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Abstract. In this paper we propose a digital signature scheme based
on supersingular isogeny problem. We design a signature scheme using
the Fiat-Shamir transform. The scheme uses a modi�ed version of zero-
knowledge proof proposed by De Feo, Jao, and Plût. Unlike the original
version our zero-knowledge proof uses only one curve as a commitment. A
digital signature scheme using the similar idea was proposed recently by
Galbraith et al., but our proposal uses a di�erent method in computing
isogeny. We take advantage of our proposed version of zero-knowledge
proof to speed up signature generation process. We also present a method
of compressing signature.
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1 Introduction

The security of currently used public key cryptosystems is based on number
theoretic problems such as hardness of factoring large numbers or solving discrete
logarithms over �nite �elds. However, due to Shor's algorithm, this problems
can be solved in polynomial time by quantum adversary, hence threatening the
security of current public key cryptosystems. Hence demands for quantum-secure
cryptographic primitives are inevitable.

Post-quantum cryptography is an alternative cryptographic primitives that
are safe against quantum adversary. Mutivariate-based, code-based, lattice-based,
hash-based digital signature, and isogeny-based cryptography are main cate-
gories of post-quantum cryptography. Although isogeny-based cryptography is
one of the newest in post-quantum cryptography, it is considered prominent
candidate due to short key size and its use of elliptic curve arithmetic.

The security of Isogeny-based cryptography is based on hardness of �nding
isogeny between two given elliptic curves. The �rst cryptosystem using isogenies
between ordinary elliptic curves proposed by A. Stolbunov [17] was extremely in-
e�cient and even su�ers from the quantum sub-exponential algorithm proposed
by Childs, Jao, and Soukharev [6]. In 2014 De Feo, Jao, and Plût presented a new
cryptosystem based on the di�culty of isogeny construction problem between



supersingular elliptic curves which is still infeasible against the known quantum
attacks. In 2016, key compression method for supersingular isogeny key exchange
was proposed by Reza et al.. They also implemented key exchange protocol in
ARM-NEON, FPGA [12,?]. Costello et al. [7] proposed library for supersingular
isogeny key exchange and proposed method for faster computation. As stated
above, extensive research has been done in isogeny-based cryptography. However,
only key-exchange protocol and lack of digital signature scheme was weakness
in isogeny-based cryptography.

Recently, Galbraith et al. proposed the �rst signature scheme based on super-
singular isogeny problem [10]. The scheme uses Fiat-Shamir Transform on the
zero-knowledge proof (ZKP) proposed by De Feo, Jao, and Plût [8]. They also
proposed modi�ed version that uses quaternion `-isogeny algorithm for comput-
ing isogenies, which expand the study for isogeny-based cryptosystem.

In this paper, we propose EUF-CMA secure digital signature scheme for
isogeny-based cryptography. Our scheme also uses Fiat-Shamir transform on
a modi�ed version of the ZKP of [8]. Our proposal is di�erent from that of
Galbraith et al. in isogeny computation method.

This paper is organized as follows: In Section 2, we introduce preliminaries
for isogeny-based cryptography and current isogeny construction algorithms in
Section 3. In Section 4, we describe supersingular isogeny ZKP. We propose our
EUF-CMA secure digital signature scheme and propose its security in Section 5.
In Section 6, we introduce modi�cation for shorter signature size and conclude
our result in Section 7.

2 Elliptic curves and isogenies

Let K be a �eld. An elliptic curve de�ned over K is an smooth, projective
algebraic curve of genus one de�ned over K with a distinguished point. We
know by the Riemann-Roch theorem that such a curve is isomorphic to a curve
de�ned by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

It is well known that the points of an elliptic curve form a group with the
distinguished point as the identity under the point addition de�ned by the chord
tangent law.

If the characteristic of K is not 2 or 3, then every elliptic curve can be de�ned
by a short Weierstrass equation

y2 = x3 + ax+ b, (2)

with the smoothness condition 4a3 +27b2 6= 0. Only �nite �elds with character-
istic not equal to 2 or 3 need to be considered for the purpose of supersingular
isogeny based cryptography, we assume this case throughout the paper.

The j-invariant of the elliptic curve E/K : y2 = x3 + ax+ b is de�ned as

j(E) = 1728
4a3

4a3 + 27b2
∈ K. (3)



We easily know that for a given j0 ∈ K, there exist an elliptic curve over K
having the j-invariant equal to j0. Two elliptic curves are isomorphic to each
other if and only if they have a same j-invariant. So the isomorphism classes of
elliptic curves de�ned over K can be represented as the set of their j-invariants.
Hence, in this paper we may refer an elliptic curve E as its j-invariant and vice
versa.

Let E and E′ be elliptic curves de�ned over K with the distinguished points
O and O′, respectively. An isogeny from an E to E′ de�ned over K is a surjective
morphism from E(K) to E′(K) which maps O to O′, where K is an algebraic
closure of K. Then isogeny automatically becomes a group homomorphism.

The degree of an isogeny is de�ned as the extension degree [K(E) : φ∗K(E′)]
of function �elds where φ∗K(E′) is the �eld of rational functions of the form
f ◦ φ where f ∈ K(E′). We say the isogeny φ is separable(resp. inseparable)
if the extension K(E)/φ∗(E′) is separable (resp. inseparable). Every isogeny
φ : E → E′ can be decomposed as φ = φs ◦πn, where φs : E → E′ is a separable
isogeny and π is the Frobenius endomorphism on E. Note that if φ is a separable
isogeny, then we have #kerφ = deg φ.

An isogeny over K can be formulated as

φ(x, y) =

(
g(x)

h(x)
,

(
g(x)

h(x)

)′
y

)
, (4)

where g and h are poynomials in K[x], which is called the standard form of an
isogeny. The degree of isogeny can be computed as deg φ = max{deg g,deg h}.
The roots of the polynomial h(x) are exactly the abscissae of the points in
the kernel except the point at in�nity. Thus the kernel of an isogeny is �nite.
Conversely, if a �nite subgroup G of an elliptic curve E is given, then there exist
an elliptic curve E′ ∼= E/G and a separable isogeny φ : E → E′, i.e. kerφ = G.

Vélu [18] gave the explicit formulae to construct an isogeny with a given
elliptic curve and a given �nite subgroup as the kernel. The formulae are based
on the transformation

(xP , yP )→

xP +
∑

Q∈G\{O}

(xP+Q − xQ), yP +
∑

Q∈G\{O}

(yP+Q − yQ)

 (5)

which is invariant under the translation by Q where Q is in the kernel G. The
formulae for higher degree isogeny are complicated, but in the case of low-degree
isogeny, they are simple enough and can be e�ciently computed [19].

Let φ : E1 → E2 be a separable isogeny of degree `. Then there exist unique
separable isogeny φ̂ : E2 → E1, with equal degree such that φ̂◦φ is multiplication

by ` map on E1. We call φ̂ as dual isogeny of φ . Note that φ =
ˆ̂
φ.

We denote the ring of endomorphisms of E by End(E). Then End(E) is
an order of the endomorphism algebra End0(E) := End(E) ⊗Z Q. End0(E) is
isomorphic to one of the rational �eld, an imaginary quadratic �eld or a quternian
algebra. If j(E) is not an algebraic integer, then End0(E) = Q. If End0(E) 6∼= Q,
then we say that E has a complex multiplication.



Let Fq be a �nite �eld with characteristic p > 0 and E be an elliptic curve
de�ned over Fq. Then End(E) contains the q-power Frobenius automorphism
πq : (x, y) 7→ (xq, yq). By Hasse's theorem we have #E(Fq) = q + 1 − tq, with
|tq| ≤ 2

√
q, where tq is the trace of the Frobenius.

We denote by E[n] the kernel of the multiplication by n-map. Let K be a
�eld with characteristic p. Then an elliptic curve E over K is supersingular if it
satis�es one of the following conditions.

1. E[p] ∼= {O} .
2. The trace of Frobenius of E is divisible by p.
3. End0(E) is a quaternion algebra.

An elliptic curve which is not supersingular is said to be ordinary.
Since π is a root of the polynomial X2 − tqX + q, we know that π ∈

Q(
√
t2 − 4q). The Hasse condition |tq| ≤ 2

√
q tells us that every ordinary curve

has a complex multiplication. When E is supersingular, the trace of Frobenius is
one of 0,±√q,±2√q. The endomorphism ring over Fq of a supersingular curve
is the maximal order of a quaternion algebra. In particular, End(E) = EndFq (E)

if tq = ±2
√
q.

Since every supersingular elliptic curve is isomorphic to an elliptic curve de-
�ned over Fp2 , we can always take Fq = Fp2 for a prime number p when E is

supersingular. Furthermore, the number of Fq-isomorphism classes of supersin-
gular elliptic curve over Fp2 is 1 if p = 2, 3 and b p12c+ εp where εp = 0, 1, 1, 2 for
p = 1, 5, 7, 11 (mod 12), respectively.

By the Deuring's lifting theorem, every elliptic curve de�ned over Fq is a
reduction of an elliptic curve de�ned over a number �eld L modulo a place in L
lying over p. The reduced elliptic curve is supersingular if and only if p does not
split inK. Due to Deuring, the CM-method is widely used to �nd an elliptic curve
having a prescribed order for cryptographic use. One can construct supersingular
elliptic curves in polynomial time Õ(log q3) using the method proposed by Bröker
[5], while the current algorithms for CM-method to �nd ordinary elliptic curves
runs in exponential time in general.

3 Isogeny problems

Galbraith proposed an algorithm for constructing isogenies between ordinary
elliptic curves in time Õ(p

1
4 ). The currently fastest known isogeny constructing

algorithm between supersingular elliptic curves is in time Õ(p
1
2 ). But Delfs and

Galbraith gave a better algorithm in time Õ(p
1
4 ) for the supersingular elliptic

curves de�ned over Fp. In summary, there are currently only exponential time
algorithms for isogeny computing between elliptic curves, whether it is supersin-
gular or not.

With the quantum algorithm, Childs, Jao, and Soukharev lowered the com-
plexity of isogeny computation in subexponential time Lq(1/2,

√
3/2) [6]. The

fastest current quantum algorithm for isogeny computation between supersin-
gular elliptic curves has complexity Õ(p

1
6 ) [16,?]. But Biasse, Jao, and Sankar



proposed a quntum subexponential time algorithm in Lq[1/2,
√
3/2] for con-

structing isogenies bewteen supersingular elliptic curves de�ned over Fp.
The supersingular isogeny problem for security of our signature scheme is as

follows:

Problem 1. Let be a prime number. Let be E,E′ a supersingular elliptic
curve over Fp2 , chosen uniformly at random. Find an isogeny φ : E → E′ of
given degree.

4 Supersingular isogeny ZKP

An idea of ZKP using supersingular isogeny graph is proposed by De Feo, Jao,
and Plût in [8]. In this section we �rst recall the method of [8], and next introduce
our alternative version that enables smaller data representation.

Domain parameters Let `S , `R be two small primes and eS , eR be positive
integers such that p := `eSS `

eR
R · f ± 1 is a prime number, where f is an inte-

gral cofactor. Let K := Fp2 . Construct a supersingular elliptic curve E de�ned
over K such that #E(K) = (`eSS `

eR
R f)2. In fact, we can easily generate such a

supersingular elliptic curve E over Fp2 using Bröker's method [5].
Since `eSS divides #E(K), and also divides p2 − 1, we have E[`eSS ] ⊂ E(K),

so that we can use a non-degenerated bilinear pairing map from E[`eSS `
eR
R ] to

µ`eSS `
eR
R
⊂ F×p2 [2]. Note that E[`eαα ] subgroups contatins `eS−1S (`S + 1) cyclic

subgroups of order `eSS . The analog holds for `eRR . Let PS , QS , PR and QR be
points of E(K) such that 〈PS , QS〉 = E[`eSS ] and 〈PR, QR〉 = E[`eRR ]. Publish
D := (`S , eS , `R, eR, f, p, E, PS , QS , PR, QR) as domain parameters.

Private and public parameters Choose integersmS , nS ∈ Z/`eSS Z at random
such that S = mSPS + nSQS satis�es 〈S〉 ∼= Z/`eSS Z. De�ne a separable isogeny
φ : E → ES ∼= E/〈S〉 with ker(φ) = 〈S〉. Hold the point S as secret information
and publish the image curve ES .

ZKP-I (De Feo, Jao, and Plût) [8] Peggy generates the private parameters
as described above. Peggy wants to prove to Victor that she knows φ without
conveying any information about φ. Note that E and ES are publicly known.
Now Peggy and Victor perform the following sigma protocol.

1. Peggy chooses a random point R ∈ E[`eRR ] such that 〈R〉 ∼= Z/`eRR Z and set
ψ : E → ER ∼= E/〈R〉 and ψS : ES → ESR ∼= E/〈S,R〉.

2. Peggy sends to Victor (ER, ESR) as a commitment.
3. Victor sends b = 0 or 1 to Peggy as a challenge.
4. If Peggy receives b = 0, then Peggy sends (R,φ(R)) to Victor;

Victor receives (R′, R′′) from Peggy, computes two isogies ψ′, ψ′′ with kerψ′ =
〈R′〉, kerψ′′ = 〈R′′〉 and veri�es if ψ′(E) ∼= ER, ψ

′′(ES) ∼= ESR.



(4') If Peggy receives b = 1, then Peggy sends ψ(S) to Victor;
Victor receives S′ from Peggy, computes an isogeny φ′ with kerφ′ = 〈S′〉
and veri�es if φ′(ER) ∼= ESR.

E
φ−−−−−→ ESyψ yψS

ER
φ′

−−−−−→ ESR

Fig. 1. ZKP-I

The completeness comes from the e�ciency of Vélu's formulae and the sound-
ness comes from the hardness of the isogeny problem. The zero-knowledge prop-
erty is provided since anyone can make a transcript using the following simulation
:

1. b← {0, 1}
2. If b = 0, then generate two random `eRR -isogenies ψ′ : E → E′, ψ′′ : ES → E′′

with kernels 〈R′〉 ⊂ E, 〈R′′〉 ⊂ ES respectively ; output the transcript
((E′, E′′), 0, (R′, R′′))

3. If b = 1, then generate a random curve E′, E′′ such that there exists a
random `eSS -isogeny φ′ : E′ → E′′ with the kernel 〈S′〉, and output the
transcript ((E′, E′′), 1, S′).

ZKP-I uses the similar idea as that of the ZKP using graph isomorphism
problem [15]. One can construct an identi�cation protocol by repeating the above
steps many times with di�erent R for su�ciently small soundness. We also know
that the protocol has special soundness that if two transcripts ((ER, ESR), 0,
(R,φ(R))) or ((ER, ESR), 1, ψ(S)) are known at the same time, then the secret
information S is revealed. Indeed, from kerψ = 〈R〉 and ψ(S), one can com-

pute `eRR S = ψ ◦ ψ̂(S), and immediately obtain kerφ = 〈S〉 = 〈`eRR S〉 since
gcd(`eRR ,deg φ) = 1.

ZKP-II, our proposed version In ZKP-I, a couple of elliptic curves ER and
ESR need to be sent as a commitment, and we have to compute two isogenies
ψ and ψs from the two kernels 〈R〉 and 〈φ(R)〉, respectively. We propose here
another version of ZKP using only one curve as a commitment and computing
only one isogeny at every choice of challenge b. We propose the following ZKP
primitive :

1. Peggy chooses point R ∈ E[`eRR ] at random such that 〈R〉 ∼= Z/`eRR Z and set
the isogenies β : ES → ER ∼= ES/〈φ(R)〉 and α = β ◦ φ : E → ER.

2. Peggy sends to Victor ER as a commitment.



3. Victor sends b = 0 or 1 to Peggy as a challenge.

4. If Peggy receives b = 0 from Victor, then she sends G = S +R to Victor;
Victor receives G′ from Peggy, computes an isogeny α′ with kerα′ = 〈G′〉
and veri�es if α′(E) ∼= ER.

(4′) If Peggy receives b = 1 from Victor, then she sends φ(R) to Victor;
Victor receives G′ from Peggy, computes an isogeny β′ with kerβ′ = 〈G′〉
and veri�es if β′(ES) ∼= ER.

E ES

ER

φ

α = β ◦ φ
β

Fig. 2. ZKP-II

The completeness and the soundness of ZKP-II can be showed in the similar
manner as ZKP-I. The special soundness is provided as follows.

Lemma 1. In ZKP-II, if two transcripts (ER, 0, α) and (ER, 1, β) are obtained
at the same time, then one can compute the isogeny φ : E → ES in probabilistic
polynomial time.

Proof. Note that that E[`eSS `
eR
R ] ∼= (Z/`eSS Z)2 ⊕ (Z/`eRR Z)2. Let S,R ∈ E(Fp2)

be points such that E[`eSS ] = 〈S, S〉 and E[`eRR ] = 〈R,R〉. Then every point
T ∈ E[`eSS `

eR
R ] can be represented as T = aS + bS + cR + dR for some integers

a, b, c, d. Further, we suppose gcd(b, `S) = 1, which is highly probable when T is
chosen at random. We know that two isogenies α and β◦φ are equivalent from the
fact that their kernels are the same subgroup 〈S+R〉 ⊂ E(Fp2). The dual isogeny
β̂ is easily constructed from the kernel 〈β(R′)〉 where R′ ∈ ES [`eRR ] \ 〈φ(R)〉 and
〈R′〉 ∼= Z/`eRR Z. So we can compute the image β̂ ◦ α(T ) = β̂ ◦ α(bS + dR) =

β̂◦β◦φ(bS+dR) = [`eRR ]φ(bS) ∈ ES(Fp2). Since we have assumed gcd(b, `S) = 1,

the group 〈[`eRR ]φ(bS)〉 = 〈φ(S)〉 is the kernel of the dual isogeny φ̂. Now we can

compute φ easily since φ =
ˆ̂
φ. The proposition holds since every step in the

calculation can be done in probabilistic polynomial time. �

Computing isogenies Now we have problems of how to compute isogenies
practically. Since the degrees of isogenies that appear in our ZKPs are smooth,
the computations can be done e�ectively by repeating the computation of small
degree isogenies. One can basically use the following algorithm for computing an
`e-isogeny.



Computing isogeny ψ with degree `e

INPUT : An elliptic curve E/Fq, a point G ∈ E(Fq) of order `e.
OUTPUT : The image curve ψ(E) where kerψ = 〈G〉.

1. G0 ← G.
2. For i = 0, · · · , e− 1 do the folllowing

(a) Find cyclic `-isogeny ψi with kerψi = 〈`e−i−1Gi〉.
(b) Compute Ei+1 = ψi(Ei), Gi+1 = ψi(Gi).

3. OUTPUT Ee.

The algorithm can be improved by using optimal strategy method proposed in
[8]. Some results of the e�cient implementation of the method was presented in
[7]. One can compute isogenies φ and β as above. Victor's computation of α needs
applying above algorithm two times with the initial point G = S+R, i.e. Victor
computes at �rst `eSS -isogeny from E, obtain EeS , GeS as the intermediate results
and applies `eRR -isogeny from EeS with the kernel 〈GeS 〉 to eventually obtain ER.

Hence, Victor using ZKP-II has no bene�t in computational e�ciency com-
pared with ZKP-I. However note that the data size of commitment is 2/3 times
smaller than that of ZKP-I at average. This improvement is important since one
has to use hundreds of ZKP's when constructing practical cryptographic schemes
like an identi�cation or a digital signature.

Remark Galbraith et al. [10] have proposed a ZKP primitive using isogeny
graph of similar structure. However in their main contribution (the second sig-
nature scheme), they use the powersmooth version of the quaternion `-isogeny
algorithm of Kohel et al. [11] to compute isogenies between elliptic curves E,
ES and ER where the endomorphism rings End(E), End(ES) and End(ER) are
known to signer. Our version uses Vélu's formulae with cyclic kernel generator
for isogeny computation.

5 A supersingular isogeny digital signature algorithm

using Fiat-Shamir transform

Fiat-Shamir transform turns a sigma protocol into a digital signature scheme
using random oracles [9]. We construct a Fiat-Shamir type digital signature
algorithm based on ZKP-II described in Section 4. We continue to use the same
domain parameters D := (`S , eS , `R, eR, f, p, E, PS , QS , PR, QR) as de�ned in
Section 4.

Let M = {0, 1}∗ be the message space and H :M → {0, 1}n be a crypto-
graphic hash function where n is a security parameter.

Key-pair generation
INPUT : the domain parameter D
OUTPUT : a point S ∈ E as a private key, an elliptic curve ES as a public key
We use the same notation for the private and public parameters de�ned in Sec-
tion 4. Output the generating point S of the kernel of an isogeny φ : E → ES as
a private key and the image curve ES as the corresponding public key.



Signature generation
INPUT : a domain parameter D, a message m ∈M, a private key S.
OUTPUT : the digital signature (e, s) for m
Perform the following steps :

1. Choose random points R1, · · · , Rn ∈ E[`eRR ] such that 〈Ri〉 ∼= Z/`eRR Z;
Put Gi = S +Ri; Compute φ(Ri);
Compute isogenies βi : E → Ei with kerβi = 〈φ(Ri)〉.

2. Put r = (E1, · · · , En).
3. Compute e = H(r||m).
4. Put (b1, · · · , bn) = e with bi = 0 or 1 ;

Put s = (K1, · · · ,Kn) where Ki =

{
Gi if bi = 0,

φ(Ri) if bi = 1.

5. Output (e, s).

Signature veri�cation
INPUT : a domain parameter D, a message m ∈ M, a public key Es, a digital
signature (e′, s′) where s′ = (K ′1, · · · ,K ′n).
OUTPUT : status (TRUE or FALSE)
Perform the following steps :

1. Put (b′1, · · · , b′n) = e′ with b′i = 0 or 1.
For i = 1, · · · , n, do the following steps :

If b′i = 0, then compute isogeny αi : E → E′i with kerαi = 〈K ′i〉.
If b′i = 1, then compute isogeny βi : ES → E′i with kerβi = 〈K ′i〉.

2. Put r = (E′1, · · · , E′n).
3. If e′ = H(r||m), then output TRUE

else output FALSE.

6 Security

We now prove that the proposed signature scheme is existentially unforgeable
under adaptive chosen-message attacks (EUF-CMA-secure) in the random oracle
model using forking lemma. We brie�y recall the forking lemma.

Lemma 2 (Forking Lemma [3]). Fix an integer q ≥ 1 and a set H of size
h ≥ 2. Let A be a randomized algorithm that on input x, h1, · · · , hq returns a
pair, the �rst element of which is an integer in the range 0, · · · , q and the second
element of which we refer to as a side output. Let IG be a randomized algorithm
that we call the input generator. The accepting probability of A, denoted acc, is
de�ned as the probability that I ≥ 1 in the experiment

x
$←− IG ; h1, · · · , hq

$←− H ; (I, σ)
$←− A(x, h1, · · · , hq).

The forking algorithm FA associated to A is the randomized algorithm that takes
input x proceeds as follows:

Algorithm FA(x)



Pick coins ρ for A at random

h1, · · · , hq
$←− H

(I, σ)← A(x, h1, · · · , hq; ρ)
If I = 0 then return (0, null, null)

h′I , · · · , h′q
$←− H

(I ′, σ′)← A(x, h1, · · · , hI−1, h′I , · · · , h′q; ρ)
If (I = I ′ and hI 6= h′I) then return (1, σ, σ′)

Else return (0, null, null).

Then Pr
[
b = 1 : x

$←− IG; (b, σ, σ′) $←− FA(x)
]
≥ acc ·

(
acc
q −

1
h

)
.

The forking lemma means that if an algorithm A can produce a value σ at an
index I of the sequence h1, · · · , hq with a non-negligible probability, then the
algorithm FA, which uses A, can obtain another value σ′ di�erent from σ at
the same index I of a modi�ed sequence h1, · · · , hI−1, h′I , · · · , h′q with a non-
negligible property. Note that the sequences are di�erent after the index I − 1
in the second run. Refer to [3] for details.

We apply Lemma 2 letting I = r and σ = s in our scheme. That is to say,
if an adversary A can produce an existential forgery (r, e, s) on a message m
with a non-negligible probability, then the adversary can obtain another forgery
(r, e′, s′) on the same message with a non-negligible probability by performing
the process again with a di�erent sequence of hash values.

Theorem 1. In the random oracle model let A denote a EUF-CMA adversary
against proposed signature scheme with adventage ε, making q queries to its
hash function h. Then there is an adversary TA against the isogeny problem
with adventage ε′ such that

ε′ ≥ ε2

q
− ε

h

Proof. We take the adversary A which uses Es as public key and wrap it inside
another algorithm A′ which does not make queries to signature oracle. The
algorithm A′ excutes the following steps for hash queries h1, · · · , hq

1. C = (C1, · · · , Cn)
$←− {E,Es}n.

2. s ← (K1, · · · ,Kn) where each Ki is randomly chosen point of Ci such that
〈Ki〉 = ker γi ∼= Z/`eRR Z for an isogeny γi : Ci → γ(Ci).

3. r ← (γ1(C1), · · · , γn(Cn)).
4. De�ne H(r||m) := hi. If this value has already been de�ned, go to (1) and

choose another C.

Now we apply the forking lemma to TA′ to obtain a pair of tuples (r, e, s)
and (r, e′, s′). Then there exist at least one bit of e′ di�erent from that of e at
some position, which reveals the secret isogeny φ : E → Es by Lemma 1. �



7 Size of parameters and signatures

In this section we discuss on size of domain parameters and signatures, and
propose an e�cient method for compressing signature.

Size of parameters The domain parameters D := (`S , eS , `R, eR, f, p, E, PS ,
QS , PR, QR) have the bit-size about 10 log2 p, which is the sum of the size of the
j-invariant of initial elliptic curve and the sum of the sizes of the x-coordinates
of four generating points. Note that E is de�ned over Fp so that the size of the j-
invariant of E is log2 p. Since the size of `S , eS , `R, eR, f is negligible with respect
to p,E, PS , QS , PR, QR, we only consider the size of p,E, PS , QS , PR, QR.

The size of public key is 2 log2 p, which is the size of the j-invariant of Es.
The size of a private key is 2log2 p which is the size of the x-coordinate of a
generating point of a kernel.

The size of signature appeared in Section 5 is about n + 2n log2 p which is
the sum of the sizes of e and the size of s =

∑n
i=1 log2(x-coordinate(Ki)). A

signature can be compressed moe as described bellow.

Compressing signature For a signing process, wee need to generate n points
S +R1, · · · , S +Rn ∈ E[`eRR ] and their images φ(R1), · · · , φ(Rn) where Ri's are
randomly chosen point of E of order `eRR . We propose the following method : at
�rst signer generates two linearly independent points U, V ∈ E[`eRR ] such that
〈U, V 〉 = E[`eRR ]. The signer can use an e�ciently computable non-degenerated
bilinear pairing map on E[`eRR ] to validate U and V . Let US = φ(U), VS = φ(V )
be the images of U , V in ES . Then, by the discussion of [7], a point of order
`eRR can be sampled in the form U + [`Rm]V where an integer m is chosen
uniformly at random from {1, 2, · · · , `eR−1R − 1}. Set G := S + U . Then we see
that G + [`Rm]V = S + R where R is a point of order `eRR , and that φ(R) =
US+[`Rm]VS . Thus both the kernel 〈S+R〉 of α, and the kernel 〈φ(R)〉 of β are
represented in a positive integer m less than `eR−1R . Therefore signer generates
a sequence of integers m1, · · · ,mn where each mi represents the i-th generating
points of kernels S +Ri = G+ [`Rmi]V ∈ E and φ(Ri) = US + [`Rmi]VS ∈ ES .
Signer puts the integer mi in the i-th place when bi = 0, or a generating point
φ(Ri) when bi = 1. It should be noted that U or a pair (US , VS) must not be
revealed, since then the secret key S will be revealed.

The following algorithms are processes for generating and verifying com-
pressed signatures. The domain parameter and key pair settings are equivalent
to those in Section 5.

Signature generation (compressed version)
INPUT : a domain parameter D, a private key S,

a message m ∈M, a randomly chosen seed.
OUTPUT : the digital signature (e, s) for m.
Perform the following steps :

1. Init s← ().



2. Choose points U, V ∈ E at random such that 〈U, V 〉 = E[`eRR ].
3. Compute the points US = φ(U), VS = φ(V ).
4. Put G = S + U .
5. Append G,V to s.
6. For i = 1, · · · , n do the following steps :

(a) Choose mi ∈ {1, 2, · · · , `eR−1R − 1} at random.
(b) Put Ki = US + [`Rmi]VS .
(c) Compute isogeny βi : E → Ei with kerβi = 〈Ki〉.

7. Put r = (E1, · · · , En).
8. Compute e = H(r||m).
9. Put (b1, · · · , bn) = e with bi = 0 or 1.
10. For i = 1, · · · , n

If bi = 0 then append mi to s,
else append Ki to s.

11. Output (e, s).

The output of signature is of the form s = (G,V, {m1 or K1}, · · · , {mn or Kn}).
Signature veri�cation (compressed version)
INPUT : a domain parameter D, a message m ∈M, a public key Es,

a digital signature (e′, s′) where s′ = (G′, V ′, {m′1 or K ′1}, · · · , {m′n or K ′n}).
OUTPUT : status (TRUE or FALSE)
Perform the following steps :

1. Put (b′1, · · · , b′n) = e′ with b′i = 0 or 1.
2. For i = 1, · · · , n, do the following steps :

(a) If b′i = 0, then compute isogeny αi : E → E′i with kerαi = 〈G′ +
[`Rm

′
i]V
′〉.

If b′i = 1, then compute isogeny βi : ES → E′i with kerβi = 〈K ′i〉.
3. Put r′ = (E′1, · · · , E′n).
4. If e′ = H(r′||m), then output TRUE

else output FALSE.

Then the following result holds.

Theorem 2. The signature size of the proposed digital signature scheme is

n+ c+
(
5
4n+ 3

)
log2 p,

at average where n is the size of hash, and c is the size of seed.

Proof. We represent a generating point by its x-coordinate, and need not care
the y-coordinate since 〈G〉 = 〈−G〉 for a point G ∈ E. Let |G| denote the
bit size of x-coordinate of G. Note that we can choose V in order that V has
x-coordinate in Fp. The signature size is, (e size) + (s size) = (hash size) +

|G|+ |V |+log2(seed)+
1
2

∑
|mi|+ 1

2

∑
|Ki| = n+log2 p

2+log2 p+c+
n
2 log2 p

1
2 +

n
2 log2 p

2 = n+ c+
(
5
4n+ 3

)
log2 p, at average. �

We see that now the signature size of our proposed scheme becomes 5/6 times
smaller than that of [10]. This is possible since triangular structure of ZKP-II
which uses only one elliptic curve as a commitment, while the same technique
can not be applied to the �rst scheme of [10].



Speed We compare the speed of our proposed scheme with the �rst scheme
(TFS) of Galbraith et al. [10], which is said to be signi�cantly e�cient than
the second scheme. TFS computes 2n isogenies for signature generation while
our proposed scheme computes the isogeny φ one time and β, n times, which is
two times faster than TFS. For signature veri�cation we compute either α or β
depending on bits of e. Note that the computational cost of α is approximately
equal to the sum of the computational costs of φ and β. The veri�cation cost is
equal to TFS.

Counting the cost of isogeny computations, we can predict the speed referring
to the benchmark result on a 3.4 GHz Intel Core i7-2600 and Intel Core i7-4770
for Sandybridge and Haswell, respectively [7].

Operation Sandy Bridge Haswell
Alice's keygen 50 46
Bob's keygen 57 52

Alice's shared key 47 44
Bob's shared key 55 50

Total 207 192

Costello at al. Speed (cc ×106 )

Since Costello et al. aim at 192-bit classical security (128-bit quantum se-
curity), to aim at the same security level we take n = 384. Then, a signature
generation process takes about 19, 200× 106cc, since it needs about 384 isogeny
computations. In the same manner a veri�cation process will take 28, 800×106cc
at average.

8 Conclusion

We have proposed a Fiat-Shamir type digital signature scheme based on su-
persingular isogeny problem. The signature scheme is proven to be EUF-CMA
secure by the forking lemma. We provide a computational method for modi�ed
version of ZKP, which uses one curve as a commitment. Additionally, we also
proposed a method for compressing signature by representing kernels with coef-
�cients of generators. The size of signature and speed are improved signi�cantly
from the �rst version of supersigular isogeny digital signature scheme proposed
by Galbraith et al. Our proposed scheme can be considered to be acceptable as
a candidate of digital signature scheme against quantum algorithms.
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