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P.O. Box 46 Maroua, Cameroun
aminap2001@yahoo.fr

Abstract. Since the advent of pairing based cryptography, much attention has been given to
efficient computation of pairings on elliptic curves with even embedding degrees. The few works
that exist in the case of odd embedding degrees require some improvements. This paper considers
the computation of optimal ate pairings on elliptic curves of embedding degrees k = 9, 15 and 27
which have twists of order three. Mainly, we provide a detailed arithmetic and cost estimation of
operations in the tower field of the corresponding extension fields. A good selection of parameters
at the 128, 192 and 256-bits security level enables us to improve the theoretical cost for the Miller
step and the final exponentiation using the lattice-based method comparatively to the previous few
works that exist in these cases. In particular for k = 15 we obtain an improvement up to 25% in
the computation of the final exponentiation.

Keywords: Elliptic Curves, Optimal Pairings , Miller’s algorithm , Extension fields arithmetic ,
Final exponentiation

1 Introduction

Pairings are bilinear maps defined on the group of rational points of elliptic or hyper elliptic
curves [35]. They enable to realise many cryptographic protocols such as the Identity-Based
cryptosystem [7], Identity-Based Encryption [9], the Identity-Based undeniable signature [27],
short signatures [8] or Broadcast encryption [16]. A survey of some applications of pairings
can be found in [13], [6, Chapter X]. These many applications justify the research on efficient
computation of pairings. Generally, if E is an ordinary elliptic curve defined over a finite field
Fq and r a large prime divisor of the order of the group E(Fq), the embedding degree of E
with respect to r and q is the smallest integer k such that r | qk − 1. The Tate pairing and its
variants are the most used in cryptography. They map two linearly independent points of order r-
subgroups of E(Fqk) to the group of r−th roots of unity in the finite fields Fqk . The computation
of Tate pairings and its variants consists of an application of the Miller algorithm [31] and a final
exponentiation. Efficient computation of pairings requires construction of pairing-friendly elliptic
curves over Fq with prescribed embedding degree k (see for example [5] or [14]) and efficient
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arithmetic in the towering fields associated to Fqk (see [24], [17], [22], [11] ). Much works have
been done for decreasing the Miller loop leading to the concept of pairing lattices [19], or the
optimal pairing described by Vercauteren which can be computed with the smallest number of
iterations in the Miller algorithm [34]. Due to these progress, the final exponentiation step has
became a serious task. In this work, we concentrate on elliptic curves with embedding degree
9, 15 and 27 at the 128, 192 and 256-bit security level respectively according to recommendations
in Table 1 [14]. These curves admit twists of degree three which enable computation to be done

Security Bit length of Bit length of k k

level r qk ρ ≈ 1 ρ ≈ 2

80 160 960 − 1280 6 − 8 3 − 4

128 256 3000 − 5000 12 − 20 6 − 10

192 384 8000 − 10000 20 − 26 10 − 13

256 512 14000 − 18000 28 − 36 14 − 18
Table 1. Bit sizes of curves parameters and corresponding embedding degrees to obtain commonly desired levels
of security.

in subfields and also lead to the denominator elimination technique. To our knowledge just few
works ([26], [32] and [36]) exist in these cases and much attention have been given only to elliptic
curves with even embedding degree (see for example [1],[15]). Also, another motivation to our
work is the recent results on the resolution of discrete logarithm problem [23]. Indeed according
to the first analysis of this article, as for instance in [18], the security level for elliptic curve with
friable embedding degree should be taken greater than those presented in Table 1. The main
consequence is that elliptic curves with embedding degree 12 or 18 may not be the one assuring
a nice ratio between the security level and the arithmetic. Elliptic curves with odd embedding
degree could become interesting and more efficient than elliptic curve with even embedding
degree. As for now, we do not know how the attack of [23] will increase the size of fields and
will modify the choice of good parameters for pairing computation, we still consider the Table
1 in order to make our comparison. So we proposed a detailed arithmetic in the towering fields
associated to the fields Fq9 ,Fq15 and Fq27 . The lattice-based method explained by Fuentes et
al.[15] is applied to compute the final exponentiation in the cases k = 9, 15. We also find a
simple expression and explicit cost evaluation for the optimal pairing in the cases k = 9 and
k = 15 comparatively to the work in [32]. The results obtained are an improvement with respect
to previous works [26], [32] and [36] respectively for k = 9, 15 and 27. Precisely, our contributions
(see Table 3 for comparison) in this work are:

1. Determination of an explicit cost of the computation of the optimal pairing for elliptic curves
stated above. This includes a good selection of parameters for a shorter Miller loop and an
efficient exponentiation. In particular, we saved one inversion in Fp27 for the computation of
the Miller loop in the case k = 27.

2. Details on the arithmetic in the tower fields of Fq9 ,Fq15 and Fq27 . Especially, we give the
cost of the computation of Frobenius maps and Inversions in the cyclotomic subgroups of
F?q9 ,F

?
q15 and F?q27 , (see Appendices A, B and C).



3. Improvement of the costs of the final exponentiation by saving 24M9 + 5S9, 26M15 + 173S15
and 20M27 operations for elliptic curves of embedding degrees 9, 15 and 27 respectively,
comparatively to previous works in these cases.

The rest of this paper is organised as follows: In Section 2 we briefly present the Tate and
ate pairings together with the Miller algorithm for their efficient computation, we also recall the
concept of optimal ate pairing and the lattice-based method for computing the final exponen-
tiation. Sections 4, 5 and 6 present arithmetic in sub fields, and cost estimation of the Miller
step and the final exponentiation when considering the embedding degrees k = 9, 15 and 27
respectively. Each of these sections includes a comparative analysis with previous work. Section
7 presents a general comparison of the results obtained in this work and the previous results in
the literature. We conclude the work in Section 8 in which we suggest as future work the search
for parameters to have subgroup secure ordinary curves [3] and to ensure protection against
small-subgroup attacks[29].

Notations
The following notations are used in this work.
Mk, Sk, Ik : Cost of multiplication, squaring and inversion in the field Fqk , for any integer k.
mc, sc, ic : Cost of multiplication, squaring and inversion in the field Fq where the bit length of
q is c.

2 Background and previous works

2.1 Pairings and the Miller Algorithm

Let E be an elliptic curve defined over Fq, a finite field of characteristic p > 3. Let r be a large
prime factor of the group order of the elliptic curve. Let m ∈ Z, P ∈ E(Fq)[r] and fm,P a function
with divisor Div (fm,P ) = m(P )− ([m]P )− (m− 1)(O) where O denotes the identity element of
the group of points of the elliptic curve. Consider two points P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r] of
order r and µr the group of r-th roots of unity in F∗

qk
. The reduced Tate pairing er is a bilinear

and non degenerate map defined as

er : E(Fq)[r]× E(Fqk)[r]→ µr, (P,Q) 7→ fr,P (Q)
qk−1
r

To define a variant of the Tate pairing called ate pairing [20], denote [i] : P 7−→ [i]P the
endomorphism defined on E(Fq) which consists to add P to itself i times. Let πq : E

(
Fq
)
→

E
(
Fq
)
, (x, y) 7→ (xq, yq) be the Frobenius endomorphism on the curve where Fq is the algebraic

closure of the finite field Fq. The relation between the trace t of the Frobenius endomorphism
and the group order is given by [35, Theorem 4.3]: ]E(Fq) = q + 1 − t and πq has exactly two
eigenvalues 1 and q. This enables to consider P ∈ G1 = E

(
Fq
)

[r]∩ Ker(πq− [1]) = E(Fq)[r] and
Q ∈ G2 = E

(
Fq
)

[r]∩ Ker(πq − [q]). The ate pairing is defined as follows:

eA : G2 ×G1 → µr, (Q,P ) 7→ ft−1,Q(P )
qk−1
r .

In all variants of pairings, one needs a function fm,U (V ) which is efficiently computed thanks
to the Miller algorithm [31]. Indeed denote hR,S a rational function with divisor Div(hR,S) =



(R)+(S)−(S+R)−(O) where R and S are two arbitrary points on the elliptic curve. In the case

of elliptic curves in Weierstrass form, hR,S =
`R,S
vR+S

where `R,S is the straight line containing R
and S and vR+S is the corresponding vertical line passing through R+S. Miller uses the double-
and-add method as the addition chains for m (see [2, Chapter 9] for more details on addition
chains) to compute f := fm,U (V ). Write m = mn2n+...+m12+m0 > 0 with mi ∈ {−1, 0, 1}, the

(modified) Miller algorithm that computes efficiently the pairing fm,U (V )(q
k−1)/r of two points

U and V is given as follows:

1: Set f ← 1 and R← U
2: For i = n− 1 down to 0 do
3: f ← f2 · hR,R(V ), R← 2R Doubling step
5: if mi = 1 then
6: f ← f · hR,U (V ) R← R+ U , end if Addition step
7: if mi = −1 then
8: f ← f/hR,U (V ) R← R− U , end for Addition step

10: return e = f
qk−1
r Final exponentiation

The use of twists enable to efficiently do some computations during the execution of this al-
gorithm as we explain in the next section.

2.2 Use of Twists

Twists of elliptic curves enable to efficiently compute pairings. Indeed, in the Miller algorithm
the doubling of point (lines 3) and the addition of points ( lines 6 and 8) are done in the exten-
sion fields Fqk in the case of ate pairing. The use of twists enables to perform these operations
rather in a sub field of Fqk and also leads to the denominator elimination. More precisely, a twist
of an elliptic curve E defined over a finite field Fq is an elliptic curve E′ defined over Fq which is
isomorphic to E over an algebraic closure of Fq. The smallest integer d such that E and E′ are
isomorphic over Fqd is called the degree of the twist. Elliptic curves of embedding degree k = 9, 15
and k = 27 admit twists of order three. Explicit constructions of such curves can be found in
[30], [12] and [4] . The general equation of these curves is given by E : y2 = x3 + b. The equation
defining the twist E′ has the form y2 = x3 + bω6 where {1, ω, ω2} is the basis of the Fqk/3-vector

space Fqk and the isomorphism between E′ and E is ψ : E′ −→ E; (x′, y′) 7−→ (x′/ω2, y′/ω3). Us-
ing this isomorphism, points Q in G2 can be instead taken as (xω2, yω3) ∈ G′2 ⊂ ψ−1(E(Fqk/3))
where x, y ∈ Fqk/3 . More details on twists can be found in [10].

2.3 Optimal Pairings

The reduction of Miller’s loop length is an important way to improve the computation of pairings.
The latest work is a generalized method to find the shortest loop, which leads to the concept of
optimal pairing due to Vercauteren [34]. Let λ = mr be a multiple of r such that r - m and write
λ =

∑l
i=0 ciq

i = h(q), (h(z) ∈ Z[z]). Recall that hR,S is the Miller function defined in section



2.1. For i = 0, · · · l set si =
∑l

j=i cjq
j ; then the map

eo : G2 ×G1 → µr

(Q,P ) 7−→
(∏l

i=0 f
qi

ci,Q
(P ) ·

∏l−1
i=0 h[si+1]Q,[ciqi]Q(P )

) qk−1
r

(1)

defines a bilinear pairing and non degenerate if
mkqk 6= ((qk − 1)/r) ·

∑l
i=0 iciq

i−1 mod r.
The coefficients ci : i = 0, · · · , l can be obtained from the short vectors obtained from the lattice

L =



r 0 0 · · · 0

−q 1 0 · · · 0

−q2 0 1 · · · 0

· · · · · · · · · · · · · · ·
−qφ(k)−1 0 0 · · · 1

 (2)

2.4 Final Exponentiation and the lattice-based Method for its Computation

The result of the Miller loop step is raised to the power pk−1
r , where we assume that q is now

a prime denoted p for simplicity. This step is called the final exponentiation(line 10 in Miller’s
algorithm). The efficient computation of final exponentiation has became a serious task. Observe
that this exponent can be divided into two parts as follows:

pk − 1

r
=

[
pk − 1

φk(p)

]
·
[
φk(p)

r

]
where φk(x) is the k-th cyclotomic polynomial. The final exponentiation is therefore computed

as f
pk−1
r =

[
f
pk−1
φk(p)

]φk(p)
r

. The computation of the first part A = f
pk−1
φk(p) is generally inexpensive

as it consists of few multiplications, inversion and p-th powering in Fpk . The second part A
φk(p)

r

is considered more difficult and is called the hard part. An efficient method to compute the
hard part is described by Scott et al. [33]. They suggested to write d = φk(p)

r in base p as

d = d0 + d1p + ... + dφ(k)−1p
φ(k)−1 and find a short vectorial addition chains to compute Ad

much more efficiently than the naive method. In [15], based on the fact that a fixed power of a
pairing is still a pairing, Fuentes et al.[15] suggested to apply Scott et al.’s method with a power
of any multiple d′ of d with r not dividing d′. This could lead to efficient exponentiation than
computing directly Ad. Their idea of finding the polynomial d′(x) is to apply the LLL-algorithm
to the matrix formed by Q-linear combinations of the elements d(x), xd(x), ..., xdegr−1d(x). They
successfully applied the method in the case of elliptic curves of embedding degrees 8, 12 and
18 [15]. In Sections 4 and 5 we apply this method to improve the computation of the final
exponentiation for elliptic curves of embedding degree k = 9 and 15. A clever method was used
by Zhang et al. [36] to compute the final exponentiation in the case k = 27.



3 Arithmetic in the Tower Fields of Fp9, Fp27 and Fp15

A pairing is computed as an element of the extension field Fpk . But its efficient computation
depends on the arithmetic of sub fields of Fpk which is generally organised as tower of sub fields
extensions. In this section we recall the tower extension of finite fields Fp9 ,Fp27 and Fp15 . We
also give explicit cost of the arithmetic operations.
For extension fields arithmetic in Fp9 ,Fp27 we consider p ≡ 1 mod 3 motivated by the work
of Baretto et al.[4] on the construction of elliptic curves of embedding degree 9 and 27. This
implies that Fp27 can be represented as Fp[X]/(Xk − α), for k = 3i, i = 2, 3 where α is a cubic
non residue modulo p. Since p ≡ 1 mod 3 and as Euler’s conjecture says that 2 is a cube mod
p if and only if 3 | p, we always have X3 − 2 irreducible over Fp. Therefore cubic extensions

will be constructed using the polynomials X3 − αi where αi = 21/3
i
. A tower extension for Fp27

together with the one for Fp9 are then given by:

Fp3 = Fp[u] with u3 = 2

Fp9 = Fp3 [v] with v3 = 21/3

Fp27 = Fp9 [w] with w3 = 21/9

The costs of the computation of the Frobenius maps and cyclotomic inversions are given in
Lemma 1 for the extension Fp9 . The proof of this Lemma is given in Appendix A.

Lemma 1 In the finite field Fp9,

1. The computation of the p3; p6-Frobenius maps costs 6m343 + 6a343
2. The computation of the p; p2; p4; p5; p7; p8-Frobenius maps costs 8m343 + 6a343
3. The inverse of an element α of the Gφ3(p3)-order cyclotomic subgroup is computed as α−1 =

αp
3 · αp6 and the cost is 36s343 + 84a343

Similarly, in the finite field Fp27 the Lemma 2 gives the costs of the computation of the
Frobenius maps and cyclotomic inversions. The proof of this Lemma is given in Appendix B.

Lemma 2 In the finite field Fp27,

1. The computation of the p3; p6; p9-Frobenius maps costs 18m514 + 18a514
2. The computation of the p; p2; p4; p5; p7; p8-Frobenius maps costs 26m514 + 18a514
3. The inverse of an element α of the Gφ3(p9)-order cyclotomic subgroup is computed as α−1 =

αp
9 · αp18 and the cost is 216s514 + 759a514

In the case of Fp15 , we consider pairing friendly curves over Fp where p ≡ 1 mod 5 [12].
According to [28, Theorem 3.75] the polynomial X5 − α is irreducible over Fp[X] if and only if
α is neither a cubic root nor a fifth root in Fp. A tower extension for Fp15 can be constructed as
follows:

Fp5 = Fp[u] with u5 = 2

Fp15 = Fp5 [v] with v3 = u. where u ∈ Fp5

Our main contribution in this section is the computation of Frobenius maps and the inversions
in the φn(.)-order cyclotomic subgroup of F?

pk
. The costs of the computation of the Frobenius

maps and cyclotomic inversions are given in Lemma 3.



Lemma 3 In the finite field Fp15,

1. The computation of the p5; p10-Frobenius maps costs 10m575 + 12a575
2. The computation of the p; p2; p3; p4; p6; p7; p8; p9-Frobenius maps costs 14m575 + 12a575
3. The inverse of an element α of the Gφ3(p5)-order cyclotomic subgroup is computed as α−1 =

αp
5 · αp10 and the cost is 54s575 + 837a575

Proof. The proof is given in Appendix C.

In Table 3 we summarise the overall cost of operations in the tower fields described above.
The costs for squaring, multiplication and inversion are from [26], [32] and [36] respectively for
k = 9, 15 and 27. Explicit details of the cost of Frobenius maps and inversions in the cyclotomic
subgroup are given in Appendix A, B and C.

Fields Operations Costs

Fp3
Multiplication M3 6m343 + 17a343
Squaring S3 6s343 + 8a343
Inversion I3 i343 + 9m343 + 2s343

Fp9
Multiplication M9 36m343 + 149a343
Squaring S9 36s343 + 95a343
Inversion I9 i343 + 63m343 + 14s343
Frobenius p3; p6 6m343 + 6a343
Frobenius p; p2; p4; p5; p7; p8 8m343 + 6a343
Inversion in Gφ3(p3)

36s343 + 84a343

Fp27
Multiplication M27 216m514 + 1031a514
Squaring S27 216s514 + 788a514
Inversion I27 i514 + 387m514 + 86s514
Frobenius p3; p6; p9 18m514 + 18a514
Frobenius p; p2; p4; p5; p7; p8 26m514 + 18a514
Inversion in Gφ3(p9)

216s514 + 759a514

Fp5
Multiplication M5 9m575 + 137a575
Squaring S5 9s575 + 137a575
Inversion I5 1i575 + 45m575 + 5s575

Fp15
Multiplication M15 45m575 + 635a575
Squaring S15 45s575 + 635a575
Inversion I15 1i575 + 126m575+

23s575 + 1507a575
Frobenius p5; p10 10m575 + 12a575
Frobenius p; p2; p3; p4; p6; p7; p8; p9 14m575 + 12a575
Inversion in Gφ3(p5)

54s575 + 837a575
Table 2. Cost of operations in extension fields from [26], [32] and [36] and this work (see Appendix A,B,C)

4 Elliptic Curves with Embedding Degree 9

This section describes the computation of optimal ate pairing (Miller step and the final expo-
nentiation) on the parameterized elliptic curve defined in [30]. This family of elliptic curves has
embedding degree 9 and a ρ-value 1.33 and is parameterized by :



p = ((x+ 1)2 + ((x− 1)2(2x3 + 1)2)/3)/4

r = (x6 + x3 + 1)/3

t = x+ 1

(3)

4.1 Optimal ate pairing

Based on the general framework described by Vercauteren in [34], the short vectors obtained from
the lattice L defined by equation (2) gives the optimal function h(z) =

∑5
i=0 ciz

i = x−z ∈ Z[z].
A straightforward application of formula (1) yields the optimal pairing :

eo : G2 ×G1 −→ µr

(Q,P ) 7−→ fx,Q(P )
p9−1
r

4.2 Cost of the execution of the Miller loop

The Miller loop consists of the doubling steps (line 3 in the Miller algorithm) and addition
steps (line 6 or 8 in the Miller algorithm). These steps use the Miller function hR,S either in
affine coordinates or projective coordinates. The work of Zhang et al.[36, Section 3] presents the
currently fastest formulas in projective coordinates. The doubling step costs 9M1 + 3M3 + 9S3
and the cost of the addition step is 9M1 +12M3 +5S3. For an explicit cost of the computation of
fx,Q(P ), we wrote a Pari/GP code to find a suitable x with low Hamming weight and minimal
number of bits for the 128 bits security level according to Table 1. The best value we were able
to find is x = 243 + 237 + 27 + 1 which gives r(x) prime of 257 bits and p(x) of 343 bits. The
values p and x are both congruent to 1 modulo 6 so that the corresponding elliptic curve is
y2 = x3 + 1 [26]. The computation of fx,Q(P ) therefore costs 43 doubling steps, 3 additions, 42
squaring and 45 multiplications in Fp9 . Thus the total cost for the computation of the Miller
loop for the optimal pairing on elliptic curves of embedding degree 9 is 43(9M1 + 3M3 + 9S3) +
3(9M1 + 12M3 + 5S3) + 42S9 + 45M9. This is equal to 45M9 + 165M3 + 414M1 + 42S9 + 402S3.
Using the arithmetic in Table 2, the overall cost is 3024m343 + 3924s343. To our knowledge, no
other explicit cost with a specific value of x is reported in the literature.

4.3 Cost of the computation of the final exponentiation

As explained in Section 2, the final exponentiation in this case can be divided as f (p
9−1)/r =(

fp
3−1
)(p6+p3+1)/r

=
(
fp

3−1
)d

. The lattice method described by Fuentes et al.[15] that we

briefly explained in section 2.4 applied to the matrix

M =



243d(x)

243xd(x)

243x2d(x)

243x3d(x)

243x4d(x)

243x5d(x)


(4)



enabled us to find the following multiple of d: d′ = x3d = k0 + k1p+ k2p
2 + k3p

3 + k4p
4 + k5p

5

where the polynomials ki, i = 0, ..., 5 are as follows

k0 = −x4 + 2x3 − x2, k1 = −x3 + 2x2 − x, k2 = −x2 + 2x− 1,

k3 = x7 − 2x6 + x5 + 3, k4 = x6 − 2x5 + x4, k5 = x5 − 2x4 + x3

They verify the relations

k2 = −(x− 1)2, k1 = xk2, k0 = xk1, k5 = −xk0, k4 = xk5, k3 = xk4 + 3

If we set A = fp
3−1 then

– The cost for the computation of A is 1 p3-Frobenius, 1 Inversion in Fp9 and 1 multiplication
in Fp9 .

– The cost of the computation of Ak0 , Ak1 and Ak4 is 3 exponentiation by x,
– The cost of the computation of Ak5 is one inversion in the cylotomic subgroup and one

exponentiation by x.
– The cost of the computation of Ak2 is one inversion in the cyclotomic subgroup and two

exponentiations by (x− 1).
– The cost of the computation of Ak3 is 2 multiplication, one squaring and one exponentiation

by x.

Note that the inversion in the cyclotomic subgroup Gϕ3(p3) of order p6 + p3 + 1 is computed as

A−1 = Ap
3 · Ap6 (see Appendix A for details and cost). The cost for the hard part Ad

′
is then

2 exponentiations by x − 1, 5 exponentiations by x, 7 multiplications in Fp9 , one squaring in
Fp9 two cyclotomic inversion IGφ3(p3)

and p, p2, p3, p4, p5-Frobenius maps. Using the value of x

given above, one exponentiation by x costs 43S9 + 3M9 whereas one exponentiation by x − 1
costs 43S9 + 2M9. Finally the hard part costs 2(43S9 + 2M9) + 5(43S9 + 3M9) + 7M9 + 1S9 +
2IGφ3(p3)

= 302S9 + 26M9 + 2IGφ3(p3)
and p, p2, p3, p4, p5-Frobenius maps. The total cost of the

final exponentiation is 1I9 + 27M9 + 302S9 + 2IGφ3(p3)
and p, p2, 2 ∗ p3, p4, p5-Frobenius maps.

4.4 Improvement and comparison with previous work

From the results in [26], the hard part costs 1I9 + 309S9 + 50M9 and p, p2, p3, p4, p5-Frobenius
maps. If we include the cost 1I9+1M9 and p3-Frobenius for the easy part and using the arithmetic
in Table 2, the overall cost is i343 + 1079m343 + 10958s343 for this work and i343 + 1943m343 +
11138s343 for Le et al.[26]. We therefore save 24M9 + 7S9 − 2IGφ3(p3)

= 864m343 + 180s343
comparatively to their work.

5 Elliptic Curves with Embedding Degree 15

In this section we give explicit formulas together with their cost for the Miller loop in the optimal
ate pairing and compute the cost of the final exponentiation on the parameterized elliptic curve
defined in [12]. This family of elliptic curves has embedding degree 15 and a ρ-value 1.5 and is
parameterized by :



p = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x+ 1)/3

r = x8 − x7 + x5 − x4 + x3 − x+ 1

t = x+ 1

(5)

5.1 Optimal ate pairing

The Vercauteren approach described in [34] enabled us to obtain the short vectors from the lattice
L defined by equation (2) which lead to the optimal function h(z) =

∑5
i=0 ciz

i = x − z ∈ Z[z].
A straightforward application of formula (1) yields the optimal pairing :

eo : G2 ×G1 −→ µr

(Q,P ) 7−→ fx,Q(P )
p15−1
r

5.2 Cost of the computation of the Miller loop

In this section, we consider the Miller function given in affine coordinates, following the analysis
of Lauter et al. [25] who suggested to use affine coordinates at higher security level. Miller
function used for the computation of fx,Q(P ) in this case is described in [36]. At 192 bits security
level on elliptic curves with k = 15, the best value of x we were able to find with a Pari/GP
code is x = 248 + 241 + 29 + 28 + 1. This value gives a r(x) prime of 385 bits and p(x) of 575
bits which correspond to parameters for 192-bits security level according to Table 1. The value
of p is congruent to 1 modulo 5. The Miller loop consists here of computing fx,Q which costs 48
doubling steps, 4 additions steps, 47 squaring and 51 multiplications in Fp15 . Considering the
currently fastest cost for doubling and addition step in [36],
the Miller loop costs 48(15M1 + 3M5 + 9S5) + 4(15M1 + 12M5 + 5S5) + 47S15 + 51M15, which
is 51M15 + 192M5 + 780M1 + 47S15 + 452S5. Using the arithmetic in Table 2, the overall cost is
4803m575 + 6183s575. To our knowledge no explicit cost is reported in the literature in the case
k = 15 with a specific value of x.

5.3 Cost of the computation of the final exponentiation

The final exponentiation in this case is written in a different way as f (p
15−1)/r =

(
fp

5−1
)(p10+p5+1)/r

=(
fp

5−1
)d

. This decomposition is used instead of p15−1
r =

[
p15−1
φ15(p)

]
·
[
φ15(p)
r

]
as usually done,

for efficiency reasons in computation. Observe that p15−1
φ15(p)

= p7 + p6 + p5 − p2 − p − 1 and

φ15(p) = p8 − p7 + p5 − p4 + p3 − p+ 1 will lead to several multiplications and Frobenius maps
operations. Thus the lattice method described by Fuentes et al.[15] that we briefly explained in



section 2.4 applied to the matrix

M =



59049
19683d(x)
59049
19683xd(x)
59049
19683x

2d(x)

.

.
59049
19683x

7d(x)


(6)

enabled us to find the following multiple of d: d′ = 3x3d = k0+k1p+...k9p
9 where the polynomials

ki, i = 0, ..., 9 are defined as follows

k0 = −x6 + x5 + x3 − x2, k1 = −x5 + x4 + x2 − x
k2 = −x4 + x3 + x− 1

k3 = x11 − 2x10 + x9 + x6 − 2x5 + x4 − x3 + x2 + x+ 2

k5 = x11 − x10 − x8 + x7 + 3

k4 = x11 − x10 − x9 + x8 + x6 − x5 − x4 + x3 − x2 + 2x+ 2

k6 = x10 − x9 − x7 + x6 k7 = x9 − x8 − x6 + x5

k8 = x8 − x7 − x5 + x4 k9 = x7 − x6 − x4 + x3

The polynomials ki : i = 0, ...9 verify the relations

k2 = −(x− 1)2(x2 + x+ 1), k1 = xk2, k0 = xk1

k9 = −xk0, k8 = xk9, k7 = xk8

k6 = xk7, k5 = xk6 + 3, k4 = M − (k1 + k7)

k3 = M − (k0 + k6 + k9) where M = (k2 + k5 + k8)

Set A = fp
5−1 then

– The cost for the computation of A is 1 p5-Frobenius, 1 Inversion in Fp15 and 1 multiplication
in Fp15 and .

– The computation of Ak2 is 2 exponentiation by x, 2 exponentiation by x−1, 2 multiplications
and 1 cyclotomic inversion,

– The cost of the computation of the Ak0 ,Ak1 ,Ak6 ,Ak7 is 5 exponentiations by x, the compu-
tation of Ak9 costs 1 exponentiation by x and 1 cyclotomic inversion,

– The computation of Ak5 is 1 exponentiation by x, 2 multiplication and 1 squaring in Fp15 ,
– The computation of Ak4 costs 4 multiplications in Fp15 and 1 cyclotomic inversion,
– The computation of Ak3 costs 3 multiplications in Fp15 and 1 cyclotomic inversion.

Therefore, the cost of the computation of Ad
′

is 2 exponentiations by x − 1, 9 exponentia-
tions by x, 20 multiplications, one squaring in Fp15 , four inversions in the cyclotomic subgroup

Gφ3(p5) of order p10 + p5 + 1 (note that A−1 = Ap
5 · Ap10 see Appendix C for details) and



p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius maps. Using the value of x given above, the cost of the hard
part is 2(48S15+3M15)+9(48S15+4M15)+20M15+1S15+4IGϕ3(p5)

= 529S15+62M15+4IGϕ3(p5)
and p, p2, p3, p4, p5, p6, p7, p8, p9-Frobenius maps. The total cost of the final exponentiation in this
work is therefore 1I15 + 529S15 + 63M15 + 4IGϕ3(p5)

and p, p2, p3, p4, 2∗p5, p6, p7, p8, p9-Frobenius
maps.

Remark 1. The cost given by Le et al. [26] for the hard part is 11 exponentiations by x, 22
multiplications, 2 inversions in Fp15 and 9 Frobenius maps. The authors said that the cost of
an inversion in Fp15 is free with a reference to a similar computation but on elliptic curves with
even embedding degree, unfortunately we do not see how this is possible. Also, they considered
a x of 64 bits and hamming weight 7 and claimed that the cost is 88M15 + 528S15 instead of
11(6M15+64S15) = 88M15+704S15. Therefore if we count the 2 inversions in Fp15 (these inverses
are in fact in the cyclotomic subgroup Gϕ3(p5), then their final cost is 88M15 +704S15 +2IGϕ3(p5)
and 11 Frobenius maps, whereas our cost is 529S15 + 62M15 + 4IGϕ3(p5)

.

5.4 Improvement and comparison with previous work

Considering the previous remark the cost of the final exponentiation in [26] is 1I15 + 704S15 +
89M15 + 2IGϕ3(p5)

and p, p2, p3, p4, 2 ∗ p5, p6, p7, p8, p9-Frobenius maps. We observe that we have

improved the results by saving 26M15 + 175S15− 2IGϕ3(p5)
. Using the arithmetic in Table 2, the

overall cost is i575 + 3093m575 + 24044s575 for this work and i575 + 4263m575 + 31811s575 for Le
et al.[26]. We therefore save 26M15 + 175S15 − 2IGϕ3(p5)

= 1170m575 + 7767s575 comparatively

to their work.

6 Elliptic Curves with Embedding Degree 27

The parameterized elliptic curves with embedding degree 27 is defined in [4]. This family has a
ρ-value 10/9 and is parameterized by the following polynomials:

p = 1/3(x− 1)2(x18 + x9 + 1) + x

r = 1/3(x18 + x9 + 1)

t = x+ 1

(7)

6.1 The Miller loop and the final exponentiation

The Miller loop and the final exponentiation has been studied in [36]. They found the optimal
function h(z) =

∑17
i=0 ciz

i = x− z ∈ Z[z] and the optimal pairing is given by

eo : G2 ×G1 −→ µr; (Q,P ) 7−→ fx,Q(P )
p27−1
r

The authors in [36] used the parameter x = 228 + 227 + 225 + 28 − 23 for their computa-
tion at 256-bits security level. The cost of the Miller step that they obtained is therefore
28(3M9 + 2S9 + 1I9 + 9M1) + 4(3M9 + 2S9 + 1I9 + 9M1) + 27(6S9) + 30(6M9) + 1I27 =



276M9+226S9+32I9+288M1 operations. The computation of the final exponentiation in [36] re-
quires 1I27+12M27, 17 powers of x, 2 powers of x−1 and p, p2, p3, p4, p5, p6, p7, p8, 2∗p9-Frobenius
maps. Therefore the explicit cost of the final exponentiation is 1I27 + 17(5(6M9) + 28(6S9) +
36M1) + 2(6(6M9) + 28(6S9) + 36M1) + 11(6M9) + 228M1 = 1I27 + 648M9 + 3192S9 + 912M1.
Then the explicit cost for the computation of the Miller loop and the final exponentiation given
in that work is 12627m573 +8670m573 +33i573 and 24627m573 +114998m573 +1i573 respectively.

Remark 2. The negative coefficient in the value of x affects the efficiency since one full inversion
in Fp27 is required in the Miller algorithm (line 8) and also 19 inversions in the cyclotomic
subgroup are required when raising to power x during the final exponentiation.

In the next section we explain the choice of another parameter to avoid these additional opera-
tions.

6.2 Improvement and comparison with previous work

We use the arithmetic (especially the computation of inversion in cyclotomic subgroup) and a
specific value of x to improve the costs in [36]. Precisely, a careful search with a Pari/GP code
enabled us to find the value x = 229 + 219 + 217 + 214 so that r has a prime factor of 514 bits
length and the prime p has a bit length of 579 for 256-bits security level according to Table 1.
Although we have an extra doubling step, we avoid the full inversion in Fp27 and 17 inversions
in the cyclotomic subgroup Gφ3(p9) when raising to power x. We perform 2 inversions in the
cyclotomic subgroup only when raising to power x− 1.
The cost of the Miller loop now becomes 29(3M9 + 2S9 + 1I9 + 9M1) + 3(3M9 + 2S9 + 1I9 +
9M1) + 27(6S9) + 30(6M9) = 276M9 + 226S9 + 32I9 + 288M1. Using the arithmetic in Table 3,
the overall cost for the Miller loop is 12240m579 + 8584s579 for this work where we saved one
inversion in Fp27 .
Our cost for the final exponentiation is 1I27 + 17(3(6M9) + 29(6S9)) + 2(4(6M9) + 29(6S9) +
2IGφ3(p9)

) + 11(6M9) = 1I27 + 420M9 + 3306S9 + 2IGφ3(p9)
and p, p2, p3, p4, p5, p6, p7, p8, 2 ∗ p9-

Frobenius maps. Using the arithmetic in Table 2, the overall cost is i579+15735m579+119534s579
for this work.

7 General Comparison

In this section, we summarize the different costs obtained in this work and compare our results
with previous works.

If we assume that the cost of a squaring is the same as the cost of a multiplication then the cost
of the final exponentiation is i575 + 27137m575 and i575 + 36074m575 for this work and previous
work [26] respectively. The theoretical improvement obtained in this work is therefore up to 25%.
A similar analysis with k = 9 and k = 27 yields an improvement of 8% and 3% respectively.



Curves References Miller loop Final Exponentiation

k = 9, 128-bits
Previous work [26] No specific cost reported i343 + 1943m343 + 11138s343

security level This work 3024m343 + 3924s343 i343 + 1079m343 + 10958s343

k = 15, 192-bits
Previous work [26] No specific cost reported i575 + 4263m575 + 31811s575

security level This work 4803m575 + 6183s575 i575 + 3093m575 + 24044s575

k = 27, 256-bits
Previous work [36] 33i573 + 12627m573 + 8670m573 i573 + 24627m573 + 114998s573

security level This work 12240m579 + 8584s579 i579 + 15735m579 + 119534s579
Table 3. Comparison of the cost of the Miller loop and the final exponentiation.

8 Conclusion

In this work we provided details and important improvements in the computation of the Miller
loop and the final exponentiation for optimal pairings on elliptic curves admitting cubic twists.
An explicit cost evaluation is given for the Miller loop in the case of elliptic curves of embedding
degree 9 and 15. We obtained an improvement up to 25% in the computation of the final
exponentiation. A brief look at the parameters used in this work reveals that the corresponding
curves are not subgroup secure ordinary curves [3] and are not protected against small-subgroup
attacks[29]. However this is not a particular case of elliptic curves of odd embedding degree
but it appears from [3] that most of such parameters that have been found for curves with
even embedding degree such as BN12 curves [5], KSS16 curves [21] or BLS12 curves [4] do not
satisfied these security properties. As future work we could search for parameters to fulfil this
security issue.

References
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A Arithmetic in Fp9

A.1 Squaring in Fp9

Let a = a0 + a1v + a2v
2 ∈ Fp9 with ai ∈ Fp3 . a2 = A0 +A1v +A2v

2 where
A0 = a20 + 2a1a22

1/3

A1 = 2a0a1 + a222
1/3

A2 = 2a0a2 + a21

This costs 3m+ 3s or 6s since the computation of 2xy can be done as (x+ y)2 − x2 − y2 when
the squares x2 and y2 are known.

A.2 Cyclotomic inversion

We assume that a lies in the cyclotomic subgroup Gϕ3(p3), so that ap
6+p3+1 = 1 i.e. a−1 = ap

6
ap

3
.

In order to compute ap
6
ap

3
, we need the values of vp

3
and vp

6
. But vp

3
= v3(p

3−1)/3+1 =
v3(p

3−1)/3v = (v3)(p
3−1)/3v = (21/3)(p

3−1)/3v since v3 = 21/3.
Let µ = (21/3)(p

3−1)/3; we have µ 6= 1 and µ3 = 1 so that µ is a primitive cubic root of
unity in Fp3 . We obtain vp

3
= µv and vp

6
= (vp

3
)p

3
= (µv)p

3
= µ(v)p

3
= µµv = µ2v. We

then have ap
3

= ap
3

0 + ap
3

1 v
p3 + ap

3

2 (v2)p
3

= a0 + a1v
p3 + a2(v

2)p
3

= a0 + a1µv + a2µ
2v2 and

ap
6

= (ap
3
)p

3
= a0 + a1(µv)p

3
+ a2(µ

2v2)p
3

= a0 + a1µ
2v+ a2µ

4v2. So that when using v3 = 21/3

and φ3(µ) = µ2 + µ+ 1 = 0, we finally have:

ap
6
ap

3
= (a20 − a1a221/3) + (a222

1/3 − a0a1)v + (a21 − a0a2)v2

This costs 3m+ 3s or 6s with additional additions.

A.3 Frobenius operators

The pi−Frobenius is the map πi: Fp9 → Fp9 , a 7→ ap
i
.

Let a ∈ Fp9 , a = a0 + a1v + a2v
2 with ai ∈ Fp3 then π(a) = ap0 + ap1v

p + ap2(v
2)p. Now a0 ∈ Fp3

can be written as a0 = g0 + g1u+ g2u
2, gi ∈ Fp so that ap0 = g0 + g1u

p + g2(u
2)p.

We have up = u3(p−1)/3+1 = (u3)(p−1)/3u = 2(p−1)/3u and since 2 is not a cube in Fp, 2(p−1)/3 6= 1.



Let α = 2(p−1)/3 then α 6= 1 and α3 = 1; it means that α is a primitive cubic root of unity
in Fp and up = αu. Therefore ap0 = g0 + g1u

p + g2(u
2)p = g0 + g1αu + g2α

2u2 and similarly
ap1 = g3 + g4u

p + g5(u
2)p = g3 + g4αu+ g5α

2u2 and
ap2 = g6 + g7u

p + g8(u
2)p = g6 + g7αu + g8α

2u2. Now for the computation of vp observe that
vp = v3(p−1)/3+1 = (v3)(p−1)/3v = (21/3)(p−1)/3v = 2(p−1)/9v so that if β = 2(p−1)/9 then we have
β 6= 1, β3 = 2(p−1)/3 = α 6= 1, β9 = 1. Thus β is a primitive ninth root of unity in Fp and
vp = βv.
Finally ap = g0 + g1αu+ g2α

2u2 + (g3β + g4αβu+ g5α
2βu2)v + (g6β

2 + g7αβ
2u+ g8α

2β2u2)v2

and the following algebraic relations: α = β3, αβ = β4, αβ2 = β5, α2β = β7, α2β2 = β8 yield
to ap = (g0 + g1β

3u+ g2β
6u2) + (g3β + g4β

4u+ g5β
7u2)v + (g6β

2 + g7β
5u+ g8β

8u2)v2.
The cost of p-Frobenius: 8m512 + 6a512. This is the same as the cost of p2, p4, p5, p7 and p8-
Frobenius.
For the p3-Frobenius operator, observe from A.2 that vp

3
= µv. Then

ap
3

= a0 + a1µv + a2µ
2v2 = (g0 + g1u+ g2u

2) + (g3 + g4u+ g5u
2)µv + (g6 + g7u+ g8u

2)µ2v2.
As t = µ2 is precomputed; we finally have
ap

3
= (g0 + g1u+ g2u

2) + (g3µ+ g4µu+ g5µu
2)v + (g6t+ g7tu+ g8tu

2)v2.
The cost of p3-Frobenius: 6m+ 6a. This is the same as the cost of p6-Frobenius.

B Arithmetic in Fp27

B.1 Cyclotomic inversion

We follow the same procedure as in A.2. The element a = a0 + a1w+ a2w
2 ∈ Fp27 with ai ∈ Fp9

in the cyclotomic subgroup Gφ3(Fp9 ) satisfies ap
18+p9+1 = 1 so that a−1 = ap

18
ap

9
.

In order to compute ap
18
ap

9
, we need the values of wp

9
and wp

18
. We have

wp
9

= w3(p9−1)/3+1 = w3(p9−1)/3w = (w3)(p
9−1)/3w = (21/9)(p

9−1)/3w since w3 = 21/9. Let
σ = (21/9)(p

9−1)/3 then σ 6= 1 and σ3 = 1. Hence σ is a primitive cubic root of unity in Fp9
i.e. φ3(σ) = 0. We obtain wp

9
= σw and we now compute wp

18
as wp

18
= (wp

9
)p

9
= (σw)p

9
=

σ(w)p
9

= σσw = σ2w.
ap

9
= a0 + a1w

p9 + a2(w
2)p

9
= a0 + a1σw + a2σ

2w2 and
ap

18
= (ap

9
)p

9
= a0 + a1(σw)p

9
+ a2(σ

2w2)p
9

= a0 + a1σ
2w + a2σ

4w2. After expanding and
reducing using w3 = 21/9 and φ3(σ) = σ2 + σ + 1 = 0 we obtain

ap
18
ap

9
= (a20 − a1a221/9) + (a222

1/9 − a0a1)w + (a21 − a0a2)w2

The computation costs 3(36m+ 95a) + 3(36m+ 149a) + 3(9a) = 216m+ 759a.

B.2 Frobenius operators

The pi−Frobenius is the map πi: Fp27 → Fp27 , a 7→ ap
i
.

Let a = a0 + a1w + a2w
2 with ai ∈ Fp9 an element of Fp27 .

π(a) = ap = (a0 + a1w + a2w
2)p = ap0 + ap1w

p + ap2(w
2)p. The element a0 ∈ Fp9 can be written

as a0 = (h0 + h1u + h2u
2) + (h3 + h4u + h5u

2)v + (h6 + h7u + h8u
2)v2, hi ∈ Fp. We have

ap0 = (h0 + h1u+ h2u
2 + (h3 + h4u+ h5u

2)v + (h6 + h7u+ h8u
2)v2)p, hpi = hi.



up = u3(p−1)/3+1 = (u3)(p−1)/3u = 2(p−1)/3u. Since 2 is not a cube in Fp, we have α = 2(p−1)/3

α 6= 1 and α3 = 1. It means that α is a primitive cubic root of unity in Fp and up = αu.
vp = v3(p−1)/3+1 = (v3)(p−1)/3v = (21/3)(p−1)/3v = 2(p−1)/9v.
We have β = 2(p−1)/9 6= 1 and β9 = 1. Thus β is a primitive ninth root of unity in Fp and
vp = βv;
wp = w3(p−1)/3+1 = (w3)(p−1)/3v = (21/9)(p−1)/3v = 2(p−1)/27v. We also observe that γ =
2(p−1)/27 6= 1, γ3 = 2(p−1)/9 = β 6= 1, γ9 = 2(p−1)/3 = α 6= 1, γ27 = 1. Thus γ is a primitive
twenty-seventh root of unity in Fp and wp = γw.

ap0 = ((h0 + h1u+ h2u
2) + (h3 + h4u+ h5u

2)v + (h6 + h7u+ h8u
2)v2)p

= (h0 + h1u
p + h2(u

2)p) + (h3 + h4u
p + h5(u

2)p)vp + (h6 + h7u
p + h8(u

2)p)(v2)p

= (h0 + h1αu+ h2α
2u2) + (h3 + h4αu+ h5α

2u2)βv + (h6 + h7αu+ h8α
2u2)β2v2

= (h0 + h1αu+ h2α
2u2) + (h3β + h4αβu+ h5α

2βu2)v + (h6β
2 + h7αβ

2u+ h8α
2β2u2)v2.

ap1 = (h9 + h10u+ h11u
2) + (h12 + h13u+ h14u

2)v + (h15 + h16u+ h17u
2)v2)p

= (h9 + h10u
p + h11(u

2)p) + (h12 + h13u
p + h14(u

2)p)vp + (h15 + h16u
p + h17(u

2)p)(v2)p

= (h9 + h10αu+ h11α
2u2) + (h12 + h13αu+ h14α

2u2)βv + (h15 + h16αu+ h17α
2u2)β2v2

= (h9 + h10αu+ h11α
2u2) + (h12β + h13αβu+ h14α

2βu2)v + (h15β
2 + h16αβ

2u+

h17α
2β2u2)v2.

ap2 = (h18 + h19u+ h20u
2) + (h21 + h22u+ h23u

2)v + (h24 + h25u+ h26u
2)v2)p

= (h18 + h19u
p + h20(u

2)p) + (h21 + h22u
p + h23(u

2)p)vp + (h24 + h25u
p + h26(u

2)p)(v2)p

= (h18 + h19αu+ h20α
2u2) + (h21 + h22αu+ h23α

2u2)βv + (h24 + h25αu+ h26α
2u2)β2v2.

= (h18 + h19αu+ h20α
2u2) + (h21β + h22αβu+ h23α

2βu2)v + (h24β
2 + h25αβ

2u+

h26α
2β2u2)v2.

π(a) = (a0 + a1w + a2w
2)p = ap0 + ap1w

p + ap2(w
2)p = ap0 + ap1γw + ap2γ

2w2

= (h0 +h1αu+h2α
2u2) + (h3β+h4αβu+h5α

2βu2)v+ (h6β
2 +h7αβ

2u+h8α
2β2u2)v2+

((h9 + h10αu+ h11α
2u2) + (h12β + h13αβu+ h14α

2βu2)v + (h15β
2 + h16αβ

2u+

h17α
2β2u2)v2)γw + ((h18 + h19αu+ h20α

2u2) + (h21β + h22αβu+ h23α
2βu2)v+

(h24β
2 + h25αβ

2u+ h26α
2β2u2)v2)γ2w2.

We have these following algebraic relations: α = β3, αβ = β4, αβ2 = β5, α2β = β7 and
α2β2 = β8. Therefore
π(a) = ((h0 + h1β

3u+ h2β
6u2) + (h3β + h4β

4u+ h5β
7u2)v + (h6β

2 + h7β
5u+ h8β

8u2)v2)+

((h9γ + h10β
3γu+ h11β

6γu2) + (h12βγ + h13β
4γu+ h14β

7γu2)v + (h15β
2γ + h16β

5γu+

h17β
8γu2)v2)w+ ((h18γ

2 +h19β
3γ2u+h20β

6γ2u2) + (h21βγ
2 +h22β

4γ2u+h23β
7γ2u2)v+

(h24β
2γ2 + h25β

5γ2u+ h26β
8γ2u2)v2)w2.

The following values are precomputed: λ0 = β2, λ1 = β3, λ2 = β4, λ3 = β5, λ4 = β6, λ5 = β7,
λ6 = β8, λ7 = γ2 , λ8 = βγ, λ9 = λ0γ, λ10 = λ1γ, λ11 = λ2γ, λ12 = λ3γ, λ13 = λ4γ,
λ14 = λ5γ, λ15 = λ6γ, λ16 = λ0λ7, λ17 = λ1λ7, λ18 = λ2λ7, λ19 = λ3λ7, λ20 = λ4λ7, λ21 = λ5λ7,
λ22 = λ6λ7. λ23 = βλ7.
Thus π(a) = ((h0 + h1λ1u+ h2λ4u

2) + (h3β + h4λ2u+ h5λ5u
2)v + (h6λ0 + h7λ3u+

h8λ6u
2)v2) + ((h9γ + h10λ10u+ h11λ13u

2) + (h12λ8 + h13λ11u+ h14λ14u
2)v+

(h15λ9 + h16λ12u+ h17λ15u
2)v2)w + ((h18λ7 + h19λ17u+ h20λ20u

2) + (h21λ23+

h22λ18u+ h23λ21u
2)v + (h24λ16 + h25λ19u+ h26λ22u

2)v2)w2.
The cost of p-Frobenius: 26m+ 18a. This is also equal to the cost of p2, p4, p5, p7, p8 Frobenius
For the p9 Frobenius operator, observe from B.1 that wp

9
= σw. Then



ap
9

= a0 + a1σw + a2σ
2w2 = ((h0 + h1u+ h2u

2) + (h3 + h4u+ h5u
2)v + (h6 + h7u+

h8u
2)v2) + ((h9 +h10u+h11u

2) + (h12 +h13u+h14u
2)v+ (h15 +h16u+h17u

2)v2)σw+

((h18 + h19u+ h20u
2) + (h21 + h22u+ h23u

2)v + (h24 + h25u+ h26u
2)v2)σ2w2.

We then have ap
9

= ((h0 + h1u+ h2u
2) + (h3 + h4u+ h5u

2)v + (h6 + h7u+ h8u
2)v2)+

((h9σ+h10σu+h11σu
2) + (h12σ+h13σu+h14σu

2)v+ (h15σ+h16σu+

h17σu
2)v2)w + ((h18σ

2 + h19σ
2u+ h20σ

2u2) + (h21σ
2 + h22σ

2u+

h23σ
2u2)v + (h24σ

2 + h25σ
2u+ h26σ

2u2)v2)w2.

As s = σ2 is precomputed; we have ap
9

= ((h0+h1u+h2u
2)+(h3+h4u+h5u

2)v+(h6+h7u+
h8u

2)v2)+((h9σ+h10σu+h11σu
2)+(h12σ+h13σu+h14σu

2)v+(h15σ+h16σu+h17σu
2)v2)w+

((h18s+ h19su+ h20su
2) + (h21s+ h22su+ h23su

2)v + (h24s+ h25su+ h26su
2)v2)w2.

The cost of p9-Frobenius: 18m+ 18a. This is the same as the cost of p3 and p6 Frobenius.

C Arithmetic in Fp15

The arithmetic of the extension field Fp5 is studied in [32]. In this section we only consider
inversion in cyclotomic subgroup and Frobenius operators.

C.1 Cyclotomic inversion

An element a = a0 +a1v+a2v
2 ∈ Fp15 with ai ∈ Fp5 in the cyclotomic subgroup Gφ3(p5) satisfies

ap
10+p5+1 = 1 so that a−1 = ap

10
ap

5
.

vp
5

= v5(p
5−1)/5+1 = v5(p

5−1)/5v = (v5)(p
5−1)/5v = (21/3)(p

5−1)/5v since v5 = 21/3.
Let ω = (21/3)(p

5−1)/5. We have ω 6= 1 and ω5 = 1.
Hence ω is a primitive fifth root of unity in Fp5 .

We obtain vp
5

= ωv, and vp
10

= (vp
5
)p

5
= (ωv)p

5
= ω(v)p

5
= ωωv = ω2v.

ap
5

= (a0+a1v+a2v
2)p

5
= ap

5

0 +ap
5

1 v
p5 +ap

5

2 (v2)p
5

= a0+a1v
p5 +a2(v

2)p
5

= a0+a1ωv+a2ω
2v2.

ap
10

= (ap
5
)p

5
= a0 + a1(ωv)p

5
+ a2(ω

2v2)p
5

= a0 + a1ω
2v + a2ω

4v2.
ap

10
ap

5
= (a0 + a1ω

2v + a2ω
4v2)(a0 + a1ωv + a2ω

2v2)

After expanding and reducing using v3 = u and φ5(ω) = 0 we obtain

ap
10
ap

5
= (a20 + (1 + ω4)a1a2u) + ω(a22u+ (1 + ω)a0a1)v + ω2(a21ω + (1 + ω2)a0a2)v

2

This costs 3(9m+ 137a) + 3(9m+ 137a) + 3(5a) + 2mu = 54m+ 822a+ 2mu

C.2 Frobenius operators

The pi−Frobenius is the map πi: Fp15 → Fp15 , a 7→ ap
i
.

Let a ∈ Fp15 ; a = a0 + a1v + a2v
2 with ai ∈ Fp5 .

π(a) = ap = (a0 + a1v + a2v
2)p = ap0 + ap1v

p + ap2(v
2)p.

a0 ∈ Fp5 i.e. a0 = g0 + g1u+ g2u
2 + g3u

3 + g4u
4, gi ∈ Fp.

ap0 = (g0 + g1u+ g2u
2 + g3u

3 + g4u
4)p = g0 + g1u

p + g2(u
2)p + g3(u

3)p + g4(u
4)p,



since gpi = gi.
up = u5(p−1)/5+1 = (u5)(p−1)/5u = 2(p−1)/5u.
2 is not a fifth power in Fp; so 2(p−1)/5 6= 1.
Let θ = 2(p−1)/5, θ 6= 1 and θ5 = 1.
It means that θ is a primitive fifth root of unity in Fp and up = θu.
ap0 = g0 + g1u

p + g2(u
2)p + g3(u

3)p + g4(u
4)p = g0 + g1θu+ g2θ

2u2 + g3θ
3u3 + g4θ

4u4.
ap1 = g5 + g6u

p + g7(u
2)p + g8(u

3)p + g9(u
4)p = g5 + g6θu+ g7θ

2u2 + g8θ
3u3 + g9θ

4u4.
ap2 = g10 + g11u

p + g12(u
2)p + g13(u

3)p + g14(u
4)p = g10 + g11θu+ g12θ

2u2 + g13θ
3u3 + g14θ

4u4.
vp = v5(p−1)/5+1 = (v5)(p−1)/5v = (21/3)(p−1)/5v = (21/3)(p−1)/5v. 21/3 is not a fifth power in Fp;
so (21/3)(p−1)/5 6= 1.
Set β = (21/3)(p−1)/5, we have β 6= 1; β5 = 1. Thus β is a primitive fifth root of unity in Fp and
vp = βv. ap = (a0+a1v+a2v

2)p = ap0+ap1v
p+ap2(v

2)p = (g0+g1θu+g2θ
2u2+g3θ

3u3+g4θ
4u4)+

(g5 + g6θu+ g7θ
2u2 + g8θ

3u3 + g9θ
4u4)vp +(g10 + g11θu+ g12θ

2u2 + g13θ
3u3 + g14θ

4u4)(vp)2

= (g0 + g1θu + g2θ
2u2 + g3θ

3u3 + g4θ
4u4) + (g5β + g6θβu + g7θ

2βu2 + g8θ
3βu3 + g9θ

4βu4)v
+(g10β

2 + g11θβ
2u+ g12θ

2β2u2 + g13θ
3β2u3 + g14θ

4β2u4)v2.
We precomputed these following values: c0 = θ2 c1 = θ3, c2 = θ4, c3 = β2, c4 = θβ, c5 = c0β,
c6 = c1β, c7 = c2β, c8 = θc3, c9 = c0c3, c10 = c1c3, c11 = c2c3. So π(a) = (g0 + g1θu+ g2c0u

2 +
g3c1u

3 + g4c2u
4) + (g5β + g6c4u + g7c5u

2 + g8c6u
3 +g9c7u

4)v + (g10c3 + g11c8u + g12c9u
2 +

g13c10u
3 + g14c11u

4)v2.
The cost of p-Frobenius: 14m+12a. This is the same cost as computing p2, p3, p4, p6, p7, p8, p9

Frobenius.

For the p5 Frobenius operator, observe from C.1 that vp
5

= ωv. Then
ap

5
= (g0 + g1u+ g2u

2 + g3u
3 + g4u

4) + (g5 + g6u+ g7u
2 + g8u

3 + g9u
4)vp

5
+ (g10 + g11u

+g12u
2 + g13u

3 + g14u
4)(vp

5
)2.

= (g0 + g1u+ g2u
2 + g3u

3 + g4u
4) + (g5ω + g6ωu+ g7ωu

2 + g8ωu
3 + g9ωu

4)v
+(g10ω

2 + g11ω
2u+ g12ω

2u2 + g13ω
2u3 + g14ω

2u4)v2.
We precomputed d = ω2.
π5(a) = ap

5
= (g0 + g1u + g2u

2 + g3u
3 + g4u

4) + (g5ω + g6ωu + g7ωu
2 + g8ωu

3 + g9ωu
4)v +

(g10d+ g11du+ g12du
2 + g13du

3 + g14du
4)v2. The cost of p5-Frobenius: 10m576 + 12a576. This is

the same as the cost of p10 Frobenius.


