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Abstract—Modifying the arithmetic embedded in a proces-
sor can cause data to remain in encrypted form throughout
processing. The theory has been prototyped in a superscalar
pipelined general purpose processor that ‘works encrypted’, a
new approach to encrypted computation that is reported here.

The prototype runs encrypted machine code on encrypted
data in registers and memory and on buses. The objective is
to protect user data against the operator, and ‘Iago’ attacks in
general, for those computing paradigms that entail trust in data-
oriented computation in remote locations, overseen by untrusted
operators, or embedded and unattended.

The modified architecture is 32-bit OpenRISC. It admits any
block cipher compatible with the physical word size. We are
reporting performance from cycle-accurate behavioural simula-
tions running AES-128 (symmetric, keyed; the US Advanced
Encryption Standard) and Paillier-72 (asymmetric, additively
homomorphic, no key in-processor) encryptions in a 128-bit
word, and RC2-64 encryption (symmetric, keyed) in 64 bits.

I. INTRODUCTION

IF the arithmetic in a conventional processor is modified
appropriately, then, given certain provisos, the processor

continues to operate correctly, but all its states are encrypted
[2]. Running the appropriate machine code architecture, it is
impossible for even the privileged operator to decipher data
or to deliberately fake results for user programs running in
such a processor, even though he/she has access1. The theory
opens a path to engineering a processor that runs ‘profoundly
encrypted’ at near conventional processor speeds, because in
principle only one piece of stateless logic in the processor,
the arithmetic logic unit, need be changed with respect to a
standard design. Data and data addresses in memory, registers
and on buses, etc., start encrypted and stay encrypted.

That account may seem counter-intuitive to the engineer
who knows from experience that a tiny change in a computer
program, or a minor bug in a hardware unit, gives rise
to catastrophically wrong program results. Changing all the
arithmetic should be inherently dangerous: in a processor that
works encrypted, not even 4 may be added as-is to a memory
address to get the address of the next word along. Indeed, the
encryption of a given value is not unique, but varies during
processing, and that should give rise to unease on its own
account, because adding even an encrypted 0 to an encrypted
memory address may mutate its encrypted value, while the

1As reassurance, some of the theory is sketched in Appx. A.

– entirely conventional – memory has no knowledge of the
encryption that must be used to discount the change.

A sequence of cycle-accurate behavioural models of en-
crypted processors have been designed, built and tested in or-
der to (i) demonstrate that the theory is correct in itself, and (ii)
explore the limits of its applicability. With respect to (ii), it was
not known before prototyping if any conventional instruction
set would be compatible with encrypted running, and now the
situation is known, it is certain that not every program can run
encrypted – compilers and other programs that arithmetically
transform the addresses of program instructions (as distinct
from addresses of program data) are theoretically impossible
[3], and exploration of just what applications can run encrypted
has only begun. So far the largest application suite ported2 is
22000 lines of C, but it and every other application ported
(now approx. fifty) has worked well.

Behavioural models have provided metrics for guidance
and feedback throughout development, and measurements are
reported in Section V. Performance-driven development has
identified inefficiencies and driven the evolution of an archi-
tecture that works measurably well. There are natural obstacles
– for example, encrypted code is longer, and byte and half-
word accesses are implemented arithmetically – that mean that
encrypted running should be slower than unencrypted, and
the question is by how much. The measured numbers help
technology adopters decide their options. That means aiming
to design for speed, since the security is proved (Appx. A).
Prototyping has articulated design principles that cause the
hardware to behave securely [5], without which an encrypted
processor would be full of bugs and vulnerabilities.

Simulation. The OpenRISC ‘Or1ksim’ simulator (http://
opencores.org/or1k/Or1ksim) has been modified to run our
processor models. It is now a cycle-accurate simulator,
800,000 lines of finalised C code having been added over two
years real time (25 years SE effort), through a sequence of
eight prototype processor models. The source code archive
and history is available at http://sf.net/p/or1ksim64kpu.

Instruction set. The current design runs the 32-bit OpenRISC
instruction set (see openrisc.org) encrypted (opcodes are not
encrypted), leaving no doubt that the design is capable of

2The IEEE floating point test suite from http://www.jhauser.us/arithmetic/
TestFloat.html.



general purpose computation, which might be questioned if
the instruction set were less conventional.
Encryption. The processor has been adapted for Rijndael-64
and -128 symmetric ciphers (the latter is the US Advanced
Encryption Standard (AES) [7]), as well as RC2-64 [21] and
Paillier-72 [28], an additively homomorphic cipher that runs
without keys in the processor. In principle any block cipher
with a compatible block size is feasible.
Toolchain. Existing GNU ‘gcc’ v4.9.1 compiler (github.com/
openrisc/or1k-gcc) and ‘gas’ v2.24.51 assembler (github.com/
openrisc/or1k-src/gas) ports for the OpenRISC 1.1 architec-
ture have been adapted. The modified code is at sf.net/p/
or1k64kpu-gcc and sf.net/p/or1k64kpu-binutils.
Limits. The designs tested have 64-bit and 128-bit physical
word sizes, which means 64/128-bit registers, buses, memory
accesses and encryption block size, but that is not a limit.
Word widths up to 2048 bits are contemplated with current
technology, if memory accesses are paralleled to maintain
the transfer rates that are tested with the 64/128 designs
(nominally 15ns per memory access and 3ns cache access).
Configuration. Tests are centered about a 15-stage pipeline
configuration, 10 stages of which are for the modified arith-
metic, but between 1 and 20 arithmetic stages have been
explored. Simulations run a nominal 1GHz clock. The memory
and cache access times in the parenthesis above are arbitrarily
adjustable for testing. For Paillier-72 encryption the arithmetic
is 72-bit multiplication modulo a 72-bit number, feasible in
7 to 20 stages. But at 2048 bits Paillier arithmetic would
seem to need improbably long pipes – nevertheless, the closest
contemporary design to ours is HEROIC [33], [34], a stack
machine running encrypted with a ‘one instruction’ machine
code (the ‘OI’) prototyped with 2048-bit words encrypting 16
bits of data each. It does do the 2048-bit Paillier arithmetic in
hardware, so it is possible.
Key management. There is no circuit to read keys once they
are in the processor (if keys are needed for the encrypted arith-
metic, as for AES but not Paillier), where they configure the
hardware functions. Keys will be embedded at manufacture, as
with Smart Card technologies [22] or introduced via a Diffie-
Hellman circuit [6] or equivalent that loads the key in public
view without revealing it to even a privileged observer.

Key management is then a business question, because there
are no consequences of running with the wrong key: if user A
runs with user B’s key, user A’s program will produce rubbish,
as the processor arithmetic will be meaningless with respect
to it; if user A runs user B’s program with user B’s key, then
the output will be encrypted for user B’s key, and the input
will need to be encrypted in user B’s key, which user A can
neither supply nor understand. The situation is at its worst
when one of A and B is the privileged operator, and the other
is an ordinary user, but that is precisely what the platform is
intended to defend the user against. So the consequences of
key mismanagement are already defended.

The organisation of this article is as follows. After reviewing
the competition in Sections II&III, the architecture is described

in Section IV and performance in Section V.

II. RELATED WORK

The only broadly comparable contemporary is HEROIC
[33], [34], running 16-bit arithmetic in Paillier-2048 encryp-
tion on a stack machine architecture. Its core does an encrypted
addition operation in 4000 cycles and 20us on 200MHz
programmable hardware, roughly equal to a 25KHz Pentium.

While stack machines are different from conventional von
Neumann architectures, there have been hardware implemen-
tations [16], [30] as recently as a decade ago in connection
with Java bytecode, though apparently no more since then
until HEROIC. HEROIC replaces the standard 16-bit addition
by multiplication of 2048-bit encrypted numbers modulo a
2048-bit modulus m. The Paillier encryption E fits with that
because it has the ‘homomorphic’ property that multiplying the
encrypted numbers E(x) ∗ E(y)modm is the same as adding
the unencrypted numbers x+ ymod216:

E(x) ∗ E(y) mod m = E(x+ y mod 216) (1)

In generalised form, for some equivalence relation ‘≡’, as

E(x) op′ E(y) ≡ E(x op y) (2)

that is the property required in [2] of a modified arithmetic
operation op′ for correct working of an encrypted processor,
so the theory developed in [2] covers HEROIC too.

Both arithmetic and encryption may be varied when (2)
governs the design, which is why our architecture, which
follows (2), may work with very different block encryptions
ranging from AES to Paillier. And while the HEROIC en-
cryption E as per (1) is deterministic (one-valued), (2) admits
non-deterministic (many-valued) encryptions E , which is best
practice for encryption, and that is implemented in our design.

There are intrinsic complications with Paillier and other
homomorphic encryptions, however. A separate lookup table
is required to detect signed overflow, and while that is very
feasible for the HEROIC 16-bit arithmetic and deterministic
encryption, it is less so for our 32-bit arithmetic and non-
deterministic encryption, requiring design tradeoffs to make it
possible. Moreover, while HEROIC does encrypted subtraction
with the aid of a second lookup table, it is done dynamically in
our design, trading the table size burden for slower subtraction.

Encrypted multiplication (and other operations) must be im-
plemented in (encrypted) software under Paillier. The selling
point of Paillier, however, is that (1) means that the modified
arithmetic in the processor needs no keys. There is nothing
to hide, and nothing to be seen even via a physical probe.
Customers will trade-off processor speed for that.

III. OTHER WORK

Intel. Intel’s SGXTM (‘Software Guard eXtensions’) processor
technology [1] is often cited in relation to secure or encrypted
computation in the Cloud, because it enforces separations
between users. However, the mechanism is key management
to restrict users to different memory ‘enclaves’. While the
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enclaves can be encrypted because there are codecs (en-
cryption/decryption units) available on the memory path, that
is encrypted and partitioned storage rather than encrypted
computing, a venerable idea [17], [18].

Nevertheless, SGX machines are often used [31] by cloud
service providers where the assurance of safety is a selling
point. But the assurance is founded in the customer’s trust in
electronics designers ‘getting it right’ rather than mathematical
analysis and proof, as available for our and HEROIC’s tech-
nologies. There are subtle ways for engineering to let secrets
slip, via timing changes and power usage [37], for example.
IBM. IBM’s efforts at making practical encrypted computation
using very long integer lattice-based fully (i.e., additively and
also multiplicatively) homomorphic ciphers based on Gentry’s
2009 discovery [9] also deserve mention. Such ciphers E
extend the equation (1) true for Paillier to cover multiplication
as well as addition. However, it is single bit arithmetic, not
16- or 32-bit arithmetic under the encryption. The single bit
operations currently take of the order of a second each [10]
on customised vector mainframes with a million-bit word size,
about the speed of a 0.03Hz Pentium, but it may be that
newer fully homomorphic ciphers based on matrix addition
and multiplication [11] will turn out to be more amenable. The
product is not going to be capable of arbitrary general purpose
computation in any case, just certain finite calculations. An
obstacle to computational completeness is that which HEROIC
overcomes with Paillier: an encrypted comparison operation is
needed, as well as the encrypted addition (and multiplication).
HEROIC solves the problem via a lookup table, but that is not
feasible for a million-bit encryption.
Cloud. Prototype processors specifically aimed at forms of
‘encrypted computation’ in the Cloud (e.g., Ascend [8]) do
exist, but their internal computation beyond the I/O pins is not
encrypted but obfuscated by various physical means, partly as
described below (Ascend runs approx. 13.5 times slower in
encrypted mode than unencrypted).
Moat electronics. Classically, information may leak indirectly
via processing time and power consumption, and ‘moat tech-
nology’ [20] to mask those channels has been developed for
conventional processors. The protections may be applied here
(and to HEROIC) too, but there is really nothing to protect
in terms of encryption as encrypted arithmetic is done in
hardware, always taking the same time and power. There are

separate user- and supervisor-mode caches, and statistics are
not available to the other mode, so side-channel attacks based
on cache-hits [36], [37], are not available.
Oblivious RAM. At the component level, ‘oblivious RAM’
[24], [26], [27] and its recent evolutions [23], [25]) is often
cited as a defense against dynamic memory snooping. That
is in contrast to static snooping, so-called ‘cold boot’ attacks
[12], [14], [32] – essentially, physically freezing the memory
to retain the memory contents when power is removed, against
which HEROIC, SGX and our technology automatically de-
fend because memory contents end up encrypted; the address
distribution is also uncorrelated in our case. An oblivious
RAM remaps the logical to physical address relation dynami-
cally, taking care of aliasing, so access patterns are statistically
impossible to spot. It also masks the programmed accesses in
a sea of independently generated random accesses. However,
it is no defense against an attacker with a debugger, who does
not care where the data is stored, and therefore provides no
defense against the operator and operating system, which our
technology can be proved to do. However, some ‘oblivious’
behaviour is already in our design, because data addresses
are (nondeterministically) encrypted and will vary (indeed, the
logical to physical translation may be deliberately remapped at
every write to an address). Compiling correctly in part means
taking account of that [3], [4].

IV. ARCHITECTURE

Modes. In user mode, the processor runs on encrypted data and
executes the 32-bit part of the OpenRISC 32/64-bit instruction
set. In supervisor mode it runs unencrypted and may execute
all instructions. Here ‘64-bit’ refers to the arithmetic; instruc-
tions are 32 bits long. A 64-bit instruction raises an ‘illegal
instruction’ exception in user mode. User mode has access to
32 general purpose registers (GPRs), and some special purpose
registers (SPRs). Attempts to write ‘out of bounds’ SPRs are
silently ignored in user mode, and zero is read. User mode
(encrypted) coverage of OpenRISC 32-bit integer and floating
point instructions is complete.

In supervisor mode access to available registers is unre-
stricted. There is no division of memory into ‘supervisor’ and
‘user’ parts, so a supervisor mode process can read user data
in memory, but the user data will be in encrypted form. The
same holds with respect to registers.
Prefix. A prefix instruction has been added to the instruction
set to carry encrypted immediate data that would otherwise
not fit in a 32-bit instruction. Two prefixes are needed for
encryptions with 64-bit (and 72-bit) block size, and four
prefixes for encryptions with a 128-bit block size, such as
AES-128. Compiler strategy should differ with encryption to
deprecate storing data in the instruction in favour of reading it
from memory, and that it does not makes comparison between
encrypted and unencrypted running difficult.
Pipeline. The instruction pipeline in (unencrypted) supervisor
mode is the standard short 5-stage fetch, decode, read, ex-
ecute, write pipeline expected of a RISC processor [29]. In
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(encrypted) user mode that is embedded in a longer pipeline
containing the encrypted arithmetic stages.

The pipeline is configured in two ways, ‘A’ and ‘B’, for
encrypted running as shown in Fig. 2 (stage hardware is
doubled where required). The reason is that, for AES and
other symmetric encryptions, a multi-stage codec (configured
by an encryption key) is required for the arithmetic. In order
to reduce the frequency with which the codec is used, the
arithmetic logic unit (ALU) operation is extended in the time
dimension, so that it covers a series of consecutive (encrypted)
arithmetic operations in user mode. The first of the series
is associated with a decryption event and the last with an
encryption event. Longer series mean less frequent codec use.
The ‘A’ configuration is for when codec use must follow
arithmetic, the ‘B’ configuration for codec before arithmetic.

The ‘A’ configuration is used for store instructions (put an
encrypted result into memory) and load instructions (decrypt
incoming data from memory). The ‘B’ configuration is used
for instructions with immediate data, which must be decrypted
before use. Load and store do not contain immediate data in
this variety of OpenRISC, the displacement value from the
base address is always zero. Instructions that do not need the
codec at all pass through in ‘A’ configuration, because the early
execution is advantageous for pipeline forwarding, avoiding
stalls. For AES, the codec covers 10 stages, meaning 10 clock
cycles per encryption/decryption.
Shadow. In support, the ALU has a private set of user-mode-
only registers that ‘shadow’ the GPRs (and the few SPRs
accessible in user mode) (Fig. 1). These cache the decrypted
version of the encrypted data in the ‘real’ GPRs and SPRs,
enabling arithmetic to be carried out unencrypted. The shadow
registers are aliased-in for user mode instructions, and aliased
out for supervisor mode instructions. Changing the encryption
key (if there is one) empties the shadow registers. Otherwise
there is no harm in changing from user A to user B without
emptying the shadow registers across an interrupt, as argued in
Section I: on output the data is in user A’s encryption, which
user B cannot read. The protocol is proved in [5] to prevent
supervisor mode accessing data unencrypted that originated in
user mode, and vice versa.

Some supervisor-mode only SPRs have shadow registers.

On interrupt GPRs may be copied to these by the supervisor-
mode handler and copied back on handler exit, resulting in
user-mode context being saved and restored invisibly. User-
mode status flags in the processor status register are treated
similarly, so supervisor mode never sees user-mode flags.
User data cache. A small user-mode-only data cache retains
the unencrypted version of any encrypted data that is written to
memory during user mode operation. On load from memory,
the cache is checked first. The cache is physically within
the processor boundary, so is covered by the processor chip
protections from spying or interference (e.g., Smart Card-like
fabrication [22], and ‘moat’ electronics [20]).
User instruction cache. Instructions treated in ‘B’ configu-
ration have had their immediate data decrypted (for AES and
symmetric encryptions in general). The decrypted instructions
are cached in a user-mode-only instruction cache, so on a
second encounter no decryption is required. The same trick is
worked in [15], except cache is shared with supervisor mode
there. The caches are flushed on key change.
Address convention. Program addresses are unencrypted (it
is data addresses that are encrypted), which potentially is a
source of confusion in design and at runtime. A convention
handles the issue: unencrypted 32-bit addresses zero-filled to
full length are the ‘encrypted’ form, and they are ‘decrypted’
to an ‘unencrypted’ form consisting of the same data with the
top bits rewritten to 0x7fff . . . . An instruction such as jump-
and-link (JAL) in user mode, which fills the return address
(RA) register with the program address of the next instruction,
writes the zero-filled address to the real RA register, and the
7fff form to the shadow RA register. Padding or blinding in
the real encryption is configured to avoid collisions with both.
TLB. A ‘translation look-aside buffer’ (TLB) organised by
pages is not appropriate in user mode, because encrypted
addresses do not cluster, so the user mode TLB (unavailable
to supervisor mode) is organised with unit granularity, which
means 128 extra bits of location data for each encrypted word.
Further, all encrypted addresses are first remapped internally
by the TLB to a pre-set range with the allocation ordered
by ‘first-come, first-served’. Since data that will be accessed
together tends also to be addressed together for the first time,
this allows cache readahead to be effective.
Addressing hacks. It has turned out to be possible for AES
and other symmetric ciphers to pass the unencrypted data
address to the memory unit for load and store instructions,
with no additional processing. We are nervous of the security
implications, so we do not suggest that that should be done.
However, the bare 32-bit address can be hashed or encrypted
differently, and hashing is being experimented with. The
advantage is that global data can then easily be loaded into
memory from file by a program loader running in supervisor
mode using the hash as address. It is stored in-file with the
encrypted data. If the encrypted address were kept instead, the
loader would have to run partly in user mode, as a program
‘prequel’, and it is not clear how that could work. The problem
is avoided by not allocating any global (‘heap’) data in high-



level program source, allocating it on the stack instead. That
solution is currently preferred.

V. PERFORMANCE

The original Or1ksim OpenRISC test suite codes (written
mostly in assembler) have established solid benchmarks for
encrypted running across years of development now. Most
modern performance suites are practically infeasible to com-
pile because they rely on external library support such as linear
programming packages and maths floating point libraries, as
well as standbys such as ‘printf’ that must be written and
debugged. If those could be ported to compilable code in good
time, debugging would take months more (the original Open-
RISC gcc compiler has its known bugs, such as sometimes
not doing switch statements right, sometimes not initialising
arrays right, etc.). Some standard but less evolved benchmarks
are running, such as Dhrystone 2.1.

Table I details performance in the instruction set add test
of the suite, with RC2 64-bit symmetric encryption, repeating
the 2016 test in [5] for comparison. The 64:16:20 mix for
arithmetic:load/store:control instructions in user mode (no-ops
and prefixes discarded) is approximately the 60:28:12 in the
standard textbook [19], so the results are not atypical.

At the time of the earlier test, the program spent 54.8% of
the time in user mode, and 52.7% now, which is a 4% (i.e.,
2.1/54.8) speed-up in the encrypted running. At the nominal
1GHz clock, pipeline occupation is now 1−20.7/52.7 =
60.7%, for 607Kips (instructions per second). That counts no-
ops and prefixes too, which are not functional.

The same test with Paillier-72 on the 128-bit architecture
shows much worse performance (Paillier does some arithmetic
in software, hence the column 2 differences here):

add test cycles instructions
RC2 (64-bit) 296368 222006
Paillier-72 438896 226185

The difference is due to more pipeline stalls, not the longer
word: running RC2-64 on the 128-bit model gives near the
same figures. Paillier arithmetic takes the length of the pipeline
to complete, stalling following instructions that need the result
as much as 11 stages behind. The disparity is more marked
on multiplication, which Paillier does in software:

mul. test cycles instructions
RC2 (64-bit) 235037 141854
Paillier-72 457825 193887

Performance with symmetric encryptions is very sensitive
to data-forwarding in the pipeline. This table shows that 33%
of processor speed is due to forwarding, while on-the-fly
instruction reordering gives only another 3%:

add test forwarding
RC2 (64-bit) cycles X ×

reordering X 296368 412062
× 315640 441550

In contrast, Paillier shows little sensitivity to forwarding:
expected because an arithmetic result is not available before
the penultimate stage. The only way to speed up Paillier

TABLE I
BASELINE RC2 (64-BIT SYMMETRIC ENCRYPTION) PERFORMANCE,

OR1KSIM ‘ADD TEST’: PROPORTION FINISHING PER CYCLE.

RC2: cycles 296368, instructions 222006 per cycle

mode user super

arithmetic
{ register instructions 0.2% 0.2%

immediate instructions 7.8% 9.8%

memory
{ load instructions 1.0% 3.0%

store instructions 1.0% 0.0%

control

{
branch instructions 1.1% 5.2%

jump instructions 1.2% 5.1%
sys/trap instructions 0.5% 0.0%

no-op instructions 7.3% 16.8%
prefix instructions 11.8% 0.0%

move from/to SPR instructions 0.1% 2.8%
wait states 20.7% 4.4%

(stalls) (17.4%) ( 3.7%)
(refills) ( 3.3%) ( 0.7%)

total 52.7% 47.3%

Branch Prediction Buffer
hits 10328 ( 55%) misses 8219 ( 44%)

right 8335 ( 44%) right 6495 ( 35%)
wrong 1993 ( 10%) wrong 1724 ( 9%)

User Data Cache
read hits 2942 (99%) misses 0 ( 0%)

write hits 2933 (99%) misses 9 ( 0%)

appears to be to compile multithread programs, so there may
be instructions behind that can overtake a stalled instruction.

Since the 2016 account (a) instructions with trivial func-
tionality in the execute phase (e.g., ‘cmov,’ the ‘conditional
move’ of one register’s data to another) but stalled in read
stage have been allowed to proceed and pick up the data via
forwarding later; (b) the fetch stage has been doubled to get
two per cycle and catenate prefixes to the instruction instead of
taking pipeline slots; (c) a second pipeline has been introduced
to speculatively execute both sides of a branch.

‘Flexible staging’ (a) takes the cycle count down from
296368 to 259349 cycles on its own. Innovations (b) and (c)
then contribute as follows:

add test deprefixing (b)
RC2 (64-bit) cycles X ×

branch both (c) X 237463 257425
× 241992 259349

Branching both ways is not very effective in this test because
only 3717 branches were predicted wrongly.

Those tables provide baselines for the AES-128 encryption
too via the following Dhrystone 2.1 benchmark equivalences:
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Dhrystone v2.1 RC2 (64-bit) AES (128-bit)
Dhrystones per second 246913 183486

VAX MIPS rating 140 104

Dhrystone v2.1
(gcc 4.9.2)

Dhrystones per second
VAX MIPS rating

Pentium M 32-bit 1GHz
O0 O2 O6

735294 1470588 2777777
418 836 1580

By those measures, the AES-128 prototype is running as a
320MHz classic Pentium, or 250MHz Pentium M. According
to the table at http://www.roylongbottom.org.uk/dhrystone%
20results.htm, a 1GHz Pentium M does 523 MIPS and a
100MHz classic Pentium does 32.2 MIPS.

However, the results are very compiler-sensitive, as shown
by the variation through optimisation levels O0-O6 for the
Pentium M table above, and our compiler is rudimentary. The
slowdown for 128-bit AES over 64-bit RC2 is due to the 4,
not 2, prefixes for an immediate constant in an instruction.

Results may be extrapolated for longer codecs/more com-
plex encrypted arithmetic in the pipeline. Fig. 3 shows each
extra pipeline stage costs approximately 2.5% more cycles.

VI. CONCLUSION

A superscalar pipelined design prototype for a 32-bit pro-
foundly encrypted processor RISC has been described, em-
bedding RC2 64-bit encryption, the 10-round (Rijndael) AES
128-bit encryption, and Paillier 72-bit additively homomorphic
encryption. Registers, memory and buses contain encrypted
data in this architecture, which runs an encrypted version of
the OpenRISC instruction set. The operator has unfettered and
privileged access to internals, yet provably cannot decipher
or meaningfully change user data. The prototype, clocked at
1GHz, currently performs at about the level of a 300MHz
classic Pentium, in conjunction with AES-128 encryption.
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APPENDIX (for publication as requested)
For the reassurance of readers, some of the theory claimed in

Section I is sketched here: consider a program C that has been
written using only instructions for addition of a constant y←x+k
and branches based on comparison with a constant x<K. Those are
an abstraction of the single instruction x1←x1+k1 if x2<K2 . . .
from HEROIC, the ‘one instruction computer’. Amazingly, despite
being able to read (and rewrite) every program, read and write every
register and memory location:

Fact 1. No method of observation exists by which the privileged
operator may decrypt the output y of the program C.

NO METHOD OF OBSERVATION EXISTS . . .
Suppose that the privileged operator does have some method of working
out what the output y of the program C is, although it is encrypted, having
also observed the trace T .

But one can construct a program C′ that looks the same to the operator,
and gives a runtime trace T ′ that also looks the same, but C′ produces a
different output, say y+7. The operator’s method must predict the same
output for C′ as for C, so the method is wrong and cannot exist.

The idea is that the operator cannot read encrypted constants in
programs C and C′, nor encrypted data in traces T and T ′, so the
constants in C may be altered for C′ without the operator knowing they
are different. Doing that and preserving the trace achieves the objective.

The program C′ is easy to construct, imagining that every number has
had ‘7’ added to it under the encryption.

The encrypted additions y←x+k of C still work correctly in C′,
because they add k to a number that is 7 more than it used to be to get
a number that is 7 more than it used to be. They do not need changing.

The comparisons x<K in C do need changing for C′ because the new
numbers, which are 7 more than they used to be, need to be compared
with K′ equal to K+7 for branches to go the same way as before (care is
taken that there are no collisions between the encrypted values k and K
by padding or blinding appropriately, so the operator cannot tell either by
means of a new collision or lack of an old one that the K have changed).

The argument in the box is independent of the chosen value ‘7’
by which the program output differs from the operator’s prediction.
It could be any number, with equal probability (see Fact 5 below) as
far as the operator is concerned. So the operator’s putative method
may not even be statistically-based.

An elaboration of the same argument establishes the claim for
plural y: the data in any location (register or memory) at any point in
the program may be varied by any desired amount from the ‘nominal’
value, by judicious changes in the encrypted constants in the program
C, while maintaining the same runtime trace T (up to the values of
encrypted data, which cannot be read by the operator).

Surprisingly, that the operator cannot read any program C means
that the operator cannot write one either, at least not one that does
what the operator intends. The reason is that if that could be managed,
then the operator would know what the output of the program is,
and that is impossible, by Fact 1. The argument in the box is not
predicated on who wrote program C, so it applies.

Fact 2. There is no method by which the privileged operator can
alter program C using the restricted set of instructions to produce
intended outputs y.

If that argument seems solipsistic, consider that the box argument
shows that the hypothetically altered program could produce a
different value with the same trace if the encrypted constants in it
were different than supposed. So the program cannot be something
like ‘return x−x’ (which would return 0 for any x). The box shows
that no program using the HEROIC instruction set gives a result
independent of the (possibly not any) encrypted constants in it, which
the operator cannot read or compose.

That theory depends on the minimalist HEROIC machine code
instruction set, but can be extended to other instruction sets too. The



TABLE II
AN FXA MACHINE CODE INSTRUCTION SET

fields semantics

add r1 r2 r3 [k]E – add r1 ← r2 + r3 + k
sub r1 r2 r3 [k]E – subtract r1 ← r2 − r3 + k
mul r1 r2 r3 [k]E – multiply r1 ← r2 ∗ r3 + k
div r1 r2 r3 [k]E – divide r1 ← r2 / r3 + k
cmov r1 r2 r3 – conditional move r1 ← flag ? r2 : r3
li r1 [k]E – load immediate r1 ← k
sfeq r1 r2 [k]E – set flag if r1 = r2 + k
sfne r1 r2 [k]E – set flag if r1 6= r2 + k
sflt r1 r2 [k]E – set flag if r1 < r2 + k
sfgt r1 r2 [k]E – set flag if r1 > r2 + k
sfle r1 r2 [k]E – set flag if r1 ≤ r2 + k
sfge r1 r2 [k]E – set flag if r1 ≥ r2 + k
bf j – skip j instructions if flag set
bnf j – skip j instructions if flag not set
b j – unconditional skip j instructions
. . .

Legend: the r are register indexes or memory locations, the k are 32-bit
integers, the j are instruction address increments, ‘←’ is assignment.

best generalisation is to a ‘fused anything and add’ (FxA) instruction
set (Table II), in which every instruction contains an immediate
(encrypted) constant that is added to the result. A ‘fused multiply and
add’ (FMA) instruction was introduced for the purpose of improving
parallel processing performance by AMD and Intel in 2011/12/13,
with their FMA3/4 instruction sets, and FxA instructions follow that
pattern. Even the comparison instructions carry an extra encrypted
constant, which is added to one comparand.

Fact 3. There is no method by which the privileged operator can
read a program C constructed using FxA machine code instructions,
nor deliberately alter it using those instructions to give an intended
encrypted output.

As already remarked, the argument in the box is ‘agnostic’ with
regard to the possible deviation of runtime values from a nominal
value, so in principle the data at any point might be arbitrarily
different from the hypothesised values. In reality, however, the
program having been written by a human being, a bet that one of
the encrypted constants in the program is a 1 and another is a zero
would win, making the encryption statistically open to attack.

To combat that, an obfuscating compiler has been created which
introduces into FxA machine code the arbitrary differences from the
nominal values at each point in the program that the box argument
says are feasible. It is not appropriate to detail the compiler here, but
its operation follows the (extended) box argument, introducing new
variations at each non-control instruction in the compiled program
via its encrypted constant (see Table II). Then:

Fact 4. The probability across recompilations that any particular
runtime value x is in location l at any given point in the program is
uniformly 1/232.

(for a 32-bit system under the encryption).
The intuition to follow for that is that the (additive) noise intro-

duced into each instruction by the compiler’s manipulation of the
encrypted constant already has maximal entropy over 32 bits, being
uniformly distributed across the range. Thus it swamps other informa-
tion and makes the data written at runtime by the instruction appear
uniformly and randomly distributed across possible recompilations,
via the well-known Shannon inequality: the entropy of a sum of
signals (in modulo arithmetic) is no less than that of any contribution.

That establishes cryptographic obfuscation [13]. That is, having
the machine code in hand does not enable the operator to guess even
a single bit of encrypted runtime data with any statistical advantage

over instead having in hand a black box implementation of the code3.
The operator may be able to identify the author by means of signature
control graph constructs in the code, for example, but does not know
even statistically what the runtime value anywhere is.

Then by an argument of van Dijk et al. in [35], which reduces the
privacy of arbitrary computations in the cloud on behalf of multiple
remote users to the question of the cryptographic obfuscation of the
machine code running on the server:

Fact 5. An arbitrary FxA machine code compiled by the obfuscating
compiler and executed by our platform in the cloud on behalf of a
remote user is private.

The FMA (‘fused multiply and add’) machine code instruction is
part of the OpenRISC instruction set that the prototype runs and the
remainder of the FxA set is emulated by following or preceding one
of the standard OpenRISC set by an extra add immediate instruction.
Configuring the processor to raise an illegal instruction fault on any
one of the standard OpenRISC instructions that is not immediately
preceded or followed by an add immediate instruction implements
FxA exactly, but instructions must be fetched two at a time.

As remarked in Section V, ‘deprefixing’ (b) doubles the pipeline
fetch stage, getting two instructions per cycle, and that provides a
convenient place for the hardware check. However, instructions are
in any case fetched 64 bits (and more) at a time to the instruction
cache, and that is an alternative site for the hardware check. The pair
may not straddle a cache line boundary.

The FxA instruction set as shown in Table II does not contain
bitwise operations (nor bytewise, nor half-wordwise). Those should
be compiled to software functions. Nor does Table II contain floating
point or double word operations, but compiling for a 32-bit target
without hardware floating point support solves the issue.

However, the prototype does have an (encrypted) 32-bit floating
point unit (FPU), implemented in the same way as the 32-bit integer
ALU is implemented, and does have the corresponding OpenRISC
32-bit FP instructions. So compilation for a target with 32-bit floating
point hardware works as well.

3The statement of Fact 4. is slightly stronger than cryptographic obfus-
cation, in that it shows that the operator has no statistical advantage in
formulating a guess at the data anywhere, independently of the availability or
not of black-box testing as extra information.


