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Abstract. In this article, we investigate the construction of lightweight
MDS matrices over the matrix polynomial residue ring. According to dis-
tributions of the minimum polynomial, distributions of XOR count and
equivalence classes of MDS matrices, we propose an algorithm, which
not only can construct lightest MDS matrices, but also is evidently more
efficient than previous methods. Moreover, we investigate existences of
involutory MDS matrices over the matrix polynomial residue ring. Ac-
cording to quadratic congruence, over the matrix polynomial residue
ring, we propose a simplified necessary-and-sufficient condition for de-
ciding whether a Hadamard matrix is invorlutory. With this method, we
propose another efficient and special algorithm to construct lightweight
Hadamard involutory MDS matrices. Over the 8× 8 matrix polynomial
residue ring, we construct vast 4×4 Hadamard involutory MDS matrices
with 20 XORs, which are much lighter than previous results. In addition,
we obtain a series of propositions about the parity of XOR count.

Keywords: MDS matrix, XOR count, Matrix polynomial residue ring,
Involutory matrix

1 Introduction

In block cipher, the non-linear confusion layer and the linear diffusion layer are
two significant components required for the security of the cipher. The linear
diffusion layer with bigger branch number can more effectively resist differential
and linear cryptanalysis. The diffusion layer is often constructed by a matrix.
For any n×n matrix, the maximum branch number is n+1. Maximum distance
separable (MDS) matrix has the maximum branch number. MDS matrices are
broadly used in many ciphers like PHOTON [1], SQUARE [2], LED [3], AES
[4]. For lightweight cryptography, the cost of implementing a linear diffusion
layer will influence the efficiency of cryptography largely. Therefore construct-
ing lightweight MDS matrices is a meaningful work. Recently, the improving
and designing hardware efficiency become a significant research trend. Some
lightweight block ciphers [3, 5–7] and lightweight hash functions [1, 8, 9] are pro-
posed to reduce the implementation cost. An efficient lightweight MDS matrix
is extremely useful for improving the hardware efficiency. The sum of XORs [15]
is the most important index for measuring the efficiency of MDS matrices, and a
MDS matrix constructed with fewer sum of XORs can perform more efficiently.
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Currently, a major method to construct lightweight MDS matrices is using
recursive matrices. The main way is that firstly choosing a special non-singular
matrix, and then composing it k times to get an MDS matrix Ak, so-called se-
rial matrices. This method was first proposed in hash function PHOTON [1].
Such matrices later used in block cipher LED [3] and authenticated encryption
scheme PRIMATEs [10], and were further investigated in [11–15]. However, this
method is not suitable for low-latency implementations since it has to run several
rounds to get results. Another main researching point is constructing involutory
(self-inverse) lightweight MDS matrices. Nakahara et al.[16] prove that circulant
MDS matrices of order 4 can not be involutory over finite field. Chand Gupta et
al.[17] further prove that circulant MDS can not be involutory over finite field.
Sim et al.[18] constructs lightweight Hadamard involutory MDS matrices and
Hadamard-Cauchy MDS matrices over finite field. Li et al.[19] further investi-
gated constructions of involutory MDS matrices, and they constructs lightest
MDS matrices over GL(m,F2), which are the optimal results at present.

In brief, all previous methods for building lightweight MDS matrices can
be classified into two categories: One is to select entry matrices from GF (2m),
i.e. finite filed, while another is to select entry matrices from GL(m,F2), i.e.
the set of all non-singular matrices. However, lightest MDS matrices can not
be constructed over GF (28) when m=8. There are two major reasons. First,
GF (28) is too small. This lead to losing a lot of MDS matrices. Second, if we
want to construct lightest MDS matrices, non-singular matrices with 1 XOR
count must be used to be entries of MDS matrix. But there does not exist non-
singular matrix with 1 XOR operation in GF (28). Therefore, GF (28) is not
suite for constructing lightest MDS matrices. Although GL(m,F2) overcomes
this limitations, the searching space is too huge and exhaustible. Therefore,
designing an efficient algorithm, which can construct the lightest MDS matrices,
is a meaningful work.

For improving the efficiency of constructing lightweight MDS matrices, there
are two major ways: (a) reduce the search space. Researchers usually use Hadamard
matrix, circulant matrix and Optimal matrix[28] to be the structures of MDS
matrices. The reason is that the elements of these structures are repeatedly used,
so search space can be reduced obviously. As well researchers can let some el-
ements with 0 XORs and others with as few XORs as possible. For example,
n × n identity matrix over F2 has 0 XOR count. In this way, the search space
is reduced again, and at the same time the upper bound of the sum of XORs
is greatly restricted. Choosing elements from a small set is another direct way
to reduce the search space. Recently, [22, 18] use the equivalence of matrices to
reduce the search space. (b) Simplify the computation of construction. Many pa-
pers construct MDS matrices over finite field [18, 24, 20, 21, 23]. By investigating
the multiplication of special element in GF (2m), Christof Beierle et al.[24]get
lightweight circulant MDS matrices over GF (2m). In [23], authors propose that
choosing special elements from finite field constructed by some special irreducible
polynomial can improve the multiplication efficiency. [18] proposes that choosing
irreducible polynomial has a significant impact on the lightweightness. Although
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the finite field is suitable to construct MDS matrices, it is not suitable to con-
struct lightest-weight MDS matrices. We will intensively discuss and solve this
problem in present paper.

Our Contributions In present paper, we construct lightweight MDS matrices
over the matrix polynomial residue ring. To our best knowledge, it is the first
time to construct MDS matrices over the matrix polynomial residue ring. Our
results can be summaries as follows.

– First, over the matrix polynomial residue ring, we range over all T ∈ GL(m,F2)
that satisfies #T=1 and T + I is non-singular. For each of such T , we find
its minimum polynomial. Then we find all elements in F2[T ], which have less
than 4 XORs. We also analyze the distribution of the minimum polynomial
and the distribution of XOR count.

– Second, we we find that, for those 4× 4 MDS matrices containing at least 8
identity matrices, there exist only 5 kinds of structures.

– Third, an efficient algorithm for constructing lightest MDS matrices over the
matrix polynomial residue ring are given. We obtain some good results as
follows
(1) For 4× 4 MDS matrices over the 4 × 4 matrix polynomial residue ring.
We use 1 minute 42 seconds to construct 288 MDS matrices with 10 XORs.
(2) For 4× 4 MDS matrices over the 8 × 8 matrix polynomial residue ring.
We use 1 minute 16 seconds to construct 40320 Optimal MDS matrices with
10 XORs. We use about 14 hours to construct 1128960 MDS matrices with
10 XORs.
(3) For 4×4 MDS matrices over the 16×16 matrix polynomial residue ring.
We construct MDS matrices with 10 XORs.

– Fourth, we prove some theories about existences of involutory MDS matrices
as follows
(1) Over the matrix polynomial residue ring, n × n(n ≥ 3) circulant MDS
matrices can not be involutory.
(2) Over GL(m,F2), n × n(n ≥ 2) special MDS matrices as mentioned in
Section 7 can not be involutory.
Besides, we prove a simplified necessary-and-sufficient condition for judging
whether Hadamard matrix is involutory. With this condition, we design an-
other efficient algorithm for constructing lightweight Hadamard involutory
MDS matrices. Over 8×8 matrix over F2, we construct vast 4×4 Hadamard
involutory MDS matrices with 20 XORs, which are much lighter than known
results.

– Finally, we get a series of properties about the parity of XOR count. These
properties might have independent interests.

Outline of This Paper The present paper is organized as follows. In Sect.2,
we give basic definitions and theorems about MDS matrix and XOR count. In
Sect.3, we investigate the distribution of the minimum polynomial and the dis-
tribution of XOR count on the matrix polynomial residue ring. In Sect.4, we
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investigate the equivalence classes of lightweight MDS matrices over the matrix
polynomial residue ring. When MDS matrices have at least 8 identity matrices
being entries, MDS matrices only have 5 equivalence classes. In Sect.5, we de-
sign a general algorithm for constructing lightweight MDS matrices. In Sect.6,
we use the general algorithm to construct lightest non-involutory MDS matri-
ces. In Sect.7, we investigate existences of involutory MDS matrices and the
quadratic congruence of the minimum polynomials. Besides, we investigate the
Hadamard involutory MDS matrices and design an efficient and special algorith-
m to construct vast lighter Hadamard involutory MDS matrices. In Sect.8, we
propose and prove a series of propositions about the parity of XOR count. A
short conclusion is given in Sect.9.

2 Preliminaries

In this section, we introduce the basic definitions and theorems about lightweight
MDS matrices.

2.1 MDS Matrices

GL(n, S) denotes the set of all non-singular n×n matrices with entries in set S.
The bundle weight of x is defined as the number of nonzero entries of x and is
expressed by ωb(x). For M ∈ GL(n, S), the branch number of M is the minimum
number of nonzero components in the input vector v and output vector u = M ·v
as we range over all nonzero v ∈ Sn. I.e., the branch number of n × n matrix
M is BM = minv 6=0{ωb(v) + ωb(Mv)},and BM ≤ n + 1. A maximum distance
separable (MDS) n× n matrix is a matrix that has the optimal branch number
n+1.

Eevry linear diffusion layer is a linear map and can be represented by a
matrix as follows

L =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n


where Li,j (1 ≤ i, j ≤ n) is an m ×m non-singular matrix over F2, and denote
M(n,m) be the set of all matrices, which are n × n matrices with entries in
GL(m,F2). For X = (x1, x2, ..., xn)T ∈ (Fm

2 )n,

L(X) =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n



x1
x2
...
xn

 =


∑n

i=1 L1,i(xi)∑n
i=1 L2,i(xi)

...∑n
i=1 Ln,i(xi)

 ,

where Li,j(xk) = Li,j · xk, for 1≤ i, j ≤ n, 1 ≤ k ≤ n.

Theorem 1 Let L ∈ M(n,m), then L is MDS if and only if all square sub-
matrices of L are of full rank.
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2.2 XOR Count

Let a, b ∈ F2, a + b is called a bit XOR operation. Let A ∈ GL(m,F2), x =
(x1, x2, ..., xm)T ∈ Fm

2 , #A denotes the number of XOR operations required
to evaluate Ax directly. Let ω(A) is the number of 1 in A. Therefore #A =
ω(A) − m, and #A is also called by XOR count of A. For L ∈ M(n,m), we
denote #(L) =

∑n
i,j=1 #(Lij). For instance, let x = (a, b, c, d)T ∈ F 4

2 , and the
following matrix with 4 XOR count.

A =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0

 .

Ax =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0



a
b
c
d

 =


d

c+ d
b+ c+ d
a+ c

 .

For A ∈ GL(m,F2), a simplified representation of A is given by extract-
ing the non-zero positions in each of row of A. For example, [3,2,4,[1,3]] is the
representation of the following matrix with 1 XOR count.

0 0 1 0
0 1 0 0
0 0 0 1
1 0 1 0


3 Matrix Polynomial Residue Ring

In this section, we investigate the distribution of the minimum polynomial and
the distribution of XOR count on the matrix polynomial residue ring.

Let T be an n× n matrix over F2, and f(x) be the minimum polynomial of
T . Let the order of f(x) be k, then k ≤ n. F2[T ] ∼= F2[x]/(f(x)) since T satisfies
f(T ) = 0, where F2[T ] denotes the matrix polynomial residue ring generated by
T . Therefore matrix computations is equivalent to polynomial computations in
F2[T ].

For example, let B,C ∈ F2[T ],

B = bk−1T
k−1 + · · ·+ b1T + b0I,

C = ck−1T
k−1 + · · ·+ c1T + c0I,

b(x) = bk−1x
k−1 + · · ·+ b1x+ b0,

c(x) = ck−1x
k−1 + · · ·+ c1x+ c0.

Then B + C = b(x) + c(x)|x=T , BC = b(x)c(x)|x=T .
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3.1 Analyzing the 4 × 4 Matrix Polynomial Residue Ring

In this subsection, we analyze the distribution of the minimum polynomial and
the distribution of XOR count on the 4× 4 matrix polynomial residue ring.

We range over all matrix T , which satisfies T ∈ GL(4,F2), #T=1 and I + T
is non-singular. The number of T is 72. Let f(x) be the minimum polynomial of
T , b(x) ∈ F2[x]/(f(x)). We search every T to find every f(x) and all b(x), where
b(x) satisfies 1≤ #b(T ) ≤ 3.

Theorem 2 Let T ∈ GL(4,F2), #T=1, T + I is non-singular and f(x) is the
minimum polynomial of T , b(x) ∈ F2[x]/(f(x)). Then
(1) f(x) must be one of the following polynomials

x4 + x+ 1, x4 + x2 + 1, x4 + x3 + 1.

(2) if #b(T )=1, b(x) must be one of the following polynomials

x, x3 + 1, x3 + x, x3 + x2.

(3) if #b(T )=2, b(x) must be one of the following polynomials

x2, x2 + 1, x2 + x, x3.

(4) if #b(T )=3, b(x) must be one of the following polynomials

x+ 1, x2, x3, x3 + x2 + 1.

The distributions of f(x) and b(x) are as follows

Table 1: Distributions of Polynomials about 4×4 Matrix

Minimum Polynomial

MP4

f(x) Number

x4 + x + 1 24

x4 + x2 + 1 24

x4 + x3 + 1 24

1 XOR

X14

b(x) Number

x 72

x3 + 1 24

x3 + x 24

x3 + x2 24

2 XORs

X24

b(x) Number

x2 48

x2 + 1 24

x2 + x 24

x3 24

3 XORs

X34

b(x) Number

x + 1 24

x2 24

x3 24

x3 + x2 + 1 24
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For any fixed T , which satisfies T ∈ GL(4,F2), #T=1 and I + T is non-
singular. In F2[T ], every element has less than and equal to 9 XORs. At most
5 elements, which are not identity matrix or 0 matrix over F2, with 1, 2 or 3
XORs. At most 2 elements have 1 XOR count. At most 3 elements have 2 XORs.
At most 2 elements have 3 XORs.

3.2 Analyzing the 8 × 8 Matrix Polynomial Residue Ring

In this subsection, we analyze the distributions of minimum polynomial and
XOR count in the 8× 8 matrix polynomial residue ring.

We range over all matrix T , which satisfy T ∈ GL(8,F2), #T=1 and I+T is
non-singular. The number of T is 241920. Let f(x) be the minimum polynomial
of T , b(x) ∈ F2[x]/(f(x)). We range over every T to find every f(x) and all b(x),
where b(x) satisfies 1≤ #b(T ) ≤ 3.

Theorem 3 Let T ∈ GL(8,F2), #T=1, T + I is non-singular and f(x) is the
minimum polynomial of T ,b(x) ∈ F2[x]/(f(x)). Then
(1) f(x) must be one of the following polynomials

x8 + x+ 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1.

(2) for #b(T )=1, b(x) must be one of the following polynomials

x, x7 + 1, x7 + x, x7 + x2, x7 + x3, x7 + x4, x7 + x5.

(3) for #b(T )=2, b(x) must be one of the following polynomials

x2, x6 + 1, x6 + x, x6 + x2, x6 + x3, x6 + x4.

(4) for #b(T )=3, b(x) must be one of the following polynomials

x3, x5 + 1, x5 + x, x5 + x2, x5 + x3, x7 + x6 + 1

The distributions of f(x) and b(x) are as follows
For any fixed T , which satisfies T ∈ GL(8,F2), #T=1 and I + T is non-

singular. In F2[T ], every element has less than and equal to 44 XORs. At most 4
elements, which are not identity matrix or 0 matrix over F2, with 1 or 2 XORs.
At most 6 elements, which are not identity matrix or 0 matrix over F2, with 1,
2 or 3 XORs. At most 2 elements have 1 XOR count. At most 2 elements have
2 XORs. At most 2 elements have 3 XORs.

Theorem 4 Let T ∈ GL(m,F2), #T=1, T + I is non-singular. Then T−1 ∈
F2[T ].

Proof. Because T ∈ GL(m,F2), #T=1, T + I is non-singular.
For m=4. The minimum polynomial of T must one of the following polyno-

mials
x4 + x+ 1, x4 + x2 + 1, x4 + x3 + 1.
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Table 2: Distributions of Polynomials about 8×8 Matrix

Minimum Polynomial

MP8

f(x) Number

x8 + x + 1 40320

x8 + x2 + 1 40320

x8 + x3 + 1 40320

x8 + x4 + 1 40320

x8 + x5 + 1 40320

x8 + x6 + 1 40320

1 XOR

X18

b(x) Number

x 241920

x7 + 1 40320

x7 + x 40320

x7 + x2 40320

x7 + x3 40320

x7 + x4 40320

x7 + x5 40320

2 XORs

X28

b(x) Number

x2 241920

x6 + 1 40320

x6 + x 40320

x6 + x2 40320

x6 + x3 40320

x6 + x4 40320

3 XORs

X38

b(x) Number

x3 201600

x5 + 1 40320

x5 + x 40320

x5 + x2 40320

x5 + x3 40320

x7 + x6 + 1 40320

For m=8. The minimum polynomial of T must one of the following polyno-
mials

x8 + x+ 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1.

For example, the minimum polynomial of T is x8 + x3 + 1. It has that

T 8 + T 3 + I = 0
⇒ T 8 + T 3 = I
⇒ T (T 7 + T 2) = I
⇒ T−1 = T 7 + T 2

⇒ T−1 ∈ F2[T ]

Similarly, other situations have the same results. Above all, let T ∈ GL(m,F2),
#T=1, T + I is non-singular, then T−1 ∈ F2[T ].
�
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3.3 Advantages of the Matrix Polynomial Residue Ring for
Constructing Lightweight MDS Matrices

Let T ∈ GL(m,F2), #T=1, T +I is non-singular and f(x) is the minimum poly-
nomial of T . Advantages of the matrix polynomial residue ring for constructing
lightweight MDS matrices are as follows

(I) Matrix with 1 XOR count can be used to construct MDS matrix.

If we want to use matrix T with 1 XOR count to construct MDS matrix, we
just need to let T to be an entry of MDS matrix, and other entries are chosen
from F2[T ]. In this way, T is successfully used to construct MDS matrix.

(II) Computation of the matrix polynomial residue ring is more efficient than
general matrix. Computation of the matrix polynomial residue ring is equivalent
to polynomial residue ring since the matrix polynomial residue ring is isomorphic
to polynomial residue ring. Therefore computation of the matrix polynomial
residue ring is more efficient than general matrix.

4 Equivalence Classes of Lightweight MDS Matrix

In this section, we investigate the abstract equivalence classes of 4×4 lightweight
MDS matrix over the matrix polynomial residue ring.

Let L1, L2 ∈M(n,m), if L1 can be transformed to become L2 by exchanging
rows or columns, then L1 is equivalent to L2.

For constructing lightest MDS matrix, the lightest MDS matrix should have
as many identity matrices to be entries as possible since identity matrix over
F2 has 0 XOR count. However, any sub-matrix of order 2, in MDS matrix,

must not be

(
I I
I I

)
.Otherwise, such matrix is not MDS. By using such point,

we investigate the equivalence classes of lightweight 4 × 4 MDS matrices. We
propose the following theorem.

Theorem 5 Let L ∈M(4,m), if L is MDS and L has at least 8 identity matrices
to be entries, L must take one of the following structures

S1 =


I I I

I I
I I
I I

 , S2 =


I I I

I I
I I

I

 , S3 =


I I I

I I
I I

I

 ,

S4 =


I I I

I I
I I
I

 , S5 =


I I
I I
I I

I I

 ,

where I is identity matrix over F2 and white positions can be any other non-
singular matrices over F2.
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According to [28], in a MDS matrix of degree n, there exist at most 3(n− 1)
identity matrices to be entries. This kind of matrix is called the Optimal matrix.
For example, the following matrix is an Optimal matrix.

A1,1 I I · · · I
I I A2,3 · · · A2,n

I A3,2 I · · · A3,n

...
...

...
. . .

...
I An,2 An,3 · · · I


In previous papers, circulant matrix, Hadamard matrix and Optimal matrix

are usually used to construct lightweight MDS matrices. They are as follows

Circ(I, I, A,B) =


I I A B
B I I A
A B I I
I A B I

 , Had(I, A,B,C) =


I A B C
A I C B
B C I A
C B A I

 ,

Optimal matrix =


A I I I
I I A B
I B I A
I A B I

 .

It should be pointed that Circ(I, I, A,B) is the special situation of S5 and
the Optimal matrix is the special situation of S1.

Generally, when we construct lightest MDS matrices, if A, which is not iden-
tity matrix, is an entry in one of 5 equivalence classes, then A + I should be
non-singular. The reason is that there must exists a sub-determinant of order 2

like

∣∣∣∣ I II A
∣∣∣∣ = A + I in such matrix. Because of the requirement of MDS, A + I

should be non-singular.

5 General Algorithm of Constructing Lightweight MDS
Matrices

In this section, we investigate the general algorithm for constructing lightweight
MDS matrices over the matrix polynomial residue ring.

5.1 Entries Expression

In this subsection, we investigate entry expression in our algorithm.
In present paper, we investigate 4 × 4 matrices with entries in the m × m

matrix polynomial residue ring, m=4 or 8. For example, like Optimal matrix

Optimal Matrix =


A I I I
I I A B
I B I A
I A B I

 .
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In such Optimal matrix, T is a non-singular matrix, #T=1, and f(x) is the
minimum polynomial of T . A,B ∈ F2[T ] and a(x), b(x) ∈ F2[x]/(f(x)). In our
algorithm, x replaces T , 1 replaces I, a(x) replaces A and b(x) replaces B,
where A = a(T ) and B = b(T ). Therefore this Optimal matrix is replaced as the
following matrix in our algorithm

a(x) 1 1 1
1 1 a(x) b(x)
1 b(x) 1 a(x)
1 a(x) b(x) 1

 .

In our algorithm, we first select such matrix T , which satisfies that #T = 1,
T and T + I are non-singular. Find f(x), which is the minimum polynomial of
T . Then all entries of matrix are chosen from F2[T ]. Original matrix is replaced
by a matrix, where entries belong to F2[x]/(f(x)).

5.2 Judging MDS

In this subsection, we investigate MDS judgement in our algorithm.

Necessary and sufficient condition of MDS According to Theorem 1, L
∈M(n,m), L is MDS if and only if all sub-matrix of L are full rank. Sub-matrix
being full rank is equivalent to sub-determinant being non-singular since entries
are m × m matrices. Therefore the necessary and sufficient condition of MDS
can also be described as follows

Theorem 6 Let L ∈ M(n,m), L is MDS if and only if all sub-determinant of
L are non-singular.

Above theorem is the method to judge whether matrix is MDS in our algo-
rithm.

Sub-determinant calculation For instance, because entries are expressed as
polynomials in our algorithm, so matrix is expressed as follows

x 1 1 1
1 1 x x2 + 1
1 x2 + 1 1 x
1 x x2 + 1 1

 .

Sub-determinants are calculated according to determinant complete expan-
sion formula. For instance, a sub-determinant of order 3 in above matrix can be
calculated as follows∣∣∣∣∣∣

x 1 1
1 1 x
1 x2 + 1 1

∣∣∣∣∣∣ = x+ x+ (x2 + 1) + 1 + (x4 + x2) + 1 = x4 + 1.
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Then let T be substituted into x4 + 1 to get T 4 + I.
Finally, judge whether T 4 + I is non-singular. T 4 + I is non-singular if and

only if x4 + 1 is relatively prime to f(x), which is the minimum polynomial of
T . We just find the greatest common factor of x4 + 1 and f(x). If the greatest
common factor equals to 1, then T+I is non-singular. Otherwise, it is singular.

5.3 General Algorithm

In this subsection, we investigate the General Algorithm for constructing lightest
4× 4 MDS matrices over the m×m matrix polynomial residue ring, where m=
4 or 8.

Algorithm 1 General Algorithm

1: for Range over all T , #T=1, T and T + I are non-singular do
2: Find the minimum polynomial of T in MP4

3: Find polynomials b1(x), · · · , bk(x) in X1m, X2m and X3m, which satisfy that
XOR count is less than 4.

4: for i from 1 to 5 do
5: for In Si, every place, which is not 1, searches in {b1(x), · · · , bk(x)} do
6: if Matrix is MDS then
7: Record this MDS matrix and its sum of XORs
8: end if
9: end for

10: end for
11: end for

6 Lightweight Non-involutory MDS Matrices

In this section, we construt non-involutory lightweight MDS matrices by using
General Algorithm. Our platform is Intel i5-5300, 2.30GHz with 4GB memory,
running Windows 10. We programme by using C language.

6.1 Construction over the 4 × 4 Matrix Polynomial Residue Ring

In this section, we construct lightweight 4 × 4 MDS matrices over the 4 × 4
matrix polynomial residue ring. We quickly construct many MDS matrices with
10 XORs, which are the optimal results at present. Our results are the same with
[25]. We use 1 minute 42 seconds to find 288 MDS matrices with 10 XORs by
using S1 matrix structure. It takes about 13 minutes to verify that there does not
exist MDS matrices with 10 XORs in S2, S4 or S5. The details of constructions
are as follows

Example 1 T ∈ GL(m,F2).
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Table 3: Lightweight Non-involutory MDS Matrices over the 4× 4 Matrix Polynomial
Residue Ring

Matrix type Sum of XORs Number Running time

Circ(I, I, A, B) 12 96 00:00:01
Had(I, A, B, C) 20 288 00:00:04
Optimal 13 48 00:00:01
S1 10 288 00:01:42
S3 10 48 00:05:05

(1) m=4. T = [[1, 2], 3, 4, 1]. The following matrix is a MDS matrix with 10
XORs. 

T 2 + T I I I
I I T T 2 + T
I T 2 + T I T 3 + T 2

I T T 3 + T 2 I


(2) m=8. T = [[2, 4], 3, 4, 5, 6, 7, 8, 1]. The following matrix is a MDS matrix

with 10 XORs. 
T 2 I I I
I I T T 2

I T I T 7 + T
I T 7 + T T 2 I



6.2 Construction over the 8 × 8 Matrix Polynomial Residue Ring

In this subsection, we construct lightweight 4× 4 MDS matrices over the 8× 8
matrix polynomial residue ring. Recently, Li et al. investigate the lightest 4× 4
MDS matrices over GL(8,F2)[19]. We and Li et al. get the same sum of XORs,
which is the optimal results at present. The details of our constructions are as
follows

Table 4: Lightweight Non-involutory MDS Matrices over 8× 8 the Matrix Polynomial
Residue Ring

Matrix type Sum of XORs Number Time

Circ(I, I, A, B) 12 96 00:01:27
Had(I, A, B, C) 20 241920 00:07:00
Optimal 10 40320 00:01:16
S1 10 1128960 14:00:00
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Table 5: Comparisons with previous constructions of non-involutory MDS matrices

Matrix type Elements Sum of XORs Ref.

Circ(I, I, A,B) GL(8, F2) 12 [19]

Had(I, A,AT , B) GL(8, F2) 20 [19]

Optimal GL(8, F2) 10 [19]

Had(0× 01, 0× 02, 0× 04, 0× 91) F28/0× 1c3 52 [18]

Subfield−Had(0× 1, 0× 2, 0× 8, 0× 9) F24/0× 13 40 [18]

Circ(0× 02, 0× 03, 0× 01, 0× 01) F28/0× 11b 56 [4]

Circ(0× 1, 0× 1, 0× 2, 0× 91) F28/0× 1c3 24 [22]

Circulant F28 24 [24]

Circ(I, I, A,B) F2[T8×8] 12 Ours

Had(I, A,B,C) F2[T8×8] 20 Ours

Optimal F2[T8×8] 10 Ours

S1 F2[T8×8] 10 Ours

Had(I, A,B,C) GL(4, F2) 16 [19]

Optimal GL(4, F2) 13 [19]

Circ(I, I, A,B) GL(4, F2) 12 [19]

Had(0× 1, 0× 2, 0× 8, 0× 9) F24/0× 13 20 [18]

Circ(0× 1, 0× 1, 0× 9, 0× 4) F24/0× 13 12 [22]

Circulant F24 12 [24]

Had(I, A,B,C) F2[T4×4] 20 Ours

Optimal F2[T4×4] 13 Ours

Circ(I, I, A,B) F2[T4×4] 12 Ours

S1 F2[T4×4] 10 Ours

Circ(I, I, A,B) F2[T16×16] 12 Ours

Optimal F2[T16×16] 10 Ours

6.3 Construction over the 16 × 16 Matrix Polynomial Residue Ring

In this subsection, we construct lightweight 4×4 MDS matrices over the 16×16
matrix polynomial residue ring. We construct Circulant MDS matrices with 12
XORs and Optimal MDS matrices with 10 XORs.

Example 2 T ∈ GL(16,F2). T = [[1, 2], 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
1]. The minimum polynomial of T is x16 + x15 + 1.

(1) L1 is a circulant MDS matrix with 12 XORs.

L1 =


I I T T 14 + T 13

T 14 + T 13 I I T
T T 14 + T 13 I I
I T T 14 + T 13 I


(2) L2 is a Optimal MDS matrix with 10 XORs.

L2 =


T I I I
I I T T 14 + T 13

I T 14 + T 13 I T
I T T 14 + T 13 I
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7 Lightweight Involutory MDS Matrices

In this section, we investigate existences of involutory MDS matrices and con-
structions of lightweight involutory MDS matrices over the matrix polynomial
residue ring. Our platform is Intel i5-5300, 2.30GHz with 4GB memory, running
Windows 10. We programme by using C language.

7.1 Existences of Involutory MDS Matrices

In this subsection, we investigate existences of involutory MDS matrices.

Theorem 7 Let L be an MDS matrix of degree n(n ≥ 2) over GL(m,F2) as the
following matrix, where the number of identity matrices is greater than or equal
to 2n− 1. Then L is not involutory.

L =



∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗
I · · · I Ai,i I · · · I
∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗


where Ai,i is at the ith row and the ith column.

Proof. Assume that L is involutory.
When n = 2k, k=1,2,3· · ·. Then

L2 =



∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i + I · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
i,i = 0⇒ Ai,i is singular.

Because L is MDS, so Ai,i is non-singular. This is a contradiction. Therefore
in this case, L can not be involutory.

When n = 2k + 1, k=1,2,3· · ·. Then

L2 =



∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
i,i = I

⇒ A2
i,i + I = 0⇒ (Ai,i + I)2 = 0⇒ Ai,i + I is singular.
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In L, there must exist a sub-determinant like

∣∣∣∣ I I
I Ai,i

∣∣∣∣ = Ai,i + I. Becuase L is

MDS, so Ai,i + I should be non-singular. This is a contradiction. Therefore in
this case, L must not be involutory.

In a word, L is not involutory.
�

According above theorem, Optimal MDS matrix as the following matrix can
not be involutory. 

∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗
I · · · I Ai,i I · · · I
∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗


where Ai,i is at the ith row and the ith column.

Theorem 8 Let L be a MDS matrix of degree 2k+1(k = 1, 2, · · ·) over GL(m,F2)
as the following matrix. Then L is not involutory.

L =



∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗
I · · · I Ai,j I · · · I
∗ · · · ∗ I ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ I ∗ · · · ∗


where Ai,j is at the ith row and the jth column(i 6= j).

Proof. Assume that L is involutory. Then

L2 =



∗ ∗ ∗ ∗ ∗

∗
. . . ∗ ∗ ∗

∗ ∗
. . . ∗ ∗

∗ I ∗
. . . ∗

∗ ∗ ∗ ∗ ∗


=


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I



In L2, at the ith row and the jth column, the entry is I. But according the
above equation, at this position, this entry also should be 0. This is a contradic-
tion. And then before assumption is wrong. Therefore L is not involutory.
�
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Theorem 9 Let T ∈ GL(m,F2), A1, A2, · · ·, An ∈ F2[T ]. If Circ(A1, A2, ..., An)
is MDS, then Circ(A1, A2, ..., An) is not involutory, where n ≥ 3.

Proof. L = Circ(A1, A2, ..., An) is a MDS matrix as the following matrix, where
A1, A2, · · ·, An ∈ F2[T ].

Circ(A1, A2, ..., An) =


A1 A2 · · · An

An A1 · · · An−1
...

...
. . .

...
A2 A3 · · · A1


Assume that L is an involutory matrix.

When n = 2k + 1, k = 1, 2, 3 · · ·. Then

L2 =



A1 · · · Ak+1 · · · A2k+1

...
...

...
∗ · · · ∗ · · · Ak+1

...
...

...
∗ · · · ∗ · · · A1





A1 · · · Ak+1 · · · A2k+1

...
...

...
∗ · · · ∗ · · · Ak+1

...
...

...
∗ · · · ∗ · · · A1



=


∗ ∗ · · · A2

k+1

∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k+1 = 0⇒ Ak+1 is singular.

Because L is MDS, so Ak+1 is non-singular. This is a contradiction. Therefore
in this case, L can not be involutory.

When n = 2k, k = 2, 3, 4 · · ·. Then

L2 =



A1 · · · Ak · · · A2k−1 A2k

...
...

...
...

∗ · · · ∗ · · · Ak Ak+1

...
...

...
...

∗ · · · ∗ · · · A1 A2

∗ · · · ∗ · · · A2k A1





A1 · · · Ak · · · A2k−1 A2k

...
...

...
...

∗ · · · ∗ · · · Ak Ak+1

...
...

...
...

∗ · · · ∗ · · · A1 A2

∗ · · · ∗ · · · A2k A1



=


∗ · · · A2

k +A2
2k 0

∗ · · · ∗ ∗
... · · ·

...
...

∗ · · · ∗ ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k +A2

2k = 0.
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There is a 2× 2 sub-matrix

(
Ak A2k

A2k Ak

)
in L.

L =



A1 · · · Ak · · · A2k

...
...

...
Ak+1 · · · A2k · · · Ak

...
...

...
∗ · · · ∗ · · · ∗


According above discussions,A2

k+A2
2k = 0. Because L is MDS, so

∣∣∣∣ Ak A2k

A2k Ak

∣∣∣∣ =

A2
k +A2

2k should be non-singular. This is a contradiction. Therefore in this case,
L can not be involutory.

In a word, Circ(A1, A2, ..., An) can not be an involutory MDS matrix.

�

7.2 Hadamard Involutory Matrices

Theorem 10 Let T ∈ GL(m,F2). f(x) is the minimum polynomial of T . a1(x),
a2(x), · · ·, a2k(x) ∈ F2[x]/(f(x)). L = Had(a1(T ), a1(T ), · · ·, a2k(T )) is invo-
lutory if and only if

(

2k∑
i=1

ai(x))2 ≡ 1 (mod f(x))

Proof. Because T ∈ GL(m,F2) and L = Had(a1(T ), a1(T ), · · · , a2k(T )) is invo-
lutory, so

L2 =


∑2k

i=1(ai(T ))2 ∑2k

i=1(ai(T ))2

. . . ∑2k

i=1(ai(T ))2

 =


I
I

. . .

I



⇔
2k∑
i=1

(ai(x))2 ≡ (

2k∑
i=1

ai(x))2 ≡ 1 (mod f(x))

�

Deduction 1 Let T ∈ GL(m,F2). f(x) is the minimum polynomial of T . a(x),
b(x) and c(x) ∈ F2[x]/(f(x)). L = Had(I, a(T ), b(T ), c(T )) is involutory if and
only if

(a(x) + b(x) + c(x))2 ≡ 0 (mod f(x))
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Proof. According to Theorem 10, Had(I, a(T ), b(T ), c(T )) is involutory if and
only if (1 + a(x) + b(x) + c(x))2 ≡ 1 (mod f(x)). (1 + a(x) + b(x) + c(x))2 ≡
1 (mod f(x)) ⇔ (a(x) + b(x) + c(x))2 ≡ 0 (mod f(x))

�

We construct lightweight Hadamard involutory MDS matrices asHad(I, A,B,
C). In our experiments, A ∈ GL(8,F2), #A=1, A + I is non-singular. f(x)
is the minimum polynomial of A. b(x), c(x) ∈ F2[x]/(f(x)) and B = b(A),
C = c(A). According to above theorem, Had(I, A,B,C) is involutory if and
only if (x + b(x) + c(x))2 ≡ 0 (mod f(x)). So x2 ≡ (b(x) + c(x))2(modf(x)).
As mentioned in section 4, the minimum polynomial of A must be one of the
following polynomials

x8 + x+ 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1.

We find all g(x) satisfying g2(x) ≡ x2 (mod f(x)), where f(x) is one of above
minimum polynomials. Each of x8 +x+ 1, x8 +x3 + 1, and x8 +x5 + 1 only has
one solution. Each of x8 +x2 + 1, x8 +x4 + 1, and x8 +x6 + 1 has 16 solutions.

Specifically, solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x2 + 1) are as
follows

x, x4 +1, x5 +x2, x5 +x4 +x2 +x1 +1, x6 +x3 +x2 +x1, x6 +x4 +x3 +x2 +1,

x6 + x5 + x3, x6 + x5 + x4 + x3 + x1 + 1, x7 + x3 + 1, x7 + x4 + x3 + x1,

x7+x5+x3+x2+x1+1, x7+x5+x4+x3+x2, x7+x6+x2+1, x7+x6+x4+x2+x1,

x7 + x6 + x5 + x1 + 1, x7 + x6 + x5 + x4.

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x4 + 1) are as follows

x, x4 +x2 +x1 +1, x5 +x3, x5 +x4 +x3 +x2 +1, x6 +x1 +1, x6 +x4 +x2 +x1,

x6 +x5 +x3 + 1, x6 +x5 +x4 +x3 +x2, x7, x7 +x4 +x2 + 1, x7 +x5 +x3 +x1,

x7 + x5 + x4 + x3 + x2 + x1 + 1, x7 + x6 + 1, x7 + x6 + x4 + x2,

x7 + x6 + x5 + x3 + x1 + 1, x7 + x6 + x5 + x4 + x3 + x2 + x1.

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x6 + 1) are as follows

x, x4 + x3 + x1 + 1, x5 + x3 + 1, x5 + x4, x6 + x3 + x2 + 1, x6 + x4 + x2,

x6 +x5 +x2 +x1, x6 +x5 +x4 +x3 +x2 +x1 +1, x7 +x2 +1, x7 +x4 +x3 +x2,

x7 + x5 + x3 + x2 + x1, x7 + x5 + x4 + x2 + x1 + 1, x7 + x6 + x3 + x1,

x7 + x6 + x4 + x1 + 1, x7 + x6 + x5 + 1, x7 + x6 + x5 + x4 + x3.
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7.3 Construction of Lightweight Hadamard Involutory MDS
Matrices

In this subsection, we investigate constructions of lightweight Hadamard involu-
tory 4× 4 MDS matrices over the matrix polynomial residue ring.

We propose the Algorithm 2, which is specially designed to construct lightweight
Hadamard involutory MDS matrices. Constructing 80640 Hadamard involuto-
ry MDS matrices with 20 XORs takes about 4 minutes and 14 seconds. In our
experiments, when entries are 4 × 4 matrices over F2, the lightest Hadamard
involutory MDS matrices with 24 XORs. When entries are 8 × 8 matrices over
F2, the lightest Hadamard involutory MDS matrices with 20 XORs.

Example 3

(1) m=4. T = [[1, 2], 3, 4, 1]. The following matrix is a Hadamard involutory
MDS matrix with 24 XORs.

I T T 2 T 2 + T
T I T 2 + T T 2

T 2 T 2 + T I T
T 2 + T T 2 T I


(2) m=8. T = [4, 1, 2, 8, 6, 3, [5, 8], 7]. The following matrix is a Hadamard

involutory MDS matrix with 20 XORs.
I T T 6 + T 4 T 2

T I T 2 T 6 + T 4

T 6 + T 4 T 2 I T
T 2 T 6 + T 4 T I



Table 6: Comparisons with previous constructions of involutory MDS matrices

Matrix type Elements Sum of XORs Ref.

Hadamard− Cauchy(0× 01, 0× 02, 0× fc, 0× fe) F28/0× 11b 296 [17]

Had(0× 01, 0× 02, 0× 04, 0× 06) F28/0× 11d 88 [26]

Had(0× 01, 0× 02, 0× b0, 0× b2) F28/0× 165 64 [18]

Subfield−Had(0× 1, 0× 4, 0× 9, 0× d) F24/0× 13 48 [18]

Had(I, A,A−1, A + A−1) GL(8, F2) 40 [19]

Had(I, A,B,C) F2[T8×8] 32 Ours

Had(I, A,A−1, A + A−1) GL(4, F2) 24 [19]

Had(0× 1, 0× 4, 0× 9, 0× d) F24/0× 13 24 [27][18]

Had(0× 1, 0× 2, 0× 6, 0× 4) F24/0× 19 24 [10]

Had(I, A,B,C) F2[T4×4] 24 Ours
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Algorithm 2 Algorithm of Constructing Lightweight Hadamard Involutory
MDS Matrices
1: Define matrix structure as Had(I, A,B,C)
2: for Search all A ∈ GL(8, F2), #A = 1, AandA + I are non-singular do
3: x replaces A
4: Find f(x), which is the minimum polynomial of A in MP8

5: Find polynomials b1(x), · · · , bk(x) in X18, X28 and X38, which satisfy that
XOR count is less than 4.

6: Find all quadratic congruences of x2 (mod f(x)).
7: for i from 1 to k do
8: bi(x) replaces B,
9: for j from 1 to 16 do bi(x) + qj(x) replace C, where qj is a quadratic

congruence of x2 mod f(x)
10: if Matrix is MDS then
11: Record this MDS matrix and its sum of XORs
12: end if
13: end for
14: end for
15: end for

Table 7: Comparisons of construction efficiency with [19]

Matrix type Element Sum of XORs Number Running time Ref.

Optimal GL(8, F2) 10 40320 no mentioned [19]

Optimal F2[T8×8] 10 40320 1min 16sec Ours

S1 F2[T8×8] 10 1128960 14hours Ours

Circ(I, I, A,B) GL(8, F2) 12 80640 3days [19]

Circ(I, I, A,B) F2[T8×8] 12 80640 1min 27sec Ours

Had(I, A,AT , B) GL(8, F2) 20 622 4weeks [19]

Had(I, A,B,C) F2[T8×8] 20 241920 7min Ours

InvolutoryHad(I, A,A−1, A + A−1) GL(8, F2) 40 80640 1day [19]

InvolutoryHad(I, A,B,C) F2[T8×8] 32 40320 3min 22sec Ours

8 Propositions about the Parity of XOR count

In this section, we propose propositions about the parity of XOR count.

Proposition 1 Let A, B, A+B ∈ GL(m,F2) , then

#(A+B) ≡ #(A) + #(B) +m (mod 2).

Proof. It is obviously that ω(A+B) ≡ ω(A) + ω(B) (mod 2).
Because #A = ω(A) − m,#B = ω(B) − m and #(A + B) = ω(A + B) − m.
Then

#(A+B) ≡ #(A) + #(B) +m (mod 2).
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�

Proposition 2 Let α = (a1, a2, ..., am)T and β = (b1, b2, ..., bm)T , where ai, bi ∈
F2. Then

ω(αβT ) = ω(α)ω(β).

Proof. Because α = (a1, a2, ..., am)T , β = (b1, b2, ..., bm)T , then

ω(αβT ) = ω


a1b1 a1b2 · · · a1bm
a2b1 a2b2 · · · a2bm

...
...

. . .
...

amb1 amb2 · · · ambm

 =

m∑
i=1

m∑
j=1

aibj =

m∑
i=1

ai

m∑
i=1

bj = ω(α)ω(β).

�

Proposition 3 Let A,B ∈ GL(m,F2) and A = (α1, α2, ..., αm) and B = (β1, β2, ..., βm)T .
Then

#(AB) ≡
m∑
i=1

ω(αi)ω(βi) (mod 2).

Proof. BecauseA = (α1, α2, ..., αm) andB = (β1, β2, ..., βm)T , soAB =
∑m

i=1 αiβ
T
i .

According to proposition 2,

ω(AB) ≡
m∑
i=1

ω(αiβ
T
i ) ≡

m∑
i=1

ω(αi)ω(βT
i ) (mod 2).

Because #(AB) = ω(AB)−m, so

#(AB) ≡
m∑
i=1

ω(αi)ω(βT
i ) +m (mod 2).

�

Proposition 4 Let L1, L2, L1 + L2 ∈M(n,m). Then

#(L1 + L2) ≡ #(L1) + #(L2) + nm (mod 2).

Proof. It is obviously that ω(L1 + L2) ≡ ω(L1) + ω(L2) (mod 2).
Because #(L1 + L2) = ω(L1)− n2m, #(L1) = ω(L1)− n2m, #(L2) = ω(L2)−
n2m, so #(L1 +L2) ≡ #(L1) + #(L1) +n2m ≡ #(L1) + #(L1) +nm (mod 2).
�

Proposition 5 Let Ai, Bi ∈ GL(m,F2) and i = 1, 2, ..., n. Then

ω

(A1 A2 · · · An

)

B1

B2

...
Bn


 ≡ ω(

n∑
i=1

Ai

n∑
j=1

Bj) (mod 2).



Lightweight MDS Matrices over the Matrix Polynomial Residue Ring 23

Proof.

ω

(A1 A2 · · · An

)

B1

B2

...
Bn


 = ω


A1B1 A1B2 · · · A1Bn

A2B1 A2B2 · · · A2Bn

...
...

. . .
...

AnB1 AnB2 · · · AnBn


≡ ω(

n∑
i,j=1

AiBj) ≡ ω(

n∑
i=1

Ai

n∑
j=1

Bj) (mod 2).

�

Proposition 6 Let L1, L2, L1L2 ∈M(n,m) and

L1 =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

 , L2 =


B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn

 .

Then

#(L1L2) ≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) + nm (mod 2).

Proof.

ω(L1L2) ≡ ω
n∑

k=1



A1k

A2k

...
Ank

(Bk1 Bk2 · · · Bkn

)


≡
n∑

k=1

ω



A1k

A2k

...
Ank

(Bk1 Bk2 · · · Bkn

)
 (mod 2).

According to proposition 5, then

ω(L1L2) ≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) (mod 2).

Because #(L1L2) = ω(L1L2)− n2m, so

#(L1L2) ≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) + n2m

≡
n∑

k=1

ω(

n∑
i=1

Aik

n∑
j=1

Bkj) + nm (mod 2).

�
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9 Conclutions

In the present paper, we mainly investigate constructions of 4 × 4 lightweight
MDS matrices over the matrix polynomial residue ring, where m=4, 8 or 16. Ac-
cording to distributions of the minimum polynomial and distributions of XOR
count, we propose an efficient algorithm to construct lightest MDS matrices. Be-
sides, we prove that some special MDS matrices can not be involytory. According
to the quadratic congruence, we propose another efficient algorithm to construct
lightweight Hadamard involutory MDS matrices, which are much lighter than
previous papers. Finally, we prove a series of propositions about the parity of
XOR count.
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