
Revisiting Full-PRF-Secure PMAC and Using It

for Beyond-Birthday Authenticated Encryption

Eik List1 and Mridul Nandi2

1 Bauhaus-Universität Weimar, Germany
eik.list(at)uni-weimar.de

2 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
mridul.nandi(at)gmail.com

Version of March 9, 2017

Abstract. This paper proposes an authenticated encryption scheme,
called SIVx, that preserves BBB security also without the requirement
for nonces. For this purpose, we propose a single-key BBB-secure message
authentication code with 2n-bit outputs, called PMAC2x, based on a
tweakable block cipher. PMAC2x is motivated by PMAC TBC1k by
Naito; we revisit its security proof and point out an invalid assumption.
As a remedy, we provide an alternative proof for our construction, and
derive a corrected bound for PMAC TBC1k.

Keywords: Symmetric cryptography · message authentication codes · authenticated

encryption · provable security.

1 Introduction

Nonce-Based Authenticated Encryption. Authenticated encryption (AE)
schemes aim at protecting both the privacy and the integrity of submitted mes-
sages. Authenticated encryption schemes that allow to authenticate not only the
encrypted message, but also associated data, are commonly known as AEAD
schemes [24]. The common security notions for AE schemes concern the preven-
tion of any leakage about the encrypted messages except for their lengths. Since
stateless schemes would enable adversaries to detect a duplicate encryption of
the same associated data and message under the current key, Rogaway proposed
nonce-based encryption [26], where the user provides an additional nonce for
every message she wants to process. In theory, the concept of nonces is simple.
However, the practice has shown numerous examples of implementation fail-
ures, and settings that render it difficult to almost impossible to prevent nonce
reuse (cf. [9]). Before the CAESAR competition, the majority of widely used AE
schemes protected neither the confidentiality nor the integrity of messages in the
case of nonce repetitions. As a consequence, a considerable number of CAESAR
candidates aimed a certain level of security if nonces repeat (e.g., [1,11,12,16]).

Parallelizable MACs in Authenticated Encryption. Block-cipher-based
message authentication codes (MACs) are important components not only for
authentication, but also as part of AE schemes, where they are used to derive an
initialization vector (IV) that is then used for encryption. In particular, paral-
lelizable MACs like PMAC [7] allow to process multiple blocks in parallel, which
is beneficial for software performance on current x64 processors. Since PMAC
has several further desirable properties, e. g. being online and incremental, it is
not a surprise that all the CAESAR candidates cited above essentially combine
a variant of PMAC (or its underlying hash function) with a block-cipher-based
mode of operation for efficiently processing associated data and message.

Beyond-Birthday-Bound AE. Besides performance, the quantitative secu-
rity guarantees are important aspects for AE schemes. The privacy and authen-
ticity guarantees of the AE schemes cited above are limited by the birthday
bound of O(ℓ2/2n), where n denotes the state size of the underlying primitive,
and ℓ the number of blocks processed over all queries. Since the schemes above
possess an n-bit state, a state collision that leads to attacks has significant prob-
ability after approximately 2n/2 blocks have been processed under the same key.
To address this issue, Peyrin and Seurin presented Synthetic Counter in Tweak
(SCT) [22], a beyond-birthday-bound (BBB) AE scheme based on a tweak-
able block cipher under a single key. Internally, SCT is a MAC-then-Encrypt
composition: the MAC part is a PMAC-like construction, called EPWC. The
encryption part is Counter-in-Tweak (CTRT), an efficient mode of operation
that takes an n-bit nonce and an n-bit IV. Both EPWC and CTRT guarantee
BBB security as long as nonces never repeat. However, the security of the nonce-
IV-based CTRT degrades to the birthday bound with an increasing number of
nonce reuses; even worse, the security of EPWC (and consequently that of SCT)
immediately reduces to the birthday bound if a single nonce repeats once. In [23,
p.7], the extended version of [22], the authors remarked therefore (among oth-
ers) the following open problem: “[...] to construct an AE scheme which remains

BBB-secure even when nonces are arbitrarily repeated. The main difficulty is to

build a deterministic, stateless, BBB-secure MAC, which is known to be notably

hard”. Intuitively, an efficient block-cipher-based BBB-secure MAC with 2n bit
output length could allow to construct such a deterministic AE scheme.3 Thus,
this work will put a large focus on the construction of BBB-secure MACs.

Previous Work. Naito [19] proposed two MACs with full PRF security based
on a tweakable block cipher: PMAC TBC3k and PMAC TBC1k. While the
former requires three keys, the latter uses tweak-based domain separation to
require only a single key. Extending the latter seemed a well-suited starting point
for our work since such a MAC could be combined in straight-forward manner
with a BBB-secure mode of encryption. Though, during our studies, we found

3 We stress that BBB-secure AE is not new if one considers schemes with multiple
primitives and keys. For the sake of space limitations, a discussion can be found in
Appendix A.

2

Table 1: Previous parallel BBB-secure MACs. (T)BC = (tweakable) block cipher, q
= max. #queries, m = max. #blocks per query, ℓ = max. total #blocks.

Primitive Construction Keys Output Size Advantage Ref.

BC
PMAC+ 3 n O(q3m3/22n + qm/2n) [29]

1k PMAC+ 1 n O(qm2/2n + q3m4/22n) [8]

TBC

PMAC TBC3k 3 n O(q2/22n) [19]

PMAC TBC1k 1 n O(q/2n + q2/22n) [19]

PMACx 1 n O(q2/22n + q3/23n) Sec. 5

PMAC2x 1 2n O(q2/22n + q3/23n) Sec. 4

that the analysis in [19] assumed internal values to be independent, which—as
we will show—cannot always be guaranteed. Since the proof depended largely
on this aspect, we developed an alternative analysis for our construction and
derived a corrected bound for a PMAC TBC1k-like variant with n-bit output.
So, despite the assumption in the original proof, we confirm that Naito’s MAC
is secure for close to 2n−2 blocks processed under the same key.

Contribution. Our contributions are threefold: first, we propose a BBB-secure
parallelizable MAC, called PMAC2x, which produces 2n-bit outputs and bases
on a tweakable block cipher. Figure 1 provides a schematic illustration. As our
second contribution, we briefly revisit the analysis by Naito on PMAC TBC1k
and show that we can easily adapt our proof for PMAC2x and derive a secure
variant that we call PMACx which XORs both its outputs and produces only n-
bit tags. Table 1 compares our constructions to earlier parallelizable BBB- secure
MACs. As our third contribution, we combine PMAC2x with the purely IV-
based variant of Counter-in-Tweak to a single-primitive, single-key deterministic
authenticated encryption scheme, which we call SIVx, and which provides BBB-
security without assumptions about nonces.

Earlier Parallelizable MACs. A considerable amount of works considered
parallel MACs; parallel XOR-MACs have already been introduced in 1995 by
Bellare et al. [3]; their constructions fed the message blocks together with a
counter into a primitive to obtain stateful and randomized MACs. Bernstein [6]
published the Protected Counter Sum (PCS), which transformed an XOR-MAC
with an independent PRF into a stateless deterministic MAC. PMAC was de-
scribed by Black and Rogaway first in [7], and was slightly modified to PMAC1
in [25]. Since then, the security of PMAC has been rigorously studied in various
works [13,15,18,20,21]. The first BBB-secure parallelizable MAC was proposed
by Yasuda [29]; His PMAC+ construction is a three-key version of PMAC which
possesses two n-bit state values, which are processed by two independently keyed
PRPs, and are XORed to produce the tag. Datta et al. [8] derived a single-key
version thereof, called 1k PMAC+. While those are rate-1 designs with larger

3

M1 M2 Mm

2 2 2

. . .

. . .

. . .

Ẽ0,1
K Ẽ0,2

K Ẽ0,m
K

Ẽ2,Ŷm

K

Ẽ3,X̂m

K

U

V

X0
X1 X2 Xm

Y0
Y1 Y2 Ym

Conv

Conv

Fig. 1: Processing a message M with PMAC2x where M has m blocks (M1, . . . ,Mm)

after appending a 10∗ padding to M . Ẽ : {0, 1}k ×{0, 1}d ×{0, 1}t×{0, 1}n → {0, 1}n

denotes a tweakable block cipher, Conv : {0, 1}n → {0, 1}t a regular function, and ⊙
multiplication in Galois-Field GF(2n).

internal state, there also exist slightly less efficient proposals with smaller state.
Yasuda [30] introduced PMAC with parity (PMAC/P), which processes each
sequence of r consecutive message blocks in PMAC-like manner, but inserts the
XOR sum of those r blocks as an additional block. Zhang’s PMACX construc-
tion [31] generalized PMAC/P by multiplying the input with an MDS matrix
before authentication. In a similar direction goes LightMAC [14], a lightweight
variant similar to Bernstein’s PCS. However, the security guarantees of all earlier
parallelizable MACs in this paragraph are far from the optimal PRF bound.

2 Preliminaries

General Notation. We use lowercase letters x, y for indices and integers, up-
percase letters X,Y for binary strings and functions, calligraphic uppercase let-
ters X ,Y for sets; X ‖ Y for the concatenation of binary strings X and Y , and
X ⊕ Y for their bitwise XOR. We indicate the length of X in bits by |X |, and
write Xi for the i-th block, X [i] for the i-th most-significant bit of X , and
X [i..j] for the bit sequence X [i], . . . , X [j]. We denote by X և X that X is cho-
sen uniformly at random from the set X . We define Func(X ,Y) for the set of
all functions F : X → Y, Perm(X) for the set of all permutations π : X → X ,

and P̃erm(T ,X) for the set of tweaked permutations over X with tweak space

T . We define by X1, . . . , Xj
x
←− X an injective splitting of a string X into blocks

of x-bit such that X = X1 ‖ · · · ‖Xj, |Xi| = x for 1 ≤ i ≤ j − 1, and |Xj | ≤ x.

For two sets X and Y, let X
∪
←− Y denote X ← X ∪ Y. A uniform random

function ρ : X → Y is a random variable uniformly distributed over Func(X ,Y).
Given a function F : X → Y, we write domain(F) for the set of all inputs X ∈ X
to F that occurred before (i.e., excluding) the current query; similarly, we write
range(F) for the set of all outputs Y ∈ Y that occurred before the current query.
We borrow the notation for a restriction on a set from [9]: let Q ⊆ (X ×Y×Z)∗,

4

then we denote by Q|Y,Z = {(Y, Z) | ∃X : (X,Y, Z) ∈ Q} the restriction of Q to
values Y ∈ Y and Z ∈ Z. This generalizes in the obvious way.
For an event E, we denote by Pr[E] the probability of E. We write 〈x〉n for the
binary representation of an integer x as an n-bit string, or short 〈x〉 if n is clear
from the context, in big-endian manner, e. g., 〈1〉4 would be encoded to (0001).

Adversaries. An adversaryA is an efficient Turing machine that interacts with
a given set of oracles that appear as black boxes to A. We denote by AO the
output of A after interacting with some oracle O. We write ∆A(O1;O2) for the
advantage of A to distinguish between oracles O1 and O2. All probabilities are
defined over the random coins of the oracles and those of the adversary, if any.
We write AdvX

F (q, ℓ, θ) := maxA{AdvX
F (A)} for the maximal advantage over

all X-adversaries A on F that run in time at most θ and pose at most q queries
of at most ℓ blocks in total to its oracles. Wlog., we assume that A never asks
queries to which it already knows the answer.
We will provide pseudocode descriptions of the oracles, which will be referred
to as games, according to the game-playing framework by Bellare and Rogaway
[4]. Each game consists of a set of procedures. We define Pr[G(A) ⇒ x] as the
probability that the game G outputs x when given A as input.

Definition 1 (TPRP Advantage). Let Ẽ : K × T × X → X be a tweak-

able block cipher with non-empty key space K and tweak space T . Let A a

computationally bounded adversary with access to an oracle, where K և K

and π̃ և P̃erm(T ,X). Then, the TPRP advantage of A on Ẽ is defined as

AdvTPRP
Ẽ

(A) := ∆A(ẼK ; π̃).

A MAC is a tuple of functions F : K × X → Y with non-empty key space K,
and a generic verification function Verify : K × X × Y → {1,⊥}, where for all
K ∈ K and X ∈ X , VerifyK(X,Y) returns 1 iff FK(X) = Y and ⊥ otherwise.
We use ⊥, when in place of an oracle, to always return the invalid symbol ⊥. It
is well-known that if F is a secure PRF, it is also a secure MAC; however, the
converse statement is not necessarily true.

Definition 2 (PRF Advantage). Let F : K×X → Y be a function with non-

empty key space K, and A a computationally bounded adversary with access to

an oracle, where K և K and ρ և Func(X ,Y). Then, the PRF advantage of A
on F is defined as AdvPRF

F (A) := ∆A(FK ; ρ).

3 Definition of PMAC2x and PHASHx

This section defines the generic PMAC2x construction and its underlying hash
function PHASHx. Fix integers k, n, t, d, with d ≥ 2. Let K = {0, 1}k and T =
{0, 1}t be non-empty sets of keys and tweaks, respectively. Moreover, derive a set
of domains D := {0, 1, 2, 3} = {0, 1}d which are encoded as their respective d-bit
values, and a domain-tweak set T ′ := D×T . LetM⊆ ({0, 1}n)∗ denote an input

space. Further, let Ẽ : K×T ′×{0, 1}n → {0, 1}n denote a tweakable block cipher.

5

Algorithm 1 Definition of PMAC2x[Ẽ] and its internal hash function

PHASHx[Ẽ] with a tweakable block cipher Ẽ : K×{0, 1}d×{0, 1}t×{0, 1}n →
{0, 1}n. n, t, and d denote state, tweak and domain sizes, respectively.

11: function PMAC2x[ẼK](M)

12: (Xm, Ym)← PHASHx[ẼK](M)

13: X̂m ← Conv(Xm)

14: Ŷm ← Conv(Ym)

15: U ← Ẽ2,Ŷm

K (Xm)

16: V ← Ẽ3,X̂m

K (Ym)
17: return (U ‖V)

21: function Conv(X)
22: if t ≥ n then

23: return X
24: return X[1..t]

31: function PHASHx[ẼK](M)
32: X0 ← 0n; Y0 ← 0n

33: M∗ ←M ‖ 10∗

34: (M1, . . . ,Mm)
n
←−M∗

35: for i← 1 to m do

36: Zi ← Ẽ
0,〈i〉
K (Mi)

37: Xi ← Xi−1 ⊕ Zi

38: Yi ← 2 · (Yi−1 ⊕ Zi)

39: return (Xm, Ym)

41: function ẼD,T

K (X)

42: T̃ ← 〈D〉d ‖T [1..t]

43: return ẼT̃
K(X)

We will often write ẼD,T
K (·) as short form of Ẽ(K,D, T, ·). K ∈ K, D ∈ D, and

T ∈ T denote key, domain, and tweak, respectively. Conv : {0, 1}n → {0, 1}t be
a regular function4 which is used to convert the outputs of PHASHx, Xm and
Ym, so they can be used as tweaks of Ẽ in the finalization step. We denote by
PMAC2x[Ẽ] and PHASHx[Ẽ] the instantiation of PMAC2x and PHASHx

with Ẽ. Both are defined, with a default instantiation of Conv, in Algorithm 1.
The message M is always padded to M∗ ←M ‖ 10p by appending first a single
1-bit and then p 0-bits where p is the smallest possible number of zero bits such
that the length of M∗ is a multiple of n bit.

4 Security Analysis of PMAC2x

Theorem 1. Let Ẽ and PMAC2x[Ẽ] be defined as in Section 3. Let d+ t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then

AdvPRF
PMAC2x[Ẽ]

(q, ℓ, θ) ≤
22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)

+AdvTPRP
Ẽ

(ℓ+ 2q, O(θ + ℓ+ 2q)).

The final term results from a standard argument after replacing the tweakable

block cipher Ẽ by a random tweakable permutation π̃ և P̃erm(T ′, {0, 1}n).
Let A be an adversary that makes at most q queries of at most m blocks each
and of at most ℓ blocks in total. We assume, A does not ask duplicate queries
and has the goal to distinguish between a PMAC2x[π̃] oracle with an internally
sampled tweaked permutation π̃ and a random function ρ : {0, 1}∗ → {0, 1}2n.

4 A function is called regular iff all outputs are produced by an equal number of inputs.

6

Algorithm 2 Main Game, initialization, finalization, and subroutines. Boxed
statements belong exclusively to the real world.

1: procedure Initialize
2: badU ← false; badV ← false; Q ← ∅
3: X0 ← 0n; Y0 ← 0n; b և {0, 1}

11: function Finalize(b′)
12: bad← badU ∨ badV
13: return b′ = b ∨ bad

21: function Oracle(M)
22: (Xm, Ym)← PHASHx[π̃](M)

23: X̂m ← Conv(Xm)

24: Ŷm ← Conv(Ym)
25: U և {0, 1}n

26: V և {0, 1}n

27: if (X̂m, Ŷm) ∈ Q|X̂m,Ŷm
then

28: (U, V)← Case1(Xm, Ym, X̂m, Ŷm)

29: else if U ∈ range(π̃2,Ŷm)∧

30: V ∈ range(π̃3,X̂m) then

31: (U, V)← Case2(Xm, Ym, X̂m, Ŷm)

32: else if U ∈ range(π̃2,Ŷm)∧

33: V 6∈ range(π̃3,X̂m) then

34: (U, V)← Case3(X̂m, Ŷm, U, V)

35: else if U 6∈ range(π̃2,Ŷm)∧

36: V ∈ range(π̃3,X̂m) then

37: (U, V)← Case4(X̂m, Ŷm, U, V)

38: else if U 6∈ range(π̃2,Ŷm)∧

39: V 6∈ range(π̃3,X̂m) then

40: (U, V)← Case5(X̂m, Ŷm, U, V)

41: Q
∪
←− {(X̂m, Ŷm, U, V)}

42: π̃2,Ŷm [Xm]← U

43: π̃3,X̂m [Ym]← V
44: return (U ‖V)

95: function Case5(X̂m, Ŷm, U, V)
96: return (U, V)

51: function Case1(Xm, Ym, X̂m, Ŷm)

52: if Xm ∈ domain(π̃2,Ŷm) then

53: U ← π̃2,Ŷm [Xm]

54: else

55: U և {0, 1}n \ range(π̃2,Ŷm)

56: if Ym ∈ domain(π̃3,X̂m) then

57: V ← π̃3,X̂m [Ym]

58: else

59: V և {0, 1}n \ range(π̃3,X̂m)

60: badU ← badV ← true

61: return (U, V)

71: function Case2(Xm, Ym, X̂m, Ŷm)

72: U և {0, 1}n \ range(π̃2,Ŷm)

73: V և {0, 1}n \ range(π̃3,X̂m)

74: badU ← badV ← true

75: return (U, V)

81: function Case3(X̂m, Ŷm, U, V)

82: U և {0, 1}n \ range(π̃2,Ŷm)

83: badU ← true

84: return (U, V)

91: function Case4(X̂m, Ŷm, U, V)

92: V և {0, 1}n \ range(π̃3,X̂m)

93: badV ← true

94: return (U, V)

We consider the game described in Algorithm 2. The game without the boxed
statements coincides with a random function ρ, whereas the game with them
exactly represents PMAC2x[π̃], performing lazy sampling for the permutations

π̃2,Ŷm(·) and π̃3,X̂m(·), for all X̂m, Ŷm ∈ {0, 1}
t. Both algorithms differ only when

bad events occur. Hence, by the fundamental lemma of game playing [5], it holds

Pr[APMAC2x[π̃](·) ⇒ 1]− Pr[Aρ(·) ⇒ 1] ≤ Pr[A sets bad].

In the remainder, we consider five cases which cover all possibilities:

7

– Case1: (X̂m, Ŷm) ∈ Q|X̂m,Ŷm
.

– Case2: (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm
∧ U ∈ range(π̃2,Ŷm) ∧ V ∈ range(π̃3,X̂m).

– Case3: (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm
∧ U ∈ range(π̃2,Ŷm) ∧ V 6∈ range(π̃3,X̂m).

– Case4: (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm
∧ U 6∈ range(π̃2,Ŷm) ∧ V ∈ range(π̃3,X̂m).

– Case5: (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm
∧ U 6∈ range(π̃2,Ŷm) ∧ V 6∈ range(π̃3,X̂m).

We list Case 5 only for the sake of completeness. It is easy to see that in Case 5,
the output of the game is indistinguishable between the worlds. We use M i, X̂ i

m,

Ŷ i
m, U i, V i to refer to the respective values of the i-th query, where i ∈ [1, q],

and assume it is the current query of the adversary. Additionally, we will use
indices j and k, where j, k ∈ [1, i− 1], to refer to previous queries.

Case1: For this case, we revisit the fact that for two fixed disjoint queries M i

and M j , the values Xm and Ym are results of two random variables. A variant
of the proof is given e.g. in [19, Sect. 3.3], and revisited in the following only
for the sake of completeness. Fix query indices i ∈ [1, q] and j ∈ [1, i − 1]. Let
m and m′ denote the number of blocks of the i-th and j-th query, respectively;
moreover, let X i

m, Y i
m denote the values Xm and Ym of the i-th query and Xj

m′ ,

Y j
m′ those of the j-th query, respectively. X i

m, Y i
m, Xj

m, and Y j
m result from:

X i
m = Ci

1 ⊕ Ci
2 ⊕ · · · ⊕ Ci

m Y i
m = 2mCi

1 ⊕ 2m−1Ci
2 ⊕ · · · ⊕ 2 · Ci

m,

X i
m′ = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′ Y j
m′ = 2m

′

Cj
1 ⊕ 2m

′−1Cj
2 ⊕ · · · ⊕ 2 · Cj

m′ .

So, we want to bound the probability for the following equational system:

Ci
1 ⊕ Ci

2 ⊕ · · · ⊕ Ci
m = Cj

1 ⊕ Cj
2 ⊕ · · · ⊕ Cj

m′

2mCi
1 ⊕ 2m−1Ci

2 ⊕ · · · ⊕ 2 · Ci
m = 2m

′

Cj
1 ⊕ 2m

′−1Cj
2 ⊕ · · · ⊕ 2 · Cj

m′ .

There exist three distinct subcases which cover all possibilities:

– Subcase 1: m 6= m′. In this case, the equations above provide a unique
solution set for two random variables; thus, the probability that the equations
hold for two fixed queries is upper bounded by 1/(2n − (i− 1))2.

– Subcase 2: m = m′ and there exists α ∈ [1,m] s.t. Ci
α 6= Cj

α and for

all β ∈ [1,m] with β 6= α : Ci
β = Cj

β. In this case, both messages share
only a single different output block. Thus, the equations above never hold.

– Subcase 3: m = m′ and there exist distinct β ∈ [1,m] with β 6= α :
Ci

β = Cj
β. In this case, the equations provide a unique solution set for two

random variables, so the probability that they hold is bounded by 1/(2n −
(i − 1))2.

So, the probability for two fixed disjoint queries M i and M j that (X i
m, Y i

m) =

(Xj
m′ , Y

j
m′) holds, is bounded by 1/(2n− q)2. Since X̂ i

m and Ŷ i
m are derived from

X i
m and Y i

m, respectively by a regular function (and so are X̂j
m and Ŷ j

m derived

8

from Xj
m′ and Y j

m′ , respectively), it follows that the probability of (X̂ i
m, Ŷ i

m) =

(X̂j
m′ , Ŷ

j
m′) to hold for the i-th and j-th query, with j ∈ [1, i− 1], is at most

(i− 1) ·
2d

(2n − q)
·

2d

(2n − q)
=

22d(i− 1)

(2n − q)2
.

Remark 1. In its initial version, PMAC2x employed a different tweak domain
Ẽ1,· if the last message block was partial, i.e., if |Mm| < n. This approach
allowed birthday-bound collisions for the result of two messages with fullMm and
partial M ′

m since Ẽ0,m and Ẽ1,m defined different permutations, contradicting
Subcase 2. Therefore, this revised version employs instead the approach that has
also been used by Naito, i.e., to always pad the message M∗ ← (M ‖ 10∗) before
using it, which ensures that Subcase 2 holds.

Case2: In this case, there exists some previous query (X̂j
m′ , Ŷ

j
m′ , U j , V j) s.t.

U = U j ∧ Ŷm = Ŷ j
m′ , and a distinct previous query (X̂k

m′′ , Ŷ k
m′′ , Uk, V k) s.t.

V = V k ∧ X̂m = X̂k
m′′ . From our assumption (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm

, it follows

that j 6= k; otherwise, the current query would have stepped into Case1 instead.
We can bound the probability by

Pr
[
(U = U j ∧ Ŷm = Ŷ j

m′) ∧ (V = V k ∧ X̂m = X̂k
m′′)

]

≤ Pr
[
U = U j ∧ Ŷm = Ŷ j

m′ ∧ V = V k | X̂m = X̂k
m′′

]
.

U and V are chosen independently and uniformly at random from {0, 1}n each,
and can collide with at most i− 1 previous values U j and at most i− 1 previous
values V k, respectively. For fixed j and k, the probability for U to collide with
U j is upper bounded by 1/2n, and independently, the probability for V to collide
with V k is also 1/2n. Since the game chooses U and V independently from Ym,

the probability that Ŷm collides with Ŷ j
m′ is at most 2d/(2n−q) since we assumed

that the adversary poses no duplicate queries, and therefore, Ym and Y j
m′ are

results of two random variables. Since the collision of U = U j already fixes the
colliding query pair, there is no additional factor (i − 1) for the choice of which

pairs of Ŷm and Ŷ j
m′ to collide. It follows that the probability for this case to

occur at the i-th query is upper bounded by

i− 1

2n
·
i− 2

2n
·

2d

2n − q
≤

2d(i− 1)2

22n(2n − q)
.

Case3: In this case, there exists some previous query (X̂j
m′ , Ŷ

j
m′ , U j , V j) s.t.

U = U j ∧ Ŷm = Ŷ j
m′ . From our assumption (X̂m, Ŷm) 6∈ Q|X̂m,Ŷm

and Ŷm = Ŷ j
m′

follows that X̂m 6= X̂j
m′ holds, like in Case2. We can bound the probability by

Pr
[
U = U j ∧ Ŷm = Ŷ j

m′ ∧ V 6∈ range(π̃3,X̂m)
]

≤ Pr
[
U = U j ∧ Ŷm = Ŷ j

m′ | V 6∈ range(π̃3,X̂m)
]
.

9

For a fixed j-th query, the probability that Ŷm collides with Ŷ j
m′ is at most

2d/(2n − q). Since U is chosen uniformly at random from {0, 1}n and indepen-
dently from Ym, U can collide with U j with probability 1/2n. So, the probability
of this case to occur for the i-th query can be upper bounded by

2d

2n − q
·
i− 1

2n
=

2d(i− 1)

2n(2n − q)
.

Case4: In this case, it holds that V = V j ∧ X̂m = X̂j
m′ . From (X̂m, Ŷm) 6∈

Q|X̂m,Ŷm
and X̂m = X̂j

m′ follows here that Ŷm 6= Ŷ j
m′ holds, analogously to

Case2 and Case3. We can bound the probability by

Pr
[
V = V j ∧ X̂m = X̂j

m′ ∧ U 6∈ range(π̃2,Ŷm)
]

≤ Pr
[
V = V j ∧ X̂m = X̂j

m′ | U 6∈ range(π̃2,Ŷm)
]
.

Obviously, this case can be handled similarly as Case3. For a fixed j-th query,
the probability that X̂m collides with X̂j

m′ is at most 2d/(2n − q). Since V is
chosen uniformly at random from {0, 1}n and independently from Xm, V can
collide with V j with probability 1/2n. So, the probability of this case to occur
for the i-th query can also be upper bounded by

2d(i − 1)

2n(2n − q)
.

Taking the terms from all cases and the union bound over at most q queries
gives

Pr [A sets bad] ≤

q∑

i=1

(
22d(i− 1)

(2n − q)2
+

2d(i − 1)2

22n(2n − q)
+ 2 ·

2d(i− 1)

2n(2n − q)

)

≤
22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
.

5 Security Analysis of PMACx

This section considers a variant of PMAC2x, PMACx, that adds a final XOR to
produce only an n-bit tag, following the design of PMAC TBC1k. A schematic
illustration is given in Figure 2. We revisit the assumption by Naito, and show
that our proof of PMAC2x needs only a slight adaption for PMACx.

Previous Analysis. Theorem 2 in [19] proves the security of PMAC TBC1k
with the help of an analysis of multi-collisions of the final chaining values (Xm

and Ym in our notation). Note that our notation differs from [19] to be consistent
to our previous section. Define two monotone events mcoll1 and mcoll2. Let ρ

10

M1 M2 Mm

2 2 2

. . .

. . .

. . .

Ẽ0,1
K Ẽ0,2

K Ẽ0,m
K

Ẽ2,Ŷm

K

Ẽ3,X̂m

K

U

V

T

X0
X1 X2 Xm

Y0
Y1 Y2 Ym

Conv

Conv

Fig. 2: PMACx, the variant of PMAC2x with n-bit output, following the design of
PMAC TBC1k.

and ξ denote positive integers and define three sets X , Y, and Q which store the
values X̂ i

m, Ŷ i
m, and the tuples (X i

m, Ŷ i
m), respectively, of the queries 1 ≤ i ≤ q.

mcoll1 := (∃ X̂1
m, . . . , X̂ρ

m ∈ X s.t. X̂1
m = . . . = X̂ρ

m)∨

(∃ Ŷ 1
m, . . . , Ŷ ρ

m ∈ Y s.t. Ŷ 1
m = . . . = Ŷ ρ

m),

mcoll2 := ∃ (X1
m, Ŷ 1

m), . . . , (Xξ
m, Ŷ ξ

m) ∈ Q s.t. (X1
m, Ŷ 1

m) = . . . = (Xξ
m, Ŷ ξ

m).

The original proof further defined a monotone compound event mcoll := mcoll1∨
mcoll2 and used the fact that

Pr [A sets bad] = Pr [A sets bad ∧mcoll] + Pr [A sets bad ∧ ¬mcoll]

≤ Pr [mcoll1] + Pr [mcoll2] + Pr [A sets bad|¬mcoll] .

The analysis in [19] bounds Pr[mcoll1] as

Pr[mcoll1] ≤ 2 · 2t ·

(
q

ρ

)
·

(
2n−t

2n − q

)ρ

≤ 2t+1 ·

(
2n−t · eq

ρ(2n − q)

)ρ

,

using Stirling’s approximation x! ≥ (x/e)x for any x. Note, in PMAC TBC1k,
the domain size in PMAC2x is fixed to d = 2 bits. The bound above con-
sists of the probability that ρ values are all equal, (2n−t/(2n − q))ρ; the fact
that there are 2t tweak values; and the

(
q
ρ

)
possible ways to choose ρ out of q

values. However, the bound holds only if the ρ colliding tweaks stem from ρ
linearly independent random variables, which is not necessarily the case. Imag-
ine a sequence of 2m queries which combine pair-wise distinct blocks {Mi,M

′
i}

with Mi 6= M ′
i , for 1 ≤ i ≤ m position-wise, i. e., we have 2m queries of

m blocks each: Q0 = (M1,M2,M3, . . . ,Mm), Q1 = (M ′
1,M2,M3, . . . ,Mm),

Q2 = (M1,M
′
2,M3, . . . ,Mm), . . . , Q2m−1 = (M ′

1,M
′
2,M

′
3, . . . ,M

′
m). When used

as queries to PMAC TBC1k, the 2m resulting values X i
m, for 0 ≤ i ≤ 2m − 1,

depend on the linear combination of only 2m random variables. A similar argu-
ment holds for the values Y i

m, as well as for the similarly treated bound of mcoll2.
Thus, the multi-collision bound demands a significantly more detailed analysis.

11

Algorithm 3 The updated game for the security proof of PMACx. Only the
double-boxed statement changes compared with the game in Algorithm 2.

21: function Oracle(M)
22: . . .
42: π̃2,Ŷm [Xm]← U

43: π̃3,X̂m [Ym]← V

44: return T ← U ⊕ V

Fixing the Analysis. From our proof for PMAC2x, we can now derive a
corollary for a similar security bound for PMACx, which again can be easily
transformed into a bound for PMAC TBC1k.

Corollary 1. Let Ẽ and PMAC2x[Ẽ] be defined as in Section 3. Let d+ t = n,
and let m < 2t denote the maximum number of n-bit blocks of any query. Then,

it holds that AdvPRF
PMACx[Ẽ]

(q, ℓ, θ) ≤ AdvPRF
PMAC2x[Ẽ]

(q, ℓ, θ).

The proof can use a game almost identical to that in Algorithm 2, where we only
modify Line 44 to return the XOR of U and V . This is shown in Algorithm 3.
All further procedures and functions remain identical to those in Algorithm 2.
If (U ‖V) is indistinguishable from outputs of a 2n-bit random function ρ, then
each of the n-bit outputs U and V can be considered random. It follows, if
U is indistinguishable from n-bit values, then the XOR sum of U ⊕ V is also
indistinguishable from a random n-bit value. Hence, the PRF advantage of A
on PMACx is upper bounded by that of an adversary A′ on PMAC2x with an
equal amount of resources as A; hence, the corollary follows.
PMACx and PMAC TBC1k differ in two aspects: (1) PMACx defines a
generic d-bit domain encoding and defines a conversion function Conv for de-
riving the inputs for the finalization; and (2) PMACx adds a final doubling
for a simpler and consistent description. Clearly, none of the differences af-
fects the distribution of final chaining values X̂m and Ŷm. Hence, when fixing
d = 2, a security result for PMACx can be easily carried over to a bound for
PMAC TBC1k.

6 Definition and Security Analysis of SIVx

This section defines and analyzes the deterministic AE scheme SIVx, a com-
position of a variant of PMAC2x with the IV-based Counter-in-Tweak mode
IVCTRT. We recall the definitions of IV-based encryption and Deterministic AE
security in Appendix C. Note that it is straight-forward to derive a nonce-based
AE scheme by fixing the nonce length over all queries and always appending the
nonce to the associated data.

IVCTRT. IVCTRT denotes the purely IV-based version of Counter in Tweak
[23, Appendix C], which takes a 2n-bit random IV plus the message for each

12

A∗
1 A∗

2 A∗
a

2

2

2

2 2

2

2

X0

Y0

Xa

Xa

Ya

Ya

M∗
1 M∗

2 M∗
m |M |

U

U

V VV

V

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Ẽ0,1
K Ẽ0,2

K Ẽ0,a
K

Ẽ0,a+1
K Ẽ0,a+2

K Ẽ0,a+m

K Ẽ0,a+m+1
K

Conv

Conv

Conv′

Ẽ2
K

Ẽ3
K

T

M1 M2 Mm

C1 C2 Cm

T T+1 T+m−1Ẽ1
K Ẽ1

K Ẽ1
K

PMAC2x′[Ẽ]

IVCTRT[Ẽ]

Fig. 3: Encryption of associated data A and message M with the deterministic AE
scheme SIVx from the composition of PMAC2x[Ẽ] (top), and the IVCTRT[Ẽ] mode
of encryption (bottom) [22]. A∗ and M∗ denote A and M after padding them with
10∗ so that their lengths are multiples of n bit each.

encryption. Let T = {0, 1}t, and T ′ = {0, 1}×T . The mode first splits (U, V)
n
←−

IV , and uses a given tweakable block cipher Ẽ : K × T ′ × {0, 1}n → {0, 1}n in
counter mode, with V as cipher input. Next, it derives T ← Conv′(U) from U
with a regular function Conv′ : {0, 1}n → T and increments T for every call

to Ẽ using addition modulo 2t. We denote by IVCTRT[Ẽ] the instantiation

of IVCTRT with Ẽ; from Theorem 1 and Appendix C in [23], we recall the
following theorem:

Theorem 2 (ivE Security of IVCTRT). Let π̃ և P̃erm(T ′, {0, 1}n) be an

ideal tweakable block cipher. Let A be an adversary which asks at most q queries

of at most 8 ≤ ℓ ≤ |T | blocks in total. Then

AdvivE
IVCTRT[π̃](A) ≤

1

2n
+

1

|T |
+

4ℓ log q

|T |
+

ℓ log2(ℓ)

2n
.

13

Algorithm 4 Definition of SIVx[Ẽ] and its inverse. IVCTRT[Ẽ] and its inverse

IVCTRT−1[Ẽ] are identical operations. Note that PMAC2x′ does not pad the
input M∗ since it is padded already in Encode.

11: function SIVx[ẼK](A,M)
12: X ← Encode(A,M)

13: tag← PMAC2x′[ẼK](X)
14: (U, V)

n
←− tag

15: IV ← Conv′(U) ‖V

16: C ← IVCTRT[ẼK](IV,M)
17: return (C,tag)

21: function IVCTRT[ẼK](IV,M)
22: (T, V)← IV
23: (M1, . . . ,Mm)

n
←−M

24: for i← 1 to m− 1 do

25: Ci ← Ẽ
1,T+(i−1)
K (V)⊕Mi

26: Sm ← Ẽ
1,T+(m−1)
K (V)[1..|Mm |]

27: Cm ← Sm ⊕Mm

28: return C ← (C1 ‖ . . . ‖Cm)

31: function Conv′(U)
32: return T ← U [1..t]

41: function SIVx−1[ẼK](A,C,tag)
42: (U, V)

n
←− tag

43: IV ← Conv′(U) ‖V

44: M ← IVCTRT−1[ẼK](IV,C)
45: X ← Encode(A,M)

46: tag′ ← PMAC2x′[ẼK](X)
47: if tag = tag′ then

48: return M
49: return ⊥

51: function Encode(A,M)
52: ℓa ← |A| mod n
53: ℓm ← |M | mod n
54: A∗ ← (A ‖ 10n−ℓa−1)
55: M∗ ← (M ‖ 10n−ℓm−1)
56: L← 〈|M |〉n
57: return (A∗ ‖M∗ ‖L)

PMAC2x′ and Encode. When processing tuples of associated data A and
messages M , we have to ensure that all distinct inputs (A,M) and (A′,M ′)
lead to distinct inputs to PMAC2x. For this purpose, we define an injective
encoding function Encode : A ×M → {0, 1}∗ which is given in Algorithm 4.
Encode always pads A∗ ← A ‖ 10∗ and M∗ ← M ‖ 10∗ so that the lengths
of A∗ and M∗ are the next possible multiple of n bit. It further encodes the
length of M in bit to an n-bit string named L, and outputs the concatenation
of M∗ ← (A∗ ‖M∗ ‖L). Hence, every tuple (A,M) results in a unique output.
PMAC2x′ then processes this value M∗. PMAC2x′ differs from PMAC2x only
in the fact that PMAC2x′ omits the padding inside PMAC2x (i.e., Line 33 in
Algorithm 1 is omitted) since we already padded it before by Encode, which
ensures that all distinct inputs to Encode yields distinct inputs to PMAC2x,
and that the PRF proof for PMAC2x still holds.

Lemma 1. Given any associated data A,A′ ∈ A and messages M,M ′ ∈M s.t.

(A,M) 6= (A′,M ′). Then, it holds that Encode(A,M) 6= Encode(A′,M ′).

Lemma 1 is not difficult to see; a brief proof sketch is given in Appendix D.

Definition of SIVx. We define the deterministic AE scheme SIVx[Ẽ] as

the composition of PMAC2x′[Ẽ] and IVCTRT[Ẽ], as given in Algorithm 4.
A schematic illustration of the encryption process is depicted in Figure 3. In
general, we denote by SIVx[F,Π] the instantiation of SIVx with a function F
and an IV-based encryption scheme Π in SIVx. To use the same key in all calls
to Ẽ, we use the domains 0 = (0000)2 for processing as well as 2 = (0010)2 and

14

3 = (0011)2 for the finalization in PMAC2x′. We encode them into the d = 4
most significant bits of the tweak. Inside IVCTRT, we use the single-bit domain
1 in all calls to Ẽ for we lose only a single bit from the IV. For concreteness, we
define X0 = Y0 = 0n.

Theorem 3 (DAE Security of SIVx). Let F : K1 × A ×M → {0, 1}2n,

and let Π = (Ẽ , D̃) be an IV-based encryption scheme with key space K2 and IV

space IV. Let K1 և K1 and K2 և K2 be independent. Let Conv′ : {0, 1}n →
{0, 1}n−1 be a regular function. Let A be a DAE adversary running in time at

most θ, asking at most q queries of at most 8 ≤ ℓ < 2t blocks in total. Then

AdvDAE
SIVx[F,Π](A) ≤ AdvivE

Π (θ +O(ℓ), q, ℓ) +AdvPRF
F (θ +O(ℓ), q, ℓ) +

q

2n
.

We defer the proof of Theorem 3 to Appendix C. Inserting the bounds from
Theorems 1 and 2, we obtain the corollary below, where F denotes PMAC2x′[Ẽ]

and Π represents IVCTRT[Ẽ].

Corollary 2. Fix positive integers k, n, t and d = 4. Define d + t = n and let

T = {0, 1}t and T ′ = {0, 1}d × {0, 1}t, and IV = {0, 1}n−1. Let Ẽ : K × T ′ ×
{0, 1}n → {0, 1}n, and Conv′ : {0, 1}n → IV be a regular function. Let K և K
and A be a DAE adversary that runs in time at most θ, and asks at most q
queries of at most 8 ≤ ℓ < 2t blocks in total. Then

AdvDAE
SIVx[Ẽ]

(A) ≤
22dq2

2 · (2n − q)2
+

2dq3

3 · 22n(2n − q)
+

2dq2

2n(2n − q)
+

4ℓ log q + 1

2n−1
+

q + 1 + ℓ log2(ℓ)

2n
+AdvTPRP

Ẽ
(θ +O(2ℓ+ 5q), 2ℓ+ 5q).

The terms 5q result from the fact that we can have up to five additional calls
to Ẽ inside PMAC2x′ because of the padding of A, M , finalization, and the
additionally processed length.

7 Conclusion

This work revisited the PMAC TBC1k construction by Naito for construct-
ing a MAC with beyond-birthday-bound (BBB) security and 2n-bit outputs,
called PMAC2x. We identified a critical assumption in the previous analysis of
PMAC TBC1k and circumvented it by a new proof for PMAC2x; moreover,
we could easily derive a proof for PMACx, a variant of our PMAC2x con-
struction with n-bit outputs. So, we also provided a corrected bound for Naito’s
construction. We obtained the positive result that all three constructions provide
PRF security for up to O(q2/22n+q3/23n) queries. With the help of PMAC2x,
we constructed a BBB-secure AE scheme from a tweakable block cipher whose
security is independent of nonces and which depends on a single primitive under
a single key. We are aware that the 2n-bit tag of SIVx requires still as many
bits to be transmitted as for the 2n-bit nonce-IV in SCT; future work could
study how an appropriate truncation could reduce the transmission overhead
while retaining BBB security.

15

Acknowledgments

The authors would like to thank Yusuke Naito and the anonymous reviewers for
their fruitful comments that helped improve our work. We address our special
thanks to Kazuhiko Minematsu and Tetsu Iwata [17] who pointed out that an
earlier conditional padding for partial final blocks to PMAC2x and PMACx
and the combination of associated data and message in SIVx was subject to
birthday-bound attacks. We revised our padding in PMAC2x and PMACx
accordingly and added an injective encoding to its use in SIVx.

Changelog

2017-03-09 Revised the padding method in PMAC2x and PMACx to always
append a 10∗ padding to the input. Revised the definition of PMAC2x in
SIVx for processing both associated data and message in SIVx, and added
an injective encoding. Revised Subcase 3 in Case 1.

References

1. Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. 2016. Submission
to the CAESAR competition.

2. Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In FOCS, pages 394–403. IEEE Computer
Society, 1997.

3. Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New Methods for
Message Authentication Using Finite Pseudorandom Functions. In Don Copper-
smith, editor, CRYPTO, volume 963 of LNCS, pages 15–28. Springer, 1995.

4. Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the
Security of Triple Encryption. IACR Cryptology ePrint Archive, 2004:331, 2004.

5. Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, EURO-
CRYPT, volume 4004 of LNCS, pages 409–426. Springer, 2006.

6. Daniel J. Bernstein. How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology, 12(3):185–192, 1999.

7. John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Par-
allelizable Message Authentication. In Lars R. Knudsen, editor, EUROCRYPT,
volume 2332 of LNCS, pages 384–397. Springer, 2002.

8. Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang.
Building Single-Key Beyond Birthday Bound Message Authentication Code. IACR
Cryptology ePrint Archive, 2015:958, 2015.

9. Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost
Foolproof On-Line Authenticated Encryption Schemes. In Anne Canteaut, editor,
FSE, volume 7549 of LNCS, pages 196–215. Springer, 2012.

10. Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. Efficient Beyond-
Birthday-Bound-Secure Deterministic Authenticated Encryption with Minimal
Stretch. In Joseph K. Liu and Ron Steinfeld, editors, ACISP (2), volume 9723
of LNCS, pages 317–332. Springer, 2016.

16

11. Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust Authenticated-
Encryption AEZ and the Problem That It Solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT (1), volume 9056 of LNCS, pages 15–44. Springer,
2015.

12. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.4. http://

competitions.cr.yp.to/caesar-submissions.html, 2016. Third-round submission
to the CAESAR competition.

13. Atul Luykx, Bart Preneel, Alan Szepieniec, and Kan Yasuda. On the Influence of
Message Length in PMAC’s Security Bounds. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT (1), volume 9665 of LNCS, pages 596–621. Springer,
2016.

14. Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC Mode
for Lightweight Block Ciphers. In Thomas Peyrin, editor, FSE, volume 9783 of
LNCS, pages 43–59. Springer, 2016.

15. Avradip Mandal and Mridul Nandi. An Improved Collision Probability for CBC-
MAC and PMAC. IACR Cryptology ePrint Archive, 2007:32, 2007.

16. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseu-
dorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT, volume 8441 of LNCS, pages 275–292. Springer, 2014.

17. Kazuhiko Minematsu and Tetsu Iwata. Cryptanalysis of PMACx, PMAC2x, and
SIVx, 2017.

18. Kazuhiko Minematsu and Toshiyasu Matsushima. New Bounds for PMAC, TMAC,
and XCBC. In Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages 434–451.
Springer, 2007.

19. Yusuke Naito. Full PRF-Secure Message Authentication Code Based on Tweakable
Block Cipher. In Man Ho Au and Atsuko Miyaji, editors, ProvSec, volume 9451
of LNCS, pages 167–182. Springer, 2015.

20. Mridul Nandi. A Unified Method for Improving PRF Bounds for a Class of Block-
cipher Based MACs. In Seokhie Hong and Tetsu Iwata, editors, FSE, volume 6147
of LNCS, pages 212–229. Springer, 2010.

21. Mridul Nandi and Avradip Mandal. Improved security analysis of PMAC. J.
Mathematical Cryptology, 2(2):149–162, 2008.

22. Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO I, volume 9814 of LNCS, pages 33–63. Springer, 2016.

23. Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers. IACR Cryptology ePrint Archive, 2015:1049,
Version from May 27 2016.

24. Phillip Rogaway. Authenticated-Encryption with Associated-Data. In ACM Con-
ference on Computer and Communications Security, pages 98–107, 2002.

25. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT, volume
3329 of LNCS, pages 16–31. Springer, 2004.

26. Phillip Rogaway. Nonce-Based Symmetric Encryption. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of LNCS, pages 348–359. Springer, 2004.

27. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 373–390. Springer, 2006.

28. Thomas Shrimpton and R. Seth Terashima. A Modular Framework for Building
Variable-Input-Length Tweakable Ciphers. In Kazue Sako and Palash Sarkar,

17

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

editors, ASIACRYPT (1), volume 8269 of Lecture Notes in Computer Science,
pages 405–423. Springer, 2013.

29. Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In Phillip
Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 596–609. Springer, 2011.

30. Kan Yasuda. PMAC with Parity: Minimizing the Query-Length Influence. In Orr
Dunkelman, editor, CT-RSA 2012, pages 203–214. Springer, 2012.

31. Yusi Zhang. Using an Error-Correction Code for Fast, Beyond-Birthday-Bound
Authentication. In Kaisa Nyberg, editor, CT-RSA, pages 291–307. Springer, 2015.

Supporting Material

A Previous BBB-Secure Authenticated Encryption

BBB-secure AE has received attention earlier; at ASIACRYPT’13, Shrimpton
and Terashima [28] proposed Protected IV (PIV), a three-pass variable-input-
length cipher which can be transformed into a robust AE scheme. Shrimpton
and Terashima proposed two variants of PIV, one of which provided beyond-
birthday-bound security. Though, it requires one more pass over the message
than our proposal, and is composed of a universal hash function to extend the
tweak size of the underlying primitive, as has already been stressed by Peyrin
and Seurin. Thus, PIV requires rather large keys, plus it is neither single-key nor
single-primitive. Furthermore, Forler et al. [10] proposed Deterministic Counter-
in-Tweak (DCT), which can be seen as a two-pass variant of Protected IV or the
Hash-Counter-Hash design in general. DCT also employs Counter-in-Tweak for
BBB security. Though, that construction is also a composition of a universal hash
function to extend the tweak size, plus an encryption scheme, plus an additional
call to a 2n-bit permutation. Thus, it is again not single-primitive and requires
a hash function to extend the tweak size. In contrast to both PIV and DCT,
SCT as well as our proposal SIVx combine all three properties: single-key, a
fixed-tweak-length single-primitive, and BBB security.
We would like to stress that a significant number of sponge- or—in general —
permutation-based AE schemes exist which also provide high security. Last but
not least, several heuristics have evolved very recently. However, we see BBB-
secure block-cipher-based AE schemes as well as hash functions and MACs as
their components not in direct competition to wide-state designs, but rather as
a complementary line of research. Moreover, BBB-secure designs can also be
instantiated with wide-block primitives to provide very high levels of security.

B Notions for IV-based Encryption and Deterministic

Authenticated Encryption

We define $O for an oracle that, given an input X , chooses uniformly at random
a value Y equal in length of the expected output, |Y | = |O(X)|, and returns
Y . We assume that $O performs lazy sampling, i.e., $O(X) returns the same
value Y when queried with the same input X . We often omit the key for brevity,

18

e.g., $Ẽ(X) will be short for $ẼK (X). If two oracles Oi, Oj represent a family

of algorithms indexed by inputs, the indices must match: e. g., when ẼK(A,M)

and D̃K(A,C, T) represent encryption and decryption algorithms with a fixed

key K and indexed by A, then ẼK →֒ D̃K says that A first queries ẼK(A,M)

and later D̃K(A, Ẽ(A,M)).
An IV-based encryption scheme [2] is a tuple Π = (E ,D) of encryption and
decryption algorithms E : K × IV × M → C and D : K × IV × C → M,
with associated non-empty key space K, non-empty IV space IV , and where
M, C ⊆ {0, 1}∗ denote message and ciphertext space, respectively.

Definition 3 (ivE Advantage). Let Π = (E ,D) be an IV-based encryption

scheme with associated key space K and IV space IV. Let K և K, and let A be

a computationally bounded adversary with access to an oracle O. On any input

M ∈ M, the game chooses IV և IV and returns (IV,O(IV,M)). The ivE
advantage of A with respect to Π is defined as AdvivE

Π (A) := ∆A(EK ; $E).

A deterministic AE scheme (with associated data) is a tuple Π̃ = (Ẽ , D̃) of

deterministic algorithms Ẽ : K×A×M→ C∪T and D̃ : K×A×C×T →M∪
{⊥} with non-empty key space K, associated-data space A, message spaceM,
ciphertext space C, and tag space T [27]. We restrict to A,M, C, T ⊆ {0, 1}∗. For

each K ∈ K, A ∈ A, and M ∈ M, the output (C, T) ← ẼK(A,M) is such that

|C| = |M | and |T | = τ for fixed stretch τ . D̃K(A,C, T) outputs the corresponding
message M iff (A,C, T) is valid, and ⊥ otherwise. We assume correctness, i.e.,

for all K,A,M ∈ K ×A×M, it holds that D̃K(A, ẼK(A,M)) = M . Moreover,

we assume tidiness, i.e., if there exists an M such that D̃K(A,C, T) = M , then

it holds that ẼK(A, D̃K(A,C, T)) = (C, T).

Definition 4 (DAE Advantage [27]). Let Π̃ = (Ẽ , D̃) be a DAE scheme with

associated key, input, and output spaces as above. Let K և K and let A denote

a computationally bounded adversary with access to two oracles O1 and O2 each

such that A never queries O1 →֒ O2. Then, the DAE advantages of A with

respect to Π̃ is defined as AdvDAE
Π̃

(A) := ∆A(ẼK , D̃K ; $Ẽ ,⊥).

C Security Proof of SIVx

This section gives the proof of Theorem 3.

Proof. The proof is analogous to the security proof of NSIV (the generalization

of SCT) in [23]. As an initial step, we replace Ẽ by an ideal tweaked permuta-

tion π̃ և P̃erm(T ′, {0, 1}n). Clearly, the maximal advantage for an adversary to
distinguish between both settings is bounded by the last term of our theorem.
In the remainder, let Π̃ = SIVx[F,Π], and denote by Ẽ [FK1

, ΠK2
] and D̃[FK1

,

Π−1
K2

] the encryption and decryption algorithms of Π̃ instantiated with F and Π
under independent keys K1 and K2, respectively. We will describe a game-based

19

proof over a sequence of three games. We denote by

G1 := (Ẽ [FK1
, ΠK2

], D̃[FK1
, Π−1

K2
]) and

G4 := ($Ẽ ,⊥)

the two worlds that A must distinguish between, where $Ẽ returns on input
(A,M) a tuple of random strings of length 2n and |Ẽ [FK1

, ΠK2
](A,M)|, respec-

tively. We further use two intermediate worlds

G2 := (Ẽ [ρ,ΠK2
], D̃[ρ,Π−1

K2
]) and

G3 := (Ẽ [ρ,ΠK2
],⊥).

In G2 and G3, we replace FK1
by a random function ρ և Func(A×M, {0, 1}2n),

in both encryption and decryption algorithms. In G3, we also replace the real
decryption algorithm D̃ by the ⊥ oracle. We denote by

∆i,j :=
∣∣Pr

[
AGi ⇒ 1

]
− Pr

[
AGj ⇒ 1

]∣∣

the advantage of A in distinguishing world Gi from Gj . First, we upper bound

∆3,4 :=
∣∣Pr

[
AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣

Consider the following adversary A′ against the ivE security of Π : Let O ∈

{Ẽ [ρ,ΠK2
], $Ẽ} be the first oracle that A′ has access to. A′ runs A. When

A asks an encryption query (A,M), A′ queries O(M) and obtains an answer
(IV, C). It derives (T, V)← IV , samples uniformly at random a value U in the
set of preimages Conv−1(T), derives tag ← (U ‖V), and returns (C,tag) to
A. When A asks a decryption query, A′ simply returns ⊥. When A halts and
outputs a bit, A′ simply outputs the same bit. Independently from whether O is
the real or random encryption, the function ρ outputs uniformly random values
(T ‖V). Thus, U is also uniformly random since Conv is a regular function. So,

A′ perfectly simulates G3 if O is Ẽ [ρ,ΠK2
], and perfectly simulates G4 if O is

$Ẽ . Clearly, A and A′ differ neither in the number of asked queries, total blocks
nor maximal query length, but only in the used time that A′ needs to simulate
A. Hence, it holds that

∆3,4 ≤ AdvivE
Π (A′).

Next, we upper bound

∆1,2 :=
∣∣Pr

[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣

Let A′′ be a PRF adversary on F . Denote by O ∈ {FK1
, ρ} the oracle that A′′

has access to. A′′ chooses a random K2 և K2 and runs A. When A makes an
encryption query (A,M) or a decryption query (A,C,tag), A′′ simply executes
SIVx where it replaces all calls to FK1

(·, ·) by a call to its oracle O. When A
halts and outputs a bit, A′′ outputs the same bit. Again, A′′ perfectly simulates

20

G1 if O is FK1
for random K1, and also perfectly simulates G2 if O is ρ. Clearly,

A and A′ differ neither in the number of queries, total blocks nor maximal query
length, but only in the used time that A′ needs to simulate A. So, it holds that

∆1,2 ≤ AdvPRF
F (A′′).

It remains to upper bound

∆2,3 :=
∣∣Pr

[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣

Consider G2 as the ideal world and G3 as the real world, and define as bad

transcript a transcript that contains a valid decryption query, i. e., the decryption
oracle returned some M 6= ⊥ for some decryption query of A. Otherwise, a
transcript τ is good if all its contained decryption queries were answered by ⊥.
We consider two cases here:

– The transcript of A’s queries contains a valid decryption query.

– The transcript contains no valid decryption query.

The second case is easy to analyze: Since the encryption oracles are equal in
both worlds, and since the decryption oracle always outputs ⊥ in G3, it follows
for any good transcript τ that the advantage of A to distinguish between both
worlds is zero.
It remains to upper bound the probability that a transcript τ from G2 is bad,
i. e., contains a valid decryption query (A,C,tag). For such a valid decryp-
tion query, we denote tag := (U ‖V), T := Conv(U), IV := (T ‖V), and

M := D̃[ρ,Π−1
K2

](IV, C). First, assume that there was a previous encryption
query (A,M) that returned (C,tag′). Since we assumed that the adversary
never asks a decryption query (A,C,tag′) if a previous encryption query (A,M)
returned (C,tag′), it necessarily holds that tag 6= tag′ = ρ(A,M). Thus, the
decryption oracle necessarily returns ⊥ then. So, the adversary cannot profit
from results of old queries.
In the opposite case, assume there was no previous encryption query (A,M).
Then, the output of ρ(A,M) is sampled at random from {0, 1}2n during the
decryption of some (A,C,tag). In this case, A has to guess the random output
of ρ(A,M). Since ρ is a uniform random function, the success probability of
A is at most q/2n over q queries. From the fundamental Theorem of game-
playing follows that the advantage of A to distinguish both worlds is given by
the probability that a transcript is bad, which is upper bounded by

∆2,3 ≤
q

2n
.

The result in Theorem 3 follows from applying the triangle inequality:

AdvDAE
Π̃

(A) ≤ ∆1,2 +∆2,3 +∆3,4.

21

D Injectivity of Encode

Proof of Lemma 1.. The proof is easy to see and therefore only brief. First,
we recall a well-known property of the 10∗-padding: given any two bit-strings
X,X ′ ∈ {0, 1}∗ of equal length |X | = |X ′|. Then, if they are both padded so that
their lengths after padding are the next multiple of some non-negative integer
n, i.e., X∗ ← X ‖ 10∗ and X ′∗ ← X ′ ‖ 10∗, then (X∗ = X ′∗)⇐⇒ (X = X ′).
Now, we can define non-negative integers a, m, a′, m′ for the numbers of blocks
in A, M , A′, and M ′, respectively: A = (A1, . . . , Aa), M = (M1, . . . ,Mm), A′ =
(A′

1, . . . , A
′
a′) and M ′ = (M ′

1, . . . ,M
′
m′). For Encode(A,M) = Encode(A′,M ′)

to hold, it must hold that (A∗ ‖M∗) = (A′∗ ‖M ′∗). We distinguish between two
mutually exclusive cases that cover all possibilities:
Case 1: |A| = |A′|. In this case, the 10∗ padding will ensure that |A∗| = |A′∗|. To
have (A∗ ‖M∗) = (A′∗ ‖M ′∗), it must hold that A∗ = A′∗, which again implies
A = A′ from our property at the begin of this proof. Since we defined that
(A,M) 6= (A′,M ′), this implies further that M 6= M ′. We have two subcases:
(1) |M | 6= |M ′| and (2) |M | = |M ′|. We can instantly exclude Subcase (1) since
in this case, the final block L 6= L′, and therefore, Encode(A,M) never equals
Encode(A′,M ′). In Subcase (2), the 10∗ padding ensures that M∗ = M ′∗ holds
iff M = M ′. This leads to (A,M) = (A′,M ′), which is a contradiction to our
assumption that we want a collision for distinct (A,M) 6= (A′,M ′).
Case 2: |A| 6= |A′|. Since A and A′ are always padded with 10∗ such that their
respective lengths are the next possible multiples of n, (A∗ ‖M∗) = (A′∗ ‖M ′∗)
can only hold if |M∗| 6= |M ′∗|. Since |M∗| and |M ′∗| are multiples of n bit,
it follows for the lengths of the original messages that |M | 6= |M ′|. Though,
this implies that the length blocks differ: L 6= L′. Therefore, it cannot hold
Encode(A,M) = Encode(A′,M ′). Our claim that Encode is injective follows.

22

	Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday Authenticated Encryption

