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Abstract. Pseudoentropy has found a lot of important applications to
cryptography and complexity theory. In this paper we focus on the foun-
dational problem that has not been investigated so far, namely by how
much pseudoentropy (the amount seen by computationally bounded at-
tackers) differs from its information-theoretic counterpart (seen by un-
bounded observers), given certain limits on attacker’s computational
power?

We provide the following answer for HILL pseudoentropy, which exhibits
a threshold behavior around the size exponential in the entropy amount:

– If the attacker size (s) and advantage (ε) satisfy s � 2kε−2 where
k is the claimed amount of pseudoentropy, then the pseudoentropy
boils down to the information-theoretic smooth entropy

– If s� 2kε2 then pseudoentropy could be arbitrarily bigger than the
information-theoretic smooth entropy

Besides answering the posted question, we show an elegant application
of our result to the complexity theory, namely that it implies the clas-
sical result on the existence of functions hard to approximate (due to
Pippenger). In our approach we utilize non-constructive techniques: the
duality of linear programming and the probabilistic method.

Keywords: nonuniform attacks, pseudoentropy, smooth entropy, hard-
ness of boolean functions

1 Introduction

Pseudoentropy has recently attracted a lot of attention because of ap-
plications to complexity theory [RTTV08], leakage-resilient cryptogra-
phy [DP08, Pie09], deterministic encryption [FOR15], memory delega-
tion [CKLR11], randomness extraction [HLR07], key derivation, [SGP15]
constructing pseudorandom number generators [VZ12,YLW13] or black-
box separations [GW11].
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What differs between pseudoentropy and information-theoretic en-
tropy notions is the parametrization by adversarial resources. That is,
pseudoentropy not only has quantity k but also quality, which is typi-
cally described by the attacker size s and the advantage ε achieved in the
security game.

Despite many works on pseudoentropy applications, not much is known
about relationships between k, s and ε for a given distribution X, in par-
ticular parameter settings that make pseudoentropy non-trivial (bigger
than the information-theoretic entropy). Concrete numbers can be con-
jectured for some applications under assumptions about computational
hardness, for example for outputs of pesudorandom generators, or keys
obtained by the Diffie-Hellman protocol. Yet in many cases, like key
derivation where pseudoentropy can model “weak” sources, one simply
assumes pseudoentropy of certain (strong enough) quality.

Without understanding relationships between s, ε and k it is not clear
how demanding or even non-trivial is the use of pseudoentropy in appli-
cations. This is precisely the issue we are going to address in this work.

1.1 Problem statement

In this paper we are interested in separating pseudoentropy (entropy seen
by bounded attackers) from its information-theoretic counterpart (mea-
sured against unbounded attackers).

An n-bit random variable X is said to have k bits of pseudoentropy1

against attackers of size s and advantage ε if for some distribution Y of
min-entropy k, no circuit of size s can distinguish it from Y with advan-
tage bigger than ε (see Section 2.4) 2. Note that the notion is parametrized
by the adversarial specific size s and advantage ε. In particular the amount
decreases when s gets bigger and ε gets smaller (it is harder to fool ad-
versaries with bigger resources). When s is unbounded, pseudoentropy
equals the information-theoretic smooth min-entropy (see Section 2.4).

To better understand possibilities and limitations of using pseudoen-
tropy, it is natural to ask in what parameter regimes pseudoentropy pro-
vides non-trivial computational security, that is when we have a real gain
in the entropy amount comparing to the information-theoretic case.

Q: How much computational power is needed to boil pseudoen-
tropy down to information-theoretic smooth entropy?

1 We consider here the most popular notion of HILL pseudoentropy
2 This matches the definition of pseudorandomness when k is the length of X.



1.2 Our Contribution

Nonuniform attacks against pseudoentropy Our result exhibit a
threshold phenomana. Intuitively, with enough computational power (say
size 2n for n-bit random variables3) the notion of pseudoentropy is no
more stronger than the corresponding information-theoretic entropy no-
tion. We estimate the value of this threshold on the circuit size s, so
that above there is no computational gain and below there exists non-
trivial pseudoentropy. There result is somewhat surprising because: (a)
the threshold doesn’t depend on the length but the entropy amount and
(b) the threshold depends also on the square of the advantage

Theorem (Informal) (Breaking pseudoentropy with enough com-
putational power). For any k, and any s, ε satisfying

s� 2kε−2

and for every distribution of min-entropy k, unbounded attackers and at-
tackers of size s see the same entropy amount.

Theorem (Informal) (Matching lower bound). For any k, and any
s, ε satisfying

s� 2kε2

there exists a distribution X such that

(a) (bounded attackers see k bits) pseudoentropy of X against circuits of
size s and advantage ε is k

(b) (k bits for unbounded attackers see less than k bits) information-
theoretic entropy of X is k

A short overview of our results is given in Table 1 below.

regime result techniques reference

s� 2kε−2 same entropy for attackers of size s as for s =∞ LP duality
distinguisher optimization

Theorem 1

s� 2kε2 arbitrary gap in the amount for size s and s =∞ probabilistic method
concentration bounds

Theorem 2

Table 1: Overview of our results. The analyzed setting is k bits of pseu-
doentropy against size circuits of size s and advantage ε.

3 As this complexity is enough to compute every boolean functions



Proof outline and our tools

Breaking pseudoentropy We outline the proof of the first result below

1. We first consider somewhat weaker pseudoentropy notion, called Met-
ric entropy, where the order of quantifiers is reversed. That is, for any
distinguisher D there has to be some Y of min-entropy k which is close
to X under that particular test D, that is ED(X) ≈ ED(Y ).

2. We prove that this weaker pseudoentropy notion collapses when s�
2k, by “compressing” distinguishers down to size 2k. The intuitive
reason for that is that we can always manipulate Y so that it has
“small” support (only O(2k) elements), and if an attacker wants to
maximize the advantage |ED(X) − ED(Y )|, the best strategy is to
hardcode the elements x such that Pr[Y = x] > Pr[X = x] which is a
subset of the support of Y and can be implemented in size Õ(2k).

3. We use a generic transformation due to Barak at al. [BSW03, Sko15]
to go back to our standard entropy notion. The transformation losses
Õ(ε2) in size and is based on the duality of linear programming.

This way we obtain that pseudoentropy with parameters (s, ε) becomes
the same as the amount seen by unbounded attackers when s = Õ

(
2kε−2

)
.

The details are explained in the proof of Theorem 1.

Matching lower bounds The proof of the second result goes as follows

1. We take a random subset X ⊂ {0, 1}k of size k − c, where c will
be the gap between what bounded and unbounded attackers can see.
The distribution X is the uniform distribution over X plus a “random
shift” of an ε-fraction of the probability mass.

2. We argue that the ε-smooth entropy is still roughly k, because we
have shifted only that fraction of the total probability mass. This is
handled by a result of independent interest, stating that “almost”
smooth distributions cannot be further smoothened (see Corollary 2)

3. We argue that the distribution X is pseudorandom provided that the
class of test functions is small enough. This fact is proved by applying
concentration bounds twice, once to handle the random shift and for
the second time to handle the choice of X . Intuitively, the advantage of
bounded attackers is much smaller than ε because they are “fooled”
by the random shift of a part of the probability mass. In turn, the
entropy amount seen by bounded attackers is much bigger than k− c
because X is a random subset of {0, 1}k.



Putting this all together we get a strict separation: not only the amount
of entropy is bigger, but also the advantage is smaller. The necessary
assumption to make it work is that the class of distinguishers is much
smaller than 22

k−cε2 members. For the details see the proof of Theorem 2.

1.3 Related works

Pseudorandomness exists unconditionally The classical textbook results
[Gol06] shows that pseudorandomness exists unconditionally, which can
be seen as a separation between pseudorandomness and min-entropy.

Our Theorem 2 is stronger as we separate pseudoentropy from smooth
min-entropy (and cannot derive it from the mentioned result). From a
technical point of view, the main difference is the extra random mass
fluctuation (Step 1 in the above explanation), which needs to be later
handled by bit more subtle probability tools (we use concentration in-
equalities for random variables with local dependence due to Janson).

Complexity of non-uniform attacks against PRGs De, Trevisan and Tul-
sani studied the complexity of nonuniform attacks against pseudorandom
generators [?]. Their results are specialized to outputs of PRGs and are
constructive, whereas our results apply to any random variable (unfortu-
nately don’t offer non-trivial results for the case of PRGs).

1.4 Applications

Hard-to-approximate boolean functions Our Theorem 2 implies the clas-
sical result [Pip76] which states that for any n and δ ∈ (0, 1), there exist
δ-hard functions4 for size s = Ω̃

(
2n(1− δ)2

)
. For details, see Section 5.1.

1.5 Organization

We start with explaining basic concepts and notions in Section 2. In
Section 3 we prove useful auxiliary facts about smooth min-entropy. In
Section 4 we give proofs of our main results. In Section 5 we discuss
applications to the complexity of approximating boolean functions.

4 f is δ hard for size s if every circuit of size s fails to predict f w.p. at least 1+δ
2

.



2 Preliminaries

2.1 Model of computations

Our results hold in the non-uniform model. We consider general classes of
distinguishers, denoted by D, which are families of functions from n bits
to real values. When discussing complexity applications, we restrict D to
classes of circuits of certain size s, with boolean or real-valued outputs.

2.2 Basic notions

Definition 1 (Statistical distance). The statistical distance of two
random variables X,Y taking values in the same finite set is defined as
SD(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. Equivalently, SD(X,Y ) =

maxD |ED(X)− ED(Y )| where D runs over all boolean functions.

2.3 Information-theoretic entropies

Definition 2 (Min-entropy). We say that X has k bits of min-entropy
if minx log 1

Pr[X=x] = k.

Definition 3 (Smooth min-entropy [RW05]). We say that X has k
bits of ε-smooth min-entropy, denoted by Hε

∞(X) > k, if X is ε-close in
the statistical distance to some Y of min-entropy k.

Remark 1. Smoothing entropy allows for increasing the entropy by shift-
ing a part of the probability mass, to make the distribution look “more
flat” or “more smooth”.

2.4 Pseudoentropy

In what follows, X denotes an arbitrary n-bit random variable.

Definition 4 (HILL pseudoentropy [HILL88]). We say that X has
k bits of HILL pseudoentropy against a distinguisher class D and advan-
tage ε, denoted by

HHILL
s,ε (X) > k

if there is a random variable Y of min-entropy at least k that ε-fools any
D ∈ D, that is for every D ∈ D we have such that |ED(X)−ED(Y )| 6 ε.



Definition 5 (Metric Pseudoentropy [BSW03]). We say that X has
k bits of metric pseudoentropy against a distinguisher class D and ad-
vantage ε, denoted by

HMetric
s,ε (X) > k

if for any D ∈ D there is a random variable Y of min-entropy at least k
that ε-fools this particular D that is such that |ED(X)− ED(Y )| 6 ε.

Metric entropy is a convenient relaxation of HILL entropy, more suit-
able to work with in many cases. The important fact below shows that
both notions are equivalent up to some loss in the circuit size.

Lemma 1 (Metric-to-HILL Transformation [BSW03,Sko15]). If
HMetric
s,ε (X) > k then HHILL

s′,ε′ (X) > k where ε′ = 2ε and s′ ≈ sε2/n.

Remark 2 (Abbreviations and equivalences for circuit classes). In the spe-
cific setting where D consists of deterministic boolean or deterministic
real-valued circuits of size s we will slightly abuse the notation and write
HMetric
s,ε (X) = HMetric

D,ε (X). This is justified by the fact that for metric en-
tropy deterministic real-valued circuits of size s give the same amount as
deterministic boolean circuits of size s′ ≈ s [FOR15]. In turn, for HILL en-
tropy, deterministic boolean, deterministic randomized and deterministic
real-valued circuits are equivalent with no entropy loss and with roughly
same sizes [FOR15], so we also simply write HHILL

s,ε (X) = HHILL
D,ε (X).

2.5 Relationships between entropy, smooth entropy, and
computational entropy

The following proposition states that for extreme parameter regimes (un-
bounded attackers or zero advantage), pseudoentropy collapses to the
information-theoretic notion of smooth-entropy (we skip the easy proof).

Proposition 1. Let X be any n-bit random variable. Then we have

(a) (Unbounded attackers) If s =∞5 then

HMetric
s,ε (X) = HHILL

s,ε (X) = Hε
∞(X) > H∞(X)

.

5 If the domain consists of n-bit strings, it is enough to assume s > 2n as every
function over n bits has complexity at most 2n



(b) (No smoothing) If ε = 0 then for any s

HMetric
s,ε (X) = HHILL

s,ε (X) = Hε
∞(X) = H∞(X)

.
(c) (General) For any s, ε

HMetric
s,ε (X) > HHILL

s,ε (X) > Hε
∞(X) > H∞(X)

.

2.6 Concentration inequalities

The following lemma is a corollary from the famous concentration bound
due to Jason, which exploits local dependencies

Lemma 2 (Concentration bounds for local dependencies [Jan04]).
Let X1, . . . , Xn be random variables taking values in [a, b], such that ev-
ery Xi is not independent of at most ∆ other variables Xi′. Let µ =
n−1

∑n
i=1 EXi. Then

Pr

[
n−1

n∑
i=1

Xi > µ+ δ

]
6 exp

(
− 2nδ2

(a− b)2(∆+ 1)

)
.

In particular, for ∆ = 0 we obtain the following bound

Corollary 1 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be
independent random variables taking values in [a, b]. Let µ = n−1

∑n
i=1 EXi.

Then

Pr

[
n−1

n∑
i=1

Xi > µ+ δ

]
6 exp

(
− 2nδ2

(a− b)2

)
.

Remark 3 (Hoeffding’s Inequality for sampling without repetitions). The
above inequality applies also the the setting where Xi are random samples
taken from the same distribution without repetitions [Ser74].

3 Auxiliary Facts

3.1 Auxiliary results on smooth Renyi entropy

In the lemma below we show that smoothing doesn’t help to increase
entropy for flat distributions.



Lemma 3 (Flat distributions cannot be smoothened). Let X be
an n-bit random variable. Suppose that the distribution of X is flat and

H∞(X) = k. Then Hε
∞(X) 6 k + log

(
1

1−ε

)
for every ε ∈ (0, 1).

Proof. Let X ′ be any distribution of min-entropy at least k′ > k +

log
(

1
1−ε

)
. Consider the distinguisher D which outputs D(x) = 1 if x ∈

supp(X) and D(x) = 0 otherwise. Note that ED(X) = 1 and ED(X ′) =
supp(X)

2k′
< 1− ε. Therefore ED(X)− ED(X ′) and thus the statistical dis-

tance between X and X ′ is bigger ε.

Corollary 2 (Almost-flat distributions cannot be smoothened).
Suppose that X is ε1-close to some X ′ being flat over 2k elements. Then

Hε2
∞(X) 6 k + log

(
1

1−ε1−ε2

)
for any ε1, ε2 > 0 such that ε1 + ε2 < 1.

Proof. Suppose not, then there exists X ′′ that is ε2-close to X an has

min-entropy at least k′ > k + log
(

1
1−ε1−ε2

)
. In particular, X ′′ is ε-close

to X ′, where ε = ε1 + ε2. Since X ′ is flat, Lemma 3 implies that the

min-entropy of X ′′ is at most k + log
(

1
1−ε

)
, which is a contradiction.

4 Main Results

4.1 Complexity of breaking pseudoentropy

The following result specifies the attacker size for which pseudoentropy
provides no computational security.

Theorem 1 (Breaking pseudoentropy is exponentially easy in
the amount). For any n bit random variable X, if Hε

∞(X) = k then
also HHILL

s,ε (X) = k for s > n22kε−2.

The proof follows the steps explained in Section 1.2 and is given in
Appendix A.

4.2 Matching lower bounds

Theorem 2 (Breaking pseudoentropy can be exponentially hard
in the amount). Let S ⊂ {0, 1}n be a set of cardinality 2k, ε′ ∈ (0, 1) be
arbitrary, and let D be a class of functions from S to [0, 1] such that

|D| < 2−2 · 22k−C−1ε′2 .

Then for any ε < 1
4 there exists a random variable X on S such that



(a) HHILL
D,ε′ (X) = k

(b) Hε
∞(X) = k − C + log

(
1

1−2ε

)
Moreover, we have the following symmetry: the probability mass function
of X takes only two values on two subsets of S of equal size.

Remark 4 (Doubly-strong separation: by the amount and the advantage).
Note that the interesting setting of the parameters in the theorem above
is when ε′ � ε so that not only we have a gap in the entropy amount,
but even for much bigger advantage for unbounded distinguishers.

The proof follows the steps explained in Section 1.2 and appears in
Appendix B.

5 Applications

5.1 Complexity of hard boolean functions

For any function f and a distribution µ on the domain of f by GuessD (f, µ)
we denote the probability of guessing f by a function D when the input is
sampled according to µ, that is GuessD (f, µ) = Prx∼µ [D(x) = f(x)]. We
say that f on n bits is δ-hard6 for size s if GuessD (f, µ) < 1− δ

2 for every

circuit D of size s and uniform µ (we also write GuessD (f) < 1− δ
2).

The corollary bellow is the classical result on the complexity of hard
functions. Our result is optimal up to a factor linear in n (note that for
large n, the value of n is negligible comparing to 2n. Also, most interesting
settings are with δ ≈ 1 with a negligible gap, and we get the optimal
dependency on 1− δ.).

Corollary 3 (Functions hard to approximate by boolean circuits).
For any n and δ ∈ (0, 1) there exists an n-bit function which is δ-hard for
all n-bit circuits of size s = Ω

(
2n(1− δ)2

)
.

6 We use the convention for which δ = 1 corresponds to completely unpredictable
function. Some works substitute 1− δ in place of δ.



Proof (of Corollary 3). Let D′(x) = 2D(x) − 1. Denote for shortness
AdvD(X,Y ) = ED(X)− ED(Y ). Observe that for any X,Y we have

AdvD(X,Y )

=ED(X)− ED(Y )

=
1

2

∑
x

(2D(x)− 1) (Pr[X = x]− Pr[Y = x])

=SD(X,Y )Ex∼µD′(x) · sign (PX(x)−PY (x))

=SD(X,Y )

(
Pr
x∼µ

[
D′(x) = f(x)

]
− Pr
x∼PX−PY

[
D′(x) 6= f(x)

])
=SD(X,Y )

(
2 Pr
x∼µ

[
D′(x) = f(x)

]
− 1

)
=SD(X,Y ) ·

(
2GuessD (f, µ)− 1

)
where f(x) = sign (PX(x)−PY (x)) and µ(x) = |PX(x)−PY (x)|

2SD(X,Y ) (note that∑
x µ(x) = 1). Let us apply Theorem 2 to k = n, ε = 1

8 , ε′ = (1 − δ)ε
and D being the class of deterministic circuits of size s. Let Y be the
indistinguishable distribution from the definition of HILL entropy. Since
in our case Y is uniform, the function f is well-defined and moreover
SD(X,Y ) > ε by (b). Thus

AdvD(X,Y ) > ε ·
(

2GuessD (f, µ)− 1
)

Moreover, |PX(x) − PY (x)| is constant by construction. Therefore µ is
uniform and we obtain

AdvD(X,Y ) > ε ·
(

2GuessD (f)− 1
)

Now AdvD(X,Y ) < ε(1− δ) implies GuessD (f) < 1− δ
2 for any D, which

means that f is 1− δ-hard for size s (here we use the fact that there are

exponentially many circuits of size s, so that 2O(s) < 22
k−O(1)(1−δ)2 and

the assumption on the class size is satisfied).

.
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A Proof of Theorem 1

Proof. We start with proving a weaker result, namely that for Metric
pseudoentropy (weaker notion) the threshold equals 2k.

Lemma 4 (The complexity of breaking Metric pseudoentropy).
If Hε

∞(X) = k then also HMetric
s,ε (X) = k for s > n2k.

Proof (Proof of Lemma 4). We will show the following claim which, by
Proposition 1, implies the statement.

Claim. If s > n2k and s′ =∞ then HMetric
s,ε (X) = HMetric

s′,ε (X)

Proof (Proof of Claim). It suffices to show only HMetric
s,ε (X) 6 HMetric

s′,ε (X)
as the other implication is trivial. Our strategy is to show that any dis-
tinguisher D that negates the definition of Metric entropy can be imple-
mented in size 2k.

Suppose that HMetric
s′,ε (X) < k. This means that for some D of size

s′ and all Y of min-entropy at least k we have |ED(X) − ED(Y )| > ε.
Since the set of all Y of min-entropy at least k is convex, the range
of the expression |ED(X) − ED(Y )| is an interval, so we either have
always ED(X)−ED(Y ) > ε or ED(X)−ED(Y ) < −ε. Without loosing
generality assume the first possibility (otherwise we proceed the same way
with the negation D′(x) = 1− D(x)). Thus

ED(X)− ED(Y ) > ε for all n bit Y of min-entropy k

where by Remark 2 we can assume that D is boolean. In particular, the
set {x : D(x) = 1} cannot have more than 2k elements, as otherwise we
would put Y being uniform over x such that D(x) = 1 and get ED(X)−
1 > ε > 0 which contradicts the fact that D is boolean. But if D is
boolean and outputs 1 at most 2k times, can be implemented in size n2k,
by hardcoding this set and outputting 0 everywhere else. This means
precisely that HMetric

s,ε (X) < k. Now by Proposition 1 we see that also

Hε
∞(X) < k which proves that HMetric

s,ε (X) 6 Hε
∞(X) finishes the proof

of the claim.

Having proven Lemma 4, we obtain the statement for HILL pseudoen-
tropy by applying the transformation from Lemma 1.



B Proof of Theorem 2

Proof (Proof of Theorem 2). Let X be a random subset of S of cardinality
2k−C . Let x1, . . . , x2k−C be the all elements of X enumerated according
the lexicographic order. Define the following random variables ξ(x)

ξ(x) =

{
random element from {−1, 1}, x = x2i−1 for some i

−x2i−1, x = x2i for some i
(1)

for any x such that x ∈ X . Once the choice of ξ(x) is fixed, consider the
distribution

Pr[X = x] =

{
2−k + 2ε · 2−k · ξ(x) x ∈ X

0, x 6∈ X
(2)

The rest of the proof splits into the following two claims:

Claim (X has small smooth min-entropy). For any choice of X and ε(x),

we have Hε
∞(X) 6 k − C + log

(
1

1−2ε

)
.

Claim (X has large metric pseudo-entropy). We have HMetric
D,ε (X) = k.

Proof (Small smooth min-entropy). Note that by Equation (2) the distri-
bution of X is ε-close to the uniform distribution over X . By Corollary 2
(note that k is replaced by log |X | = k − C), this means that that the

ε-smooth min-entropy of X is at most k − C + log
(

1
1−2ε

)
.

Proof (Large metric entropy). Note that for any D we have

ED(X) =
∑
x∈X

D(x)
(

2−k + ξ(x)2−k · 2ε
)

= ED(UX ) + 2−k · 2ε ·
∑
x∈X

D(x)ξ(x)

In the next step we observe that the random variables ξ(x) have the degree
of dependence ∆ = 1. Indeed, by the construction in Equation (2), for
any fixed x the random variables ξ(x′) are independent of ξ(x) except at
most one value of x′. Now, by Lemma 2 applied to the random variables
D(x)ξ(x) we obtain

Pr

[
2−k

∑
x∈X

D(x)ξ(x) > δ

]
6 exp

(
−2k−1δ2

)



for any δ > 0, where the probability is over ξ(x) after fixing the choice of
the set X for z ∈ {0, 1}m. In other words, we have

Pr
ξ(x)

[ED(X) 6 ED(UX ) + 2δε] (3)

with probability 1− exp
(
2k−1δ2

)
for any fixed choice of sets X .

In the last step, we observe that since the choice of the sets X is
random, we have ED(UX ) ≈ ED(US) with high probability. Indeed, by
the Hoeffding bound for samples taken without repetitions (see Remark 3)

Pr
X

[ED(UX ) 6 ED(U) + 2δε] > 1− exp(−2k−C+3δ2ε2) (4)

By combining Equation (4) and Equation (3) for any D and any ε < 1
4

we obtain

Pr
X ,ξ(x)

[ED(X) 6 ED(US) + 4δε] > 1− 2 exp(−2k−C+3δ2ε2). (5)

Replacing δ with δ/4 and applying the union bound over D we see that

Pr
X ,ξ(x)

[∀D ∈ D : ED(X) 6 ED(US) + δε] > 1− 2|D| exp(−2k−C−1δ2ε2).

and thus we have a distribution X such that

∀D ∈ D : ED(X) 6 ED(US) + δε (6)

as long as

2|D| < 22
k−C−1δ2ε2 . (7)

Finally, note that by adding to the classD all negations (functions D′(x) =
1−D(x)) we have ED(X) 6 ED(US)+δε as well as ED(X) > ED(US)−
δε, for every D ∈ D. In particular, we have

∀D ∈ D : |ED(X)− ED(US)| < δε (8)

as long as

4|D| < 22
k−C−1δ2ε2 . (9)

It remains to observe that for every X the probability mass function of
X takes two values on two halves of X .
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