to extract a consistent set of (irreversible)
transactions even when a total order does not exist.

We provide a formal framework and define precisely the properties that a consensus protocol

3

for cryptocurrencies ought satisfy, namely, Weak Liveness, Progress, and Safety. Our relaxation
of the traditional paradigm may be of independent interest.
Incentives and rewards. Every block grants its creator a financial reward, as a compensation for
his computational resources, provided that it was created according to the updated difficulty of
block creation (refer to Appendix C for more details). An additional benefit of SPECTRE’s high
block creation rate is that mining rewards have significantly lower variance compared to Bitcoin,
which reduces the need for large mining pools and contributes to the system’s decentralization.
Importantly, SPECTRE is resilient to block withholding attacks (aka selfish mining) that aim
to increase one’s own share of the minted money by manipulating the main chain [10], [23].
Indeed, in SPECTRE every block is rewarded, and there is no notion of a selected chain.
Organization of the paper. The remainder of this paper is organized as follows: In the
subsequent subsection we discuss related work. In Sec. 2 we formalize our network model, the
desired properties of the protocol, and the main result. In Sec. 3 we describe the basic operation of
SPECTRE. In Sec. 4 we provide the gist of the correctness proof, and we conclude the main body
of the paper in Sec. 5. We complement the description of SPECTRE’s procedures in Appendix A.
We present simulation results and demonstrate SPECTRE’s exponentially fast confirmation times
in Appendix B, and discuss implementation details in Appendix C. In Appendix D we provide
examples of attacks, and intuition for why they fail to disrupt the protocol. Appendix E contains
the full proof of our main theorem, stating that SPECTRE satisfies the desired properties.

A. Related work

Previous research has produced several suggestions for protocols that attempt to address the
security-scalability challenge, but all protocols still provide a total order over blocks:

The GHOST protocol is an alternative chain selection rule that gradually chooses a tree of
blocks until converging on a single chain [25]. It can be shown that the Liveness property of
GHOST can be attacked in several ways, as was demonstrated by [13].

The use of block DAGs was proposed in the Inclusive protocol [15], in which throughput was
increased by combining discarded blocks off-chain blocks into the ledger. Due to the reliance on
a chain, Inclusive mitigates but does not avoid the security-scalability trade-off. The Inclusive
paper further includes a game theoretic analysis of the incentives of nodes to embed different
transactions in their blocks (without the ability to coordinate).1

Bitcoin-NG [9] provides a clever chain structure that is composed of two types of blocks: key
blocks that require PoW but contain no transactions, and mini-blocks that do not require PoW
but do contain transactions. Bitcoin-NG manages to obtain a significant scalability increase, but
its key blocks are still generated slowly, hence, confirmation times remain high.

Another line of work bootstraps PoW to instantiate a committee that is later used to
run classical Byzantine fault tollerant protocols. Examples from this line of research include
Byzcoin [14], a work by Decker et. al. [5], Hybrid Consensus [21], and recently Solidus [2].

1We build on this argument, and indeed assume that nodes will maximize their profits by avoiding transaction
“collisions” and will try to embed unique content in their blocks.

4

Protocols built in this manner are highly scalable, building upon work in consensus protocols,
but lack some of the properties achieved by Bitcoin. They typically require large committees and
require committee members to remain online for long periods of time, making them susceptible to
network isolation and denial of service attacks. [14], [5], [2] additionally fail without recovering
if the committee is ever composed of a high fraction of malicious entities (Bitcoin, on the other
hand, is self-stabilizing). Moreover, they require forward secrecy. If the cryptographic keys of
a sufficient fraction of the committee at any point in the past is compromised, the attacker can
create an alternative equally acceptable version of events. In contrast, miners in SPECTRE are
not directly involved in any explicit consensus protocol and moreover can operate with little
regard of other nodes’ synchronization status.

Honey Badger [16] is an atomic broadcast protocol that is oblivious to network parameters
and does not require tuning under different network conditions (similarly to SPECTRE). It is
set in the classical permissioned setting where identities of the participants are known.

2. FORMAL STATEMENT OF THE PROBLEM

A. Network model and assumptions

Transactions. While SPECTRE can be used in other use cases as well, we focus on transactions
that are created for the purpose of sending money and are constructed similarly to Bitcoin
transactions. A transaction is typically denoted tx. As several copies of the very same transaction
may appear in the system, we denote the equivalence class of tx (which contains all of its copies)
by [tx]. inputs (tx) is the set of (equivalence classes of) transactions that must be accepted before
tx can be accepted; these are the transactions that have provided the money that is being spent
in tx. Two transactions tx1 and tx2 (that are not equivalent) conflict if they share a common
input, i.e., they double spend the same money; we then write tx2 ∈ conflict (tx1) (this is a
symmetric relation).
Network and communication. The system is operated by nodes, connected by a P2P network
N . We denote by honest ⊂ N the set of nodes that always adhere to the protocol’s instructions.
We assume that the honest nodes make up a connected component in the network graph, and that
messages that they send are forwarded to their peers via gossip algorithms. Nodes are instructed
to propagate all messages they receive or create to their peers.

We assume the existence of a constant D > 0 such that any message (of size ≤ B KB)
transmitted by an honest node arrives after at most D seconds at all honest nodes, regardless
of any manipulation of dishonest nodes. In addition, any node v ∈ N has an upper bound on
D, denoted by dv, representing its own bound on the communication delay diameter. We do not
require that nodes agree on this bound.

We denote by Gvt the data structure repersenting the history of messages observed by node
v ∈ N up to time t. We denote Gpubt := ∪v∈honestGvt .

B. Desired properties

In our framework, a protocol for transaction acceptence is specified by two procedures:
GetAcceptedTxs(G), which given the current (local) state of all messages, G, outputs a

5

consistent set of transactions; CheckRobustAccept(G, tx, ϵ, d, α), which outputs ACCEPT if
tx ∈ GetAcceptedTxs(G) and the probability that it remains so forever is at least 1 − ϵ, and
WAIT otherwise. Here, ϵ is the risk that the user is willing to tolerate, d is an upper bound
on D, and α is an upper bound on the relative computational power held by dishonest nodes
(both according to the user’s belief). We say that node v ϵ-accepted a transaction at time t if
CheckRobustAccept(Gvt , tx, ϵ, d

v, α) = ACCEPT .
The following properties are desirable:

Property 1 (Consistency). The accepted set is consistent: For any history G,
1) if tx ∈ GetAcceptedTxs(G) and tx2 ∈ inputs (tx) then tx2 ∈ GetAcceptedTxs(G).
2) if tx ∈ GetAcceptedTxs(G) and tx2 ∈ conflict (tx) then tx2 /∈ GetAcceptedTxs(G).

Property 2 (Safety). If some node ϵ−accepts, then w.h.p. all other honest nodes will do so:
For any v ∈ honest and time t, if CheckRobustAccept (tx, ϵ,Gvt , d

v, α) = ACCEPT then,
with probability of at least 1 − ϵ, there exists a τ ≥ t such that ∀u ∈ honest,∀s ≥ τ :
CheckRobustAccept (tx, ϵ,Gus , d

u, α) = ACCEPT , and the expectation of τ − t is finite.

Property 3 (Progress). Transactions become more robust as time passes: For any v ∈ honest
and time t, if CheckRobustAccept (tx, ϵ,Gvt , d

v, α) = ACCEPT then, with probability of 1−ϵ
at least, for any ϵ′ there exists a ϕ such that ∀s ≥ ϕ : CheckRobustAccept (tx, ϵ,Gvs , d

v, α) =
ACCEPT , and the expectation of ϕ− t is finite.

Property 4 (Weak Liveness). Transactions are ϵ−accepted in finite time, provided that their
inputs are ϵ−accepted, and there are no conflicts visible: Let t be the current time, and assume
that tx ∈ Gpubt . Let ψ ≥ t be the earliest time after t at which an honest node ϵ-accepts tx.
Then, conditioned on the event where conflict (tx) ∩Gpubψ = ∅ and on the event where for all
tx2 ∈ inputs (tx), tx2 remains ϵ-accepted forever (by some honest node), the expectation of
ψ − t is finite.

C. Main result

The highlight of this work is the SPECTRE protocol, which satisfies the above properties:

Theorem 1. SPECTRE’s GetAcceptedTxs procedure (Algorithm 2) satisfies Property 1.
In addition, for any α < 0.5 and dv ≥ D, SPECTRE’s CheckRobustAccept procedure
(Algorithm 6) satisfies Properties 2-4. Moreover, the expected waiting times E[τ−t] and E[ψ−t]
increase logarithmically in 1/ϵ, and similarly E[ψ − t] in 1/ϵ′.

The full proof can be found in Appendix E. The expected values of τ − t and ϕ − t are in
O
(

ln(1/ϵ)
λ(1−2α) +

dv

1−2α

)
(and similarly for ψ − t w.r.t. ϵ′). λ will be defined in the next section.

3. THE SPECTRE PROTOCOL

A. The generation of the block DAG

As in Bitcoin, participating nodes (called miners) create blocks of transactions by solving
PoW puzzles. A block specifies its direct predecessors by referencing their ID in its header (a

6

block’s ID is the cryptographic hash of its header); we will describe in the next subsection how
these predecessors are chosen. This results in a structure of a direct acyclic graph (DAG) of
blocks (as blocks can only reference blocks created before them), denoted typically G = (C,E).
Here, C represents blocks and E represents the hash references. We will frequently write z ∈ G
instead of z ∈ C.
past (z,G) ⊂ C denotes the subset of blocks reachable from z, and similarly future (z,G) ⊂

C denotes the subset of blocks from which z is reachable; these are blocks that were provably
created before and after z, correspondingly. Note that an edge in the DAG points back in time,
from the new block to previously created blocks which it extends. We denote by cone (z,G) the
set of blocks that the DAG directly orders with respect to z: cone (z,G) := past (z,G)∪{z}∪
future (z,G), and by anticone (z) the complementary of cone (z,G). The set past (b,G) is
fixed once and for all at the creation of b (in sharp contrast to future (z,G) and anticone (z,G)
that may grow as blocks are added later to the DAG), hence we can simply write past (b) without
noting the context.

The unique block genesis is the block created at the inception of the system, and every valid
block must have it in its past set. In addition, we relate to a hypothetical block, virtual (G). This
block satisfies past (virtual (G)) = G. While its role is merely methodological, virtual (G)
can also be thought of as representing the next block that a node whose current observed DAG
is G attempts to create.
Gvt denotes the block DAG observed by node v ∈ N at time t. This DAG represents the

history of all (valid) block-messages received by the node, instantiating the abstract data structure
assumed in Sec. 2.

A block b is considered by a node as valid only if it received past (b), the block is of
size at most B KB (which in turn affects the parameter D discussed in Sec. 2), and the
cryptographic hash of its header (including the required nonce, serving as PoW) is smaller
than some predefined constant TARGET . The creation of blocks is well-approximated by a
Poisson process. We denote by λ the rate of block creation in the system, when all nodes in the
network participate. TARGET ’s value is occasionally readjusted, so as to keep λ constant, as
explained in Appendix C.

B. The miners’ protocol

SPECTRE’s instructions to miners are extermely simple:
1) When creating or receiving a block, transmit the block to all peers.
2) When creating a block, embed in its header a list containing the hash of all leaf-blocks

(blocks with in-degree 0) in the locally-observed DAG.
Note that these instructions allow miners to operate concurrently irrespective of potential

conflicts in the contents of their blocks.

C. The users’ protocol

As the block DAG may contain conflicting transactions, we must provide a method for network
nodes to interpret the DAG and extract from it the set of accepted transactions. Doing so in a

7

way that will be agreed upon by all nodes (eventually) is the main challenge of SPECTRE. We
now describe how this is done.

The topology of a block DAG G induces a natural precedence-relation over blocks: if x is
reacheable from y (i.e., x ∈ past (y)) then x precedes y, as it was provably created before it.
SPECTRE extends this relation into a complete relation over G’s blocks, denoted ≺. This order
is immediately translatable into an order over transactions in G: tx1 precedes tx2 if the block
containing the former precedes that containing the latter. This relation, in turn, induces a natural
subset of accepted transactions: tx is accepted if it precedes all of its conflicting transactions
in G. The relation ≺ is generated by a pairwise vote procedure that occurs independently for
every pair of blocks. The operation of this layer will be explained in the next subsections.

Although we may at times refer to ≺ as though it orders blocks, we stress that ≺ is not
necessarily a transitive relation. It is possible to have a series of blocks that precede each other
cyclically.2 The lack of a total linear ordering over blocks is in fact the way SPECTRE utilizes
the weaker consensus requirements of our framework, as a linear order is equivalent to solving
the consensus problem [4] (which would lower the resilience thresold to 33% [21]).

The second layer of SPECTRE is responsible for correctly estimating how robust these
relations are. Its main procedure, CheckRobustAccept, upper bounds the probability that a
certain transaction, now considered accepted, will later be rejected. Such an event can occur
only if the order between certain pairs of blocks is reversed, and so this challenge reduces to
estimating the robustness of the pairwise ordering of these blocks. This layer of SPECTRE is
highly involved, and we defer its description to Appendix A.

D. Pairwise ordering of blocks

The basic layer of SPECTRE involves deciding on a pairwise order over the block DAG.
Fix two blocks x, y ∈ G. In order to decide if x ≺ y or y ≺ x, we interpret the structure
of the DAG as representing an abstract vote. Every block z ∈ G is considered a voter with
respect to the pair (x, y), and its vote is inferred from the structure of the DAG. We represent a
vote by a number in {−1, 0,+1}, and we denote z’s voting-profile on all pairs by vote (z,G).
votex,y (z,G) = −1 represents x preceding y (x ≺ y), votex,y (z,G) = +1 represents y
preceding x, and votex,y (z,G) = 0 represents a tie. Importantly, vote (z,G) is an asymmetric
relation: votey,x (z,G) = −votex,y (z,G).

To simplify presentation, we associate a vote with virtual (G) as well. Recall that the
virtual block of G is a hypothetical block which satisfies past (virtual (G)) = G. The vote
of virtual (G) represents essentially the aggregated vote of the entire block DAG. The basic
rules of z’s vote, for any z ∈ G ∪ {virtual (G)}, are as follows:

• if z ∈ G is in future (x) but not in future (y) then it will vote in favour of x (i.e., for
x ≺ y).

2This is related to the Condorcet paradox in social choice [3].

8

DAG used in recursive

call for block 12

(X<Y)

(X<Y)

(X<Y) (X<Y)

(X<Y)

(X<Y)

(X<Y)

(Y<X)

(Y<X)

(X<Y)

(X<Y)

(Y<X)(Y<X)

(X<Y)

1

2

3

4

X

5

Y

6

7

9

10

8

12

11

Fig. 1: An example of the voting
procedure on a simple DAG.
Block x and blocks 6-8 vote x ≺
y as they only see x in their past,
and not y. Similarly, block y and
blocks 9-11 vote y ≺ x. Block 12
votes according to a recursive call
on the DAG that does not contain
blocks 10,11,12. Any block from
1-5 votes x ≺ y, because it sees
more x ≺ y voters in its future
than y ≺ x voters.

• if z ∈ G is in future (x)∩future (y) then z’s vote will be determined recursively according
to the DAG that is reduced to its past, i.e., it has the same vote as virtual (past (z)). If
the result of this vote is a tie, z breaks it arbitrarily.3

• if z ∈ G is not in the future of either blocks then it will vote the same way as the vote of
the majority of blocks in its own future.

• if z is the virtual block of G then it will vote the same way as the vote of the majority of
blocks in G.

• finally, (for the case where z equals x or y), z votes for itself to succeed any block in
past (z) and to precede any block outside past (z).

It is easy to see that all votes respect the DAG’s topology: If x is reachable from y then all
blocks vote unanimously x ≺ y. Figure 1 illustrates the voting procedure with regards to a single
pair of blocks (x,y). Additional examples along with intuition regarding this key algorithm are
provided in Appendix D. The above procedure is implemented in Algorithm 1 below.

In the algorithm, s̃gn (n) = −1 for n < 0, s̃gn (n) = +1 for n > 0, and s̃gn (0) = 0. To see
that the recursion calls from line 4 halt, observe that they take as inputs DAGs strictly smaller
than G (because past (z) (G), and hence eventually all arrive at the base case G = ∅ and
return. The algorithm is written in its naı̈ve form, for the sake of readability, with a run time of
O(|G|3). A more sophisticated approach implements it in expected time of O(d · λ).

The pairwise ordering of SPECTRE has the following highly valuable property: Once a block
is published, the set of blocks that precede it in the pairwise ordering closes fast—w.h.p. it only
consists of blocks that were published before or right after its publication.

The implications of this guarantee to the security of transactions is immediate, at least at the
intuitive level: A user whose transaction is embedded in some published block x can guarantee
its safety by waiting some time after x’s publication before accepting it; he is then guaranteed

3We can use information encoded in z’s header, e.g., explicit instructions for tie-breaking, or use the lexicographical
ordering of (hashes of) tied blocks, etc.

9

Algorithm 1 CalcV otes

Input: G – a block DAG
Output: vote (virtual (G)) – a pairwise ordering of blocks in G

1: if G = ∅ then
2: return an empty ordering
3: for all z ∈ G do
4: vote (z, past (z))← CalcV otes (past (z)) and break ties arbitrarily
5: for all z ∈ G in some topological order (from leaves to root) do
6: for all x, y ∈ G (x ̸= y) do
7: if

(
x ∈ past (z) ∧ y /∈ past (z)

)
∨ (x ∈ past (z) , y = z) then

8: votex,y (z,G)← −1
9: else if

(
y ∈ past (z) ∧ x /∈ past (z)

)
∨ (y ∈ past (z) , x = z) then

10: votex,y (z,G)← +1
11: else if x, y ∈ past (z) then
12: votex,y (z,G)← votex,y (z, past (z))
13: else if x, y /∈ past (z) then
14: votex,y (z,G)← s̃gn

(∑
z′∈future(z,G) votex,y (z

′, G)
)

15: vote (virtual (G) , G)← s̃gn
(∑

z∈G vote (z,G)
)

16: return vote (virtual (G) , G)

that any block published later on – and that might contain a conflicting transaction – will be
preceded by x hence will not threaten the acceptance of his transaction. In Sec. 4 we will explain
how this guarantee is achieved.

E. Accepting transactions

Equipped with the pairwise relation over blocks, we now turn to construct the set of accepted
transactions. Basically, we mark a transaction as accepted iff all three conditions below hold
true:

• all of its inputs have been accepted.
• all conflicting transactions that are in its anticone set (i.e., that are not related to it

topologically) are contained in blocks that are preceded by the block containing the
transaction.

• all conflicting transactions that are in its past set (i.e., that precede it in the DAG,
topologically) have been rejected.

Algorithm 2 implements these rules, and outputs a set of accepted transactions. It operates
recursively, and should be initially called with GetAcceptedTxs(G,G) (we later denote this
simply by GetAcceptedTxs(G)). In the algorithm, the notation ZG(tx) stands for all blocks
in G that contain tx. Some complexity arises due to possible multiple copies of the same
transactions, which requires dealing with equivalence classes of transactions [tx].

10

Algorithm 2 GetAcceptedTxs

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly virtual)
block

Output: TX – a hyper-set of valid transactions in G
1: vote (virtual (G))← CalcV otes(G)
2: TX ← ∅
3: for all z1 ∈ subG do
4: for all tx ∈ z1 do
5: for all tx2 ∈ G ∩ conflict (tx) do
6: for all z2 ∈ ZG(tx2) ∩ anticone (z1, G) do
7: if votez1,z2 (virtual (G)) ≥ 0 then
8: break (to line 4 and pick next tx)
9: if [tx2] ∩GetAcceptedTxs(G, past (z1)) ̸= ∅ then

10: break (to line 4 and pick next tx)
11: for all [tx3] ∈ inputs (tx) do
12: if [tx3] ∩GetAcceptedTxs (G, past (z1)) = ∅ then
13: break (to line 4 and pick next tx)
14: add tx to TX
15: return TX

4. HIGH-LEVEL OVERVIEW OF THE PROOF

We now provide some intuition as to why SPECTRE’s procedures indeed guarantee that
transactions can be accepted safely, and that all transactions of honest users are quickly accepted.
We aim at proving the main property of SPECTRE: For a published block, the set of blocks that
precede it in the order of the DAG consists only of blocks that were published before or right
after its publication, w.h.p. As mentioned at the end of Subsection 3.4, this property is easy to
translate to the desired security properties of transactions (as we do formally in Appendix E).
We thus wish to prove the following statement:

Proposition. Let x, y be two blocks. Assume that x was published at time tpub (x ∈ Gpubtpub
),

and y was not published before time tacc (y /∈ Gpubtacc
).4 Then, the probability that, at some

point in the future, x will not precede y in the DAG observable by some honest node
(Pr (∃u ∈ honest,∃s ≥ tacc : votex,y (virtual (Gus)) ≥ 0)) decreases exponentially in (tacc −
tpub).

Proof overview. Assume that the event in which y comes to precede x in some future DAG
occurs. Let s be the earliest moment in time that such an event occurred at some node. Notice
that y cannot be in the past of x or in its future (otherwise their order is determined by the
topology and cannot be reversed). We thus assume henceforth y ∈ anticone (x).

4Intuitively, tacc represents the time at which some node accepted a transaction which appears in block x.

11

The block race after x is published. We first consider the votes of blocks created after the
publication of block x:
• (Almost) all honest blocks created between tpub and tacc vote forever in favour of x ≺ y, as

they have x in their past but not y. Denote by n1 the number of such blocks.
• All honest blocks created between tacc and s vote in favour of x ≺ y, as well, by the choice

of s. Denote by n2 the number of such blocks.
• Denote by m1 and m2 the number of blocks created by the attacker in the time intervals

corresponding to n1 and n2. Honest nodes posses a fraction 1− α > α of the computational
power. Consequently, for any positive constant C, the probability that the relation m1+m2+
C − (n1 + n2) ≥ 0 will ever be satisfied decreases exponentially with n1. This is typically
analyzed as the probability that a biased random walk on the integers, beginning at C, returns
to the origin (see [17], [22], [25]).
The term m1 +m2 − (n1 + n2) represents the aggregate vote between x and y, considering

only blocks created after x’s publication. We now show that blocks that the attacker prepared
in advance before x’s publication, in a preparatory “pre-mining” stage, do not give him more
than some constant advantage (which will be counted into C above).
The pre-mining stage. Honest blocks that were created before x was published are typically in
its past (apart from a small set of blocks) and hence have their vote decided by the majority of
votes in their future (as per Alg. 1). Their vote is thus possibly subject to change as the DAG
grows, and as the attacker publishes blocks.

For every block z in the past of x we must therefore consider the number of blocks above
it that vote in favour of x and those that vote against it. Denote by Xz the gap between the
number of attacker blocks and honest blocks in the future of z, up to time tpub. In Lemma 22 we
show that the worst case gap Xz (over all blocks z ∈ past (x)) can be modeled as a reflecting
random walk over the nonnegative integers, with bias towards the origin. Consequently, the best
gap that the attacker can secretly gain over a block in past (x) has an exponentially decaying
tail, and, in particular, is bounded by a constant w.h.p.

All in all, as tacc − tpub grows, the number n1 of votes, or “confirmations”, that x receives
increases linearly, and the probability that the attacker will be able to reveal enough blocks so
that some z ∈ past (x) will have more y ≺ x votes in its future than x ≺ y votes, decreases
exponentially in n1. As this holds for all z ∈ past (x) uniformly, it implies in particular that
the genesis block has more x ≺ y votes in its future than y ≺ x votes (unless an exponentially
unlikely event occurred). The vote of the virtual block is determined by that of the genesis
block (this is easy to see, and is proven in Lemma 11), completing the argument.

The proposition above is the gist of Lemmas 12, and 13. In the above sketch, we abstracted
out many additional subtleties and details. For instance, honest blocks that were created D
seconds around tpub, tacc, or s may not have contributed votes in favour of x. In our formal
analysis we count these as attacker blocks, accounting for the worst case, and add them to the
aforementioned constant C. We additionally show how the user can measure n1 correctly, even
if the attacker publishes his blocks in an attempt to delay acceptance.

12

5. CONCLUSION

In this work we presented SPECTRE, a new protocol for fast and scalable distributed ledgers.
We have shown SPECTRE’s ability to process a high rate of block creation, as well as to
handle large blocks securely. Our results demonstrate that SPECTRE can achieve incredibly low
confirmation times, especially compared to the Nakamoto consensus. Further work to improve
and tighten the acceptance policy we derived can lower confirmation times further.

SPECTRE thus shows the feasibility of creating open, permissionless distributed ledgers that
will work successfully at large scale. It achieves these properties in the partial synchronous
setup, due to its willingness to delay the decision regarding visibly double-spent transactions.

REFERENCES

[1] https://www.ethereum.org/.
[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus: An

incentive-compatible cryptocurrency based on permissionless byzantine consensus. arXiv preprint
arXiv:1612.02916, 2016.

[3] Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social Choice & Welfare, volume 2.
Elsevier, 2010.

[4] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. The Computer Journal, 49(1):82–96, 2006.

[5] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In Proceedings of
the 17th International Conference on Distributed Computing and Networking, page 13. ACM, 2016.

[6] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In 13th IEEE
International Conference on Peer-to-Peer Computing (P2P), Trento, Italy, September 2013.

[7] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[8] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Annual International
Cryptology Conference, pages 139–147. Springer, 1992.

[9] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pages
45–59, 2016.

[10] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography
and Data Security, pages 436–454. Springer, 2014.

[11] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 281–310.
Springer, 2015.

[12] Ari Juels and John G Brainard. Client puzzles: A cryptographic countermeasure against connection depletion
attacks. In NDSS, volume 99, pages 151–165, 1999.

[13] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in the blockchain. Cryptology
ePrint Archive, Report 2016/545, 2016.

[14] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong consistency via collective signing. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 279–296, 2016.

[15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In International
Conference on Financial Cryptography and Data Security, pages 528–547. Springer, 2015.

[16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 31–42.
ACM, 2016.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

13

[18] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
IACR Cryptology ePrint Archive, 2016:454, 2016.

[19] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
IACR Cryptology ePrint Archive, 2016:454, 2016.

[20] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model, 2016.
[21] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. Cryptology

ePrint Archive, Report 2016/917, 2016.
[22] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint arXiv:1402.2009, 2014.
[23] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies in bitcoin. arXiv

preprint arXiv:1507.06183, 2015.
[24] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys (CSUR), 22(4):299–319, 1990.
[25] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In International

Conference on Financial Cryptography and Data Security, pages 507–527. Springer, 2015.

APPENDIX A
ADDITIONAL ALGORITHMS

In Sec. 3 we described the way SPECTRE pairwise orders blocks, and how this order is used
to construct the subset of accepted transactions. In this section we describe the procedures of
the second layer of SPECTRE, which allows users to measure the robustness of this order, and
to translate this into the robustness of accepted transactions.

A. Robustness of the block pairwise ordering

Assume that in the order of the current observable DAG the block x precedes y. We need a
method to measure how likely it is that this relation will persist forever. Algorithm 3 outputs an
upper bound on the probability that an attacker will be able to reverse the relation x ≺ y. When
the argument y is unspecified, the interpretation of the algorithm’s output is x’s robustness
against an unseen block (withheld by an attacker or yet to be created). In the algorithm,
gap (b,G) denotes the size of the set {z ∈ anticone (b,G) : votez,b (virtual (G)) ≥ 0}. The
notation ⟨G, z,K⟩ will be explained in the paragraphs that follow.

In line 13 the algorithm uses several functions whose precise definitions we defer to later
sections. An explicit formula for fpre pub is given in (54), for fpost pub is given in (50) and (52),
and for fpost mine is given in (5). Preceding Lemma 22, we provide a method to calculate
fpre mine numerically.

Intuitively, the function fpre mine upper bounds the probability that the attacker has gained
an advantage larger than l during the pre-mining phase (i.e., up until the creation of x). The
function fpost mine upper bounds the probability that the attacker will ever be able to create
enough blocks so as to reverse the relation x ≺ y. In essence, fpost mine is an adaptation of a
formula from [22]. According to our version of the formula, if during the interval [time(x), tacc]
(where tacc represents the current time) honest nodes created n blocks, then

(
n−1+m

m

)
·αm·(1−α)n

is the probability that the attacker has created during this interval m blocks. If g aggregates all
the votes of blocks in future (x,G), then the probability that the attacker will be able to reverse

14

Algorithm 3 Risk (offline)

Input: G – a block DAG, x – a block in G, y (optional) – a block in anticone (x,G)
Output: risk – an upper bound on the probability of block x not defeating y at any point in

the future
1: if time now < publication(x) + 2 · d then
2: return 1
3: K ← ⌈

√
|future (x,G)|⌉

4: if NULL = y then
5: g ←

∣∣future (x,G)∣∣
6: M ← 0
7: else
8: g ←

∑
z′∈future(x,G) votey,x (z

′, G)

9: M ←
∣∣∣{z ∈ future (x,G) : votex,y (z,G) = +1 ∧ gap (z, ⟨G, z,K⟩) = 0

}∣∣∣
10: nx ←

∣∣future (x,G)∣∣−M
11: j ← gap (x,G) +K
12: l← K
13: risk ← fpre mine(l) + fpre pub(K) + fpost pub (M) + fpost mine (nx, g, j, l,M)
14: return risk

the majority’s vote is roughly
(

α
1−α

)max{g−m,0}
. The combined expressions produce an upper

bound on the success-probability of an attack.5

The main challenge here is to correctly measure n. This is a difficult task, as Algorithm 3
uses only structural information (with the exception of making sure that x has been published
for at least 2 · d seconds) and does not rely on measurements of blocks’ timings. Naı̈vely one
would use n ≈ |future (x,G)| to upper bound blocks created after publication(x). However,
there are two main difficulties:

• The block x might have been created by a dishonest node and withheld by it. In this case,
there might have passed a long time between its creation and its publication, which implies
that |future (x,G)| alone may be well below n. To avoid underestimating n, we upper
bound the number of honest blocks in anticone (x,G), by the variable j, and add it to our
count (the addition is done inside fpost mine (nx, g, j, l,M)).
The function fpre pub upper bounds the probability that we have underestimated j.

• By publishing his attack blocks, the attacker can increase the size of future (x,G) and
cause us to overestimate n. This would result in an upper bound on the success-probability

5The calculations we use are quite more involved, as will be detailed later on. The reason why we aggregate in
g votes from future (x,G) alone – rather than votes from the entire DAG – was discussed in Sec. 4. Essentially,
observe that counting all votes – including votes of blocks in past (x) – is not meaningful, as such voters might
reverse their vote as future events unfold. Rather, it is useful to measure how robustly voters in past (x) support
x ≺ y, which is captured by our calculations.

15

of an attack that is not tight enough, which would allow an attacker with a large value of
α to delay acceptance indefinitely. Risk overcomes this problem, by recognizing attacker
blocks and excluding them from the count of n. This is done as follows.
Let G be a block DAG, b a block in G, and K a whole number. The DAG ⟨G, b,K⟩ is
obtained by creating a new chain z1, ..., zK of K hypothetical blocks, connecting an edge
from z1 to b and replacing every edge (z, b) ∈ G with (z, zK) ∈ G. Essentially, this adds
to the DAG K artificial voters which vote strongly x ≺ y, against any y /∈ past (x,G).
In line 9, the algorithm checks whether gap (z, ⟨G, z,K⟩) = 0, i.e., whether there exists
a block in anticone (z) that precedes z in the modified DAG ⟨G, z,K⟩. In the case of a
negative answer, z is counted into n (in line 10).
The following property explains why this procedure is useful: If we add K voters in favour
of an honest block, for some small K, then no other block will precede it in the pairwise
ordering (apart from its past set). This is restated formally and proven in Lemma 27.
The function fpost pub upper bounds the probability that we have underestimated the number
of honest blocks in future (x,G).

B. Robustness of transaction acceptance

The next step is to translate robustness of blocks (calculated by Risk) to robustness of
transactions. This transition is implemented similarly to the transition from the (non-robust)
ordering of blocks (Alg. 1) to the (non-robust) accepted set of transactions (Alg. 2).

The RiskTxAccept procedure (Alg. 4) takes as input G and tx (and an additional argument)
and returns an upper bound on the probability that some honest node will not ϵ-accept tx. The
main task of RiskTxAccept is to properly account and aggregate the error bounds that Risk
induces. As can be easily recognized, RiskTxAccept and RiskTxReject (Alg. 5) are mirror
images of each other. While RiskTxAccept upper bounds the probability that a given transaction
will ever be removed from the accepted transaction subset, RiskTxReject upper bounds the
probability that a given transaction will ever be included in this subset. This is particularly
vital for the case where two conflicting transactions are related topologically, i.e., tx2 ∈ y and
tx1 ∈ x ∈ future (y), but tx2 is not in the accepted set (due to some previous conflict). In this
case, although the block containing tx2 precedes that containing tx1, we accept tx1. It can be
further ϵ-accepted if the rejection-status of tx2 is robust, as calculated by RiskTxReject.

16

Algorithm 4 RiskTxAccept

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly virtual)
block, tx – a copy of the transaction to defend

Output: risk – an upper bound on the probability that some honest node in some future point
in time will accept no transaction in [tx] ∩ subG.

1: minrisk ← 1
2: for all z1 ∈ ZG([tx]) ∩ subG do
3: risk ← Risk (G, z1, ∅)
4: for all tx2 ∈ G ∩ conflict (tx) do
5: for all z2 ∈ ZG(tx2) ∩ anticone (z1, G) do
6: risk ← risk +Risk (G, z1, z2)

7: risk ← risk +RiskTxReject (G, [tx2], past (z1))

8: for all [tx3] ∈ inputs (tx) ∩ past (z1) do
9: risk ← risk +RiskTxAccept (G, [tx3], past (z1))

10: minrisk ← min {minrisk, risk}
11: risk ← minrisk
12: return risk

Algorithm 5 RiskTxReject

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly virtual)
block, tx – a copy of the transaction to defend

Output: risk – an upper bound on the probability that some honest node in some future point
in time will accept a transaction in [tx] ∩ subG.

1: risk ← 0
2: for all z1 ∈ ZG([tx]) ∩ subG do
3: minrisk ← 1
4: for all tx2 ∈ G ∩ conflict (tx) do
5: for all z2 ∈ ZG(tx2) ∩ anticone (z,G) do
6: minrisk ← min {minrisk,Risk (G, z2, z1)}
7: minrisk ← min {minrisk,RiskTxAccept (G, [tx2], past (z1))}
8: for all [tx3] ∈ inputs (tx) do
9: minrisk ← min {minrisk,RiskTxReject (G, [tx3], past (z1))}

10: risk ← risk +minrisk

11: return risk

Building on these procedures, we now present the CheckRobustAccept procedure of
SPECTRE. The user should provide as input the entire DAG that it currently observes.

17

Algorithm 6 CheckRobustAccept

Input: G – a block DAG representing the current DAG observed by the node running the policy,
tx – the transaction to defend, ϵ – the maximum risk the user is willing to tolerate, α –
maximal size of attacker, d – maximal delay diameter of network, λ – the block creation
rate

Output: ACCEPT– if the probability that (after some initial waiting) there will be an honest
node that will not ϵ-accept tx is smaller than ϵ; WAIT– otherwise

1: if RiskTxAccept (G, [tx] ∩G) < ϵ then
2: return ACCEPT
3: else
4: return WAIT

C. Online policy

We now present an alternative implementation of Risk, which requires that the user be online
at the time when his block gains confirmations. This assumption is highly reasonable for many
practical scenarios, e.g., a cashier serving a continuous line of customers. The main benefit
of the online version is that it relies on a tighter analysis, and therefore accepts transactions
slightly faster. We now confine ourselves to the case where there is no visible double-spend
(i.e., y = NULL).

The fact that the user is online can be utilized in two ways: First, any block that the user
receives after receivedv(b) + 2 · d and does not belong to future (x) can be marked by him
as an attacker block. Second, the user can estimate the number of hidden attacker blocks by
measuring the time that passed since the creation of x.

Below we describe the online version of Risk. The algorithm takes as input node v’s DAG
and the block x to defend, and returns an upper bound on the probability that some block
y ∈ Gpub∞ \Gpubt will ever precede it.

18

Algorithm 7 Risk (online)
Input: Gvt – the block DAG that v obesrves at time t, x – a block in Gvt
Output: risk – an upper bound on the probability of block x not preceding y at any point in

the future, for some y ∈ Gpub∞ \Gpubt

1: if time now < publication(x) + d then
2: return 1
3: T ← time now − receivedv(x)
4: Gx ← Gvreceivedv(x)+2·d ∪ future (x,Gx)
5: g ← minx′∈anticone(x,Gx)

|future (x′, Gx)|
6: risk ← risk hidden(T, g)
7: if risk < ϵ then
8: return ACCEPT
9: else

10: return WAIT

The definition of risk hidden appears in (45)-(46). In practice, as node v may have a partial
view of Gpub∞ \Gpubt , in order to use Alg. 7 the user must wait additional d seconds and verify
that conflict (tx)∩Gvt+d = ∅, i.e., that the attacker did not publish a double-spend in the interval
[t− d, t]. The correctness of the online policy modification is proven in Corollary 25.

APPENDIX B
SIMULATION RESULTS

We implemented the SPECTRE protocol in Python along with an event-driven simulator of
network dynamics. For each experiment we generated an Erdős-Rényi random network topology
with 20 nodes. Each node forms 5 outgoing links, in expectation. The delay on each link was
uniformly distributed and later scaled linearly so that the diameter of the graph is d (for the
given d). Every point represents the average outcome over at least 500 experiments.

The main benefit of SPECTRE is fast transaction confirmation. The asymptotic waiting times
derived from our formal analysis are in O

(
ln(1/ϵ)
λ(1−2α) +

dv

1−2α

)
. In order to measure the actual

waiting times, we utilized the online acceptance policy derived by Alg. 7. Accordingly, we stress
that the merchant needs to wait additional d seconds in order to verify that no double-spend has
been released in the past d seconds, as explained at the end of Appendix A.
How does the delay diameter affect acceptance times? Given that block creation rate is high,
most of the waiting time for acceptance is dominated by the block propagation delay. Fig. 2
depicts the transaction acceptance times of SPECTRE, for various values of the delay diameter
d, and for different security thresholds ϵ. Note that, unlike the Nakamoto Consensus, d affects
the acceptance time of transactions but not their security.

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

delay diameter (sec)

0

2

4

6

8

10

12

14

w
ai

tin
g

tim
e

(s
ec

)

ǫ=0.01
ǫ=0.001
ǫ=0.0001

Fig. 2: The average time for CheckRobustAccept to return ACCEPT, assuming there’s no
visible double-spend, for λ = 10 blocks per second and α = 0.25.

How does the block creation rate affect acceptance times? Fig. 3 depicts the acceptance times
for various values of the block creation rate λ, under a constant delay d = 5 seconds. The graph
reaffirms the role of λ in our asymptotic bound: accelerating the block creation process allows for
faster acceptance times. For comparison, Bitcoin’s block creation rate of 1/600 implies waiting
times that are orders of magnitudes higher (not plotted).

0 1 2 3 4 5 6 7 8 9 10

λ (blocks per sec)

0

10

20

30

40

50

60

70

w
ai

tin
g

tim
e

(s
ec

)

ǫ=0.0001
ǫ=0.001
ǫ=0.01

Fig. 3: The average time for CheckRobustAccept to return ACCEPT, assuming there’s no
visible double-spend, for d = 5 seconds and α = 0.25.

20

Can an attacker delay acceptance? We now turn to demonstrate the effect of censorship
attacks in which some dishonest nodes publish blocks that do not reference other miners’ blocks.
Recall that the Weak Liveness property of SPECTRE (Proposition 4) guarantees fast acceptance
of transactions that are not visibly double-spent, even in the presence of a censorship attack.
However, such an attack still causes some delay in transaction acceptance, but this delay is
minor for small attackers. In Fig. 4 we quantify this effect, by comparing the acceptance times
in “peace days” to those under an active censorship attack. The parameters here are d = 5
seconds, λ = 10 blocks per second, and ϵ = 0.01. The results display a modest effect of the
attack, and they show that in order to delay transaction acceptance by more than 5 to 10 seconds
an attacker must possess a significant share of the computational power in the network.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

α (fraction of hashrate)

0

5

10

15

20

ac
ce

pt
an

ce
 ti

m
e

(s
ec

)

under no attack
under active attack

Fig. 4: The average time for CheckRobustAccept to return ACCEPT, assuming there’s no
visible double-spend, for d = 5 seconds, λ = 10 blocks per second, and ϵ = 0.01, in the
presence and in the absence of a censorship attack.

How does ϵ decrease for various sizes of the attacker? Once an honest node ϵ-accepts a
transaction, there’s still a small risk (ϵ) that it would eventually be rejected. We show that the
probability of this event vanishes quickly, even for an extremely capable attacker (e.g., with
α = 0.4 of the hashrate). This is illustrated in Fig. 5, assuming d = 5 seconds and λ = 10
blocks per second (notice that the y-axis is in log scale).
How tight is our security analysis? The analysis on which Alg. 3 relies makes several
worst-case assumptions in order to bound the probability of a successful attack, e.g., that the
attacker can broadcast blocks to and receive blocks from all nodes without any delay (see
Appendix E, mainly Lemmas 12 and 18). Accordingly, the analysis is not tight, and in reality
attacks are in fact less likely to succeed. In Fig. 6, we depict the comparison between the
analytical bound and two different empirical simulations. In these simulations we explicitly

21

0 5 10 15 20 25 30

waiting time (sec)

10-60

10-40

10-20

100

ǫ

α=0.1
α=0.25
α=0.4

Fig. 5: The probability of a successful double-spending attack, as a function of the waiting time
before acceptance, under d = 5 seconds and λ = 10 blocks per second, for α = 0.1, 0.25, and
0.4. The probability here is the result of the calculation performed by Alg.3.

generate blocks for the attacker and simulate the optimal double-spending attack. We repeat the
experiment 10,000 times for each point in the graph, and measure the empirical success rate.
The simulations assume two types of attackers: a worst-case attacker that is able to transmit
and receive blocks with no delays, and a more realistic attacker that is connected to other nodes
with typical delays. We compared the fraction of successful attacks under these setups to the
analytical risk calculated by SPECTRE’s policy (Alg. 7).

The results show that the risk considered by SPECTRE’s CheckRobustAccept indeed upper
bounds the actual risk, and that transactions are even safer than we guarantee formally.

APPENDIX C
IMPLEMENTATION DETAILS

Minting. In SPECTRE, any block whose target meets the required value TARGET – as will
be defined below – receives the same minting reward. If its target is higher than TARGET (i.e.,
it is solved with an easier difficulty) by a factor of (1 + δ) at most, then its reward is reduced
by the same factor. The parameter δ represents the protocol’s tolerance to blocks mined with an
outdated difficulty. Thus, if for instance δ is chosen to equal 2, then blocks with a target value
of 2 · TARGET or 3 · TARGET are valid, and their minting rewards are reduced by a factor
of 2 or 3, respectively; blocks with a target higher than 3 ·TARGET are invalid and discarded.
We now explain how TARGET is defined and readjusted.
Retargeting. Similarly to Bitcoin and other PoW-based systems, the difficulty of block creation,
represented by TARGET (Subsection 3.1), must be occasionally adapted. Varying network

22

0 5 10 15 20

waiting time (sec)

0

0.2

0.4

0.6

0.8

1

ǫ

analytical bound
empirical (worst case)
empirical (with delay)

Fig. 6: The analytical vs. empirical probabilities of a successful double-spending attack, as a
function of the waiting time before acceptance, under d = 5 seconds, λ = 10, and α = 0.25.

conditions, and changes in the amount of computational resources invested in the system, require
we limit the number of blocks created per second, to avoid network congestion. In Bitcoin this
is done as follows: Every 2016 blocks, the next block – which we call the reference block –
is mined according to an adjusted difficulty. The new difficulty is obtained by taking the time
that elapsed since the previous reference block (using the timestamps written inside each block)
and plugging it into the retargeting formula. The output of this formula is the new value of
TARGET that the new reference block should be mined with.

We adapt this scheme to SPECTRE: Let xn−1 be the previous reference block. Every new
block xn that has the property that

∣∣past (xn) ∩ future (xn−1)
∣∣ = 2016,6 is a candidate

to become the new reference block. In case additional candidates exist, we choose the
one with the minimal dist gap, with some arbitrary tie-breaking, where dist gap(b,G) :=
minK∈N gap (b, ⟨G, b,K⟩) = 0. The variable dist gap(b,G) represents the minimal K such
that adding K votes in favour of b makes its gap equal zero. This guarantees that among a set
of candidates to become xn (satisfying the above property) one and only block would be chosen
as the reference block succeeding xn−1. In particular, as explained in Appendix D, an attacker
block that was withheld for a while will have a large dist gap and will not be eligible as a
reference block. Furthermore, an attacker block that was mined before xn−1 will not affect the
next retargeting, as it cannot belong to future (xn−1).

The new difficulty, with which the new reference block should be mined, is given again
through the formula that uses the time that elapsed between xn−1 and xn to update TARGET .

6Some new notation is used in these paragraphs: future (x) := future (x)∪ {x}, and similarly for past (x) and
anticone (x). In addition, antipast (x) = future (x) ∪ anticone (x), and similarly for antifuture (x).

23

The formula should aim for a predefined λ for which nodes are believed to have sufficient
bandwidth, e.g., 1 MB per second. This difficulty dictates the difficulty for every block in
antipast (xn) \ anticone (xn+1), where xn+1 is the next reference block. Every block in this
set should be mined according to the same difficulty as xn.

If block b ∈ antipast (xn) \ anticone (xn+1) was solved with an easier difficulty than that
dictated by the reference block xn, then b is still considered valid, provided that its outdated
target is at most (1 + δ) of the target of xn (i.e., a difficulty easier by at most (1 + δ)). The
parameter δ is the protocol’s tolerance threshold. The minting reward of b is reduced by the
corresponding factor, as explained above. Blocks whose target exceeds the required one by a
factor higher of (1 + δ) are ignored and discarded.
Block headers. In order to incorporate all blocks into the DAG, every block embeds in its header
pointers to the hash of previous blocks. No redundancies are permitted, hence only leaf-blocks
of past (b) should be pointed at by the header of b. The implication of this is that a block’s
header is of size ≈ 50 + d · λ · 32 Byte. Therefore, there is a limit to the extent at which block
size could be reduced and block creation rates increased – at extremely high rates, the overhead
of the block header becomes significant relative to the number of included transactions. We
note, additionally, that in case the current observable DAG has too many leaves (whether by a
rare burst in block creations or by an attacker releasing many outdated blocks), the next block
creator can cap the number of leaf-blocks it points at. Blocks left out by this block will later
integrate into the DAG, as future blocks will have available space in their headers and will be
able to point at these blocks and include them.
Efficient implementation. Our current implementation of SPECTRE uses naı̈ve calculations
which are usually inefficient, specifically, cascading the votes all the way to the genesis
block. Several efficient implementations are possible. Designing such an efficient implementation
requires attention to CPU attacks, in which the attacker exposes peculiar structures of outdated
blocks in order to cause other nodes to perform extensive computation. It can be shown that these
attacks are highly costly to the attacker. We have an implementation of SPECTRE’s procedures
that works in O(d · λ) in expectation, compared to the naı̈ve implementation with O(|G|3). We
leave its full specification, and a proof of the cost of CPU attacks on it, to future work.
Transaction fees. The body of a transaction specifies the amount transferred from the payer to
the payee. The transaction-fee specifies the payment from the payer to the miner whose block
contains the transaction. We regard these two parts as separate transactions, in the following
sense. Assume that tx ∈ x, and denote by fee(tx, x) the transaction representing the fee-payment
of tx to the creator of block x. Assume now that two copies of tx appear in two different blocks
x, y. Then the body is considered simply as a copy of the same transaction (recall the notation
[tx] from Sec. 2), whereas the transactions fee(tx, x) and fee(tx, y) are considered a conflict,
i.e., a double-spend. Accordingly, as in the ordinary scheme of SPECTRE, the fee is granted
to (the creator of) block x iff tx ∈ GetAcceptedTxs(G) and x defeats all other blocks that
contain tx as well.

This rule can potentially harm miners, in the special case when the relation between x
and y does not become robust (SPECTRE does not guarantee robustness if these blocks were

24

published in time proximity and an active attack is taking place). We address this problem by
introducing settlement transactions. A settlement transaction is a voluntary transaction which
both the creators of x and y sign after they observe that their blocks conflict. We denote
it settlement(x, y). The interpretation of settlement(x, y) is that the fees from all of (or
part of, if the parties involved so choose) the transactions in x ∩ y should be divided evenly
between blocks x and y. settlement(x, y) essentially overrides fee(tx, x) and fee(tx, y). When
settlement(x, y) appears in some block z in the DAG G, it is considered accepted (i.e., a
member of GetAcceptedTxs(G)) iff x, y ∈ past (z) and z precedes every block that contains a
transaction spending fee(tx, x) or fee(tx, y). Therefore, once one party has spent its fee before
it belonged to it robustly, it won’t be able to settle later (w.h.p.). Miners are therefore advised
to wait for their transaction-fee rewards to become robust, or to initiate a settlement, before
spending these rewards.

Note that this scheme can be used to settle conflicts between blocks of multiple parties
simultaneously. Furthermore, the settlement scheme need not be confined to conflicts regarding
fees, and can be applied to any double-spend.

APPENDIX D
INTUITION AND EXAMPLES

In this section we provide some basic explanations and intuitions regarding the operation of
SPECTRE. We focus primarily on explaining the ideas underlying Alg. 1 that is at the core of
the protocol. We later go on to present examples for simple attacks that shed some light on how
resilience is achieved.

Intuition 1 (Vote in favour of visible blocks). If a block x is known by honest participants,
their blocks will include it in their past. Given that blocks vote in favour of blocks in their past
(over other unknown blocks), and given that honest nodes publish their blocks quickly, hidden
attacker blocks lose votes.

Intuition 2 (Majority amplification). Given blocks x, y that contain potential conflicts, blocks
that are generated by honest participants after their publication reference both of them in the
DAG. According to Alg. 1, these new blocks adopt the vote of the sub-DAG in their past with
regards to x and y. Thus, if block x precedes block y, additional votes that support this decision
are added, and the attacker will find it more difficult to reverse the vote.

Intuition 3 (Referencing recent blocks is beneficial). Blocks from the past vote according to
their future. Thus if an attacker creates a block that does not reference recent blocks, it is at
a disadvantage compared to other blocks that do (it loses votes from recent blocks it did not
reference and did not “convince”).

Intuition 4 (Votes from the past counter pre-mining attacks). Consider an attacker that creates a
block y, withholds it, and constructs many blocks on top of it over an extended period of time.
After a long while, a conflicting transaction is released to the network, and eventually ends up
in some block x. Block y has many blocks (built by the attacker) that reference it. Thus, if only

25

votes from the future are counted, block y would prevail even if x is allowed to accumulate
some votes. In SPECTRE, blocks that were created by honest nodes while y was withheld, look
to their future for their votes. These will usually vote in favour of x and will usually outnumber
the attacker blocks that were created when y was withheld (an example of pre-mining appears
in Fig. 8).

4

5 6 7 8

9 10 11

1 2 3

Fig. 7: SPECTRE coincides with the longest-chain rule when it is applied to “simple” chains
of blocks. In the depicted DAG, the chain ending at block 8 is longer and would be selected
in the longest chain protocol. In SPECTRE each one of the blocks 5,6,7,8 precedes each of the
blocks in 9,10,11. Consider for instance blocks 6 and 10 and the pairwise vote that involves
them. Blocks 6-8 vote strongly 6 ≺ 10, as they see block 6 in their past but not block 10. Block
5 is a weak voter, as it sees neither 6 nor 10 in its past, hence it votes as the majority of its
future (thus voting 6 ≺ 10 as well). For similar reasons, blocks 9-11 all vote 10 ≺ 6. Block
4, at the fork of the two chains, is a weak voters as well, as it sees neither 6 nor 10 in its
past; it therefore votes according to the majority of future blocks. As block 4 sees four votes in
favour of 6 ≺ 10, and three votes in favour of 10 ≺ 6, it will vote in favour of 6 ≺ 10. Blocks
1-3 similarly vote according to their future, and see an increasing number of votes for 6 ≺ 10,
adding their own vote to the result. Thus, the end result is that 6 precedes 10.

A. Equivalence to longest-chain

We first demonstrate how SPECTRE coincides with Bitcoin’s longest-chain rule, in the case
of a “simple” fork between two chains. Consider the DAG illustrated in Fig. 7. In Bitcoin, the
longer chain would be selected. Similarly, in the pairwise ordering of SPECTRE, each of the
blocks in the longest chain 5,6,7,8 would precede each of the blocks in the shorter one 9,10,11.
To see why this is true refer to the caption of the figure.

We now turn to examine two different attack scenarios, which we name double-spending,
and censorship. Recall the requirement from our miner protocol: each miner is required to (i)
reference recent blocks, and to (ii) publish his blocks immediately. Each attack is basically a
violation of one of these requirements. In the double-spending attack, the attacker delays the
publication of a set of blocks (that includes a conflicting transaction), and in the censorship
attack he publishes blocks but “ignores” a certain block and transactions inside it, hoping to
convince nodes that it did not secure enough votes, and thus cannot be accepted.

26

B. Example of a double-spending attack

(X<Y)

1

(X<Y)

3
(X<Y)

4

(X<Y)

5

(X<Y)

2

(X<Y) (X<Y)

6

(X<Y)

7

(Y<X) (Y<X)

13

(Y<X)

14

(Y<X)

16

(Y<X)

17

(Y<X)

18

Phase I:

pre-mining

(X<Y)

8

(X<Y)

9

(Y<X)

15

time
Phase II: attack remains hidden

until merchant accepts

(X<Y)

11

Transaction X

is broadcast

Attacker

broadcasts blocks

Phase III:

race to overtake

(Y<X)

19

(X<Y)

10

(X<Y)

12

Y

X

Fig. 8: An example of the voting procedure on a DAG in which a double-spending attack is
(unsuccessfully) attempted. Block x and blocks 6-8 vote strongly x ≺ y as they only see x in
their past, and not y. Similarly, block y and blocks 13-19 vote strongly y ≺ x. In the DAG which
is the past of block 11, each of the blocks 1-5 sees more x ≺ y voters in its future than y ≺ x
voters, hene each of them votes x ≺ y. Block 11 votes (as the virtual block of its past votes),
according to the majority in its past, thus it too votes x ≺ y. A similar argument goes for the
the vote of 11 and 12. Finally, aggregating the vote of all blocks in the DAG, x got more votes
hence x ≺ y.

Fig. 8 depicts an (unsuccessful) double-spending attack. The attack is composed of three main
phases:
Phase I: Pre-mining. In phase I, the attacker begins building blocks and withholding them from
the network. The first block that is constructed (named block y) contains a transaction that will
later conflict with the transaction sent to the honest nodes. Blocks built by the attacker ideally
form a chain, and due to the voting rules in SPECTRE, will all vote y ≺ x (blocks y,13,14).
Blocks built by the honest node are unaware of y (and also of x that is yet to be created), and
will eventually vote according to the majority of future votes. During this phase, attacker blocks
reference honest blocks that are built (in hopes of later convincing them to vote y ≺ x). After
some time, the attacker transmits the transaction to the network, and proceeds to phase II.

Notice that at the exact time that phase I ends, the attacker has more blocks above block 4
than honest nodes have, so it starts at an advantage: it will more easily sway the vote of block
4 towards y ≺ x (this advantage later disappears as honest nodes typically build blocks faster
than the attacker).

27

Phase II: Waiting for acceptance. The attacker now continues to build blocks in secret. If he
publishes his blocks, then his conflicting transaction will be visible to all, and the double-spend
will be detected. Instead, he waits for block x to receive sufficient weight (in the form of blocks
built on top of it) so that the recipient of the transaction in x accepts it, and provides the attacker
with some service or product. During this phase, attacker blocks that are created (blocks 15-17)
vote y ≺ x, as the attacker is careful to have them reference only his secret chain, and never
indirectly reference block x. Honest blocks created during this phase will typically vote x ≺ y
since y is hidden from them. Some small number of blocks (created before x propagated to the
whole network – block 5 in this example) do not reference x, and so will vote according to the
result of future votes.
Phase III: Race to overtake. Once x was ϵ-accepted by the victim, the attacker wishes to
publish his secret blocks in hopes of causing his conflicting transaction in y to precede x. In
this case, the transaction in x will be considered rejected, and the payment will be canceled
(leaving the attacker with an item he did not pay for). He publishes his secret chain (which
from this point on is referenced by honest nodes), and continues to build upon it. Blocks that
he builds, again do not reference x, and so they vote y ≺ x, supporting his goal. New honest
nodes are for the first time exposed to the conflicting transaction y, and thus vote according to
the result in the sub-DAG in their past.
Why the attack fails. First, notice that the attacker in the above example creates fewer blocks
in each phase than the honest nodes. This will usually be the case if attackers have less
computational power than all honest nodes. “Poisson bursts” in block creation by the attacker
are possible, and this will allow him to overtake the network, but these are less likely if the
attack lasts for a long period of time. The defender can control the length of phase II by waiting
a long while before accepting the transaction, which decreases the probability of such bursts.
If phase II is long enough, x will have more votes in this period than y. Weak blocks in the
past of x will then vote in favour of x, according to this majority. Such blocks that look at their
future begin a cascade: each block further in the past adds a vote that agrees with the majority
of future blocks and thus strengthens the decision. The greater the majority obtained in Phase
II, the less likely it is that the attacker will be able to catch up from behind in Phase III. The
attack therefore depends heavily on successfully swaying the votes of blocks that were created
just before x (e.g., block 4).

It is important to note that an attacker that creates more blocks in expectation than the honest
network will succeed in carrying out this attack. The blocks voting y ≺ x would outnumber
those who vote to the contrary. Hence the 50% threshold in Theorem 1.

C. Example of a censorship attack

Fig. 9 depicts an (unsuccessful) censorship attack. The attack is composed of a single main
phase during which an attacker creates his own blocks, publishes them instantly, but also ignores
(and does not reference) recent blocks created by the honest network. The figure depicts (in stage
I on the left side) the current state of the blockchain (where all blocks are published at this point).
An honest participant that then observes the network and wishes to tell if a transaction in block

28

(X<Y)

1
(X<Y)

2

(X<Y)

4

(X<Y) (X<Y)

5

(X<Y)

6

(X<Y) (X<Y)

13

(X<Y)

14
(Y<X)

16

(Y<X) (Y<X)

17

Phase I: X gains confirmations, but attacker

blocks ignore X.

(X<Y)

7

(X<Y)

8

(X<Y)

15

time

(X<Y)

10

Projected Future attack.

(double spend Y appears)

(Y<X)

(X<Y)

9

(X<Y)

11

(X<Y)
X 3

12 18Y

Present

Fig. 9: An example of the voting procedure on DAG in which an unsuccessful censorship attack
is depicted. The left side depicts the current state of the block DAG. The right-hand side depicts
its likely future development. Blocks 12-16 do not add strong votes to x. Can they be convinced
to vote for block y when it appears? Will they further sway other blocks in their past? The vote
of each block in this projected future are depicted: Blocks 2-9 vote strongly for x as they see it
in their past (but not y). Blocks 17-18 similarly vote strongly for y. Block 16 is indeed convinced
to vote for y as more blocks in its future vote for y than for x. Blocks 1, 12-15 vote for x. They
each see more votes in favour of x than votes in favour of y in their future. Blocks 10-11 see
more x ≺ y voters in their past when they make a recursive call.

x is secure, can see a large number of blocks that do not reference x. These blocks are not
guaranteed to vote in favour of x. An attacker may later insert a conflicting transaction y and
add blocks atop it (this projected attack is depicted on the right-hand side of the figure). These
may potentially sway previously created attacker blocks to vote against x.

The main risk from the censorship attack is that merchants, upon seeing the attacker’s blocks,
will consider transactions in block x not sufficiently secure. This could potentially delay the
acceptance of transactions forever. Our analysis of SPECTRE shows that even in this case the
merchants accept transactions quickly (and securely).

APPENDIX E
THE COMPLETE PROOF OF THEOREM 1

Theorem 1. SPECTRE’s GetAcceptedTxs procedure (Algorithm 2) satisfies Property 1.
In addition, for any α < 0.5 and dv ≥ D, SPECTRE’s CheckRobustAccept procedure
(Algorithm 6) satisfies Properties 2-4. Moreover, the expected waiting times E[τ−t] and E[ψ−t]
increase logarithmically in 1/ϵ, and similarly E[ψ − t] in 1/ϵ′.

29

A. Additional notation

• node(b) ∈ N – the node that created block b, time(b) – the time of its creation,
publication(b) – the time at which node(b) begun the transmission of b to some other
honest node, receivedv(b) – the time at which node v received b.

• future (x) := future (x)∪ {x}, and similarly for past (x) and anticone (x). In addition,
antipast (x) = future (x) ∪ anticone (x), and similarly for antifuture (x)

• Êus (x, y) := the event where votey,x (virtual (Gus)) = +1.
• Eus (x, y, ϵ) := the event where Risk (Gus , x, y) < ϵ.
• Âus (tx) := the event where tx ∈ GetAcceptedTxs(Gus).
• Aut (tx, ϵ) := the event where CheckRobustAccept(Gut , tx, ϵ) = ACCEPT .
• Eallt→∞(x, y, ϵ) := the event ∩u∈honest ∩s∈(t,∞) Eus (x, y, ϵ), and similarly for Êallt→∞(x, y),
Aallt→∞(tx, ϵ), and Âallt→∞(tx).

• pasth (z,G) := past (z,G) ∩ honest, and similarly for the future and anticone sets.
• Vx≺y(G) := {z ∈ G|z is a strong voter w.r.t. (x, y) and votex,y (z) = −1} (Vx≺y(G)

depends on x, y).
• Poiss(δ, j) := e−δ · δjj! .

B. Formal claims

We now take apart Theorem 1 and write a separate proposition for each of the security
properties Safety, Progress, and Weak Liveness, and for Consistency. In order to prove
Theorem 1, we need to prove the following four propositions:

Proposition 2 (Consistency). The accepted set is consistent: For any history G,
1) if tx ∈ GetAcceptedTxs(G) and tx2 ∈ inputs (tx) then tx2 ∈ GetAcceptedTxs(G).
2) if tx ∈ GetAcceptedTxs(G) and tx2 ∈ conflict (tx) then tx2 /∈ GetAcceptedTxs(G).

Proposition 3 (Safety). For any v ∈ honest and time t, if CheckRobustAccept (tx, ϵ,Gvt , d
v, α)

= ACCEPT then, with probability of at least 1 − ϵ, there exists a τ ≥ t such that ∀u ∈
honest,∀s ≥ τ : CheckRobustAccept (tx, ϵ,Gus , d

u, α) = ACCEPT , and the expectation of
τ − t is finite.

Proposition 4 (Progress). For any v ∈ honest and time t, if
CheckRobustAccept (tx, ϵ,Gvt , d

v, α) = ACCEPT then, with probability of 1− ϵ at least, for
any ϵ′ there exists a ϕ such that ∀s ≥ ϕ : CheckRobustAccept (tx, ϵ,Gvs , d

v, α) = ACCEPT ,
and the expectation of ϕ− t is finite.

Proposition 5 (Weak Liveness). Let t be the current time, and assume that tx ∈ Gpubt . Let
ψ ≥ t be the earliest time after t at which an honest node ϵ-accepts tx. Then, conditioned on
the event where conflict (tx)∩Gpubψ = ∅ and on the event where for all tx2 ∈ inputs (tx), tx2
remains ϵ-accepted forever (by some honest node), the expectation of ψ − t is finite.

We will prove Consistency in a later subsection. To each of the last three propositions we
write a matching one which regards robustness of blocks (rather than that of transactions).

30

Proposition 6 (Safety (blocks)). For any v ∈ honest, if Risk (x, y,Gvt) < ϵ then, with
probability of 1−ϵ at least, there exists a τ such that ∀u ∈ honest,∀s ≥ τ : Risk (x, y,Gus) < ϵ,
and E[τ − t] <∞.

Proposition 7 (Progress (blocks)). For any v ∈ honest, if Risk (x, y,Gvt) < ϵ then, with
probability of 1−ϵ at least, for any ϵ′ < ϵ there exists a ϕ such that ∀s ≥ ϕ : Risk (x, y,Gus) < ϵ,
and E[ϕ− t] <∞.

Proposition 8 (Weak Liveness (blocks)). Let t be the current time, and assume that x ∈ Gpubt .
Let ψ be the first time s at which for some honest node v: Risk (x, y,Gvs) < ϵ. Then, conditioned
on the event where y /∈ Gpubψ , the expectation of ψ − t is finite.

We prove the correctness of these propositions in separate subsections below. But first, we
begin with three simple lemmas.

C. Basic properties

The two following lemmas are immediate from lines 7-14 of Algorithm 1.

Lemma 9. Topological relations are unanimously agreed: If G = (C,E) is a block DAG, and
(y, x) ∈ E, then ∀z ∈ G : votex,y (z,G) = −1.

Lemma 10. A block’s vote regarding block(s) in its past depends only on its past, hence remains
fixed forever: Let G1 and G2 be two block DAGs, and assume x, y, z ∈ G1 ∩ G2. If {x, y} ∩
past (z) ̸= ∅ then votex,y (z,G1) = votex,y (z,G2).

Accordingly, we say that z is a strong voter w.r.t the pair (x, y) if z ∈ future (x)∪future (y),
and otherwise it is a weak voter.

The following Lemma shows that the vote of the genesis coincides with the vote of the virtual
block. Intuitively, the genesis votes according to the majority vote in the DAG excluding itself,
and amplifies this majority, which in turn dictates the virtual block’s vote.

Lemma 11. genesis’s vote is the final vote: vote (virtual (G)) = vote (genesis,G).

Proof. Suffice it show that if votex,y (genesis,G) ≥ 0 then votex,y (virtual (G)) ≥ 0. If (x, y)
are related topologically then by Lemma 9 all votes agree unanimously on their ordering, and
in particular votex,y (virtual (G)) = votex,y (genesis,G) ≥ 0. Otherwise, it cannot be the case

31

that x or y are the genesis block, hence the genesis is a weak voter, and by line 14 we obtain

votex,y (virtual (G)) = s̃gn

(∑
z∈G

votex,y (z,G)

)
= (1)

s̃gn

votex,y (genesis,G) + ∑
z∈future(genesis,G)

votex,y (z,G)

 ≥ (2)

s̃gn

 ∑
z∈future(genesis,G)

votex,y (z,G)

 = votex,y (genesis,G) ≥ 0, (3)

hence votex,y (virtual (G)) ≥ 0.

D. Overview of the proof of Safety (blocks)

Proposition 6 claims essentially that all nodes will forever agree on the (robustness of) the
order x ≺ y, provided that it was sufficiently robust in the DAG observed by some honest
node. This is the main and most involved part of the proof. The rest of the propositions follow
from it, and their proofs are rather self explanatory. Since its proof is involved and occasionally
technical, we begin with an overview of its structure.

In order to simplify the analysis, we need to make some worst case assumptions regarding the
behaviour of the attacker. Lemma 18 proves that these are indeed worst case assumptions, namely,
that they indeed represent the optimal attack. The vote of each block under our modification is
denoted p vote (), a notion which we describe formally in Subsection E.6.

In the next central lemma we show that, provided that the aggregate vote in future (x) is
sufficiently biased in favour of x ≺ y, the genesis block – hence the virtual block (by Lemma 11)
– will vote x ≺ y. This proves that, roughly speaking, the vote of recent weak voters cascades
through the DAG and convinces older weak blocks, forming thus the genesis’s vote. The way we
prove this is by choosing a specific weak voter zlate(in case x is an honest block, zlate = x), and
making sure that its vote is sufficiently robust so as to guarantee that (i) it will not be reversed,
and (ii) it will cascade all the way to the genesis. Consequently, a successful attack (namely,
a reversal of x ≺ y in the DAG observed by some honest node) requires that the attacker add
more blocks to future (zlate) than the honest network adds (up to some additive term), in some
time interval.

The following lemma formalizes these observations. It uses some parameters (h, j, etc.) that
only an oracle can have full knowledge of. We will later show how in reality a node can infer
the robustness of block relations without having access to these parameters.

Lemma 12. Let t ≥ publication(x) + 2 · d. Let zlate be the latest block in pasth (x). Denote:
• h :=

∣∣anticoneh (zlate, Goraclet

)∣∣
• j :=

∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣
• m :=

∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣

32

• k1 :=
∣∣∣Goracle[t−d,t] ∩ honest

∣∣∣
• l := maxz∈Goracle

t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• g :=

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t)

Then,

Êallt→∞(x, y){ ⊆
{
∃s ≥ t,∃u ∈ honest s.t.

∣∣∣Gu[t,s] ∩ attacker∣∣∣
≥
∣∣∣Gu[t,s] ∩ honest∣∣∣+ g − 2 · h− j − k1 − l −m

}
.

Given the result of the previous lemma, we can upper bound the probability that the order
of x ≺ y will be reversed. This result resembles the conventional analysis of Bitcoin’s security:
The greater number of blocks currently pointing at x (and in SPECTRE: voting for x ≺ y),
the less likely it is that the attacker will be able to win the block-count race and reverse the
decision.

Lemma 13. Given the parameters of Lemma 12,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(d · (1− α) · λ, h′)·(
α

1− α

)(g−2·h−j−k1−l−m−h′)+

.

An ordinary node does not typically know for sure the values of the parameters assumed in
Lemma 12. The next corollary shows that the result of that lemma (and the one that follows)
applies when replacing these parameters with proper bounds thereof. We will later discuss how
a node can obtain such bounds.

Corollary 14. If
• j ≥

∣∣anticoneh (x,Goraclet

)∣∣
• l ≥ maxz∈Goracle

t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• nx ≥ futureh

(
x,Goraclet

)
• g ≤

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t).

33

Then

Pr
(
Êallt→∞(x, y)

)
≤ (4)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
m=0

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−m)+

We adjust the above results to the case where some blocks in future (x,G) are known to
belong to the attacker. Here we assume that this knowledge is granted to us by a hypothetical
oracle. Later on, we will see how attacker blocks are recognized by Algorithm 3, w.h.p.

Corollary 15. If in addition to the assumptions of Corollary 14 we assume that M ≤
|futurea (x,Gvt)|, then

Pr
(
Êallt→∞(x, y) | |futurea (x,Gvt)| ≥M

)
≤

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (5)(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm′

)−1

·

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

.

We denote the RHS of this inequality by fpost mine (nx, g, j, l,M).
So far, our analysis assumed that we are given some proper bounds over the parameters from

Lemma 12. Lemmas 22, 27, and 29 show how to appropriately bound these parameters. For each
of these parameters, a separate error function is defined, which upper bounds the probability
that it does not serve as a correct bound. These error functions deteriorate exponentially fast,
by Lemmas 23, 28, and 30. Algorithm 3 aggregates these error functions into the total risk that
it outputs.

The parameters are:
• l – the pre-mining lead that the attacker obtained before the publication of x, with error

function fpre mine(l(Gvt)), calculated numerically in Subsection E.6.1
• nx – the number of honest blocks in future (x,Gvt), with error function
fpost pub (|future (x,Gvt)|), defined in Corollary 27 (Inequality (52)), and

34

• j – the number of honest blocks created after time(x), with error function fpre pub (nj(Gvt)),
defined in Lemma 29 (Inequality (54)).

While we have previously shown that nx properly counts all honest blocks, we now show that
it does successfully exclude almost all attack blocks. Without such a guarantee, weaker attackers
would have been able to publish their blocks and delay acceptance indefinitely.

Lemma 16. Conditioned on the event Êallt→∞(x, y), there exists a time τ ∈ [t,∞) such that
∀s ≥ τ : M(oracleu, s) ≥

∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(G

oracleu
s)

∣∣∣ − m∗, for some
m∗ that remains fixed after τ (and with E[m∗] determined by the events up to time t).

The above analysis (particularly Lemma 12) has upper bounded the probability that the attacker
would be able to reverse the relation x ≺ y. We now show that, conditioned on the order
remaining x ≺ y, the error function fpost mine (which upper bounds the probability of this order
ever reversing) vanishes as well, which in turn implies that their order would be considered
robust by all honest nodes.

Lemma 17. There exists a ψ ∈ [t,∞) such that Pr
(
Eallt→∞(x, y, ϵ){ | Evt (x, y, ϵ)

)
< ϵ. Moreover,

E [ψ − t] < ϵ.

We have thus shown that if the output of Algorithm 3, as run by some honest node, was
smaller than ϵ then with probability of at least 1−ϵ, any honest node running Algorithm 3 (after
some time) will get a result smaller than ϵ.7 This completes the proof of Safety w.r.t. blocks.

E. Proof of Consistency

Proof. Part I: We first prove that for any DAG G, and for any tx1, tx2 ∈ T : if tx2 ∈ inputs (tx1)
and [tx1] ∩GetAcceptedTxs(G) ̸= ∅ then [tx2] ∩GetAcceptedTxs(G) ̸= ∅.

Assume tx2 ∈ inputs (tx1) and [tx1] ∩ GetAcceptedTxs(G,G) ̸= ∅ and let
tx1 ∈ [tx1] ∩ GetAcceptedTxs(G,G). Consider the iteration of the second loop (line 4)
over tx = tx1. As tx ∈ GetAcceptedTxs(G,G) it must be the case that during
this iteration the algorithm has reached line 14. This means that for any [tx3] ∈
inputs (tx1) it hasn’t visited line 13; in particular for [tx3] = [tx2], the condition [tx2]∩
GetAcceptedTxs (G, past (z1)) = ∅ has failed, i.e., [tx2] ∩ GetAcceptedTxs (G, past (z1)) ̸=
∅. To see that GetAcceptedTxs (G, past (z1)) ⊆ GetAcceptedTxs (G,G) observe that (i)
during the run of the algorithm no transaction is ever removed from TX , and that (ii)
for any z1 ∈ G ∩ subG, the operations (in lines 4-14) of GetAcceptedTxs (G, subG)
and GetAcceptedTxs (G,G) are identical; thus any addition of a transaction in line 14 in
GetAcceptedTxs (G, subG) occurs in GetAcceptedTxs (G,G) as well. In particular, [tx2] ∩
GetAcceptedTxs (G,G) ̸= ∅.

Part II: We now prove that for any DAG G, and for any tx1, tx2 ∈ T : if tx2 ∈ conflict (tx1)
and [tx1] ∩GetAcceptedTxs(G,G) ̸= ∅ then [tx2] ∩GetAcceptedTxs(G) = ∅.

7ϵ here simply represents a value greater than fpre mine + fpre pub + fpost pub + fpost mine.

35

Assume that tx2 ∈ conflict (tx1) and [tx1] ∩ GetAcceptedTxs(G,G) ̸= ∅ and let tx1
be an element in the latter intersection. Assume by way of negation that there exists a
tx2 ∈ [tx2] ∩ GetAcceptedTxs(G,G). Then during the iteration of the first loop (line 3) over
some instantiation z11 of z1 such that tx1 ∈ z11 , and of the second loop (line 4) over tx1, the
algorithm has reached line 14. In particular, it did not reach line 10, hence z21 /∈ past

(
z11
)
.

For the symmetrical argument, z11 /∈ past
(
z21
)
, which implies that z21 ∈ anticone

(
z11 , G

)
(and

z21 ∈ anticone
(
z11 , G

)
). Now, either votez11 ,z21 (virtual (G)) ≥ 0 or votez21 ,z11 (virtual (G)) ≥ 0.

Either way, line 8 was reached by either the run on tx1 or the run on tx2, which contradicts the
assumption that both runs reached line 14.

F. Proof of Safety (blocks)

In order to simplify the analysis, we need to make some worst case assumptions regarding
the behaviour of the attacker, namely, that it publishes all of its blocks immediately after time t
(which represents the time at which some honest node accepted the transaction), and that before
time(x) its blocks point at all available blocks. These assumptions essentially modify the DAG
(in case the attacker does not carry out the optimal attack scheme). We need to prove that these
modifications indeed represent the worst case. To this end we use the notion of a pseudo-vote. A
pseudo-vote begins by first explicitly defining and fixing the pseudo-vote of some blocks, which
we call the initial pseudo-voters. Then we define the pseudo-vote of the rest of the blocks as
in Algorithm 1. In more detail, we replace in Algorithm 1 the vote () notation by the p vote ()
notation, and whenever the algorithm references p vote (c) of an initial pseudo-voter c, we refer
to its fixed predetermined value. Thus, the pseudo-vote of an initial pseudo-voter might change
the pseudo-vote of other blocks.

Lemma 18. Let x, y ∈ G = (C,E) such that Gvt ⊆ G. Let G′ = (C,E′) be the DAG resulting
from adding the following edges to E:

1) ∀z1 ∈ G∩ before(time(x))∩ attacker, ∀z2 ∈ G∩ before(time(z1)) \ {z1}: add (z1, z2)
to E.

2) ∀z1 ∈ G ∩ attacker \Gvt , ∀z2 ∈ Goracle[publication(z1),∞) ∩ honest: add (z2, z1) to E.
Let p vote () be defined by specifying the following initial pseudo-voters (and their votes):

3) ∀z ∈ (G ∩ attacker \Gvt) ∪G ∩ before(time(x)) ∩ attacker: p votex,y (z,G) = +1.

Then votex,y (virtual (G) , G) ≤
p votex,y (virtual (G

′) , G′).8

Importantly, we assume here that blocks in G ∩ attacker break ties in favour of y ≺ x.

Proof. Part I: Assume by way of negation that votex,y (virtual (G) , G) = +1 yet nonetheless
p votex,y (virtual (G) , G

′) = −1 (observe that this is the only case in which the claim can
fail, by definition, as a virtual vote cannot take the value of 0).

8Note that virtual (G) = virtual (G′), as they share the same vertex-set.

36

Let b be a block in future (x,G) ∪ {virtual (G)} such that p votex,y (b,G
′) = −1. b

cannot belong to G \ Gvt or to G ∩ before(time(x)) ∩ attacker, because blocks in these
sets have a pseudo-vote of +1. Let z be a block in past (b,G). Since b /∈ (G \Gvt) ∪
(G ∩ before(time(x)) ∩ attacker), there exists in G′ a path from b to z that passes through
an edge (z2, z1) satisfying the conditions of the second modification to G, and through an edge
(z′1, z

′
2) satisfying those of the first modification. In particular, time(z2) ≥ publication(z1) ≥

t − d, and time(x) ≥ time(z′2) ≥ time(z′1). As b and z are the end-vertices of this path,
time(b) ≥ time(z2) ≥ t−d ≥ publication(x)+d ≥ time(x)+d ≥ time(z′1)+d ≥ time(z)+d.
Since z2 is honest, z ∈ past (z2, G), hence z ∈ past (b,G). Combined with E ⊂ E′ we obtain:
past (b,G′) = past (b,G).

Part II: Let b be the earliest block in future (x,G)∪{virtual (G)} for which votex,y (b,G) =
+1 but p votex,y (b,G

′) = −1, and let z be the latest block in antifuture (x,G′) for which
votex,y (z, past (b,G)) > p votex,y (z, past (b,G

′)). If such a z exists then, similarly to the
previous part, we know that past (z,G′) = past (z,G); this proves that z is a weak voter both
in G and in G′, hence that its pseudo-vote is the sign of the sum of pseudo-votes in its future.9

To see that such a z indeed exists, observe that the genesis satisfies these
conditions: By Lemma 11 votex,y (b,G) = votex,y (virtual (past (b,G))) = +1
implies votex,y (genesis, past (b,G)) ≥ 0, and in a similar way p votex,y (b,G

′) =
p votex,y (virtual (past (b,G

′))) = −1 implies that p votex,y (genesis, past (b,G
′))

= −1.10

Part III: By the choice of z, if z′ ∈ future (z, past (b,G′)) is weak with respect to
(x, y) then votex,y (z

′, past (b,G)) ≤ p votex,y (z
′, past (b,G′)). Moreover, by the choice

of b, if z′ ∈ past (b,G′) is strong w.r.t. (x, y) and votex,y (z
′, past (b,G)) = +1 then

p votex,y (z
′, past (b,G′)) = +1. All in all, we have that for all z′ ∈ future (z, past (b,G′)),

9It cannot be the case that y ∈ past (z,G′), because we know that z is not an initial pseudo-voter (as its pseudo-vote
is −1), and therefore the pseudo-vote procedure would have assigned its pseudo-vote to be +1, because y is in its
past but x is not in it past, in the same way the ordinary procedure does.

10The equality p votex,y (b,G
′) = p votex,y (virtual (past (b,G

′))) holds because b is either a strong voter w.r.t.
(x, y) or the virtual voter.

37

votex,y (z
′, past (b,G)) ≤ p votex,y (z

′, past (b,G′)). Therefore:∑
z′∈future(z,past(b,G))

votex,y
(
z′, past (b,G)

)
≤ (6)

∑
z′∈future(z,past(b,G))

p votex,y
(
z′, past

(
b,G′)) ≤ (7)

∑
z′∈future(z,past(b,G))

p votex,y
(
z′, past

(
b,G′))+

∑
z′∈future(z,past(b,G′)\past(b,G))

p votex,y
(
z′, past

(
b,G′)) = (8)

∑
z′∈future(z,past(b,G′))

p votex,y
(
z′, past

(
b,G′)) . (9)

The last equality follows from future (z, past (b,G)) ⊆ future (z, past (b,G′)), which holds
because E ⊆ E′. The inequality in (7) holds because if some z′ has been added (by transforming
G into G′) to the future of some honest block, then z′ must belong to the attacker, hence
p votex,y (z

′, past (b,G′)) = +1 > 0.
Part IV: Consequently, since z is a weak voter with respect to (x, y), (6)-(9) imply that

votex,y (z, past (b,G)) ≤ p votex,y (z, past (b,G
′)), which contradicts the choice of z.

Lemma 12. Let t ≥ publication(x) + 2 · d. Let zlate be the latest block in pasth (x). Denote:
• h :=

∣∣anticoneh (zlate, Goraclet

)∣∣
• j :=

∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣
• m :=

∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣
• k1 :=

∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣

• l := maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• g :=

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t)

Then,

Êallt→∞(x, y){ ⊆
{
∃s ≥ t,∃u ∈ honest s.t.

∣∣∣Gu[t,s] ∩ attacker∣∣∣ (10)

≥
∣∣∣Gu[t,s] ∩ honest∣∣∣+ g − 2 · h− j − k1 − l −m

}
.

Proof. Part I: In the proof below we make the following assumption: Any attacker-block z
created before time(x) always votes in favour of y ≺ x (even if it is supposed to vote otherwise
according to Algorithm 1). We further assume that any such z satisfies past (z) = Goracletime(z), i.e.,
it points at all blocks available at the time of its creation. Finally, we assume that the attacker
releases all of his blocks to all nodes in honest\{v} precisely at time t and onward. The previous

38

lemma implies that these are indeed worst case assumptions: Take G to be any Gus . Then, what the
lemma shows is that as long as p votex,y (virtual (G

u
s)) = −1, also votex,y (virtual (Gus)) =

−1 (under the worst case assumption that ties are always broken in favour of y).11 The analysis
below applies, formally, to p vote () as formalized in the prevoius lemma (specifically in (3)).
Nevertheless, now that the argument has been formally made, we omit this notation henceforth.

Part II: Let us look at the following chain of implications:

votex,y (virtual (G
u
s)) ≥ 0⇒ votex,y (genesis,G

u
s) ≥ 0⇒∑

z′∈future(genesis,Gu
s)

votex,y
(
z′, Gus

)
≥ 0 (11)

The first implication follows from Lemma 11. The second one follows from the definition of
genesis’s vote.12 Thus,

Êallt→∞(x, y){ = ∪u∈honest,s∈[t,∞)Êus (x, y){ =

{∃u ∈ honest, ∃s ≥ t : votex,y (virtual (Gus)) ≥ 0}

However, if there exists such an s as the latter event requires, then we can look at the
first such s. With respect to it, between t and s all honest votes were in favour of x ≺ y;
this is because for any honest block z′ with time(z′) ∈ [t, s), past (z′) = G

node(z′)
time(z′), hence

vote (z′) = vote
(
virtual

(
G
node(z′)
time(z′)

))
, and by the choice of s as the earliest time for which an

honest node’s DAG’s virtual block votes in favour of y ≼ x, we know that votex,y (z′, Gus) = −1.
Part III: Below, the notation Gu[t1,t2] stands for Gus ∩ before (t2) \ before (t1).
We claim that for all z ∈ pasth (x):

votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣
+2 · h+ l + k1 + j +m− g) .

We prove the claim by a complete induction on D(z) :=
∣∣future (z,pasth (x))∣∣. Assume we

have proved the claim for any z with D(z) < D. We now prove it for z with D(z) = D. If
z = x then votex,y (z,Gus) = −1 hence the above inequality is satisfied trivially. Otherwise, z
is a weak voter, and votex,y (z,Gus) is given by the sign of the sum of votes in its future. We
decompose these voters into three subsets: members of future

(
z,Gutime(zlate)

)
, members of

future
(
z,Gu[time(zlate),t]

)
, and members of future

(
z,Gu[t,s]

)
.

11In fact, we use the lemma with a slight modification: The second modification does not apply to all such
(z2, z1) satisfying the specified conditions, rather to a subset thereof, since blocks created by node v between t
and t + d need not point at all attacker blocks in G \ Gv

s . It is easy to see, however, that the proof of the lemma
remains intact (and it remains so when applying the second modification to any subset of (G ∩ attacker \Gv

t) ×(
Goracle

[publication(z1),∞) ∩ honest
)
).

12Here we implicitly assume that x and y are not related topologically, which rules out the option that x = genesis
or y = genesis, hence genesis is weak w.r.t. (x, y). If they are related topologically, the result is trivial, for all
votes are then forever unanimous in the same direction (Lemma 9).

39

1) Members of future
(
z,Gutime(zlate)

)
: By the induction hypothesis we know

that all blocks in futureh
(
z,pasth (zlate)

)
vote in favour of x ≺ y, and

by the choice of zlate we have that futureh

(
z,Gutime(zlate)

)
\ past (zlate) =

anticoneh

(
z,Gutime(zlate)

)
. Thus,

∑
z′∈futureh

(
z,Gu

time(zlate)

) votex,y (z′, Gus) ≤

2 ·
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣− ∣∣∣futureh (z,Gutime(zlate)

)∣∣∣. We obtain:∑
z′∈future

(
z,Gu

time(zlate)

) votex,y
(
z′, Gus

)
≤

2 ·
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣
−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ .
2) Members of future

(
z,Gu[time(zlate),t]

)
:

a) Honest blocks: By Part I we have that futurea

(
z,Gu[time(zlate),t]

)
\

futurea

(
zlate, G

u
[time(zlate),t]

)
= ∅. This implies that

anticoneh

(
zlate, G

u
[time(zlate),time(zlate)+d]

)
⊇ future

(
z,Gu[time(zlate),t]

)
\

future (zlate, G
u
t). We obtain: ∑

z′∈futureh
(
z,Gu

[time(zlate),t]

) votex,y
(
z′, Gus

)
≤

∑
z′∈futureh(zlate,Gu

t)

votex,y
(
z′, Gus

)
+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣ ≤∑
z′∈futureh(zlate,Gv

t)

votex,y
(
z′, Gus

)
+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ ≤∑

z′∈futureh(x,Gv
t)

votex,y
(
z′, Gus

)
+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+

|futureh (zlate, Gvt) \ futureh (x,Gvt)| .

40

b) Attacker blocks: We utilize our worst case assumptions described in Part I to obtain:∑
z′∈futurea

(
z,Gu

[time(zlate),t]

) votex,y
(
z′, Gus

)
=

∑
z′∈futurea

(
zlate,Gu

[time(zlate),t]

) votex,y
(
z′, Gus

)
≤

∑
z′∈futurea(x,Gv

t)

votex,y
(
z′, Gus

)
+

|futurea (zlate, Gut) \ futurea (x,Gvt)| .

c) All blocks: We combine the honest and attacker blocks in future
(
z,Gu[time(zlate),t]

)
to

obtain: ∑
z′∈future

(
z,Gu

[time(zlate),t]

) votex,y
(
z′, Gus

)
≤

∑
z′∈futureh(x,Gv

t)

votex,y
(
z′, Gus

)
+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|

+
∑

z′∈futurea(x,Gv
t)

votex,y
(
z′, Gus

)
+

|futurea (zlate, Gut) \ futurea (x,Gvt)| = (12)

g +
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+ (13)∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|

+ |futurea (zlate, Gut) \ futurea (x,Gvt)| .

3) Members of future
(
z,Gu[t,s]

)
: Finally, by the choice of s, all honest blocks created between

t and s vote in favour of x ≺ y, hence∑
z′∈future(z,Gu

[t,s])

votex,y
(
z′, Gus

)
≤

−
∣∣∣futureh (z,Gu[t,s])∣∣∣+ ∣∣∣futurea (z,Gu[t,s])∣∣∣ ≤
−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ,

41

where we used again the fact that t ≥ publication(x) + d ≥ publication(z) + d.
4) Combining all the above results we obtain:∑

z′∈future(z,Gu
s)

votex,y
(
z′, Gus

)
≤ (14)

2 ·
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣
−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ (15)

+ g +
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+

|futureh (zlate, Gvt) \ futureh (x,Gvt)|+
|futurea (zlate, Gut) \ futurea (x,Gvt)|+ (16)

−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≤ (17)

(18)

2 · h+ l + k1 − g +
∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣

+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|+
|futurea (zlate, Gut) \ futurea (x,Gvt)| ≤

2 · h+ l + k1 − g +
∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣

+
∣∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣∣+ (19)∣∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣∣ = (20)

2 · h+ l + k1 − g + j +m+
∣∣∣Gu[t,s] ∩ attacker∣∣∣ (21)

−
∣∣∣Gu[t,s] ∩ honest∣∣∣ .

As z is a weak voter, we conclude that votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣−∣∣∣Gu[t,s] ∩ honest∣∣∣ +2 · h+ l + k1 + g + j +m).
Part IV: In particular, for z = genesis, the event votex,y (genesis,Gus) ≥ 0 is contained in

the event where
∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≥ ∣∣∣Gu[t,s] ∩ honest∣∣∣−2 ·h− l−k1−g− j−m. By (11), this

event contains also Êsu(x, y){, for all u ∈ honest and s ≥ t, hence it contains also their union
Êallt→∞(x, y){.

42

Lemma 13. Given the parameters of Lemma 12,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(d · α · λ, h′)· (22)

(
α

1− α

)(g−2·h−j−k1−l−m−h′)+

.

Proof. Since all nodes u ∈ honest receive honest blocks with a delay of d seconds at
most, we have that

∣∣∣Gu[t,s] ∩ attacker∣∣∣ − ∣∣∣Gu[t,s] ∩ honest∣∣∣ ≤ ∣∣∣futurea (zlate, Goracle[t,s]

)∣∣∣−∣∣∣futureh (zlate, Goracle[t,max{s−d,t}]

)∣∣∣. We further upper bound
∣∣∣futurea (x,Goracle[s′,s]

)∣∣∣ by∣∣∣futurea (x,Goracle[s−d,s]

)∣∣∣, and observe that the latter follows a Poisson distribution with
parameter α · d · λ; we denote this variable by h′. For any given value of h′, the variable∣∣futurea (x,Goracles′ \Goraclet

)∣∣ − ∣∣futureh (x,Goracles′ \Goraclet

)∣∣ + h′ can be modeled as a
random walk Xi (where the ith step is the creation-time of the ith block after time t), with
X0 = h′, and with a drift of α towards positive infinity. The probability that Xi would

ever reach the interval [−h − j − k1 − h′ − l − m + g,+∞) is
(

α
1−α

)g−2·h−j−k1−l−m−h′

,
if g > h+ j + k1 + l +m+ h′, and 1 otherwise (see [25], [22]).

Corollary 14. If
• j ≥

∣∣anticoneh (x,Goraclet

)∣∣
• l ≥ maxz∈Goracle

t ∩honest

{
Aztime(x) −H

z
time(x)

}
• nx ≥ futureh

(
x,Goraclet

)
• g ≤

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t).

Then

Pr
(
Êallt→∞(x, y)

)
≤ (23)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
m=0

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−m)+

Proof. We build on the results of previous lemmas. The proof of Lemma 12, which is
deterministic, remains intact when the corresponding parameters serve as bounds; see (14)-(21).

43

The variables k1,
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣, and h′ are the sum of
independent Poisson processes; the parameter of the first two is d · (1 − α) · λ, and the
parameter of h′ is d · α · λ. Thus, their sum is a new Poisson variable k with parameter
(2 · (1 − α) + α) · d · λ = (2 − α) · d · λ. The variable

∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣ is an
additional Poisson variable with parameter d · (1−α) ·λ. We denote it by h (thereby overriding
its original meaning in Lemma 12).

Lemma 12 uses the variable m =
∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣ which is
upper bounded by

∣∣futurea (zlate, Goraclet

)∣∣. Provided that the honest network has created
precisely n blocks since the creation of zlate, the number of blocks created by the attacker
at the same time follows a negative binomial distribution (see [22]), i.e., it takes the value
m with probability

(
n+m−1

m

)
· (1 − α)n · αm. In the worst case, all of these blocks belong

to future
(
zlate, G

oracle
t

)
. Here, again, it is sufficient to upper bound n, since increasing

the parameter n results in a distribution over m that stochastically dominates (in first order)
the original one. The number of honest blocks created after time(zlate) (up to time t) is
upper bounded by antipasth

(
zlate, G

oracle
t

)
, since blocks in pasth (zlate). We thus have:

n ≤ |anticoneh (zlate, Gvt)| + |futureh (zlate, Gvt) \ futureh (x,Gvt)| + |futureh (x,Gvt)| ≤
h+ j + nx.

Finally, as l and j are upper bounds and g is a lower bound to the corresponding variables
from Lemma 12, one could simply turn all equalities in its proof (and in the proof of Lemma 13)
into “≤” inequalities and the proof remains intact.

Below we revisit previous results, regarding the case where x is known to be an honest block,
and to the case where one needs to defend a group of blocks rather than an individual block.

Lemma 19. Assume that node(x) ∈ honest and that publication(y) ≥ publication(x) +
d. Let zlate be the latest block in anticoneh (x,G

v
t) and let zearly be the earliest block in

anticoneh (x,G
v
t). Furthermore, assume:

• l := maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Gutime(zearly)

)∣∣∣−∣∣∣futureh (z,Gutime(zearly)

)∣∣∣}
• nx ≥ maxx′∈anticoneh(x)

{∣∣futureh (x′, Goraclet

)∣∣}
• g ≤ maxx′∈anticoneh(x,Gv

t)

{
z ∈ future (x′, Gvt) : votey,x (z,Gvt) = −1

}
−

minx′∈anticoneh(x,Gv
t)

{
z ∈ future (x′, Gvt) : votey,x (z,Gvt) = +1

}
.

Then,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · λ, h)· (24)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (25)

(
α

1− α

)(g−h−l−m)+

.

44

Proof. Let k1 ≥
∣∣∣Goracle[t−d,t] ∩ honest

∣∣∣, and let m :=
∣∣futurea (zearly, Goraclet

)
\

futurea (zlate, G
v
t)|. We adjust the analysis from the proof of Lemma 12. We claim that for all

z ∈ anticoneh (x,Gvt):

votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣
l + k1 +m− g) .

We prove the claim by a complete induction on D(z) :=
∣∣future (z,anticoneh (x))∣∣. Assume

we have proved the claim for any z with D(z) < D. We now prove it for z with D(z) = D. If
z = x then votex,y (z,Gus) = −1 hence the above inequality is satisfied trivially. Otherwise, z is
a weak voter, as y /∈ past (z) by the assumption on publication(y), therefore votex,y (z,Gus) is
given by the sign of the sum of votes in its future. We decompose these voters into three subsets:
members of future

(
z,Gutime(zlate)

)
, members of future

(
z,Gu[time(zlate),t]

)
, and members of

future
(
z,Gu[t,s]

)
.

1) Members of future
(
z,Gutime(zlate)

)
: By the induction hypothesis we know that all blocks

in futureh
(
z,anticoneh (zlate)

)
vote in favour of x ≺ y, hence We obtain:∑

z′∈future
(
z,Gu

time(zlate)

) votex,y
(
z′, Gus

)
≤

−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ .
2) Members of future

(
z,Gu[time(zlate),t]

)
: Every z′ in this set belongs to future (x′) for some

x′ ∈ anticoneh (x,Gvt), therefore, by the definition of g:∑
z′∈future

(
z,Gu

[time(zlate),t]

) votex,y
(
z′, Gus

)
≤

− g +
∣∣∣futurea (zearly, Goraclet

)
\ futurea (zlate, Gvt)

∣∣∣+
|futureh (z,Gut) \ futureh (z,Gvt)| ≤ (26)

− g +
∣∣∣futurea (zearly, Goraclet

)
\ futurea (zlate, Gvt)

∣∣∣+ ∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ =

− g +m+ k1.

3) Members of future
(
z,Gu[t,s]

)
: By the choice of s, all honest blocks created between t and

45

s vote in favour of x ≺ y, hence∑
z′∈future(z,Gu

[t,s])

votex,y
(
z′, Gus

)
≤

−
∣∣∣futureh (z,Gu[t,s])∣∣∣+ ∣∣∣futurea (z,Gu[t,s])∣∣∣ ≤
−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ,

where we used the fact that t ≥ publication(x) + d ≥ publication(z) + d.
4) All in all, ∑

z′∈future(z,Gu
s)

votex,y
(
z′, Gus

)
≤ (27)

l + k1 +m− g −
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≤ (28)

l + k1 +m− g −
∣∣∣futureh (zlate, Goracle[t,max{s−d,t}]

)∣∣∣+∣∣∣futurea (zlate, Goracle[t,s]

)∣∣∣ (29)

Therefore, the event where for some s and some u, votex,y (virtual (Gus)) ≥ 0 is contained in
the event where (29) is non-negative. As in the proof of Lemma 13, the probability of the latter

event is upper bounded by
(

α
1−α

)(l+k1+h′+m−g)+
, where h′ equals

∣∣∣futurea (x,Goracle[s′,s]

)∣∣∣. We
then combine k1 and h′ into one Poisson variable h with parameter α ·d ·λ+(1−α) ·d ·λ = d ·λ,
to obtain:

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · λ, h)· (30)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (31)

(
α

1− α

)(g−h−l−m)+

.

Corollary 20. If in addition to Lemma 19’s assumptions we know that publication(y) ≥ t, then

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · α · λ, h)· (32)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (33)

(
α

1− α

)(g−h−l−m)+

.

46

Proof. Given that y wasn’t published until time t, we know that all honest blocks in
future

(
x,Goracle[t−d,t]

)
vote in favour of x, hence the reduction of k1 =

∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ in (26)

is superfluous, and we thus only need to reduce h′, the Poisson variable with parameter d ·α ·λ
from Lemma 13.

Corollary 21. Let X ⊆ Gvt ∩honest and Y ⊆ Goraclet \Gvt . Assume further that elements in X
do not relate topologically to one another (i.e., ∀x1, x2 ∈ X,x1 ∈ anticone (x2, Gvt)). Let zlate
be the latest block in X , let zearly be the earliest block in X .

Then,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

Proof. We adjust the result of Lemma 19. The main modification is that now g must relate
to all pairs (x, y). Define: g := maxx1,x2∈X

{
z ∈ future (x1, Gvt) : votey,x2

(z,Gvt) = −1
}
−

minx1,x2∈X
{
z ∈ future (x1, Gvt) : votey,x2

(z,Gvt) = +1
}

. Observe that in the interval
[time(zearly) + 2 · d, t] all honest blocks belong to ∩x∈Xfuture (x,Gvt). In particular, if we
denote h′ := nx − g we have that h′ is upper bounded by a Poisson variable with parameter
2 · d · λ. We then apply the analysis done in the proof of Lemma 19, with s being the first time
at which for some (x, y) ∈ X × Y , votex,y (virtual (Gus)) ≥ 0. Combining the result of that
lemma with the probability distribution over h′ we conclude that the probability of the event
∪(x,y)∈X×Y Êallt→∞(x, y) is at most

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(2 · d · (1− α) · λ, h′) ·
∞∑
h=0

Poiss(d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h′−h−l−m)+

=

∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

47

Corollary 15. If in addition to the assumptions of Corollary 14 we assume that M ≤
|futurea (x,Gvt)|, then

Pr
(
Êallt→∞(x, y) | |futurea (x,Gvt)| ≥M

)
≤ (34)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (35)(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm′

)−1

·

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

We denote the RHS of this inequality by fpost mine (nx, g, j, l,M). We note that from
Lemmas 23, 30, and 28 it follows that, in order to compute fpost mine, one can truncate these
sums and suffer an exponentially low error.

Proof. Under the assumption on M we have
∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣
=
∣∣futurea (zlate, Goraclet

)∣∣− |futurea (x,Gvt)| ≥ ∣∣futurea (zlate, Goraclet

)∣∣−M .
We then adjust the result of Corollary 14 and adjust (4) to account for the above

updated definition of m. Thus, in the exponent, we substitute m − M for m and write:(
α

1−α

)(g−2·h−j−k−l−(m−M))+

. Next, the updated probability distribution over m − M can
be obtained by conditioning the negative binomial distribution (described in the proof of
Corollary 14) on its being larger than or equal to M ; indeed, the M blocks of futurea (x,Gvt)
were created after zlate (and before time t), and futurea (x,G

v
t) ⊆ futurea

(
zlate, G

oracle
t

)
.

Consequently, the probability distribution over m−M is given by

Pr (m−M) =

(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm′

)−1

·(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm,

and we arrive at the desired term. The rest of the arguments in the proof of Corollary 14 remain
unaffected.

1) Numerical method to calculate fpre mine:
• Put δ := α · λ · d. Pick some N ≫ 1,13 and define a matrix T ∈ RN×N as follows. For all
1 ≤ l < N − 1, Tl−1,l = 1 − α, Tl+1,l = α, and for l = N − 1: Tl−1,l = 1 − α, Tl,l = α.

13By Lemma 23, to achieve an error of at most ϵ̂ it suffices to choose N such that
(

α
1−α

)N−1

< ϵ̂/2 and

e−d·α·λ · (d·α·λ)N
N !

< ϵ̂/2. In particular, N is logarithmic in ϵ̂.

48

The first column of the matrix is defined by: T0,0 := (1−α) · e−δ, T1,0 = e−δ ·α+ e−δ · δ,
for 1 < l < N − 1: Tl,0 = e−δ · δll! , and for l = N − 1: Tl,0 = 1−

∑N−2
l=0 e−δ · δll! .

• Find the eigenvector of T corresponding to the eigenvalue 1, and denote it π. Define
Π(l) :=

∑l
l′=0 π(l

′), and, finally, define fpre mine(l) := 1−Π((l − 1)+).
The matrix T is the transition probability matrix of a special reflecting random walk (Xk) over the
nonnegative integers: Ti,j := Pr (Xk+1 = i | Xk = j). At every position (apart from the edges
0 and N − 1) the walk takes a step towards negative infinity w.p.(1− α) and towards positive
infinity w.p.α. Whenever it reaches the origin, it jumps to its next position in {0, 1, ..., N − 1}
according to a (modified) Poisson distribution. It is easy to see that this random walk induces
an ergodic Markov chain, hence it has a unique stationary distribution, which we denoted π; Π
is the cumulative probability function of π.

Lemma 22. For all r̂ ≥ r and for all For all l ∈ N:

Pr

(
max

z∈Goracle
r̂ ∩honest

{∣∣∣futurea (z,Goracler

)∣∣∣−∣∣∣futureh (z,Goracler

)∣∣∣} > l
)
≤

fpre mine(l). (36)

Proof. Part I: We prove the result assuming the maximum is taken over all z ∈ Goracler ∩honest;
taking then the maximum over all z ∈ Goracler̂ ∩ honest does not change the result, because
the variable

{∣∣futurea (z,Goracler

)∣∣− ∣∣futureh (z,Goracler

)∣∣} is nonnegative (as will be shown
below), and its value for z ∈ Goracler̂ \Goracler i is zero.

We show that the variable maxz∈Goracle
s ∩honest

{∣∣futurea (z,Goracles

)∣∣−∣∣futureh (z,Goracles

)∣∣} can be modeled as a reflecting random walk (with some special
behaviour when the walk visits the origin, due to the honest network’s inner delay d).

Intuitively, observe that whenever a new honest block b is created, futureh
(
z,Goracletime(b)

)
increases by 1 for all z’s in its past. For b itself, the value of this variable is 0. Thus, the value
of maxz∈Goracle

s ∩honest
{
futurea

(
z,Goracles

)
− futureh

(
z,Goracles

)}
is lower bounded by 0.

On the other hand, whenever a new attack block is created, the value of futurea
(
z,Goracles

)
increases by 1 for all honest blocks available to it at the time (following the worst case
assumptions specified in Lemma 12, Part I). Therefore, the attacker’s maximal advance
over the honest network can be modeled as a reflecting random walk. Note that, since the
creation of an honest block b increases futureh

(
z,Goracles

)
only for blocks in pasth (b),

which might be a proper subset of before (time(b)) (when d > 0), there are certain
situations where honest blocks do not “work against” attack blocks to decrease the value of
max

{∣∣futurea (z,Goracles

)∣∣− ∣∣futureh (z,Goracles

)∣∣}. We take this into account by skewing
the behviour of the walk whenever the origin is visited (and proving that in all other states the
honest network’s inner delay has no effect).

In the following analysis, we assume the worst case scenario, namely, that if z1 and z2
are honest blocks such that |time(z1) − time(z2)| < d then z1 ∈ anticone (z2). That this is
a worst case follows simply from the fact that omitting some edges between honest blocks

49

can only decrease futureh
(
z,Goracles

)
hence increase the value of

∣∣futurea (z,Goracles

)∣∣ −∣∣futureh (z,Goracles

)∣∣.
If the attacker is creating blocks in secret, it needs to decide upon a strategy regarding which

blocks should its new block point at, for every new block it creates. Consider the following
strategy: The attacker’s new block b, created at time(b), points at Goracletime(b) (except itself, of
course). While we have already argued why this is a worst case assumption (Lemma 12, Part I),
it is here easy to see that this strategy maximizes maxz∈Goracle

s ∩honest
{∣∣futurea (z,Goracles

)∣∣
−
∣∣futureh (z,Goracles

)∣∣}.
Part II: Denote by ti the creation time of the ith block in Goracler . Denote by zs

the variable argmaxz∈Goracle
s ∩honest

{∣∣futurea (z,Goracles

)∣∣− ∣∣futureh (z,Goracles

)∣∣}. Define
further Azs :=

∣∣futurea (z,Goracles

)∣∣, and Hz
s :=

∣∣futureh (z,Goracles

)∣∣. Abbreviate As :=∣∣futurea (zs, Goracles

)∣∣, and Hs :=
∣∣futureh (zs, Goracles

)∣∣.
We define a subseries (sk) ⊆ (ti) recursively: s0 = 0, and for all k > 0: sk+1 = mini {ti :

ti ≥ time (zsk) + d}. We claim that (Ask −Hsk) has the same probability distribution as Xk.
Assume this claim holds true, and let sk be the earliest sk with sk ≥ r. Then (Ar −Hr) ≤
1 + (Ask −Hsk).14 Consequently,

Pr

(
max

z∈Gu
r∩honest

{|futurea (z,Gur)| −

|futureh (z,Gur)|} > l) =

Pr (Ar −Hr > l) ≤ Pr (Ask −Hsk > l − 1) =

Pr (Xk > l − 1) = 1−Π((l − 1)+).

Part III: To complete the proof we prove our claim, by induction on k. For k = 0, s0 =
0. At time 0, following the creation of the genesis block, the value of (A0 −H0) is 0, as
future (genesis) ∩Goracle0 = ∅, and likewise X0 = 0. Assume we have proved this for k, and
we now prove it for k + 1. Assume first that (Ask −Hsk) > 0. Assume by way of negation
that sk < time (zsk) + d. Then, by the construction of (sk), sk = time (zsk). This implies that
the honest network created zsk in time sk. Thus (Ask −Hsk) = 0, because zsk was created at
time sk. As zsk is supposed to be in argmaxz∈Goracle

r ∩honest {Ask −Hsk}, this contradicts our
assumption that Ask −Hsk > 0. Thus,

(
Azsk −H

z
sk

)
> 0 implies sk ≥ time (zsk) + d.

Consequently, if (Ask −Hsk) > 0, we are guaranteed that the entire honest network has learnt
about the block zsk . Thence, the honest network adds blocks to future (zsk) at a rate of (1−α·λ),
while the attacker adds them at a rate of α. Every block of the honest network then contributes
1 to

∣∣futureh (z,Goracles

)∣∣, whereas an attacker block contributes 1 to
∣∣futurea (z,Goracles

)∣∣.
Thus, (Ask −Hsk) increases by 1 by the addition of an attacker’s block, that is, w.p.α, and
decreases by 1 w.p.(1 − α). Indeed, conditioned on Xk > 0, Xk+1’s distribution behaves the
same: Pr (Xk+1 = Xk + 1 | Xk > 0) = 1− Pr (Xk+1 = Xk − 1 | Xk > 0) = α.

14Indeed, if r = sk then this holds trivially. Otherwise, in the interval (r, sk) the honest network could have
contributed at most one block to future

(
zsk−1

)
, because (Xi) can decrease by at most 1 at every step, according

to its transition matrix, thus in the interval (r, sk) ⊆ (sk−1, sk) the honest network created at most 1 block.

50

Assume now that (Ask −Hsk) = 0. It cannot be the case that the block that was created in
time sk belongs to the attacker, since that would imply that the attacker has an advantage of at
least 1 over the last block that was created by the honest network (up to time sk). Therefore, it
belongs to the honest network. By the definition of zsk , it is precisely the block that was created
in time sk. Consequently, in the interval (sk, sk+d), the honest network does not add blocks to
future (zsk) (recall we are assuming that the worst case scenario is realized, i.e., a propagation
time of d seconds per honest block). During this interval, the attacker creates blocks at following
a Poisson process with parameter α ·λ. Thus,

(
A
zsk
sk+d

−Hzsk
sk+d

)
= i w.p. Poiss(α ·λ ·d, i). Upon

which, the next block in the system, created after sk+d, is the attacker’s w.p.α, in case which the
total gap increases by j+1, i.e.,

(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
=
(
A
zsk
sk+d

−Hzsk
sk+d

)
+1; alternatively, the

next block after sk+d is the honest network’s, w.p.(1−α), in case which
(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
=

max
{(
A
zsk
sk+d

−Hzsk
sk+d

)
− 1, 0

}
. By comparing this to Pr (Xk+1 | Xk = 0), we see that also in

this case the variable Xk+1 behaves the same as
(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
.

Lemma 23. fpre mine(l) ≤ Cl · e−Bl·futurea(x,Gv
t) for some positive constants Bl, Cl.

To get the intuition of this result, notice that when d = 0 the stationary distribution of the

reflecting random walk is known to be proportionate to
(

α
1−α

)l
, and if d > 0, this relation still

holds for l≫ d · λ.

Proof. For n > 1, the stationary distribution π satisfies the relation π(n) = (1−α) ·π(n+1)+

α · π(n− 1) + e−δ · δnn! · π(0). Let us write π(n) = Cn ·
(

α
1−α

)n
for n ≥ 0. We have:

Cn ·
(

α

1− α

)n
= (1− α) · Cn+1 ·

(
α

1− α

)n+1

+ (37)

α · Cn−1 ·
(

α

1− α

)n−1

+ e−δ · δ
n

n!
· π(0) =⇒ (38)

Cn = Cn+1 · α+ Cn−1 · (1− α)−1 + e−δ ·

(
δ · (1−α)α

)n
n!

· π(0). (39)

For large enough n’s, the last summand in the above expression is negligible. Thus, when we
write ∀n : Cn ≈ C, the above relation will be satisfied for large n’s (up to the negligible error
of the last summand). Thus, for some constant C, π(n) ≤ C ·

(
α

1−α

)n
, hence 1−Π((n−1)+) =∑∞

k=n π(k) ≤ Bl · e−Cl·n, for some large enough n, and some constants Bl, Cl > 0.

The following Corollary is immediate from Lemma 22.

51

Corollary 24. In Lemma 19, if l is not known, then

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · λ, h)· (40)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (41)

(
α

1− α

)(g−h−l−m)+

.

Similarly, in Corollary 20,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · αλ, h)· (42)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (43)

(
α

1− α

)(g−h−l−m)+

. (44)

Finally, in Corollary 21,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

Using this corollary we can prove the bound that is used by the online policy described in
Algorithm 7. Denote:

risk hidden(T, g) :=

∞∑
l=0

π(l) ·
∞∑
m=0

Poiss((T + 2 · d) · α · λ)· (45)

(
α

1− α

)(g−l−m)+

(46)

Corollary 25. If Algorithm 7 returns a value less than ϵ then Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
<

ϵ.

Proof. First, observe that the variable g used in Corollary 20 could be replaced (here and in that
corollary) with minx′∈anticoneh(x,Gv

t)
|future (x′, Gvt)|, because all blocks in future (x,Gvt) vote

in favour of x, by the assumption on y. The value assigned to g, in line 5 of Algorithm 7, is upper
bounded by minx′∈anticone(x,Gx)

|future (x′, Gx)|, because Gx includes all honest blocks in Gvt .
Next, T is assigned the value time now− receivedv(x) = t− receivedv(x), in line 3. Observe

52

that m is distributed according to Poiss(m, (t−time(x))·α·λ).15 As time(x) ≥ receivedv(x)+d,
we can upper bound this by a Poisson variable with parameter (T +d) ·α ·λ. We then adjust the
result of the second term in Corollary 24; we combine the distrbituions over h and m (where h
is taken from (42), to conclude that

Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
≤ (47)

∞∑
l=0

π(l) ·
∞∑
m=0

Poiss((T + 2 · d) · α · λ) ·
(

α

1− α

)(g−l−m)+

= (48)

risk hidden(T, g). (49)

Note that we do not need to apply here a union bound over the different y’s in Gpub∞ \Gpubt ,
because our analysis assumes that in the worst case all of the attacker blocks vote strongly in
favour of y ≺ x, for all y in this set, and, additionally, all honest blocks in Gvt will always
vote strongly in favour of x ≺ y, for all y’s in this set (as they do not see y in their past).
Thus, under our worst case analysis, the event where for some y in Gpub∞ \ Gpubt the attacker
manages to reverse the relation x ≺ y is equivalent to the event where it manages to do
so for a given y. In conclusion, if Algorithm 7 returned a value less than ϵ, we know that
Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
< ϵ.

Denote by dist gap(b,G) the minimal k for which gap (b, ⟨G, b,K⟩) = 0.

Lemma 26. Let b be an honest block. Then,

Pr
(
∪u∈honest,s∈[time(b),∞)dist gap (b,G

u
s) > K

)
≤ (50)

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (51)

(
α

1− α

)(K−h−l−m)+

.

We denote the RHS of (50) by fdistgap(K).

Proof. By its definition, the event where dist gap (b,Gus) > K is equivalent to the event where
some block in anticone

(
b,G

node(b)
time(b)

)
∪
(
Gus \G

node(b)
time(b)

)
precedes b (or achieves a tie with it)

according to vote (virtual (⟨Gus , b,K⟩)). In ⟨Gus , b,K⟩, b has additional K blocks b1, ..., bK that
vote in favour of it against any other y /∈ past (b); indeed, for any y /∈ past (b), y /∈ past (bi).
Consequently, at Gnode(b)time(b), K blocks in future (b) vote in its favour against any block in its
anticone. We can thus apply the first part of Corollary 24 with nx = K, X = {b}, and Y =

15Our previous analysis measured m using nx, as it was structure-based and had no access to T .

53

Goracle∞ \ past (b) to conclude that (50) is an upper bound on the probability that a block in
anticone

(
b,G

node(b)
time(b)

)
will ever precede b (or obtain a tie with it) in the pairwise order of

⟨Gus , b, k⟩ for any s ≥ time(b) in the future.

Lemma 27. For all nx ∈ N,

Pr (|futureh (x,Gvt)| > nx) ≤ (52)

|future (x,Gvt)| · fdistgap
(√
|future (x,Gvt)|

)
. (53)

The RHS of the last inequality is denoted fpost pub (|future (x,Gvt)|).

Proof. If y = NULL there is nothing to prove, since then nx = future (x,Gvt) ≥
futureh (x,G

v
t). Assume y ̸= NULL.

Denote K :=
√
|future (x,Gvt)|. nx is obtained in Algorithm 3 by subtracting M , the

number of blocks with dist gap > K, from future (x,Gvt). Let b be an honest block in
future (x,G). By Lemma 26, the probability that dist gap (b,Gvt) will be larger than K is at
most fdistgap (K). By the union bound, the probability that for some b in futureh (x,G

v
t),

dist gap (b,Gvt) > K, is at most |futureh (x,Gvt)| · fdistgap (K) ≤ |future (x,Gvt)| ·
fdistgap (K) = fpost pub (|future (x,Gvt)|).

The RHS of Inequality (50) implies:

Lemma 28. fpost pub (|future (x,Gvt)|) ≤ Cc · e−Bc·futurea(x,Gv
t) for some positive constants

Bc, Cc.

Lemma 29. For nj ∈ N put j := gap (x,G) + nj .

Pr
({∣∣∣anticoneh (x,Goraclet

)∣∣∣ > j
})
≤ (54)

fpre mine
(√
nj
)
+

∞∑
h′=0

Poiss((1− α) · λ · d, h′)· (55)

fpost mine
(
nj , nj − h′ + 1,

√
nj
)

(56)

We denote the RHS of this inequality by fpre pub(nj). To understand the intuition behind this
resul recall that w.h.p. a block defeats only blocks that were published close to its publication
or after it.

Proof. Part I: Let tx := publication(x). Define Ln := {z ∈ anticoneh (x,Gvt) :
futureh

(
z, anticoneh

(
x,Gvtx

))
≥ n

}
. (Note the use of tx in this definition). Denote

by An the event {∃z ∈ Ln : z ∈ Xwin (x,G
v
t)}. Finally, let ze be the earliest block in

L{
n′ ∩ anticoneh

(
x,Goraclet

)
and put n′ := nj −

∣∣anticoneh (ze, Goraclet

)∣∣ + 1 for nj :=

54

√
|future (x,Gvt)|. Denote by Xwin (x,G) the set of blocks that x precedes (or obtains a

tie with) in the pairwise order of G’s virtual vote, and by Xlose (x,G) the rest of blocks. Then:{∣∣∣anticoneh (x,Goraclet

)∣∣∣ > gap (x,G) + nj

}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣+∣∣∣Xlose

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > gap (x,G) + nj

}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣+ gap (x,Gvt) > gap (x,G) + nj

}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
=({∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
∩An′

)
∪({∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
∩A{

n′

)
⊆

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)∣∣∣ > nj

}
=

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)
∩ anticoneh

(
ze, G

oracle
t

)∣∣∣+∣∣∣L{
n′ ∩ anticoneh

(
x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣∣ > nj

}
=

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣∣ >
nj −

∣∣∣L{
n′ ∩ anticoneh

(
x,Goraclet

)
∩ anticoneh

(
ze, G

oracle
t

)∣∣∣} ⊆
An′ ∪

{∣∣∣anticoneh (x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣∣ >
nj −

∣∣∣anticoneh (ze, Goraclet

)∣∣∣} .
As ze ∈ Ln′ , and by the definition of n′, it cannot be the case that anticoneh

(
x,Goraclet

)
∩

futureh
(
ze, G

oracle
t

)
contains more than nj −

∣∣anticoneh (ze, Goraclet

)∣∣ blocks. Thus,
the event

{∣∣anticoneh (x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣ > nj −
∣∣anticoneh (ze, Goraclet

)∣∣}
occurs w.p. 0, and we obtain: Pr

({∣∣anticoneh (x,Goraclet

)∣∣ > gap (x,G) + nj
})
≤ Pr (An′).

Observe that all blocks in future
(
z, anticoneh

(
x,Gvtx

))
vote strongly in favour of

z against x, for any z ∈ Ln′ , and that by definition there are at least n′ such
votes at time tx. Consequently, we can apply the result of Corollary 21 with respect
to the following parameters: v = pub, t = tx, X = the leaf-blocks of Ln′ ,
Y = {x}, g := n′, nx := nj , and l′ = maxz∈Goracle

tx
∩honest

{∣∣futurea (z,Goracletx

)∣∣
−
∣∣futureh (z,Goracletx

)∣∣}, to obtain:

Pr (An′) = Pr (∃z ∈ Ln′ : z ∈ Xwin (x,G
v
t)) ≤

Pr (∃s > tx, ∃z ∈ Ln′ : z ∈ Xwin (x,G
v
s)) ≤

fpost mine
(
nj , n

′, l′
)
.

55

As the value of l′ is unknown to us, we use Lemma 22 to conclude that with probability
≥ 1−fpre mine(l) its value is at most l. Fix l = √nj . Similarly, the value of n′ is unknown to us.
However, blocks in anticoneh

(
ze, G

oracle
t

)
are created in the time interval [time(ze), time(ze)+

d] (by its choice), hence
∣∣anticoneh (ze, Goraclet

)∣∣ is a Poisson variable with parameter (1−α) ·
λ · d. We thus conclude that:

Pr
({∣∣∣anticoneh (x,Goraclet

)∣∣∣ > gap (x,G) + nj

})
≤

fpre mine
(√
nj
)
+

∞∑
h′=0

Poiss((1− α) · λ · d, h′)·

fpost mine
(
nj , nj − h′ + 1,

√
nj
)
=

fpre pub(nj).

It is easy to verify that fpost mine
(
nj , nj − h′ + 1,

√
nj
)

decreases exponentially (we do this
in fact in subsequent lemmas). Therefore:

Lemma 30. fpre pub(nj) ≤ Cj · e−Bj ·nj for some positive constants Bj , Cj .

In the lemma below, oracleu is a (hypothetical) node such that Goraclejs := Gus ∪(
Goracles ∩ attacker

)
.

Lemma 16. Conditioned on the event Êallt→∞(x, y), there exists a time τ ∈ [t,∞) such that
∀s ≥ τ : M(oracleu, s) ≥

∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(G

oracleu
s)

∣∣∣ − m∗, for some
m∗ that remains fixed after τ (and with E[m∗] determined by the events up to time t).

Proof. Part I: If y /∈ Goracle
u

s then M(oracleu, s) = 0 (line 6), Vx≺y(G
oracleu
s) =

future
(
x,Goracle

u

s

)
, and the required inequality follows trivially. Assume y ∈ Goracleus .

Let G be any block DAG that equals the past-set of some (possibly virtual) block.
Observe that conditioned on Êallt→∞(x, y), for some constant Ct determined at time t,
if
∣∣G[t,s] ∩ attacker

∣∣ − ∣∣∣Goracleu[t,s] ∩ honest
∣∣∣ < −Ct then votex,y (virtual (G)) = −1.16

This follows from the proof of Lemma 12: We take the LHS of (17), replace g
by

∑
z′∈future(x,Gt)

votex,y (z
′, G), and observe that the value of the remaining term

2 ·
∣∣∣anticoneh (zlate, Goracleutime(zlate)

)∣∣∣− ∣∣∣futureh (z,Goracleutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Goracleutime(zlate)

)∣∣∣+∣∣∣anticoneh (zlate, Goracleu[time(zlate),time(zlate)+d]

)∣∣∣ +
∣∣∣Goracle[t−d,t] ∩ honest

∣∣∣ +

|futureh (zlate, Gvt) \ futureh (x,Gvt)| +
∣∣futurea (zlate, Goracleut

)
\ futurea (x,Gvt)

∣∣ is
determined by time t, hence we can denote it Ct.

Let z ∈ future
(
x,Goraclet,s

)
. By the conditioning on Êallt→∞(x, y), z ∈ attacker. Fix the

DAG Gz := past (z). The above argument holds in particular for Gz: If
∣∣∣Gz[t,s] ∩ attacker∣∣∣ −∣∣∣Gz[t,s] ∩ honest∣∣∣ < −Ct then votex,y (z) = votex,y (virtual (past (z))) = −1 (since z is a

16We write here Gz
[t,s] for Gz ∩ before(s) \ before(t).

56

strong voter we do not need to specify the context of its vote). Consequently, if z ∈ Goraclet,s \
Vx≺y

(
Goracles

)
then

∣∣∣Gz[t,time(z)] ∩ attacker∣∣∣− ∣∣∣Gz[t,time(z)] ∩ honest∣∣∣ ≥ −Ct.17

We arrive at the following important implication: If z ∈ future
(
x,Goracle

u

s

)
\Vx≺y

(
Goracle

u

s

)
then: ∣∣∣anticone(z,Gpubs

)∣∣∣ ≥ ∣∣∣anticone(z,Gpubtime(z)

)∣∣∣ ≥ (57)∣∣∣anticone(z,Gpubtime(z)

)
\Goraclet

∣∣∣ = (58)∣∣∣Gpubtime(z) \G
oracle
t

∣∣∣− ∣∣∣past (z) \Goraclet

∣∣∣ ≥ (59)∣∣∣Gpubtime(z) ∩ honest \G
oracle
t

∣∣∣−Gz[t,time(z)] ∩ honest ≥ (60)∣∣∣Gpub[t,time(z)] ∩ honest
∣∣∣−Gz[t,time(z)] ∩ attacker − Ct. (61)

Part II: Let z1, z2, ... the order of creation of blocks in futurea
(
x,Goracle

u

s \Goraclet

)
\

Vx≺y
(
Goracle

u

s

)
. Fix zm, and let bm be the earliest block in

anticoneh
(
zm, future

(
x,Goracle

u

s

))
. With probability Poiss(d · (1 − α) · λ, h′),∣∣∣anticoneh (bm, Gpub∞

)∣∣∣ = h′. By the choice of bm together with (57) we obtain:∣∣∣futureh (bm, Gpubtime(zm)

)∣∣∣ =∣∣∣anticoneh (zm, Gpubtime(zm)

)
\ anticoneh

(
bm, G

pub
time(zm)

)∣∣∣ ≥∣∣∣anticoneh (zm, Gpubtime(zm)

)∣∣∣− ∣∣∣anticoneh (bm, Gpubtime(zm)

)∣∣∣ ≥∣∣∣Gpub[t,time(zm)] ∩ honest
∣∣∣− ∣∣∣Gzm[t,time(zm)] ∩ attacker

∣∣∣− Ct − h′ =∣∣∣Gpub[t,time(zm)] ∩ honest
∣∣∣−m− Ct − h′, (62)

where we used the fact that past (bm) ∩ anticoneh (zm) = ∅, by the choice of bm, and that
anticoneh

(
zm, G

pub
time(zm)

)
= antipasth

(
zm, G

pub
time(zm)

)
.

Part III: Given m,
∣∣∣Gpub[t,time(zm)] ∩ honest

∣∣∣ is distributed according to a negative binomial

distribution: Pr
(∣∣∣Gpub[t,time(zm)] ∩ honest

∣∣∣ = n
)

=
(
n+m−1

n

)
· (1 − α)n · αm. We claim that

the probability that the honest block bm will ever be preceded by zm in the order of
virtual

(
⟨Goracleus , zm,K⟩

)
is at most

∞∑
l=0

π(l) ·
∞∑
k=0

Poiss(5 · d · (1− α) · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
n=0

(
n+m− 1

m

)
· (1− α)n · αm ·

(
α

1− α

)(n−m−K−2·h−Ct−k−l)+

. (63)

17Note that Gz contains only blocks created up to time(z).

57

This follows from a similar analysis to that made in the proof of Lemma 12 and of Corollary 21.
Indeed, at time(zm) there were at least n−m−h′−Ct blocks in future (bm)\future (zm), by
the above lower bound on

∣∣∣futureh (bm, Gpubtime(zm)

)∣∣∣; and while futurea
(
bm, G

pub
time(zm)

)
=

∅, as bm /∈ past (zm), there are additional K hypothetical blocks that vote y ≺ x, by the
construction of ⟨Goracleus , zm,K⟩. Instead of reducing h′ in the exponent (as in the bound given
in Corollary 21), we added 2 · d · (1− α) · λ to the variable k, as the sum of Poisson variables
is a Poisson variable. Finally, we use the result of Lemma 22 to ensure that π(l) upper bounds
the distribution over l,18

As dist gap(Goracle
u

s , zm) ≤ K requires zm to precede bm in the order of
virtual

(
⟨Goracleus , zm,K⟩

)
, (63) serves as an upper bound also to the probability that

dist gap(Goracle
u

s , zm) ≤ K.
Part IV: Using Lemma 23 it is easy to verify the existence of constants a, b, and W such that

Pr (k + l + 2 · h > W) ≤ e−a·W+b.
Put K(oracleu, s) =

√
|future (x,Goracleus)|. The block zm is counted into M(oracleu, s)

in line 9 of Algorithm 3 whenever dist gap(Goracle
u

s , zm) > K(oracleu, s). From (63) we
conclude that the probability that zm does not increment by 1 the value of M(oracleu, s) is
upper bounded by

Pr
(
dist gap(Goracle

u

s , zm) ≤ K(oracleu, s)
)
≤ (64)

∞∑
n=0

(
n+m− 1

m

)
· (1− α)n · αm ·

(
α

1− α

)(n−m−K(oracleu,s)−W−Ct)
+

<

(
α

1− α

)−W−Ct−K(oracleu,s)

·
∞∑
n=0

(
n+m− 1

n

)
· (1− α)n · αm ·

(
α

1− α

)(n−m)+

= (65)

(
α

1− α

)−W−Ct−K(oracleu,s)

·
(

Pr
n∼Z(m,1−α)

(n > m) + Pr
n∼Z(m,α)

(n ≤ m)

)
, (66)

where Z(n, p) denotes a negative binomial random variable.
We now aim at showing that the last term is upper bounded by some e−D·m. The proof is

very similar to that given in Lemma 17 below.
Part V: For large enough m’s, a variable distributed according to Z(1−α,m) converges to a

normal variable with mean m · α
1−α and variance m · α

(1−α)2 .19 The second multiplicand in (66)

18l here represents maxz∈Goracle
time(bm)

∩honest

{∣∣∣futurea (z,Goracleu

time(bm)

)∣∣∣− ∣∣∣futureh (
z,Goracleu

time(bm)

)∣∣∣}.
19We rely here on the assumption specified in the proof of Lemma 12 according to which, in the worst case, after

time t the attacker publishes all his blocks to all nodes immediately after their creation.

58

thus converges, as m grows, to

Pr
z∼N (0,1)

z ≤ m− 1−α
α ·m√

1−α
α2 ·m

+ Pr
z∼N (0,1)

z ≥ m− α
1−α ·m√
α

(1−α)2 ·m

 = (67)

Pr
z∼N (0,1)

z ≥ 1−α
α ·m−m√

1−α
α2 ·m

+ Pr
z∼N (0,1)

z ≥ m− α
1−α ·m√
α

(1−α)2 ·m

 . (68)

The following inequality is due to Komatu (1955). Let x ≥ 0 and let z ∼ N (0, 1). Then:

Pr (z > x) ≤ 1√
2·π ·

2·e−x2/2

x+
√
2+x2

. Put x1 :=
1−2·α

α
·m√

1−α

α2 ·m
and x2 :=

1−2·α
1−α

·m√
α

(1−α)2
·m . We obtain an upper

bound on (68):

1√
2 · π

· 2 · e−x2
1/2

x1 +
√

2 + x21
+

1√
2 · π

· 2 · e−x2
2/2

x2 +
√

2 + x22
≤ (69)

C1 · e−x
2
1/2 + C2 · e−x

2
2/2 = C1 · e−D1·m + C2 · e−D2·m ≤ C3 · e−D3·m (70)

for some positive constants Ci, Di that depend on α (a property which applies to the constants
below as well).

When this term is multiplied by
(

α
1−α

)−W−Ct−K(oracleu,s)
we obtain(

α

1− α

)−W−Ct−K(oracleu,s)

· C3 · e−D3·m ≤ (71)

C4 · e−D3·m+D4·K(oracleu,s) = C4 · e−D3·m+D4·
√

|future(x,Goracleu
s)|. (72)

There exists therefore an M1 such that if m >
∣∣future (x,Goracleus

)∣∣ > M1 then the last
expression is upper bounded by C5 · e−D5·m for some C5, D5.

Part VI: After some ψ (with expected value M1/λ), the condition
∣∣future (x,Goracleus

)∣∣ ≥
M1 is satisfied. Put sm := time(zm) and assume sm ≥ ψ.

As
∑∞

m=
√
|future(x,Goracleu

sm)|+1
C5 ·e−D5·m <∞, Fatou’s lemma implies that there exists (a.s.)

an m∗ >
√∣∣future (x,Goracleusm

)∣∣ such that for all m ≥ m∗, dist gap(zm) > K(oracleu, sm).
The expected waiting time for zm∗ is finite.20 Define τ = max {ψ, time(zm∗)}. Then, for any

20We have Pr(m∗ ≥ r) ≤
∑r−1

m=
√
|future(x,Goracleu

s)|+1
C5 · e−D5·m. Therefore,

E [m∗] ≤
∞∑

r=
√
|future(x,Goracleu

sm)|+1

r−1∑
m=

√
|future(x,Goracleu

sm)|+1

C5 · e−D5·m =

∞∑
m=

√
|future(x,Goracleu

sm)|+1

∞∑
r=m+1

C5 · e−D5·m =

∞∑
m=

√
|future(x,Goracleu

sm)|+1

C6 · e−D6·m ≤

C7 · e−D7·
√
|future(x,Goracleu

sm)|.

59

s ≥ τ : M(oracleu, s) ≥
∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(G

oracleu
s)

∣∣∣−m∗.21

Lemma 17. There exists a ψ ∈ [t,∞) such that Pr
(
Eallt→∞(x, y, ϵ){ | Evt (x, y, ϵ)

)
< ϵ. Moreover,

E [ψ − t] < ϵ.

Proof. Part I: We show that if all honest blocks vote in favour of x then all error
functions converge to zero. Indeed, the event Evt (x, y, ϵ) implies that fpre mine(l (Gvt)) +
fpre pub (nj (G

v
t)) + fpost pub (|future (x,Gvt)|) + fpost mine (nx (G

v
t) , g (G

v
t) , l (G

v
t)) < ϵ. By

the union bound, and by Lemmas 22, 27, and 29 respectively, the following relations hold with
probability ≥ 1− ϵ:

• maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Goracletime(x)

)∣∣∣− ∣∣∣futureh (z,Goracletime(x)

)∣∣∣} ≤ l (Gvt)
• |futureh (x,Gvt)| ≤ nx
•
∣∣anticoneh (x,Goraclet

)∣∣ ≤ gap (x,G) + nj =: j

Conditioned on these relations, by Corollary 15 the event Êallt→∞(x, y) occurs w.p. ≥ 1 −
fpost mine (nx (G

v
t) , g (G

v
t) , l (G

v
t)). All in all, conditioned on Evt (x, y, ϵ), the event Êallt→∞(x, y)

occurs w.p. ≥ 1− ϵ.
Part II: We proceed to show that, conditioned on Êallt→∞(x, y) and on the above relations, the

value of Risk (Gus , x, y) goes (almost surely) to 0 as time develops, for all u ∈ honest.22

That fpre mine(l (Gus))+fpre pub (nj (G
u
s))+fpost pub (|future (x,Gus)|) goes to 0 as s grows

follows immediately from Lemmas 23, 30, and 28. Let ϵ0 > 0. We now prove that after some
τ of finite expectation, fpost mine (nx (Gus) , g (G

u
s) , l (G

u
s)) < ϵ0.

We claim that

M(oracleu, s) + g(oracleu, s)− nx(oracleu, s) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗ (73)

where m∗ is the variable described in Lemma 16. Assume first that attacker∩Goracles ⊆ Goracleus .
Let us decompose future

(
x,Goracle

u

s

)
as follows:

• Blocks in Goracle[time(x),t]. Clearly, the number of blocks in this set does not grow with s. Their

contribution is lower bounded by −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣.
• Blocks in Vx≺y(G

oracleu
s) \ Goraclet : Every z in this set adds (+1) to g(oracleu, s). As

z cannot decrement the value of M(oracleu, s) − nx(oracle
u, s) by more than 1, the

contribution of this set is at least 0. 23

The expected waiting time for zm∗ is the last term divided by α · λ.
21Note that E[m∗] is determined by the events up to time t: take the expected value of the expression in the

previous proof, where the distribution over the values of
∣∣∣future(x,Goracleu

sm

)∣∣∣ (and of the sm’s themselves) is

conditioned on
∣∣∣future(x,Goracleu

t

)∣∣∣ (for the oracleu which maximizes the expected value).
22In fact, we need to show that max {Risk (Gu

s , x, y)} goes to 0. However, since our analysis below takes the
worst case regarding u, namely, that messages from it and to it arrive at a delay of precisely d, these events are
equivalent in the worst case, and thus we will relate to u as a fixed honest node.

23In fact, by the conditioning on the relation |futureh (x,Gv
t)| ≤ nx, we know that all honest blocks belong

to this category, hence we can arrive at a tighter bound: M(oracleu, s) + g(oracleu, s) − nx(oracle
u, s) ≥

−
∣∣Goracle

[time(x),t] ∩ attacker
∣∣−m∗.

60

• Blocks in Goracle
u

s \
(
Vx≺y(G

oracleu
s) ∪Goraclet

)
: Lemma 16 guarantees that, conditioned

on the event Êallt→∞(x, y), at least
∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s]

∣∣∣ − m∗ of the blocks

that are published after some τ and that do not belong to Vx≺y(G
oracleu
s) – hence that

add (−1) to g(oracleu, s)24 – add (+1) to the value of M(oracleu, s). In other words, at
most m∗ blocks from the set futurea

(
x,Goracle

u

s

)
∩Goracle[t,s] \Vx≺y(G

oracleu
s) add (−1) to

g(oracleu, s) and are not canceled out by a (+1) increment to the value of M(oracleu, s).
The contribution of this set is therefore lower bounded by −m∗.

Part III: We now claim that

M (Gus) + g (Gus)− nx (Gus) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗ (74)

Indeed, let C(z) be the contribution of z to (73) and let c(z) be its contribution to (74). First,
C(z) ≥ −2, hence the contribution of all z ∈ Goracle[time(x),t] is at least −2 ·

∣∣∣Goracle[time(x),t]

∣∣∣, as
previously.

Assume that z ∈ Goracle
u

s \ Goraclet and that it votes x ≺ y. Then z is not counted into
M(oracleu, s), hence its contribution to M(oracleu, s) + g(oracleu, s)− nx(oracleu, s) is 0+
1− 1 = 0, i.e., c(z) = 0. And for the same argument C(z) = 0.

Assume that z ∈ Goracle
u

s \ Goraclet and that it votes y ≺ x. Then z ∈ attacker (by the
conditioning on Êallt→∞(x, y)). In the analysis of Lemma 16 we assumed the following worst case:
that for any three blocks v, z, w ∈ Goracleus , such that v, z ∈ attacker and w ∈ honest, v votes
strongly for z ≺ w.25 Under this worst case assumption regarding the votes of attacker blocks,
dist gap(z,Goracle

u

s) ≤ dist gap(z,Gus), as Goracle
u

s \Gus contains only attacker blocks. Thus,
if z was counted in M(oracleu, s) then it is counted also in M (Gus); in particular, C(z) ≥ c(z).

Consequently, using the analysis from Lemma 16,

−m∗ ≤
∑

z∈Goracleu
s \Goracle

t

c(z) ≤

∑
z∈Goracleu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) =

∑
z∈Gu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) +
∑

z∈Goracleu
s \(Gu

s∪Vx≺y(Goracleu
s))

c(z) ≤

∑
z∈Gu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) ≤
∑

z∈Gu
s \(Goracle

t ∪Vx≺y(Goracleu
s))

C(z).

All in all, M (Gus) + g (Gus)− nx (Gus) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗.
Part IV: In the remainder of the proof we occasionally abbreviate nx (Gus) and write simply

nx, and similarly for the rest of the variables, for convenience. Lemmas 23 and 30 imply further

24They cannot add 0 since only strong voters are counted into these variables.
25Indeed, therein we only counted honest voters in favour of honest blocks. This could be formalized using

pseudo-votes, as in Lemma 18.

61

that there exist constants a, b, and W such that Pr (k + l + 2 · h+ j > W) ≤ e−a·W+b (as in
the proof of the previous lemma, but not necessarily with the same constants). Take W such
that e−a·W+b < ϵ0/4. Thus, with probability ≥ 1− ϵ0/4:

fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) =

∞∑
k=0

Poiss(3 · d · (1− α) · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (75)(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm′

)−1

· (76)

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm ·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

. (77)

For large enough nx’s, this term is at most ϵ0/4 away from(
α

1− α

)g+M−nx−W
·

(∞∑
m′=M

(
nx +m′ − 1

m′

)
· (1− α)nx · αm′

)−1

· (78)

∞∑
m=M

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−m)+

. (79)

Part V: As for the first multiplicand of (78), by Part II of this proof, after some τ of finite
expectation: M (Gus) + g (Gus)− nx (Gus) ≥ −

∣∣∣Goracle[time(x),t]

∣∣∣−m∗ =: D2 (a constant determined

by time τ). Assume s ≥ τ . We conclude that the term
(

α
1−α

)g+M−nx−W
is upper bounded by

eD3·D4 (with D3 = ln
(
1−α
α

)
). Thus, in order to show that (78) vanishes suffice it to show that(∞∑

m′=M

(
nx +m′ − 1

m′

)
· (1− α)nx · αm′

)−1

· (80)

∞∑
m=M

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−m)+

(81)

vanishes.
The last term equals(

Pr
m∼Z(1−α,nx)

(m ≥M)

)−1

·
(

Pr
m∼Z(α,nx)

(m ≤ nx) + Pr
m∼Z(1−α,nx)

(m ≥ nx)
)
. (82)

62

For large enough nx’s, a variable distributed according to Z(1− α, nx) converges to a normal
variable with mean nx · α

1−α and variance n · α
(1−α)2 . The last term is therefore at most ϵ0/4

away from Pr
z∼N (0,1)

z ≥ M − α
1−α · nx√
α

(1−α)2 · nx

−1

· (83)

 Pr
z∼N (0,1)

z ≤ nx − 1−α
α · nx√

1−α
α2 · nx

+ Pr
z∼N (0,1)

z ≥ nx − α
1−α · nx√
α

(1−α)2 · nx

 = (84)

 Pr
z∼N (0,1)

z ≥ M − α
1−α · nx√
α

(1−α)2 · nx

−1

· (85)

 Pr
z∼N (0,1)

z ≥ 1−α
α · nx − nx√

1−α
α2 · nx

+ Pr
z∼N (0,1)

z ≥ nx − α
1−α · nx√
α

(1−α)2 · nx

 . (86)

We use the following inequalities due to Komatu (1955), for x ≥ 0, and a standard normal
variable z ∼ N (0, 1): 1√

2·π ·
2·e−x2/2

x+
√
4+x2

≤ Pr (z > x) ≤ 1√
2·π ·

2·e−x2/2

x+
√
2+x2

.

Put x1 :=
M− α

1−α
·nx√

α

(1−α)2
·nx

, x2 :=
1−α

α
·nx−nx√
1−α

α2 ·nx

, and x3 :=
nx− α

1−α
·nx√

α

(1−α)2
·nx

.

We obtain an upper bound on (86):√
π/2 ·

(
x1 +

√
4 + x12

)
· ex1

2/2 ·

(
1√
π/2
· e

−x2
2/2

x2
+

1√
π/2
· e

−x2
3/2

x3

)
= (87)

(
x1 +

√
4 + x12

)
· ex1

2/2 ·

(
e−x

2
2/2

x2
+
e−x

2
3/2

x3

)
(88)

We further observe that, for large nx’s: x2 ≥ C2 ·
√
nx and x3 ≥ C3 ·

√
nx, for some

positive constants Ci (this applies to all constants below as well). Therefore, (x1+
√
4+x1

2)
min{x2,x3} ≤

C1/max {C2, C3} =: D1. The above term is therefore upper bounded, up to a multiplicative
factor of D1, by

ex
2
1/2−x2

2/2 + ex
2
1/2−x2

3/2 =

e
0.5·

((
M− α

1−α
·nx√

α
(1−α)2

·nx

)2

−
(

1−α
α

·nx−nx√
1−α

α2 ·nx

)2)
+ e

0.5·
((

M− α
1−α

·nx√
α

(1−α)2
·nx

)2

−
(

nx− α
1−α

·nx√
α

(1−α)2
·nx

)2)
≤

e
0.5·

(
(1−α)2

α·nx
·(M− α

1−α
·nx)

2− (1−2·α)2

1−α
·nx

)
+ e

0.5·
(

(1−α)2

α·nx
·(M− α

1−α
·nx)

2− (1−2·α)2

α
·n
)
. (89)

Conditioned on the relation
∣∣futureh (x,Goraclet

)∣∣ ≤ nx, M ≤ futurea (x,G
u
s), hence its

expected value is at most α
1−α · nx. For any δ > 0, by the Strong Law of Large Numbers, after

some τ (of finite expectation), ∀s ≥ τ :M ≤ (1 + δ) · E [M] ≤ (1 + δ) · α
1−α · nx.

63

Consequently, (89) is upper bounded by

e0.5·
(1−α)2

α·nx
·(M− α

1−α
·nx)

2−0.5· (1−2·α)2

1−α
·nx + e0.5·

(1−α)2

α·nx
·(M− α

1−α
·nx)

2−0.5· (1−2·α)2

α
·nx ≤ (90)

e0.5·
(1−α)2

α·nx
·(δ· α

1−α
·nx)

2−0.5· (1−2·α)2

1−α
·nx + e0.5·

(1−α)2

α·nx
·(δ· α

1−α
·nx)

2−0.5· (1−2·α)2

α
·nx ≤ (91)

eR1/nx−R2·nx + eR
3/nx−R4·nx ≤ e−R5·nx , (92)

for some positive constants Ri, where the last inequality holds for large enough nx’s, and the
preceding inequality holds for small enough δ’s (δ < 1/nx).

Taking nx to be greater than nx > ln (4 ·D1/ϵ0) /R5 we conclude that for some large enough
nx:

fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) < 4 · ϵ0/4 = ϵ0. (93)

(Note that the expected waiting time for the first τ such that ∀j ∈ honest : nx(u, ψ) is at
least some n0 is at most n0 · ((1− α) · λ)−1 + d: it is 1/((1− α) · λ) for the creation of every
honest block, and d for the last one to arrive at all nodes.)

The same technique used in the proof of Lemma 17 is used below to prove the Progress
property (Proposition 7); indeed, in the proof we see that the term that aggregates all the error
functions vanishes as time develops, w.h.p., in the perspective of all honest nodes. In particular,
for v (the node that originally ϵ-accepted the transaction), it becomes smaller than ϵ′ w.h.p. A yet
similar usage of this argument is used below to prove Weak Liveness (Proposition 8); indeed, in
the latter we only need to regard the case where y = NULL. In this case, all published blocks
are strong voters in favour of x, and so we can guarantee the convergence of the error functions
without going through Lemma 12 and the analysis that follows.

G. Proof of Weak Liveness (blocks)

We’ve seen that the error functions fpre mine(l (G
u
s)), fpre pub (nj (G

u
s)), and

fpost pub (|future (x,Gus)|) go to 0 as s grows. For any s < ψ, y /∈ Gpubs , hence by
line 5 of Algorithm 3, g (Gvs) = |future (x,G)| = nx (G

u
s), and M (Gvs) = 0. In particular,

the relation (73) is satisfied trivially, and the analysis in the proof of Lemma 17 applies,
proving that the term fpost mine vanishes as time grows. In particular, since these functions
decrease exponentially, it becomes smaller than ϵ after a number of honest blocks in the order
of O(ln(1/ϵ)) are created, and the expected waiting time for this is obtained by dividing this
number by (1− α) · λ (and adding d for all honest blocks to receive these blocks).

H. Proof of Progress (blocks)

This follows immediately from the proof of Lemma 17, in which it was shown that, conditioned
on the event Êall→∞t(x, y), fpre mine(l (G

v
s))+fpre pub (nj (G

u
s))+fpost pub (|future (x,Gut)|)+

fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) vanishes as s grows indefinitely. In Lemma 12 it was shown

that, up to a probability of ϵ, the event Evt (x, y, ϵ) is contained in Êall→∞t(x, y) (i.e., when the
former is intersected with an event of probability ≥ 1− ϵ).

64

I. Proof of Safety

Part I: Denote by riskacc(G
u
s , tx, subG) (riskrej) the output of Algorithm 4 (respectively,

Algorithm 5) when given the inputs Gus (for some honest u), tx, and subG (such that subG is the
past of some (possibly virtual) block). For any z ∈ [tx]∩subG, denote by riskzacc(G

u
s , tx, subG)

the value of the risk variable as the loop in line 2 of RiskTxAccept terminates its run over z.
Denote similarly minriskzrej(G

u
s , tx, subG) w.r.t. the variable minrisk in RiskTxReject.

We claim that, with probability > 1 − riskacc(G
v
t , tx, subG), there exists a τacc of finite

expectation such that for all s ≥ τacc, for all u ∈ honest, and for all subG′ ⊇ subG:

riskacc(G
v
t , tx, subG) ≥ riskacc(Gus , tx, subG′) (94)

Similarly, we claim that, with probability > 1− riskrej(Gvt , tx, subG), there exists a τrej of
finite expectation such that for all s ≥ τrej , for all u ∈ honest:

riskrej(G
v
t , tx, subG) ≥ riskrej(Gus , tx, subG). (95)

Assume we have proved this for all subG of size < k. We now prove this for subGk of size
k.

By the definition of riskacc, there exists a ztx ∈ subGk ∩ [tx] such that
riskacc(G

v
t , tx, subG

′) = riskztxacc(G
v
t , tx, subG

′).
Part II: Denote by Z2 the set of instantiations of the third-loop-variable z2, inside

the iteration of the first-loop with z1 = ztx. By Propositions 6 and 7, ∀z2 ∈ Z2,
with probability ≥ 1 − Risk

(
Gvt , (vote (z

′))z′∈C , z1, z2
)
, for any ϵ′, after some τ (of

finite expectation), ∀z′2 ∈ (Gus \Gvt) ∪ {z2} : Risk
(
Gus , (vote (z))z∈C , ztx, z

′
2

)
≤ ϵ′.

Moreover, in the proof of Proposition 17 it was shown that the minimal ϵ′ for which this
property holds at time s decreases exponentially with n (which grows linearly with s).
Thus, for all s greater than some τ ,

∑
z′2∈(Gu

s \Gv
t)∪Z2

: Risk
(
Gus , (vote (z))z∈C , ztx, z

′
2

)
≤∑

z′2∈Z2
Risk

(
Gvt , (vote (z))z∈C , ztx, z

′
2

)
.

Part III: Similarly, by Proposition 6, with probability of at least
Risk

(
Gvt , (vote (z))z∈C , ztx, ∅

)
, after some τ (of finite expectation),

Risk
(
Gus , (vote (z))z∈C , ztx, ∅

)
≤ Risk

(
Gvt , (vote (z))z∈C , ztx, ∅

)
.

Part IV: Let ϵi(Gus , tx, subG) be the series of values returned by the call to RiskTxAccept in
line 7 of RiskTxAccept (when given the inputs (Gus , tx, subG)) and to RiskTxReject in line 9
of RiskTxAccept (with these inputs). By the induction hypothesis, with probability ≥ 1 − ϵi,
after some time τ , ϵi(Gus , tx, past (ztx)) ≤ ϵi(Gvt , tx, past (ztx)).26

Part V: The above arguments show that, with probability ≥ 1 − riskztxacc(G
v
t , tx, subG),

the sum of increments to the value of riskztxacc(G
u
s , tx, subG

′) is upper bounded by the

26Technically, the indexes i on both hand-sides of this inequality should be described more carefully. To save
cumbersome notation, we rely on the understanding of the reader. Informally, every instantiation of the loop-variables
inside RiskTxAccept (when given the inputs (Gv

t , tx, subG)) is also realized by future calls of RiskTxAccept
(when given the inputs (Gu

s , tx, subG
′)). We thus compare the results of the increments in the former to those in the

latter. This is also true vice versa (for z1 = ztx): Inside the first-loop’s iteration over z1 = ztx, the exact same calls
to RiskTxAccept and RiskTxReject are made, because past (ztx) does not evolve with time.

65

the sum of increments to the value of riskztxacc(G
v
t , tx, subG), for all s ≥ τ , where

τ is of finite expectation. As riskacc(G
u
s , tx, subG

′) ≤ riskztxacc(G
u
s , tx, subG

′), and as
riskacc(G

v
t , tx, subG) = riskztxacc(G

v
t , tx, subG), this proves that, with probability ≥ 1 −

riskztxacc(G
v
t , tx, subG) the inequality riskacc(Gus , tx, subG

′) ≤ riskacc(Gvt , tx, subG) holds.
Part VI: Similar arguments prove the induction step w.r.t. RiskTxReject. The difference in

the proof is that, since riskz1rej is not a sum, rather a minimum, hence we can ignore the fact
that anticone (z1, Gus) may grow in time and add loop-iterations that might further reduce the
value of riskz1rej . Note further that the induction claim, w.r.t. RiskTxReject, is restricted to the
case subG′ = subG. Hence, the fact that the set ZG([tx]) possibly grows with time is of no
consequence, since the first loop-variable is chosen from ZG([tx]) ∩ subG. We thus conclude
that, with probability ≥ 1 − riskrej(Gus , tx, subGk), there exists a τ of finite expectation such
that for all s ≥ τ and all u ∈ honest: riskrej(Gus , tx, subGk) ≤ riskrej(Gvt , tx, subGk).

This completes the proof of the induction claim.
Part VII: Algorithm 6 returns ACCEPT if and only if RiskTxAccept returned a value smaller

than ϵ. The above claim implies that, if riskacc(Gvt , tx,G
v
t) < ϵ, with probability ≥ 1 − ϵ, for

all s ≥ τ , for some τ of finite expectation, for all u ∈ honest: riskacc(Gus , tx,Gus) < ϵ. In other
words, conditioned on Avt (tx, ϵ), the event ∩u∈honest,s∈(τ(t),∞)Aus (tx, ϵ) occurs with probability
≥ 1− ϵ.

J. Proof of Liveness

Fix some z1 ∈ ZG([tx]) for G = Gvt . The condition that until ψ(t):
conflict (tx) ∩ Gpubs = ∅, implies that lines 6 and 7 of RiskTxAccept
do not contribute to the value of riskacc(G

u
s , tx, subG). The assumption∑

[txi]∈inputs(tx)RiskTxAccept
(
Gvt , (vote (z))z∈C , [txi], G

v
t

)
< ϵ/2 implies that, with

probability ≥ 1 − ϵ/2, the overall contribution of the fourth loop to the value of
riskz1acc(G

u
s , [tx], G

u
s) is at most ϵ/2 (after some τ). Finally, by Proposition 8, the contribution

of line 3 to riskz1acc is less than ϵ/2, after some τ of finite expectation. We conclude
that after some τ of finite expectation, the value of riskz1acc(G

u
s , [tx], G

u
s) is smaller than

ϵ/2 + ϵ/2 = ϵ, for all s ≥ τ and u ≥ s, hence riskacc(Gus , [tx], G
u
s) < ϵ, which implies the

event ∩u∈honest,s∈(τ(t),∞)Aus (tx, ϵ).

K. Proof of Progress

The proof of this proposition is similar in structure to that of Proposition 2. Therein we have
already argued that the contributions to the value of riskztxacc (and similarly for riskztxrej) of lines 3
and of 6 go to 0; and the increments of lines 7 and 9 go to 0 by the induction hypothesis. Thus,
riskacc(G

v
s , tx,G

v
s) goes to 0 as time develops, with probability ≥ 1 − riskacc(G

v
t , tx,G

v
t).

As ϵ > riskacc(G
v
t , tx,G

v
t), we conclude that, with probability ≥ 1 − ϵ Algorithm 6 returns

ACCEPT for all Gus with s ≥ τ and u ∈ honest.

