
Leakage of Signal function with reused keys in RLWE key
exchange

Jintai Ding1, Saed Alsayigh1, Saraswathy RV1, and Scott Fluhrer2

1 University of Cincinnati
2 Cisco Systems

Abstract. In this paper, we show that the signal function used in RLWE key exchange
could leak information to find the secret s of a reused public key p = as+ 2e. This work
is motivated by an attack proposed in [10] and gives an insight into how RLWE public
keys reused for long term can be exploited to find its corresponding secret key. We have
also run experiments to verify that the attack succeeds in recovering the secret.

Keywords: RLWE, key exchange, post quantum, key reuse, active attacks.

1 Introduction

Key exchange is an integral part of cryptography. It is required for establishing secure keys for
encryption of data between two parties. The breakthrough idea of Diffie-Hellman in [9] pro-
vided an algorithm for secure key exchange and has been used since then in many applications
of cryptography. There are also other variants of DH that have been proposed and used over
the years including Elliptic curve DH. The necessity to look for an alternative to DH is mainly
for security with the existence of quantum computers. With Shor’s algorithm [20], the discrete
log problem (the hardness of which the security of currently used key exchange protocols are
based on) can be solved in polynomial time with the help of a quantum computer compromis-
ing the security of the protocols. Recently, NSA has announced plans to transition to quantum
resistant cryptographic primitives for its Suite B cryptographic algorithms. One of the potential
candidates for post quantum key exchange includes the key exchange from RLWE proposed in
[14] and an authenticated version in [21]. Other follow up work on RLWE based key exchange
protocols include [18], [6], [4] and [11], which follow the same approach as in [14] with mi-
nor modifications. The implementation of [4] uses the centered binomial gaussian for the error
terms of the RLWE samples and achieve significant performance improvements and has re-
cently been chosen as a candidate for integration in google chrome canary browser for their
post quantum experiment[2].In an RLWE key exchange between two parties, the key computa-
tion yields approximately equal values. To derive a shared key using the approximately equal
key computation, the responder sends a signal to the initiator indicating the region in which the
approximately equal value lies. Using this information, both the parties agree on a shared key.
The concern addressed in this work is the ability of an active adversary to perform an attack on
the RLWE based key exchange protocols using this signal function to recover the correspond-
ing secret of a reused public key. The signal function and key exchange are reviewed in section
4.

1.1 Previous Work

An attack on RLWE key exchange for reused public keys was described by Fluhrer in [10].
The idea of the attack is to deviate from the protocol in creating the adversary’s public key and
extract information about the secret of the other party. The attack relies on finding sA in an

2 Ding J., Alsayigh S., RV S. and Fluhrer S.

adversary’s public key of pA = jasA + keA, (where k, j are integers) such that asAs[0] = ±1
and once such an sA is found, the attack aims to find the secret s of the reused key p = as+2e
of the honest party by fixing k = asAs[0] and looking for signal variations when changing
j. The signal function region is slightly modified and even though the approach is in the right
direction, this does not work in the case of the key exchange [14] discussed in this paper. There
is also an attack [13] using the CRT (Chinese Remainder Theorem) basis of Rq on the one
pass case of the HMQV key exchange protocol from RLWE. This attack recovers every CRT
coefficient of the secret s of a key p = as + 2e in order to recover s. The complexity of the
attack is claimed to be n.q. q−12n .

1.2 Our Contributions

We exploit the leakage of the signal function to present an attack on RLWE based key exchange
that finds the exact value of the secret s corresponding to a reused RLWE key of p = as+ 2e.
This work follows the idea in [10] but uses a different approach to using the signal function
to complete the attack. We provide a detailed description on how such an attack is performed
by analyzing the number of signal changes of each of the coefficients of pAs + 2g where
pA = asA + keA with sA, eA chosen specifically by the adversary to extract the value of s,
and g is sampled from the error distribution. The choice of sA, eA is explained in section 4.

We also describe how to refine the queries further to eliminate the ambiguity of the ± sign
of the coefficients and recover the exact values. Experiments have verified our estimation for the
number of signal changes for different values of the coefficient of s. The goal of the work is to
show that RLWE keys when reused in key exchange can be exploited and broken. The success
of such attacks comes from the hardness of distinguishing RLWE samples from uniform.

2 Preliminaries

2.1 Learning with Errors and RLWE

The Learning with Errors (LWE) problem is a generalization of the parity-learning problem
introduced by Oded Regev in 2005 [19]. Regev also showed a quantum reduction from solving
LWE in the average case to solving worst case Lattice problems such as the Shortest Vector
Problem (SVP) and the Shortest Independent Vectors Problem (SIVP). In 2009, Peikert showed
a classical reduction from variants of the shortest vector problem to corresponding versions
of LWE[17]. The LWE problem is parametrized by a modulus q, dimension n and an error
distribution χ on Zq . Then, the decision version of the LWE problem is to distinguish the
following two distributions: (a, a.s + e) and (a, b), where a, s, b ∈ Znq are sampled uniformly
at random and e← χ from the error distribution. The search version is to find s given poly(n)
number of samples (ai, ai.s + e). RLWE is the version of LWE using polynomial rings and
is preferred over LWE due to its efficiency and potential for practical implementations. The
hardness of RLWE is also established by reductions to solving hard problems in ideal lattices.
We provide the definition of the Discrete Gaussian distribution (error distribution) here:

Definition 1. [21] For any positive real α ∈ R, and vectors c ∈ Rn, the continuous Gaussian
distribution over Rn with standard deviation centered at v is defined by the probability function
ρα,c(x) = (1√

2πα2
)nexp(−‖x−c‖

2

2α2). For integer vectors c ∈ Rn, let ρα,c(x) =
∑
x∈Zn ρα,c(x).

Then, we define the discrete Gaussian distribution over Zn as DZn,α,c(x) =
ρα,c(x)
ρα,c(Zn) , where

x ∈ Zn. The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.

Let n be an integer and a power of 2. Define f(x) = xn + 1 and consider the ring R :=
Z[x]/〈f(x)〉. For any positive integer q, we define the ring Rq = Zq[x]/〈f(x)〉 analogously,

Leakage of Signal function with reused keys in RLWE key exchange 3

where the ring of polynomials over Z (respectively Zq = Z/qZ) we denote by Z[x] (respec-
tively Zq[x]). Let χα denote the Discrete Gaussian distribution on Rq with parameter α. For
any polynomial p ∈ R (or Rq), let the norm ‖p‖ be defined as the norm of the corresponding
coefficient vector in Z (or Zq). Let p[i] denote the i-th coefficient of p, equivalently i-th index
in the coefficient vector of p. Below are two lemmas that help ensure the correctness of the key
exchange protocol.

Lemma 1 ([21]). Let f(x) andR be defined as above. Then, for any s, t ∈ R, we have ‖s ·t‖ ≤√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([12, 16]). For any real number α = ω(
√
log n), we have Prx←χα [‖x‖ > α

√
n] ≤

2−n+1.

Let s ← Rq be a uniformly chosen element of the ring Rq , as defined above. We define
As,χα to be the distribution of the pair (a, as + e) ∈ Rq × Rq , where a ← Rq is uniformly
chosen and e← χα is independent of a.

Definition 2 (Ring-LWE Assumption[15]). Let Rq, χα be defined as above, and let s ←
Rq be uniformly chosen. The (special case) ring-LWE assumption RLWEq,α states that it
is hard for any PPT algorithm to distinguish As,χα from the uniform distribution on Rq × Rq
with only polynomial samples.

The search version of RLWE is for a PPT algorithm to find s rather than distinguish
the two distributions. For certain parameter choices, the two forms are polynomially equiva-
lent [15]. The normal form [7, 8] of the RLWE problem is by modifying the above definition
by choosing s from the error distribution χα rather than uniformly. It has been proven that the
ring-LWE assumption still holds even with this variant [5, 15].

Proposition 1 ([15]). Let n be a power of 2, let α be a real number in (0, 1), and q a prime
such that q mod 2n = 1 and αq > ω(

√
log n). Define R = Z[x]/〈xn + 1〉 as above. Then

there exists a polynomial time quantum reduction from Õ(
√
n/α)-SIVP (Short Independent

Vectors Problem) in the worst case to average-case RLWEq,β with ` samples, where β = αq ·
(n`/ log(n`))1/4.

3 Transport Layer Security (TLS)

An important application of key exchange protocols is in the Transport Layer Security (TLS)
which is used to secure http traffic in https websites and SSH (Secure Shell). The Transport
Layer security and SSL (Secure Sockets Layer, predecessor of TLS) are cryptographic protocols
in the application layer of TCP/IP reference model and presentation layer in the OSI model to
provide security in a communication network. The objective of the TLS protocol is to ensure
privacy and data integrity between communicating applications. The protocol consists of 2
layers - TLS record protocol and the other layer being protocols that are designed to establish
a secure connection (Handshake Protocol and the Alert Protocol). The handshake protocol is
run before any application data is transmitted and enables the client and server to establish the
algorithm and shared key for encrypted communication.

The TLS 1.3 draft [1] includes support to a 0-RTT mode in which the server maintains
a long term public key which is sent through a ServerConfiguration message to the
client. The client can use this static key to secure communication of application data in future
connections. This is the motivation behind an attack on RLWE key exchange for reused public
keys, although this has been changed in the later draft 13 of TLS 1.3 [3]. The draft 13 of TLS 1.3
proposes to use a PSK(preshared key) identity that is sent to the client on the initial handshake
to be used for encrypting early data on future handshakes.

4 Ding J., Alsayigh S., RV S. and Fluhrer S.

4 The Attack

Before describing the attack on an RLWE based key exchange, we briefly recall the simple key
exchange protocol in [14]. Let the notations be as defined in section 2.

4.1 Signal function (Reconciliation)

We define the Signal function used in the key exchange protocol discussed in this work (refer
[21]). Given Zq = {− q−12 , . . . , q−12 } and the middle subset E := {−b q4c, . . . , b

q
4e}, we define

Sig as the characteristic function of the compliment ofE: Sig(v) = 0 if v ∈ E and 1 otherwise.
Another important function used for deriving the final shared key in the key exchange is

defined as follows, Mod2 : Zq × {0, 1} → {0, 1}:

Mod2(v, w) = (v + w · q − 1

2
) mod q mod 2.

Then the key exchange protocol is as described below:

Init: Party A chooses a uniformly random from Rq and a secret sA ← χα and computes
pA = asA + 2eA, where eA ← χα. Party A then sends pA to party B.

Response: On receiving pA, partyB chooses a secret element sB and eB ← χα. PartyB then
computes pB = asB + 2eB , kB = pAsB + 2gA and wB = Sig(kB), sends pB , wB . party
B obtains a shared key skB = Mod2(kB , wB).

Finish: On receiving pB , wB from party B, party A computes kA = sApB + 2gA, where
gA ← χα and obtains the shared key skA = Mod2(kA, wB).

Party A Party B

Sample sA, eA ← χα
Secret Key: sA ∈ Rq
Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB , eB ← χα
Secret Key: sB ∈ Rq
Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα
Set kB = pAsB + 2gB
Find wB = Sig(kB) ∈ {0, 1}n

Sample gA ← χα
Set kA = pBsA + 2gA

Find skA = Mod2(kA, wB) ∈ {0, 1}n Find skB = Mod2(kB , wB) ∈ {0, 1}n

pA

pB , wB

Fig. 1. Original Protocol

4.2 Simplified Attack

Suppose that A is an active adversary with the knowledge of pB and with the ability to initiate
any number of key exchange sessions with party B to query for recovering the secret sB . In
performing the attack, an adversary plays the role of party A in the protocol and initiates key
exchange sessions with party B. A creates pA by deviating from the protocol; we denote the

Leakage of Signal function with reused keys in RLWE key exchange 5

deviated public key of the adversary as pA and the corresponding secret and error terms of the
adversary as sA and eA respectively.

First, we describe a simplified version of the attack when the error terms gA, gB are not
added to the key computation of kA, kB of parties A and B respectively.The adversary chooses
secret sA to be 0 and eA to be the identity element 1 in Rq ,and computes pA = asA + keA =
keA, k takes values in Zq . This results in the key computation of B to be kB = ksB . Hence
the signal wB sent by the party B for each coefficient is the signal of each coefficient of sB and
leaks its value.
Simulating party B’s response: We build an oracle S that simulates party B’s action in the
protocol on receiving a given input public key. We assume that pB is fixed for party B and S
has access to the secret sB . On receiving pA fromA, S computes kB = pAsB according to the
protocol. Then, S computes the signal wB = Sig(kB) and outputs wB .

Then, the attack is executed as follows:

Step 1: The Adversary A invokes the oracle S with input pA = keA for eA = 1 in Rq . Here,
k takes values from 0 to q − 1. As we change k value from 0 to q − 1, A can make a
correct guess of the value of sB [i] based on the number of times the signal wB [i] changes,
for each coefficient i of sB . As k takes values from 0 to q−1, the value of kB [i] changes in
k multiples of sB [i] (refer figure 2) and there are changes in the signal value when ksB [i]
is near the boundary values of the signal region E defined in section 4.1. Hence, there will
be exactly 2sB [i] number of changes in signal for any i-th coefficient of sB . For example,
wB [0] remains the same if sB [0] is 0 for different k, changes twice if sB [0] is 1 and so
on. But the adversary can only guess the value upto the ± sign, since a value of 1 or −1
gives the same number of signal changes. This is because for a value of −sB [i], the value
of kB [i] still changes in k multiples of sB [i] but in the reverse direction.

We query partyB again to resolve the ambiguity of the sign in the sB coefficients and determine
the exact value of sB . Suppose that the adversary A has performed the above steps and has
determined the value of each coefficient of sB upto sign.

Step 2: A invokes the oracle S to query with input (1 + x)pA. By doing this, A is able to see
the signal function value of pA((1 + x)sB) that is output by S . Thus, again by checking
the number of signal changes, A can now find the values of the coefficients of (1 + x)sB ,
which are sB [0]− sB [n− 1], sB [1] + sB [2], . . . , sB [n− 2] + sB [n− 1] upto ± sign.

So, with the additional information about these coefficients, we can determine if each pair
of coefficients sB [i], sB [j] have equal or opposite sign, hence narrowing down to only two
possibilities of sB and −sB .

Step 3: Consider the pair of coefficients sB [0], sB [n − 1], then by recovering the value of
sB [0]− sB [n−1] upto± sign in Step 2, and already knowing sB [0], sB [n−1] values upto
sign from Step 1, A determines if sB [0] and sB [n− 1] have the same or opposite sign.

Step 4: Repeat Step 3 for every pair of coefficients sB [i], sB [j], i from 0 to n − 2, j from 1
to n− 1 with the value of sB [i] + sB [j] upto ± sign from Step 2 to determine if they have
equal or opposite signs.

Once the adversary reaches this stage, he only has to guess the sign of sB [0] and the rest of
the coefficients follow since we have determined if every pair of coefficients sB [i], sB [j] have
equal or opposite signs.

Step 5: Since a and pB are public, A computes pB − asB and verifies the distribution of
the result. If A correctly guesses the sign of sB [0] and hence all the coefficients, then the
resulting distribution of pB − asB is the distribution of eB , which is discrete gaussian.
Otherwise,A knows that the guess for the sign of sB [0] is incorrect and can flip the sign to
obtain the correct sB value.

6 Ding J., Alsayigh S., RV S. and Fluhrer S.

Thus, the adversary is able to determine the exact value of sB without any ambiguity at the
end of the execution by querying party B when B re-uses the same key for every query. The
success of the attack also shows the significance of the role of the signal function in the key
exchange protocol.

4.3 Extension of the Attack

In this section, we describe how to extend the attack in section 4.2 described to the actual pro-
tocol described in figure 1 that includes addition of an error term gA, gB to the key computation
kA, kB of parties A and B respectively. The choice of sA and eA remain the same as in section
4.2 but in this case, there is a difference in counting the number of signal changes to identify
the value of sB coefficients. This is because of the fluctuations caused by the addition of gB by
party B in the computation of kB .
Simulating party B’s response: We build an oracle S that simulates party B’s action in the pro-
tocol on receiving a given input p. We assume that pB is fixed for party B and S has access to
the secret sB . On receiving pA fromA, S samples gB ← χα and computes kB = pAsB +2gB
according to the protocol. Then, S computes the signal wB = Sig(kB) and outputs wB .

Effect of gB on the signal changes: In the previous section, it is easy to see that as we loop
k values in Zq , there are changes in the signal exactly 2sB [i] times for any i-th coefficient of
sB . When the error term gB is added to kB , there are some frequent changes, which we call
fluctuations in the signal value at the boundary values of set E. This is because the error term
gB pulls the value of the key kB back and forth when kB [i] is near the boundary, for each i.
This stabilizes as k becomes larger and kB [i] moves away from the boundary to resist impact
by gB [i]. In this case, we ignore the fluctuations, not counting them as a signal change. This is
illustrated in section 5 with the example.

The attack works the same way when we use the randomized signal function in [14], which
is used to remove any bias in the shared key generated from kB , for odd q. This has also been
verified in our experiments.

4.4 Attack Improved

In the above attack, the public key of the attacker is only k times the identity 1 in Rq . It is
possible for party B to defend against such an attack by verifying if the public key it receives is
a constant polynomial in Rq . To overcome this, the adversary can sample sA from χα, choose
eA to be 1 as before and compute pA = asA + keA as his public key in the RLWE form. Now,
party B cannot distinguish the public key of the attacker from uniform. The key computation
of party B in this case is kB = asAsB + ksB + 2gB . The value asAsB is constant as we loop
over k values. So, we are still looking at the signal changes of sB [i] as we loop around k values
0 to q − 1. The difference is that in the case of the simplified attack, when we start looping k
values from 0, kB changes in multiples of sB [i] starting with 0 while in this case, we start with
the constant value of asAsB [i] for each coefficient i. The algorithm for the attack is the same
as described in section 4.2.

4.5 Adversary query complexity

From the above description of the attack, it is clear that the adversaryA needs q queries (varying
k from 0 to q − 1) for determining all the coefficients of the secret sB upto ± sign. Again, by
using q queries for the adversary’s public key of (1+x)pA, he can resolve the ambiguity of the
sign of the coefficients. Hence, the number of queries required for the attack to find the exact
value of the secret is 2q. Since q is poly(n), we claim that the key is compromised in poly(n)
queries.

Leakage of Signal function with reused keys in RLWE key exchange 7

5 Toy Example

We demonstrate the attack described above with the help of a toy example in this section. The
example shows the steps to recover the 0-th coefficient of sB . The other coefficients of sB can
be recovered by following the same steps. First, we show the attack for the simplified case when
gB is not added to party B’s key.
Let n = 4, q = 17, α = 1.6 (Choosing such a value of α for the sake of the example to
obtain reasonable sample values). Sampling a uniformly random from Rq and sB , eB from χα,
let a = (9, 4, 9, 3), sB = (−1, 0, 0, 2) and eB = (1,−1,−1, 0). Then pB = asB + 2eB =
(2,−6, 1,−2).
The signal region E := {−b q4c, . . . , b

q
4e} for q = 17 is E := {−4,−3,−2,−1, 0, 1, 2, 3, 4}

Choose sA, eA of the adversary to be 0, 1 respectively. So pA = k.
Oracle S: On input of pA = k from the adversary, S computes pAsB = ksB and wB =
Sig(ksB), outputs wB .

Step 1: Below are the values of the 0-th coefficient of wB output from the oracle S on invo-
cation by the adversary A for k ranging from 0 to q − 1 = 16.

k = 0 : wB [0] = 0 pAsB [0] = 0.sB [0] = 0
k = 1 : wB [0] = 0 pAsB [0] = sB [0] = −1
k = 2 : wB [0] = 0 pAsB [0] = 2sB [0] = −2
k = 3 : wB [0] = 0 pAsB [0] = 3sB [0] = −3
k = 4 : wB [0] = 0 pAsB [0] = 4sB [0] = −4
k = 5 : wB [0] = 1 pAsB [0] = 5sB [0] = −5
k = 6 : wB [0] = 1 pAsB [0] = 6B [0] = −6
k = 7 : wB [0] = 1 pAsB [0] = 7sB [0] = −7
k = 8 : wB [0] = 1 pAsB [0] = 8sB [0] = −8
k = 9 : wB [0] = 1 pAsB [0] = 9sB [0] = 8
k = 10 : wB [0] = 1 pAsB [0] = 10sB [0] = 7
k = 11 : wB [0] = 1 pAsB [0] = 11sB [0] = 6
k = 12 : wB [0] = 1 pAsB [0] = 12sB [0] = 5
k = 13 : wB [0] = 0 pAsB [0] = 13sB [0] = 4
k = 14 : wB [0] = 0 pAsB [0] = 14sB [0] = 3
k = 15 : wB [0] = 0 pAsB [0] = 15sB [0] = 2
k = 16 : wB [0] = 0 pAsB [0] = 16sB [0] = 1

Since there are 2 changes in the signal values wB [0], the adversary A now knows that the
value of sB [0] = ±1. The adversary can determine all the other coefficients of sB this way
upto ± sign. Thus, the adversary extracts the value of all the coefficients upto ± sign as
sB [0] = ±1, sB [1] = 0, sB [2] = 0, sB [3] = ±2.

Step 2: Repeat above step for public key pA = (1 + x)pA of the adversary. This yields the
coefficients as below:
sB [0]− sB [3] = ±1, sB [0] + sB [1] = ±1, sB [1] + sB [2] = 0, sB [2] + sB [3] = ±2

Step 3: Using sB [0]−sB [3] = ±1, sB [0] = ±1 and sB [3] = ±2, the adversary can determine
that sB [0] and sB [3] are of opposite sign. So, if sB [0] = 1, then sB [3] = −2 and vice versa.

Step 4: Step 3 can be repeated for every pair of coefficients. But in this example, we have
sB [1] = sB [2] = 0. So, this step is not required.

Thus, the adversary A recovers sB = (1, 0, 0,−2) or sB = (−1, 0, 0, 2) depending on
the sign of sB [0]. Now, choose sB [0] = 1, then sB [3] = −2 and compute pB − asB =
(2,−6, 1,−2)−(0, 5,−2, 2) = (2, 6, 3,−4). Since n is small in this toy example, we only have
a small number of samples to verify the distribution of pB−asB but since parameters proposed

8 Ding J., Alsayigh S., RV S. and Fluhrer S.

Fig. 2. Signal changes of sB [0] in the example. This figure shows the number of signal changes while
looping over k values.

for the key exchange requires higher value of n, we can easily determine if the distribution
follows a discrete gaussian from the samples. This example shows that from the values of
pB − asB , the adversary can easily determine that sB [0] = −1 and hence obtains the value of
sB = (−1, 0, 0, 2) succeeding in the attack.

Fluctuations: For the same example, consider the case when we add gB to kB . Suppose
g
(0)
B values are 0, 1, 1, 0,−1, 1, 0, 0,−1,−1,−2, 1, 0, 0, 2, 0, 0, sampled from the error distribu-

tion for k from 0 to q − 1 = 16.

k = 0 : wB [0] = 0 kB [0] = 0
k = 1 : wB [0] = 0 kB [0] = 1
k = 2 : wB [0] = 0 kB [0] = 0
k = 3 : wB [0] = 0 kB [0] = −3
k = 4 : wB [0] = 1 kB [0] = −6
k = 5 : wB [0] = 0 kB [0] = −3
k = 6 : wB [0] = 1 kB [0] = −6
k = 7 : wB [0] = 1 kB [0] = −7
k = 8 : wB [0] = 1 kB [0] = 7
k = 9 : wB [0] = 1 kB [0] = 6
k = 10 : wB [0] = 0 kB [0] = 3
k = 11 : wB [0] = 1 kB [0] = 8
k = 12 : wB [0] = 1 kB [0] = 5
k = 13 : wB [0] = 0 kB [0] = 4
k = 14 : wB [0] = 1 kB [0] = 7
k = 15 : wB [0] = 0 kB [0] = 2
k = 16 : wB [0] = 0 kB [0] = 1

We can see that when k = 4, kB [0] = −6 which is near the boundary region ofE and so we
can see frequent changes (fluctuations) in signal for consecutive k values till kB [0] stabilizes
starting with k = 6. We ignore these fluctuations as count of signal change and only count 1
signal change from k = 3 to k = 6. Similarly, we ignore the signal fluctuations corresponding
to k = 9 to k = 14. Thus, the stabilized number of signal changes is 2 which helps to guess the
value of sB [0] to be ±1. It is difficult to identify the fluctuations for small q since there are not

Leakage of Signal function with reused keys in RLWE key exchange 9

enough values for the key kB to stabilize but the parameters for the key exchange provide for a
reasonable q for the attack to work.

6 Experiments

We have verified experimentally the number of signal changes for the coefficients of sB is as
mentioned above. The execution was performed in C++ with NTL library using an Windows 10
64 bit system equipped with a 2.40 GHz Intel(R) Core(TM) i7-4700MQ CPU and 8 GB RAM.
The multiplication was performed without using any optimized algorithms like FFT.

Also, since only keA changes for each query, we can fix asA for the attack execution in
the extended case, thus saving on one multiplication for every query. For preliminary testing
purposes, we used parameter values of n = 1024, q = 2047, α = 3.197. The time taken for
this choice of parameters for running q queries to recover all the coefficients upto sign is 3.9
mins, without optimization.

7 Conclusion

In this work, we have presented an attack on the RLWE key exchange and run experiments
to verify the correctness of the attack in recovering the secret of a reused public key with 2q
queries to the honest party. This is to show that when the public key is fixed for a long term, the
signal of the resulting key leaks information about the secret and can be exploited by an active
adversary, whose public key is not created according to the protocol. We believe that this attack
can be adapted even to [4] which also uses an unauthenticated version of key exchange and a
different reconciliation mechanism. It would also be useful to analyze if such an attack can be
extended for authenticated version of RLWE key exchange.

Acknowledgment: Jintai Ding and Saraswathy RV would like to thank NSF for its partial
support.

References

1. The transport layer security (tls) protocol version 1.3 (December 2015),
https://tools.ietf.org/html/draft-ietf-tls-tls13-07

2. Experimenting with post-quantum cryptography (July 2016),
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

3. The transport layer security (tls) protocol version 1.3 (May 2016), https://tools.ietf.org/html/draft-
ietf-tls-tls13-13

4. Alkim, E., Ducas, L., Pppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. Cryp-
tology ePrint Archive, Report 2015/1092 (2015), http://eprint.iacr.org/2015/1092

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO
2009, Lecture Notes in Computer Science, vol. 5677, pp. 595–618. Springer Berlin Heidelberg (2009)

6. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol
from the ring learning with errors problem. Cryptology ePrint Archive, Report 2014/599 (2014),
http://eprint.iacr.org/2014/599

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without boot-
strapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. pp.
309–325. ACM (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key
dependent messages. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011, Lecture Notes
in Computer Science, vol. 6841, pp. 505–524. Springer Berlin Heidelberg (2011)

10 Ding J., Alsayigh S., RV S. and Fluhrer S.

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22(6), 644–654
(Sep 2006), http://dx.doi.org/10.1109/TIT.1976.1055638

10. Fluhrer, S.: Cryptanalysis of ring-lwe based key exchange with key share reuse. Cryptology ePrint
Archive, Report 2016/085 (2016), http://eprint.iacr.org/2016/085

11. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key ex-
change from factoring, codes, and lattices. Cryptology ePrint Archive, Report 2012/211 (2012),
http://eprint.iacr.org/2012/211

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic con-
structions. In: Proceedings of the 40th annual ACM symposium on Theory of computing. pp. 197–
206. STOC ’08, ACM, New York, NY, USA (2008)

13. Gong, B., Zhao, Y.: Small field attack, and revisiting rlwe-based authenticated key exchange from
eurocrypt’15. Cryptology ePrint Archive, Report 2016/913 (2016), http://eprint.iacr.org/2016/913

14. Jintai Ding, Xiang Xie, X.L.: A simple provably secure key exchange scheme based on the learning
with errors problem. Cryptology ePrint Archive, Report 2012/688 (2012), http://eprint.iacr.org/

15. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In:
Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010, LNCS, vol. 6110, pp. 1–23. Springer
Berlin / Heidelberg (2010)

16. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM
J. Comput. 37, 267–302 (April 2007)

17. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In: Proceedings of the 41st annual ACM symposium on Theory of computing. pp. 333–342. STOC
’09, ACM, New York, NY, USA (2009)

18. Peikert, C.: Lattice cryptography for the internet. Cryptology ePrint Archive, Report 2014/070 (2014),
http://eprint.iacr.org/2014/070

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing. pp. 84–93. STOC ’05, ACM,
New York, NY, USA (2005)

20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (Oct 1997),
http://dx.doi.org/10.1137/S0097539795293172

21. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal
lattices. In: Advances in Cryptology-EUROCRYPT 2015, pp. 719–751. Springer (2015)

