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Abstract

Electronic information is increasingly often shared among unreliable entities. In this
context, one interesting problem involves two parties that secretly want to determine inter-
section of their respective private data sets while none of them wish to disclose the whole
set to other. One can adopt Private Set Intersection (PSI) protocol to address this prob-
lem preserving the associated security and privacy issues. This paper presents the first PSI
protocol that achieves constant (p(κ)) communication complexity with linear computation
overhead and is fast even for the case of large input sets, where p(κ) is a polynomial in
security parameter κ. The scheme is proven to be provably secure in the standard model
against semi-honest parties. We combine somewhere statistically binding (SSB) hash func-
tion with indistinguishability obfuscation (iO) and Bloom filter to construct our PSI proto-
col.

Keywords: PSI · semi-honest adversary · big data · SSB hash · iO ·Bloomfilter

1 Introduction

In our everyday life, shairing of electronic information among mutually distrustful parties in-
creases rapidly. Naturally, this raises important privacy concerns with respect to the disclosure
and long-term safety of sensitive content. In this area, an interesting problem is to compute
intersection of private data sets of two mutually dishonest entities. A few relevant applications
are presented below:

1. Government tax authority wants to detect whether any suspected tax evaders have ac-
counts with a certain foreign bank and, if so, obtain their account records. The bank’s
domicile forbids wholesale disclosure of account holders while the tax authority can not
disclose its list of suspects.

A preliminary version of this paper appears in ICICS 2016.
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2. Two real estate companies would like to identify customers (e.g., homeowners) who are
double-dealing, i.e., have signed exclusive contracts with both companies to assist them
in selling their properties.

3. A detective agency may want to verify whether a given biometric appears on a govern-
ment watch-list. Note that privacy of biometric owner has to be preserved if no matches
found, while at the same time, unrestricted access to the watch-list cannot be approved.

Private set intersection (PSI) can be utilized to solve the aforementioned problems. It is a two-
party cryptographic protocol where each party engages with their private sets. On completion
of the protocol either only one of the participants learns the intersection and other learns noth-
ing, yielding one-way PSI or both of them learn the intersection, yielding mutual PSI (mPSI).
On the other hand, if the participants wish to determine the cardinality rather than the intersec-
tion then that variant of PSI is known as Private set intersection cardinality (PSI-CA). Similar
to PSI, it can be divided into two types: one-way PSI-CA and mutual PSI-CA (mPSI-CA). The
first PSI-CA dates back to the work of Agrawal et al. [1]. Following it a number of PSI-CA
were proposed in [8, 13, 23].

Related Works: Agrawal et al. [1] introduced the concept of PSI relying on commutative
encryption and attains linear complexity. In [14], an oblivious polynomial evaluations (OPE)
based PSI protocol was proposed by Freedman et al. They represents a set as polynomial in
their construction. Later, Hazay and Nissim [22] improved the work of [14] in malicious model
without random oracles. In malicious model, adversaries can run any efficient strategy in order
to carry out their attack and can deviate at will from the prescribed protocol. On the other
hand, in semi-honest model, adversaries follow the prescribed protocol, but adversaries try to
gain more information than allowed from the protocol transcript. None of these constructions
[14, 22] achieve linear computation complexity.

To improve the efficiency, Hazay and Lindell [21] employed the idea of oblivious pseudo-
random function (OPRF) in the construction of PSI. Later, Jarecki and Liu [26] extended the
work of [21] utilizing additively homomorphic encryption (AHE) [7]. Their scheme is secure in
the standard model against malicious adversaries. All these constructions [21, 26] attain linear
complexity.

De Cristofaro et al. presented a sequence of PSI protocols [9–11] retaining linear com-

Table 1 : Comparison of PSI protocols in semi-honest model

Protocol Security Security Comm. Comp. Based
model assumption cost cost on

[14] Std AHE O(L+ v) O(v log logL) OPE
Scheme 1 [12] ROM CDH O(L+ v) O(L+ v) BF
[32] ROM O(L+ v) O(L+ v) BF
[31] ROM O(L+ v) O(L+ v) PH
[33] O(L) O(L) QC
Our PSI Std DCR O(1) O(L+ v) SSB hash,

BF, iO

BF= Bloom Filter, Std= Standard, DCR=Decisional Composite Residuosity, AHE= Additively Homomorphic Encryption, OPE= Oblivious
Polynomial Evaluations, CDH=Computational Diffie-Hellman, iO=Indistinguishability Obfuscation, ROM= Random Oracle Model,

PH= Permutation-based Hashing, QC= Quantum Computation, v, L are sizes of input sets.

plexity. The work of Huang et al. [24] showed how to employ garble circuit (GC) in designing
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Table 2 : Comparison of PSI protocols in malicious model

Protocol Security Security Comm. Comp. Based
model assumption cost cost on

[26] Std Dq-DHI O(L+ v) O(L+ v) OPRF
Scheme 2 [12] ROM CDH O(L+ v) O(L+ v) BF
[20] Std d-strong DDH O(L+ v) O(L+ v)
[13] ROM DDH,DCR O(L+ v) O(L+ v) OPE

BF= Bloom Filter, OPRF= Oblivious Pseudorandom Function, DCR=Decisional Composite Residuosity, CDH=Computational
Diffie-Hellman, Dq-DHI=Decisional q-Diffie-Hellman Inversion, ROM= Random Oracle Model,

DDH=Decisional Diffie-Hellman, v, L are sizes of input sets.

PSI protocol. The scheme is secure under the Decisional Diffie-Hellman (DDH) assumption in
the ROM against semi-honest adversaries and achieves linear communication and Θ(v log v) as
computational complexity. Here v is the cardinality of the private sets of both the parties. Dong
et al. [12] came up with Bloom filter [4] based PSI protocols. A Bloom filter is a data structure
that represents a set by an array with entries 0 or 1 and exhibits itself as an useful tool to scale
large data sets. One of the constructions of [12] is secure against semi-honest adversaries, while
the other one is secure against malicious adversaries under the Computational Diffie-Hellman
(CDH) assumption. Following this work, Pinkas et al. [32] overviewed the existing solutions
for set intersection in the semi-honest setting and presented a comparative summary of their ef-
ficiency. Later, Hazay [20] constructed an efficient PSI relying on algebraic PRF. This scheme
is secure in the standard model against malicious parties. Recently, Freedman et al. [13] im-
proved their earlier work of [14] and constructed two PSI protocols, one of which is secure
in the semi-honest environment and the other one withstands attacks against malicious adver-
saries. More recently, Pinkas et al. [31] used permutation-based hashing technique to build
very efficient PSI protocols secure in the ROM against semi-honest adversaries. See Table 1
and Table 2 for a comparative summary of PSI protocols in semi-honest model and malicious
model respectively. Lastly, Shi et al. [33] employed quantum computation to construct a PSI
which is proven to be secure in semi-honest model and achieves linear complexity.

Our Contribution: PSI has emerged a great attention in the recent research community due
to its numerous applications in real-life such as privately comparing equal-size low-entropy
vectors, collaborative botnet detection, testing of fully sequenced human genomes, affiliation-
hiding authentication, social networks, location-based services, privacy preserving data mining,
social networks, online gaming etc. Our goal is to construct a PSI whose communication cost
is optimal while the computation cost is comparable with the existing schemes.

In this paper, we design a new PSI protocol based on Bloom filter [4] that is significantly
more efficient than all the existing PSI protocols. We adopt a novel two-party computation
technique and make use of somewhere statistically binding (SSB) hash function [25, 28] along
with indistinguishability obfuscation (iO) [2, 16]. Starting point of our construction is the ap-
proach of [28] of secure function evaluation (SFE) for “multi-decryption”.

In our protocol, the client B sends SSB hash value of its private input set to the server A
who in turn transmits to B an SSB hash key, obfuscated version of a hard-coded circuit and
a Bloom filter. The use of SSB hash reduces the communication complexity of our protocol
to p(κ) (polynomial in security parameter κ) i.e., to O(1) which, unlike the existing PSI con-
structions, is independent of private input set sizes v and L of A and B respectively. On the
other hand, the computation overhead of our protocol is O(v + L) which depends on an SSB
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hash key computation, a circuit obfuscation, v many Pseudorandom function (PRF) evaluations
by the server A and L many circuit evaluation by the client B. Our protocol is secure against
semi-honest adversaries in the standard model under the cryptographic assumption on which
the corresponding SSB hash is secure. For simplicity, we employ the SSB hash [28] based
on the Damgård-Jurik cryptosystem [7] secure under the Decisional Composite Residuosity
(DCR) assumption. However, any SSB hash can be integrated to construct our PSI protocol.

Constructing PSI for big data sets is a challenging task while efficiency and scalability
need to be preserved. Our PSI can easily be adopted to solve this big data issue. To the best of
our knowledge, [12, 13, 31–33] are the most efficient PSI protocols, among which only [12, 32]
solve the big data issue. All of these protocols attain linear computation complexity while none
of them achieve constant communication complexity. On a more positive note, our PSI is the
first to achieve constant communication complexity.

2 Preliminaries

Throughout the paper, the notations κ, a ← A, x � X , [n] and {Xt}t∈N
c≡ {Yt}t∈N are

respectively used to represent “security parameter”, “a is output of the procedure A”, “variable
x is chosen uniformly at random from set X”, the set “{1,...,n}” and “the distribution ensemble
{Xt}t∈N is computationally indistinguishable from the distribution ensemble {Yt}t∈N ”. Infor-
mally, {Xt}t∈N

c≡ {Yt}t∈N means for all probabilistic polynomial time (PPT) distinguisher Z ,
there exists a negligible function ε(t) such that |Probx←Xt [Z(x) = 1] − Probx←Yt [Z(x) =
1]| ≤ ε(t). A function ε : N → R is said to be negligible function of κ if for each constant
c > 0, we have ε(κ) = o(κ−c) for all sufficiently large κ.

Definition 2.1. Pseudorandom Function [19]: A random instance fk(·) is said to be Pseu-
dorandom Function (PRF) for a randomly chosen key k, if the value of the function can-
not be distinguished from a random function f̂ : D → E by any PPT distinguisher Z i.e.,
|Prob[Zfk(1κ) = 1]− Prob[Z f̂ (1κ) = 1]| is negligible function of κ.

A PRF fk(·) is an efficiently computable function i.e., one can compute fk(x) using a PPT
algorithm for any given x ∈ D. For example, the PRF of [26]:

fk(x) =

{
g1/(k+x) if gcd(k + x, n) = 1

1 otherwise,

where x ∈ {0, 1}Q, k ∈ Z∗n, where Q = bw log2 nc for some positive integer w and n =
pq with p, q as primes. Here bmc stands for the largest integer less than or equal m. The
pseudorandom function is proven to be secure under the DecisionalQ-Diffie-Hellman Inversion
(DHI) Assumption [26].

Definition 2.2. Functionality: A functionality FΠ, computed by two parties A and B with
inputs XA and XB respectively by running a protocol Π, is denoted by FΠ : (XA, XB) →
(YA, YB), where YA and YB are the outputs of A and B respectively on completion of the
protocol Π between A and B.
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The functionality for PSI is denoted as FPSI : (Y,X) → (⊥, X ∩ Y ), where ⊥ stands for
“nothing”. This essentially indicates that parties A and B with private input sets Y , X respec-
tively engage in the protocol PSI. On completion of the protocol PSI, B receives X ∩ Y while
A receives nothing.

2.1 Security Model for Semi-honest Adversary [18]

A two-party protocol, Π is a random process that computes a function f = (f1, f2) from pair of
inputs (x, y) (one per party) to a pair of outputs (f1(x, y), f2(x, y)). A protocol Π is said to be
secure in semi-honest model if whatever cloud be computed by a party after participating in the
protocol, it could be obtained from its input and output only. In other words, the parties follow
the protocol honestly while the adversaries try to extract more information than allowed from
the protocol transcript. This is formalized using the simulation paradigm. On the input pair
(x, y), the view of the party Pi during an execution of Π, denoted by ViewΠ

i (x, y), is defined
as ViewΠ

i (x, y) = (w, r(i),m
(i)
1 , ...,m

(i)
t ), where w ∈ {x, y} represents Pi’s input, r(i) is the

outcome of Pi’s internal coin tosses, and m
(i)
j (j = 1, 2, ..., t) represents the j-th message

received by Pi during the execution of Π.

Definition 2.3. Security in Semi-honest Model: Let f = (f1, f2) : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a deterministic function. We say that the protocol Π securely computes f
in semi-honest model if there exists PPT adversaries, denoted by S1 and S2, controlling parties
P1 and P2 respectively, such that

{S1(x, f1(x, y))}x,y∈{0,1}∗
c≡ ViewΠ

1 (x, y)x,y∈{0,1}∗ ,

{S2(y, f2(x, y))}x,y∈{0,1}∗
c≡ ViewΠ

2 (x, y)x,y∈{0,1}∗ ,

where {S1(x, f1(x, y))}x,y∈{0,1}∗ and {S2(y, f2(x, y))}x,y∈{0,1}∗ respectively denote the simu-
lated views of P1 and P2 which contain input of the corresponding party, simulated random
coins and simulated protocol messages received by the corresponding party.

2.2 Damgård-Jurik Cryptosystem [7]

The Damgård-Jurik cryptosystem DJ is a generalization of the Paillier cryptosystem [29] and
consists of algorithms (KGen,Enc,Dec) which work as follows:

• DJ.KGen(1κ)→ (pk, sk): On input 1κ, a user does the following:
– selects two large primes p, q independently of each other;
– sets n = pq and γ = lcm(p− 1, q − 1);
– chooses an element g ∈ Z∗nw+1 for some w ∈ N such that g = (1 + n)jx mod nw+1

for a known j relatively prime to n and x ∈ G̃, where Z∗nw+1 = G× G̃, G being a cyclic
group of order nw and G̃ is isomorphic to Z∗n;
– computes d using the Chinese Remainder Theorem satisfying that d mod n ∈ Z∗n and
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d = 0 mod γ;
– sets the public key pk = (n, g, w) and the secret key sk = d;
– publishes pk and keeps sk secret to itself.

• DJ.Enc(pk,m) → (c): Using the public key pk of a decryptor, an Encryptor encrypts a
message m ∈ Znw by selecting r � Z∗nw+1 and computing ciphertext c = gmrn

w
mod

nw+1.

• DJ.Dec(sk, c) → (m): On receiving the ciphertext c from the encryptor, the decryptor uses
its decryption key sk = d to compute cd mod nw+1. If c is valid then

cd = (gmrn
w

)d = ((1 + n)j·mxmrn
w

)d = (1 + n)(j·m·d) mod nw(xmrn
w

)d mod γ

= (1 + n)(j·m·d) mod nw

The decryptor then applies Algorithm 1 to obtain (j ·m · d) mod nw and (j · d) mod nw

respectively from a = cd = (1 + n)(j·m·d) mod nw+1 and a = gd = (1 + n)(j·d)xd =
(1+n)(j·d) mod nw+1. As (j ·d) and (j ·m·d) are known to the decryptor, it can compute
m = (j ·m · d)(j · d)−1 mod nw.

Algorithm 1 Recursive version of the Paillier decryption mechanism

1: Input: a = (1 + n)R mod nw+1.
2: Output: R mod nw.
3: i := 0;
4: for j := 1 to w do
5: t1 := L(a mod nj+1) = a−1

n
mod nj;

6: t2 := i;
7: for k := 2 to j do
8: i := i− 1;
9: t2 := t2 · i mod nj;

10: t1 := t1 − t2·nk−1

k!
mod nj ;

11: end do
12: i := t1;
13: end do
14: output i.

The scheme is additively homomorphic as there exists an operation⊕ over Znw+1 DJ.Enc(pk,m1; r1)⊕
DJ.Enc(pk,m2; r2) = DJ.Enc(pk,m1+m2; r3) for randomness r3 = r1r2, where + is over Znw
and Znw+1 respectively. We can define homomorphic subtraction	 over Znw+1 as DJ.Encpk(m1; r1)	
DJ.Encpk(m2; r2) = DJ.Encpk(m1 −m2; r4) for randomness r4 = r1

r2
, where the operations −

is over Znw . Furthermore, by performing repeated⊕ operation, we can implement an operation
⊗ over Znw+1 as DJ.Encpk(m1; r1)⊗m2 = ⊕m2DJ.Encpk(m1; r1) = DJ.Encpk(m1 ·m2; r5) for
randomness r5 = rm2

1 , where · is over Znw and Znw+1 respectively. The semantic security of
the cryptosystem DJ holds under the DCR [29] assumption defined below:

Definition 2.4. Decisional Composite Residuosity (DCR) Assumption [29]: On input 1κ, let
RGen be an algorithm that generates an RSA modulus n = pq, where p and q are distinct large
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primes. The DCR assumption states that given an RSA modulus n (without its factorization)
and an integer z, it is computationally hard to decide whether z is an n-th residue modulo n2,
i.e., whether there exists y ∈ Z∗n2 such that z ≡ yn (mod n2).

Correctness: The correctness of the Algorithm 1 follows from the following fact:

(i) For j = 1, t1 = R mod n after execution of line 5, t2 = 0 after execution of line 6 and
i = R mod n after execution of line 12.

(ii) After execution of line 5, t1 =
(
R
1

)
+
(
R
2

)
n+ ...+

(
R
j

)
nj−1 mod nj , j ∈ {2, ..., w}.

(iii) After execution of line 6, t2 = R mod nj−1, j ∈ {2, ..., w}.

(iv) After execution of lines 7–11,

t1 =

(
R

1

)
+

(
R

2

)
n+ ...+

(
R

j

)
nj−1 −

j∑

k=2

R(R− 1)...(R− k + 1)nk−1

k!
mod nj

=

(
R

1

)
+

(
R

2

)
n+ ...+

(
R

j

)
nj−1 −

j∑

k=2

(
R

k

)
nk−1 mod nj

= R mod nj, j ∈ {2, ..., w}.

(v) After execution of line 12, i = R mod nj, j ∈ {2, ..., w}.

(vi) Finally, after execution of line 13, i.e. for j = w, the algorithm returns i = R mod nw.

2.3 SSB Hash [25, 28]

Definition 2.5. SSB Hash: A somewhere statistically binding (SSB) hash SSBHash consists of
PPT algorithms (Gen,H,Open,Verify) along with a finite block alphabet Σ = {0, 1}lblk , out-
put size lhash and opening size lopn, where lblk(κ), lhash(κ), lopn(κ) are fixed polynomials in the
security parameter κ. From next, we will use lblk, lhash, lopn instead of lblk(κ), lhash(κ), lopn(κ).
The algorithms work as follows:

• SSBHash.Gen(1κ, 1lblk , L, i)→ (hk). Setup authority runs this algorithm which takes as
input a security parameter κ, a block length lblk, an input length L ≤ 2κ and an index
i ∈ {0, ..., L− 1}, and outputs a public hashing key hk.

• SSBHash.H(hk, s)→ (Hhk(s)). It is a deterministic polynomial time algorithm run by a
user. This algorithm takes as input s = (s[0], ...., s[L− 1]) ∈ ΣL and a hash key hk, and
outputs Hhk(s) ∈ {0, 1}lhash(κ), where lhash(κ) is independent of input length L.

• SSBHash.Open(hk, s, j)→ (π). This algorithm is run by a user. It takes as input a hash
key hk, s = (s[0], ...., s[L − 1]) ∈ ΣL and an index j ∈ {0, ..., L − 1} and returns an
opening π ∈ {0, 1}lopn .
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• SSBHash.Verify(hk, z, j, u, π)→ (accept, reject). Verifier runs this algorithm on input a
hash key hk, hash value z ∈ {0, 1}lhash , an integer j ∈ {0, ..., L− 1}, a value u ∈ Σ and
an opening π ∈ {0, 1}lopn , and outputs a decision ∈ {accept, reject}. In other words, this
verification determines whether a pre-image s of z = Hhk(s) has s[j] = u.

An SSB hash satisfies the following three properties:

– Correctness: For any integerL ≤ 2κ and i, j ∈ {0, ..., L−1}, any hk ← SSBHash.Gen(1κ, 1lblk , L, i),
s = (s[0], ...., s[L − 1]) ∈ ΣL, π ← SSBHash.Open(hk, s, j), corresponding Verify
algorithm should return accept as output i.e., SSBHash.Verify(hk, Hhk(s), j, s[j], π) =
accept.

– Index Hiding: Given 1κ, an integer L ≤ 2κ, two indices i0, i1 ∈ {0, ..., L−1} and a hash key
hk ← SSBHash.Gen(1κ, 1lblk , L, ib), the probability of generating correct index ib from
any PPT attacker A is negligible i.e., if b′ is the output for any PPT attacker A then we
have |Prob[b = b′]| ≤ ε(κ), where ε(κ) is negligible function of κ.

– Somewhere Statistically Binding: We say that hk is statistically binding for an index j ∈
{0, ..., L−1}, if there do not exist any values z ∈ {0, 1}lhash , s, s′ ∈ ΣL, π ← SSBHash.Open(hk, s, j),
π′ ← SSBHash.Open(hk, s′, j) with s[j] 6= s′[j] such that SSBHash.Verify(hk, z, j, s[j], π) =
SSBHash.Verify(hk, z, j, s′[j], π′), whereL ≤ 2κ is an integer, hk ← SSBHash.Gen(1κ, 1lblk , L, i)
and s[j], s′[j] are the j-th blocks of s, s′ respectively.

Example: We describe below the DCR based SSB hash of [28] which uses Damgård-Jurik
cryptosystem as described in section 2.2 and considers Σ = Znw i.e., lblk = bw log2 nc, output
domain as Znw i.e., lhash = bw log2 nc and opening domain as ×αZnw i.e., lopn = αbw log2 nc

• SSBHash.Gen(1κ, 1lblk , L, i) → (hk): Without any loss of generality, we assume that
L = 2α is an integer with L ≤ 2κ. A setup authority runs the key generation algorithm
for Damgård-Jurik cryptosystem DJ on input 1κ to receive (pk = (n, g, w), sk = d) ←
DJ.KGen(1κ). Let (bα, ..., b1) be the binary representation of the index i ∈ {0, ..., L−1}.
For l = 1, ..., α, the setup authority computes gblγnwl = cl = DJ.Enc(pk, bl; γl), gRnw

l =
1chl = DJ.Enc(pk, 1;Rl) and sets hk = (pk, h, 1ch1 , ..., 1chα , c1, ..., cα) as public SSB
hash key, where h : Z∗nw+1 → Znw is a collision resistant hash function.

• SSBHash.H(hk, s)→ (z = Hhk(s)): Let s = (s[0], ..., s[L− 1]) ∈ ΣL, where Σ = Znw .
Let T be a binary tree of height α with L leaves. A user considers the leaves as being
at level 0 and the root of the tree at level α. The user inductively and deterministically
associates a value ctv at each vertex v ∈ T in bottom-up fashion as follows:

– If v ∈ T is the j-th leaf node (at level 0), j ∈ {0, ..., L − 1}, then the user associates
v the value ctv = s[j] ∈ Znw .

– If v ∈ T is a non-leaf node at level l ∈ {1, ..., α}with children v0, v1 having associated
values ct0, ct1 respectively then the user associates v the value ctv = h(c∗v), where
c∗v = [ct1⊗ cl]⊕ [ct0⊗ (1chl 	 cl)] ∈ Znw , cl, 1chl being the ciphertexts and h being
the hash function extracted from hk = (pk, h, 1ch1 , ..., 1chα , c1, ..., cα) and ⊗,⊕,	
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are operations as described in the section 2.2. Note that c∗v is the encryption of ctbl
as

c∗v = [ct1 ⊗ cl]⊕ [ct0 ⊗ (1chl 	 cl)]
= [ct1 ⊗ DJ.Enc(pk, bl; γl)]⊕ [ct0 ⊗

{
DJ.Enc(pk, 1;Rl)	 DJ.Enc(pk, bl; γl)

}
]

= DJ.Enc(pk, blct1; (γl)
ct1)⊕ [ct0 ⊗ DJ.Enc(pk, 1− bl;

Rl

γl
)]

= DJ.Enc(pk, blct1; (γl)
ct1)⊕ DJ.Enc(pk, (1− bl)ct0; (

Rl

γl
)ct0)

= DJ.Enc(pk, blct1 + (1− bl)ct0; (γl)
ct1(

Rl

γl
)ct0)

=

{
DJ.Enc(pk, ct0; (γl)

ct1(Rl
γl

)ct0) if bl = 0

DJ.Enc(pk, ct1; (γl)
ct1(Rl

γl
)ct0) if bl = 1

= DJ.Enc(pk, ctl)

The associated value at the root of T is the final output z = Hhk(s) ∈ Znw .

• SSBHash.Open(hk, s, j) → (π): The user outputs ctv values associated to siblings v
of the nodes along the path form the root to the j-th leaf in T . In other words, if
PathNode(j) denotes the set of nodes on the path from the root to the j-th leaf in T
and HangNode(j) is the set of sibling nodes of all v ∈ PathNode(j), then π =

{
ctv
∣∣v ∈

HangNode(j)
}

.

• SSBHash.Verify(hk, z, j, u, π) → (accept, reject): A verifier can recompute the associ-
ated values of all the nodes in the tree T that lie on the path from the root to the j-th leaf
by utilizing the value u as associated to the j-th leaf node together with the values in π as
the associated values of all the sibling nodes along the path. The verifier checks whether
the recomputed value at the root is indeed z. If it is z then the verifier outputs accept;
otherwise, outputs reject.

Complexity: Complexity: The algorithm SSBHash.Gen requires 2α exponentiations (Exp)
under modulo nw+1 to generate the ciphertexts {c1, ..., cα}, {1ch1 , ..., 1chα}, whereas the al-
gorithm SSBHash.H incurs 3(2α − 1) Exp and 2α − 1 inversions (Inv) under modulo nw+1

together with 2α − 1 hash operations. Finally, the algorithm SSBHash.Verify requires 3α Exp
and α under modulo nw+1 along with α hash operations.

2.4 Bloom Filter [4]

Bloom filter (BF) is a data structure that represents a set X = {x1, ..., xv} of v elements
by an array of m bits and uses k independent hash functions HBloom = {h0, ..., hk−1} with
hi : {0, 1}∗ → {0, ...,m − 1} for i = 0, ..., k − 1 to insert elements or check the presence of
elements in that array. Let BFX ∈ {0, 1}m represents a Bloom filter for the set X and BFX [i]
denotes its i-th bit, i = 0, ...,m− 1. Three operations that can be performed using Bloom filter
are – Initialization, Add and Check. We describe below how these operations are implemented
using Bloom filter [4].
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– Initialization: Set 0 to all the bits of an m-bit array, which is an empty Bloom filter with no
elements in it.

– Add(x): To add an element x ∈ X ⊆ {0, 1}∗ into a Bloom filter, x is hashed with the k
hash functions in HBloom = {h0, ..., hk−1} to get k indices h0(x), ..., hk−1(x). Set 1 to
the bit position of the Bloom filter having indices h0(x), ..., hk−1(x). Repeat the process
for each x ∈ X to get BFX ∈ {0, 1}m – the Bloom filter for the set X . See Algorithm 2.

Algorithm 2 Construction of Bloom filter

Input: X , an m-bit empty array BFX , HBloom = {h0, ..., hk−1}.
Output: Bloom filter BFX ∈ {0, 1}m of X .
for x ∈ X do

for i = 0 to k − 1 do
BFX [hi(x)]← 1;

end do
end do

– Check(x̂): Given BFX , to check whether an element x̂ belongs to X without knowing
X , x̂ is hashed with the k hash functions in HBloom = {h0, ..., hk−1} to get k indices
h0(x̂), ..., hk−1(x̂). Now if atleast one of BFX [h0(x̂)],
...,BFX [hk−1(x̂)] is 0, then x̂ is not in X , otherwise x̂ is probably in X . See Algorithm
3.

Algorithm 3 Membership test

Input: x̂, BFX , HBloom = {h0, ..., hk−1}.
Output: YES/NO.
for i = 0 to k − 1 do

if BFX [hi(x̂)] = 0;
output NO// x̂ does not belong to the set X corresponding to BFX ;

end if
end do
output YES// x̂ probably belongs to the set X corresponding to BFX ;

Bloom filter allows false positive whereby an element that has not been inserted in the filter can
mistakenly pass the set membership test described in Algorithm 3. This happens when an ele-
ment x̂ does not belong toX but BFX [hi(x̂)] = 1 for all i = 0, ..., k−1. On the contrary, Bloom
filter never yields false negative i.e., an element that has been inserted in the filter will always
pass the test. This is because if x̂ belongs to X then each of BFX [h0(x̂)], ...,BFX [hk−1(x̂)] is 1.

Theorem 2.6. [12] Given the number v of elements to be added and a desired maximum false
positive rate 1

2k
, the optimal size m of the Bloom filter is m = vk

ln 2
.

Complexity: Algorithms 2 and 3 incurs respectively k|X| and k many hash evaluations.
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2.5 Indistinguishability Obfuscation [2, 16]

Definition 2.7. Indistinguishability Obfuscation (iO): An indistinguishability obfuscator O
for a circuit class Cκ is a PPT uniform algorithm satisfying the following requirements:

– (Correctness:) For any circuit C ∈ Cκ, if we compute C ← O(1κ, C) then C(x) = C(x) for
all inputs x i.e.,

Prob[C ← O(1κ, C) : C(x) = C(x)] = 1 for all inputs x.

– (Indistinguishability:) For any κ and any two circuits C0, C1 ∈ Cκ, if C0(x) = C1(x) for all
inputs x then the circuits O(1κ, C0) and O(1κ, C1) are indistinguishable i.e., for all PPT
adversaries Z ,

∣∣Prob[Z(O(1κ, C0)) = 1] − Prob[Z(O(1κ, C1)) = 1]
∣∣ ≤ ε(κ), where

ε(κ) is negligible function of κ.

We consider only polynomial-size circuits i.e., the circuit class Cκ consists of circuits of
size at most κ. This circuit class is denoted by P/poly and the first candidate iO for this circuit
class was introduced by Garg et al. [16]. Their construction is secure in generic matrix model.
Following this, a single instance-independent assumption based iO for P/poly were proposed
by [17, 30].
Example(The Candidate iO Construction of [16]): An iO for P/poly is constructed by de-
signing an iO construction for a restricted circuit class, namely NC1 which is then coupled with
(leveled) fully homomorphic encryption (FHE) [5] with decryption in NC1 utilizing “two-key”
encryption technique of [27]. NC1 is the family of polynomial size circuits with logarithmic
depth and bounded fan-in.
An NC1 circuit C with input length τ and depth d is first transformed to oblivious matrix
branching program MBP = {(input(i), Pi,0, Pi,1)}ηi=1. This transformation is possible due to
Barrington’s theorem [3]. Here the function input : [η]→ [τ ] describes the input bit examined
in the i-th step and Pi,b’s are permutation matrices of order 5 for b ∈ {0, 1}. To evaluate MBP,
on any particular τ -bit input ᾱ = (α1α2...ατ ), compute the product matrix P =

∏η
i=1 Pi,ᾱinput(i)

and output 1 if P is the identity matrix and 0 otherwise. Let M = 2η + 5. The obfuscation
procedure attempts to garble the branching program MBP of the circuit C using multilinear
jigsaw puzzles as introduced in [15] which is restricted version of multilinear maps [6, 16] as
follows:

1. Generate a ring Zρ with prime ρ ≥ 2κ, the public parameters par, and a secret state φ to
pass to the encoding algorithm of the generator by running the instance-generator InstGen
of the multilinear jigsaw generator. Note that the multilinearity level of the jigsaw puzzle
is considered as [η + 2].

2. Sample independent scalars {µi,0, µi,1, µ′i,0, µ′i,1} randomly from the ring Zρ, subject to
the constraint that

∏
i∈Ij

µi,0 =
∏
i∈Ij

µ′i,0 and
∏
i∈Ij

µi,1 =
∏
i∈Ij

µ′i,1 for all j ∈ [τ ], where

Ij = {i ∈ [η] : input(i) = j}.
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3. Compute two pairs block-diagonal matrices {BDi,b}b∈{0,1}, {BD′i,b}b∈{0,1} of order 2M +
5 each for every i ∈ [η], where the diagonal entries 1, ..., 2M are chosen at random and
the bottom-right 5× 5 are scaled Pi,b’s and identity matrix respectively:

BDi,b ∼




$
.
.
.

$
µi,bAi,b



,BD′i,b ∼




$
.
.
.

$
µ′i,bI



,

where b ∈ {0, 1}, the $’s on main diagonal are random coefficients that are unique to
each matrix and the unspecified entries are 0.

4. Choose vectors s1 and t1, and s2 and t2 of dimension 2M + 5 as follows:

– The entries 1, ...,M in s1 and s2 vectors are set to 0 and the entries M + 1, ..., 2M
are randomly chosen. While the entries 1, ...,M in t1 and and t2 are selected at
random and M + 1, ..., 2M are set to 0.

– Choose two pairs of random vectors {s∗1, t∗1} and {s∗2, t∗2} of length 5 such that
〈s∗1, t∗1〉=〈s∗2, t∗2〉, where the notation 〈, 〉 stands for inner product. The last 5 en-
tries in s1, t1, s2, t2 are set to the entries of s∗1, t

∗
1, s
∗
2, t
∗
2 respectively.

5. Sample 2(η+1) random full-rank matricesR0, R1, ...Rη andR′0, R
′
1, ...R

′
η of order 2M+

5 each over the ring Zρ and compute their inverses.

6. Randomize the branching program MBP over the ring Zρ as follows:

RNDρ(MBP) = (PROG1,PROG2), where

PROG1 =

[
s̃1 = s1R

−1
0 , t̃1 = Rηt1

T ,

{B̃Di,b = Ri−1BDi,bR
−1
i }i∈[η],b∈{0,1}

]

and PROG2 =

[
s̃2 = s2R

−1
0 , t̃2 = Rηt2

T ,

{B̃D′i,b = R′i−1BD
′
i,bR

′−1
i : i ∈ [η], b ∈ {0, 1}}

]

Note that this randomize program RNDρ(MBP) consists of two parallel programs –
PROG1 and PROG2. The original branching program MBP is embedded with all Pi,b’s in
PROG1, while a “dummy program” of the same length is embedded in PROG2 consist-
ing only of identity matrices, thereby computing the constant function 1. Here vT stands
for transpose of the vector v. The dummy program is used to test equality: the original
program outputs 1 on a given input only when it agrees with the dummy program on that
input.

7. Encode each element of the step-i matrices B̃Di,b, B̃D
′
i,b relative to the singleton index-

set {i+1}, each element of the vectors s̃1, s̃2 relative to singleton index-set {1}, and each
element of the vectors t̃1, t̃1 relative to singleton index-set {η + 2} using the encoding
algorithm of the multilinear jigsaw generator.
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8. The public parameters par of the jigsaw generator together with all the encoded matrices
and vectors constitutes the obfuscated program.

For any input ᾱ = (α1α2...ατ ) to the original program, the evaluator of the correspond-
ing obfuscated program computes encoding of s̃1

∏
i∈[η] B̃Di,αinput(i)

t̃1 − s̃2
∏

i∈[η] B̃D
′
i,αinput(i)

t̃2
relative to the index-set [η+ 2] using only the allowed multilinear operations and runs the zero-
testing algorithm of the jigsaw puzzle. If the zero-test passes, then the evaluator outputs 1,
otherwise, it outputs 0.

This construction is proven to be an iO for NC1 circuits under a new complexity assump-
tion which holds in a generic matrix model in [16]. This iO for NC1 circuits together with FHE
is used to obfuscate a circuit C ∈ P/poly as follows:

(a) Generate two public key/secret key pairs (pk
(1)
FHE, sk

(1)
FHE) and (pk

(2)
FHE, sk

(2)
FHE) of the FHE

scheme and publish the public keys pk(1)
FHE and pk

(2)
FHE.

(b) Generate the ciphertexts chi(1) and chi(2) by encrypting the circuitC ∈ P/poly under pk(1)
FHE

and pk
(2)
FHE respectively.

(c) Obfuscate NC1 circuit CDec0 for verifying the proof generated by the obfuscated circuit
evaluator.

The obfuscated circuit evaluator holding an input ᾱ does the following:

– Generates ciphertexts c(1)
ᾱ and c(2)

ᾱ by encrypting ᾱ using pk
(1)
FHE and pk

(2)
FHE respectively.

– Produces encryptions e1 and e2 of the outputC(ᾱ) under pk(1)
FHE and pk

(2)
FHE respectively using

the FHE evaluation algorithm with c(1)
ᾱ , c(2)

ᾱ , chi(1) and chi(2).

– Keeps track of all the intermediate bit values encountered during evaluation of e1 and e2 as
a “proof” π of the fact that ᾱ is used to perform the evaluation correctly on both chi(1)

and chi(2).

– Feeds (e1, e2, ᾱ, π) into the obfuscated form of the circuit CDec0 which in turns checks the
proof π to make sure that e1 and e2 were correctly computed. If the proof checks out,
then the circuit decrypts e1 using secret key sk

(1)
FHE and outputs this decrypted value which

should be C(ᾱ).

There is another NC1 circuit CDec1 that is equivalent to CDec0 , which directly decrypts e2

using sk
(2)
FHE instead. Both the circuits behave identically on all inputs due to the proof π that

must be provided. As sk
(2)
FHE is never used anywhere when using CDec0 , the semantic security

of the FHE scheme using pk
(2)
FHE is maintained even given CDec0 . Alternatively applying the

semantic security of the FHE scheme and switching back and forth between CDec0 and CDec1

using the iO property, the above obfuscator is proven to be an iO for P/poly in [16].
Complexity: To obfuscate a circuit total number of required encodings is 2(2M+5)2+4(2M+
5). On the other hand, the circuit evaluation cost for an input ᾱ incurs 2 FHE encryptions, 2
FHE evaluations and 1 FHE decryption.
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3 Protocol

Protocol Requirements: The protocol computes the intersection of the serverA’s private input
set Y = {y1, ..., yv} and the client B’s private input set X = {x0, ..., xL−1}. Without any loss
of generality we may assume that X, Y ⊆ Znw . If not, we can choose a collision resistant hash
function ha : {0, 1}∗ → Znw to make the elements of X, Y as members of Znw . Auxiliary
input includes the size L of B’s input set, the security parameter κ, the Bloom filter parameters
(m,HBloom = {h0, ..., hk−1}). Without any loss of generality we can assume that L = 2α for
some integer α ≤ κ. If not, we can add 0’s as the members of the setX to make its cardinality of
the form 2α. We integrate Bloom filter presented in section 2.4, indistinguishability obfuscation

Constraints: Hash key hk, hash value z, PRF key ke.
Input: i ∈ {0, ..., L− 1}, x ∈ Znw , π ∈ ×αZnw .
Output: 0 or PRF fke(x).
1. Check whether SSBHash.Verify(hk, z, i, x, π) is accept or reject. If reject, then output 0.
2. Otherwise, output fke(x).

Figure 1 : Description of circuit C[hk, z, ke](i, x, π)

(iO) scheme O described in section 2.5 together with an SSB hash function SSBHash with
alphabet Σ = Znw i.e., lblk = bw log2 nc, output domain Znw i.e., lhash = bw log2 nc and
opening domain ×αZnw i.e., lopn = αbw log2 nc, where n = pq is the product of two large
primes p and q, and w is a positive integer. We require a circuit C = C[hk, z, ke] as defined in
Figure 1. We also assume that C includes some polynomial-size padding to make it sufficiently
large. Furthermore, we define an augmented circuit Caug = Caug[hk, z, ke, k̄, i∗] as in Figure 2

Constraints: Old values (hash key hk, hash value z, PRF key ke), New values (PRF key
k̄, i∗ ∈ {0, ..., L− 1})
Input: i ∈ {0, ..., L− 1}, x ∈ Znw , π ∈ ×αZnw .
Output: 0 or PRF fke(x) or PRF fk̄(i).
1. Check whether SSBHash.Verify(hk, z, i, x, π) is accept or reject. If reject, then output 0.
2. Otherwise, if i ≥ i∗, then output fke(x), else if i < i∗ output fk̄(i).

Figure 2 : Description of circuit Caug[hk, z, ke, k̄, i∗](i, x, π)

which we will use in section 3.1 for the security proof of our scheme. We need the padding in
C to match its size with Caug.
Construction: The protocol completes in two phases: off-line phase and online phase. In the
off-line phase, the server A generates a SSB hash key hk and makes hk public. On the other
hand, online phase consists of three algorithms: PSI.Request, PSI.Response and PSI.Complete.
The client B runs PSI.Request algorithm to generate a SSB hash value of its input set X with
the SSB hash key hk and sends it to A who in turn runs PSI.Response algorithm to generate
an obfuscated circuit C̄, a Bloom filter BFY and sends these to B. The client B then runs the
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algorithm PSI.Complete to get the intersection of X and Y . A high level description of the
functionality FPSI of our PSI protocol is presented in Figure 3.

Common input: hk = (pk, h, 1ch1 , ..., 1chα , c1, ..., cα)
Auxiliary input: L = 2α, κ,m,HBloom = {h0, ..., hk−1}

A’s private input: B’s private input:
Y = {y1, ..., yw} X = {x0, ..., xL−1}

z = Hhk(s)← PSI.Request(hk),
where s = (s[0], ..., s[L− 1]),
s[i] = xi, for i = 0, ..., L− 1

z←−−−
(C,BFY )← PSI.Response(z),
where Y = {fke(y1), ..., fke(yv)},
ke � Z∗n, C ← O(1κ, C),
C = C[hk, z, ke](i, x, π)

C,BFY−−−−→
output X = X ∩ Y ← PSI.Complete(C,BFY ),
where X =

{
xi ∈ X

∣∣fke(xi) ∈ BFY
}

with fke(xi) ∈ BFY , fke(xi)← C(i, xi, πi),
πi = SSBHash.Open(hk, s, i), for i = 0, ..., L− 1

1

Figure 3 : Communication flow of our PSI

We now describe below the off-line and online phases of our protocol.

Off-line Phase: On input security parameter 1κ, the server A does the following:

(i) Runs the algorithm SSBHash.Gen on input 1κ, 1lblk , L = 2α, 0 to generate a SSB hash key
hk← SSBHash.Gen(1κ, 1lblk , L, 0), where lblk = bw log2 nc, where hk = (pk, h, 1ch1 , ..., 1chα ,
c1, ..., cα), pk = (n, g, w) h : Z∗nw+1 → Znw is a collision resistant hash function,
1chl = DJ.Enc(pk, 1;Rl) and cl = DJ.Enc(pk, 0; γl).

(ii) Makes hk public.

Online phase consists of following three algorithms:

• PSI.Request(hk)→ z: The client B proceeds as follows:

(i) Sets s[i] = xi ∈ Σ = Znw , for i = 0, .., L − 1, where X = {x0, ..., xL−1} ⊆ Znw is
B’s private input set.

(ii) Computes z = Hhk(s)← SSBHash.H(hk, s). Note that z ∈ Znw .

(iii) Finally, sends z to A.
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• PSI.Response(z)→ (C,BFY ): The server A, on receiving the request z from B, does the
following:

(i) Chooses a PRF key ke � Z∗n for PRF

fke(x) =

{
g1/(ke+x) if gcd(ke + x, n) = 1

1 otherwise,

where x ∈ {0, 1}Q, ke ∈ Z∗n, where Q = bw log2 nc.
(ii) Designs a circuit as described in Figure 1.

(iii) Constructs an obfuscated circuit C ← O(1κ, C) of C.

(iv) Runs Algorithm 2 to generate a Bloom filter BFY of the set Y = {fke(y1), ..., fke(yv)},
where fke(yj) = g1/(ke+yj) for j = 1, ..., v and Y = {y1, ..., yv} ⊆ Znw is A’s pri-
vate input set.

(v) Sends the obfuscated circuit C together with BFY to B.

• PSI.Complete(C,BFY )→ (X = X ∩ Y ): On receiving (C,BFY ) from A, the client B
starts with an empty set X and does the following

(i) For each i = 0, ..., L− 1

– generates opening πi = SSBHash.Open(hk, s, i) ∈ ×αZnw using the already
computed values ctv’s during the calculation of z ← SSBHash.H(hk, s) and
computes PRF values fke(xi)← C(i, xi, πi). Note that s, xi are known to B.

– runs Algorithm 3 on inputs BFY and fke(xi) to check whether fke(xi) is in the
set Y corresponding to the Bloom filter BFY . If YES, then xi is included in X .

(ii) Outputs the final X as the intersection of the sets X and Y .

Correctness: The correctness of our protocol follows from the following fact in the PSI.Complete
phase executed by B:

fke(xi) passes the check step of BFY inAlgorithm3

⇔ fke(xi) ∈ Y except with negligible probability 1
2k

⇔ there exists yj ∈ Y such that fke(xi) = fke(yj)

⇔ xi = yj as fke(·) is a PRF function
⇔ xi ∈ X ∩ Y
⇔ X = X ∩ Y ( by the construction of X)

Complexity: In our construction, size of the public parameter hk is (2α + 1)bw log2 nc +
log2 n + |h| bit and 2α exponentiations are required to generate hk. The communication
complexity includes three bit-strings of length m, bw log2 nc and m + poly(κ)(|C|), where
|h|=length of the hash function h : Znw+1 → Znw and m = kv

ln 2
, |C|=lenght of the circuit

C = C[hk, z, ke](i, x, π). The computation complexity of our PSI is displayed in Table 3.
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Table 3 : Computation complexity of our PSI protocol

Exp Inv HBF HSSB EC FHEEnc FHEDec FHEEval

A PSI.Response v v kv 2η(2M + 5)2 + 4(2M + 5)
B PSI.Request 3(L− 1) L− 1 L− 1
B PSI.Complete kL 2L L 2L

α = log2 L, M = 2η + 5, η= length of oblivious matrix branching program, η ≤ 4d, d= depth of the circuit C, Exp= number of
exponentiations, Inv= number of inversions, HBF= number of hash operations for Bloom filter, HSSB= number of hash operations for SSB

hash

3.1 Security

Theorem 3.1. If H is an SSB hash based on DJ encryption, O is an iO scheme and the asso-
ciated PRF fke(·) is secure then the protocol presented in section 3 between a server A and a
clientB is a secure computation protocol for functionalityFPSI in the security model described
in section 2.1 except with negligible probability 1

2k
, under DCR assumption.

Proof. We consider two cases to prove the security of our scheme: (i) when the client B is
corrupted and (ii) when the server A is corrupted. In both the cases, our aim is to construct a
simulator who given the input and output of the corrupted party, can extract a view which is
indistinguishable from the real view of the corrupted party. Here view of an entity consists of
input message, the outcome of the entity’s internal coin tosses and the messages received by
the entity during the protocol execution.
(i) Case I (B is corrupted). Let us construct a simulator SB that has access to B’s private input
X and output X ∩ Y . We will prove that SB’s simulated view simB = {X, hkL−1, C̃,BFỸ } is
indistinguishable from B’s real-world view ViewB = {X, hk, C,BFY }, where hkL−1, C̃, BFỸ
are simulated protocol messages from the server A. We prove this via a sequence of hy-
brid arguments Hybrid 0, Hybrid 1, Hybrid 2, {Hybrid (2;µ, ν), µ ∈ {0, ..., L}, ν ∈
{0, ..., L− 1}}, Hybrid 3, where distributions of two successive hybrids differ only by small
modifications and finally we arrive at the hybrid Hybrid 4 which has the distribution of the
simulated view simB. where we make small modifications and finally arrive at the distribution
of the simulated view simB.

Hybrid 0 : This is analogous to the real world where B’s view is ViewB = {X, hk, C,BFY }.

Hybrid 1 : This argument is same as Hybrid 0 except that the simulator SB selects {r′i}L−1
i=0

uniformly as B’s random coins. Consequently, Hybrid 0 and Hybrid 1 are indistin-
guishable.

Hybrid 2 : This argument is similar to Hybrid 1 except that the simulator SB selects a
PRF key k̄ and obfuscates Caug

0 = Caug[hk, z, ke, k̄, i∗ = 0] given in Figure 2, instead
of C = C[hk, z, ke] on behalf of the server A by setting C ← O(1κ, Caug

0 ). As i∗ = 0
in Caug

0 = Caug[hk, z, ke, k̄, i∗ = 0] and i ∈ {0, ..., L − 1}, we have i ≥ i∗ in step 2 of
Figure 2. Therefore, the outputs produced by both circuits C and Caug

0 on the same input
(i, x, π) are identical to fke(x) if SSB.Verify succeeds or 0 otherwise. Hence by the iO
security of the obfuscator O, Hybrid 1 and Hybrid 2 are indistinguishable.
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{Hybrid (2;µ, ν), µ ∈ {0, ..., L}, ν ∈ {0, ..., L− 1}}: This argument is same as Hybrid 2
except the followings:

– Instead of obfuscating the circuit Caug
0 , the simulator SB obfuscates the circuit Caug

µ =

Caug[hk, z, ke, k̄, i∗ = µ] by setting C ← O(1κ, Caug
µ ), where Caug

µ is as in Figure 2
with i∗ = µ.

– Instead of choosing hk ← SSBHash.Gen(1κ, 1lblk , L, 0), the simulator SB chooses
hkν ← SSBHash.Gen(1κ, 1lblk , L, ν) which is statistically binded at the index ν.

Clearly, Hybrid (2; 0, 0) is identical to Hybrid 2. We will now prove the following
lemma:

Lemma 3.1. (a) For µ ∈ {0, ..., L−1}, the argument Hybrid (2;µ, µ) is indistinguish-
able from Hybrid (2;µ, µ) i.e.,

Hybrid (2;µ, µ)
c≡ Hybrid (2;µ+ 1, µ), µ ∈ {0, ..., L− 1}.

(b) For µ ∈ {0, ..., L− 2}, the argument Hybrid (2;µ+ 1, µ) is indistinguishable from
Hybrid (2;µ+ 1, µ+ 1) i.e.,

Hybrid (2;µ+ 1, µ)
c≡ Hybrid (2;µ+ 1, µ+ 1), µ ∈ {0, ..., L− 2}.

Proof of Lemma 3.1: Note that in Hybrid (2;µ, µ) and Hybrid (2;µ + 1, µ), the
circuits to be obfuscated by SB are respectively Caug

µ and Caug
µ+1, and the hash keys are

same which is hkµ ← SSBHash.Gen(1κ, 1lblk , L, µ). To prove part (a) of Lemma 3.1,
we have to show that the outputs of Caug

µ = Caug[hkµ, z, ke, k̄, i
∗ = µ] and Caug

µ+1 =
Caug[hkµ, z, ke, k̄, i

∗ = µ + 1] are indistinguishable. Notice that for all inputs of the
form (i, x, π) with i < µ, both Caug

µ and Caug
µ+1 output 0 when SSB.Verify does not suc-

ceed or fk̄(i) otherwise as we have i < i∗ in step 2 of Figure 2 for i∗ = µ as well as
i∗ = µ + 1. On the other hand, for all inputs of the form (i, x, π) with i ≥ µ + 1,
both Caug

µ and Caug
µ+1 output either 0 or fke(x) according as SSB.Verify fails or succeeds.

Thus the outputs of Caug
µ and Caug

µ+1 only differ for the inputs of the form (µ, x, π) when
SSBHash.Verify(hkµ, z, µ, x, π) = accept. By the “somewhere statistically binding”
property of the SSB hash which is selected to be binding at index µ, the inputs of the
form (µ, x, π) with SSBHash.Verify(hkµ, z, µ, x, π) = accept must satisfy x = xµ, where
xµ is B’s µ-th input. In this case, Caug

µ outputs fke(x), whereas Caug
µ+1 outputs fk̄(µ). Note

that fke(x) and fk̄(µ) are computationally indistinguishable by the security of the PRF f .
Hence part (a) of Lemma 3.1 is established from by the security of f and iO security of
the obfuscator O. Part (b) of Lemma 3.1 immediately follows from the “index hiding”
property of the SSB hash function.
Hence we can conclude by Lemma 3.1 that Hybrid (2;L,L− 1) and Hybrid (2; 0, 0)
are indistinguishable. As Hybrid (2; 0, 0) is identical to Hybrid 2, we can say that
Hybrid (2;L,L− 1) is indistinguishable from Hybrid 2.

Hybrid 3 : This argument is similar to Hybrid (2;L,L−1) except that the simulator SB ob-
fuscates C ′ = Caug[hkL−1, z,⊥, k̄, i∗ = L] instead of Caug

L = Caug[hkL−1, z, ke, k̄, i
∗ =

L], where ke is replaced ⊥. As ke is never used in C ′, output of C ′ is 0 for SSB.Verify =
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reject or fk̄(i) otherwise. Also note that in step 2 of Figure 2, i ≥ i∗ = L is never satis-
fied as i ∈ {0, ..., L− 1} for Caug

L and output is 0 when SSB.Verify does not succeed, or
fk̄(i) otherwise. Therefore, behavior of Caug

L , C ′ are identical and indistinguishability of
Hybrid (2;L,L− 1) and Hybrid 3 follows from the iO security of the obfuscator O.

Hybrid 4 : Note that SB has knowledge of PRF key k̄, private input set X and output X ∩Y
of the corrupted partyB. This hybrid is analogous to Hybrid 3 except that the simulator
SB constructs a set Y ′ = {y′1, ..., y′v} by including all the elements ofX∩Y together with
v − |X ∩ Y | many random elements and generates the Bloom filter BFỸ of the set Ỹ =
{fk̄(y′1), ..., fk̄(y

′
v)} instead of BFY on behalf of the server A following Algorithm 2. The

Bloom filter BFỸ is indistinguishable from BFY in the sense that to construct X ∩ Y , the
clientB checks the elements of the set {fke(x0), ..., fke(xL−1)} against BFY in Hybrid 3
whilst in Hybrid 4, the client B checks the elements of the set {fk̄(x0), ..., fk̄(xL−1)}
against BFỸ . Thus the indistinguishability of Hybrid 3 and Hybrid 4 holds from the
security of the PRF f .

(ii) Case II (A is corrupted). We construct a simulator SA that has access to A’s private input
set Y and output ⊥. We will show that SA’s simulated view simA = {Y, {R̄i, γ̄i}log2 L

i=1 , z̄} is
indistinguishable from A’s real-world view ViewA = {Y, {Ri, γi}log2 L

i=1 , z}, where {γ̄i}log2 L
i=1 ’s

are A’s simulated random coins which are required during generation of SSB hash key hk ←
SSBHash.Gen(1κ, 1lblk , L, 0) in the off-line phase and z̄ is simulated protocol message from the
client B. To prove this, we construct the following sequence of hybrid arguments Hybrid 0,
Hybrid 1, where consecutive hybrids differ by small modifications and finally arrive at a
hybrid Hybrid 2 with the distribution of the simulated view simA.

Hybrid 0 : This is exactly the real world, where A’s view is ViewA = {Y, {γi}log2 L
i=1 , z}.

Hybrid 1 : This argument is similar to Hybrid 0 except that the simulator SA selects
{γ̄i}log2 L

i=1 uniformly as A’s random coins. As a consequence, Hybrid 0 and Hybrid 1
are indistinguishable.

Hybrid 2 : This argument is identical to Hybrid 1 except that the simulator SA chooses
z̄ � Znw instead of computing z = Hhk(s) on behalf of B. By the security of random-
ization, Hybrid 1 and Hybrid 2 are indistinguishable.

4 Conclusion and Future Work

In this work, we introduce the idea of constructing PSI utilizing SSB hash, Bloom filter and iO.
Compared to the existing PSI schemes, our PSI is the most efficient PSI scheme. More signif-
icantly, it is the first to achieve constant communication complexity with linear computation
cost. Our protocol works fast even for big data sets. Security of our scheme is analyzed in the
semi-honest setting without any random oracles. Extending our work to achieve security in the
malicious environment is an interesting direction of future work.
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