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ABSTRACT
Appropriately modifying the arithmetic in a processor in the-
ory causes user data to automatically remain in encrypted
form throughout processing, providingi a new technical ap-
proach to privacy against other users and the operator that
is initially intended for use in cloud-based computation. The
theory has now been checked in a prototype superscalar pro-
cessor design that conforms to the OpenRISC specification.
The processor runs in a (one-to-many) encryption in user
mode, and runs unencrypted in supervisor mode. What ar-
chitectural features work well and what does not work well
in the processor architecture is reported here, mapped via
performance measures. We are reporting cycle-accurate mea-
surements on models that embed AES-128 (symmetric, key-
ed; the US ‘advanced encryption standard’) and Paillier-72
(asymmetric, additively homomorphic, no key in-processor)
encryptions in a 128-bit architecture, and RC2-64 encryp-
tion (symmetric, keyed) in a 64-bit architecture. With the
symmetric encryptions, the models run at 104–140 MIPS
on a 1 GHz base clock, measured on the Dhrystones 2.1
benchmark, equivalent to a 433–582 MHz classic Pentium.
The experience gained allows us to propose here a RISC in-
struction set modified for encrypted working, with which the
cryptographic notion of semantic security for user data is
formally guaranteed on this kind of platform, in cooperation
with an ‘obfuscating’ compiler. But the aim of this paper
is to raise awareness that computing provably secure against
insiders is not only logically achievable this way but plau-
sibly practical and marketable, encouraging the focus of the
hardware community.

1. INTRODUCTION

IF the arithmetic in a conventional processor is modified ap-
propriately, then the processor continues to operate cor-

rectly, but all its states are encrypted [1], which means that
encrypted data is read and written at encrypted addresses,
and both data and addresses pass through the internal reg-
isters of the machine in encrypted form. That is encrypted
computing. Running an appropriate machine code instruc-
tion set, it is mathematically impossible for the operator to
infer from the computation either statistically or logically
what the user’s encrypted data means, despite having read
and write access to it and the program code.1 That is to

1An appendix supplies sketches of this and other formal results to
avoid breaking anonymity by referencing the refereed publications.

say, secure computing in the cloud on behalf of a remote
user [2] is ‘formally solved’ by this approach and it remains
to be seen if engineering a processor design following this
approach to meet practical expectations is possible.

This paper gives performance measures (ii our latest models
achieve numbers equivalent to a fast classic Pentium) on a
single pipeline processor design with the aim of challenging
the community to apply the approach to encrypted comput-
ing with more state-of-the-art computer architectures.iii The au-
thors are not specialist computer or hardware engineers, but
computer scientists, mathematicians, security experts, cryp-
tographers, and software engineers, and we believe special-
ists will do much better there than we.

Another objective of this paper is to convince the commu-
nity that it does all work. That this class of processor works
via a changed arithmetic ought to seem counter-intuitive to
an engineer, on the basis that a tiny bug in a computer pro-
gram or hardware unit gives rise to wrong program results,
so changing all the arithmetic at once should be catastrophic.
Further, with a one-to-many encryption, the encryption of a
given value varies, so, an encrypted memory address may
change during processing and miss the intended target in
RAM. The effect appears as ‘hardware aliasing’ [3] to soft-
ware, and how to compile for that is documented [4] (reuse
encrypted addresses, not recalculate them, as the latter reen-
crypts the address differently).

Since conventional instruction sets are insecure in an en-
crypted computing context (see paragraph 2.6), we also set
out here a modified machine code instruction set architec-
ture that fixes the deficiencies. Encrypted computing can-
not be secure without it. But it also requires backing by a
form of randomised compilation, or encryption would intrin-
sically always be subject to statistically-based ‘dictionary at-
tacks’ based on the tendency of human programmers to pre-
fer small numbers such as 0, 1, 2, and that is sketched here.

iv In the rest of this section, general points, particularly those
raised by the referees, are dealt with before the organisation
of the paper is set out. Margin numerals are rebuttal notes.
1.1 Coverage. The ‘bells and whistles’ of operating sys-
tem support in the processor are now known to be generally
compatible with encrypted running. That has been proved
by satisfying the whole of the OpenRISC v1.1 specification
at http://openrisc.io, with minor restrictions for secu-

A superscript capital letter in the text refers to an appendix section.
In camera ready copy, these references would be replaced by cita-
tions. The particular claim footnoted here is explained in Section 6.
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rity purposes.2 Both user and supervisor modes are imple-
mented. Operating system code runs (unencrypted) in super-
visor mode on the platform and a successful, working micro
operating system supports the user-mode tests reported here.
1.2 Security. An engineer should always project a natural
scepticism at any claim of security, because of oversights in
design and implementation that occur. But that is exactly the
point, because the security in this approach depends funda-
mentally on mathematics, abetted by but not based on engi-
neering. Engineering is needed to get it right and get it fast,
but is not responsible for the mechanism of protection. Vul-
nerabilities could arise via mistakes of implementation, but
not unknown weaknesses in the principles. The effective-
ness of the hardware protocols in keeping supervisor mode
from accessing in unencrypted form any datum that has been
generated in user mode is proved.Av With that as basis, in con-
junction with the slightly modified instruction set described
here and a special compiler,C the cryptographic notion of se-
mantic security [5] (no attack does better than blind guess-
work) has been provedvi to hold for user data in computations
on the platform,D which leaves no room to doubt security.

vii A security expert who is not familiar with computer ar-
chitecture should be on notice that it is physically impossi-
ble for hardware to make digitally available internal data that
there are no hardware traces to read. In particular, the con-
tent of the processor pipeline at any moment is unavailable.
Encryption is done in hardware as part of the pipeline, using
internal pipeline registers only, and always takes the same
time (and power) so timing attacks [6] and cache attacks [7]
are not applicable. A potential exception to the visibility of
half-completed or aborted pipeline instructions is via subse-
quent cache behaviour and timing, but the user caches are
not available to the supervisor mode of the processor, nor
are user branch prediction and cache hit statistics. These
and other subtleties of security engineering are discussed in
Section 4 and hardware engineers should feel free to add to
our solutions, as defenses for conventional processors apply.

The security expert should also note that there is no intent
to hide control flow. The operator is free to observe and to
guess what the (encrypted) program running might be. It is
the numerical value of runtime user data under the encryp-
tion that can formally be shown to be secure. An observer
might guess, for example, that an image analysis program is
running, but should be unable to deduce the coordinates of
the rocket launching site detected by the analysis.

To cheaply secure the control flow too, the user can run
the code for a virtual machine (VM) on the platform, and
run their computation on that. The encrypted state of the
VM, including its control state (program counter, etc.), is
encrypted data that is transformed by the same arithmetic
each cycle, and the security of that is guaranteed.

More efficiently, the user may effectively obfuscate their
program for the platform by compiling it so that both branches
of every if statement are executed, but they are combined
arithmetically at the join so that only one branch contributes,
via statements of the form x← a ∗ x1 + b ∗ x2, where x1, x2

2 In user mode, no register may contain a value known in advance,
or a ‘known plaintext attack’ could be mounted against the encryp-
tion. For example, the register that should contain the processor
version number may not return it (encrypted) in user mode.

are computed down the two branches and a, b are encrypted,
calculated, 0/1 values. Arithmetic is encrypted on the plat-
form, so the program trace looks the same (up to length)
to an observer whatever the inputs, which is the definition
of cryptographic obfuscation [8]. It is just beginning to be
realised that cryptographic obfuscation is both possible and
practical with help from hardware [9].

Guarantees of data security hold on this platform even
when a program tries to give secrets away, for example by
looping three times when returning ‘3’, encrypted. The math-
ematics shows that an observer cannot be sure that it is ‘3’,B.
If the program code is compiled to avoid numerical biases,
then any other value is formally equally as likely beneath the
encryption.D Section 6 gives an example trace for a simple
compiled program that should make these statements more
comfortable for the general reader.

The cycle-accurate model processors reported here have
been built to (i) confirm that those theoretical principles work
and do so usably well in practice, and (ii) gain experience
and explore the practical limits of this approach.
1.3 Usability. With respect to (i) above, the models have
provided good metrics and significant measures are reported
in Section 5. The single pipeline emits more than one in-
struction every two clock pulses for standard application code
mixes. The measured speed on standard benchmarks using
a 1 GHz base clock is that of a 433–582 MHz classic Pen-
tium (differences between compilation for the RISC instruc-
tion set here and Intel’s CISC instruction set should be taken
into account). Concern for performance has improved the
architecture to work measurably well, despite natural obsta-
cles that mean encrypted running will be slower. In particu-
lar, encrypted code is longer, and sub-word operations (e.g.,
read a byte, write a byte) must be carried out via multiple
arithmetic operations on full words. The practical question
is how much slower is encrypted computing, because num-
bers help future adopters or partners decide on options. The
instruction test numbers reported here are 50% better than
the numbers in [10], where the architectural framework that
we have taken forward is published. But benchmark results
are available for the first time and are 7× better than for the
original (104–140 MIPS instead of 20 MIPS; see Section 5),
albeit partly due to improved compilation.
1.4 Limits. With respect to (ii) above, it was originally
unknown if any conventional instruction set could be com-
pletely compatible with encrypted running. Now that the
situation is better understood, it is clear that not every pro-
gram can run encrypted – compilers and programs that trans-
form the addresses of program instructions (as distinct from
addresses of program data) must run unencrypted because
program addresses are unencrypted by design – that pre-
vents ‘known plaintext attacks’ (see, e.g., [11]) on encrypt-
ed address sequences. But within those limits applications
run well in the modified OpenRISC instruction set and the
necessary system code support is successfully provided by
the processor. The largest application suite3 ported so far
is 22,000 lines of C, but it and other ports (now about fifty

3IEEE floating point test suite at http://www.jhauser.us/
arithmetic/TestFloat.html.viii Floating point arithmetic to the
IEEE specification has previously been seen as impractical for en-
crypted computing, leading to alternative proposals [12].
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programs) have worked well, surprising these authors. We
expect programs with memory footprints that do not fit in
cache (too large for practical simulation) to perform badly
encrypted, but we also expect the problem to become moot
by virtue of external factors (processor cache may be a lot
bigger in future) or for it to be overcome. The root of the
problem is that unit granularity is required in address log-
ical to physical translations, as encrypted addresses do not
cluster in pages, and that is very inefficient. However, the
processor has internal access to the decrypted address, and
we are experimenting with that in order to recover perform-
ance with security.
1.5 Simulation.ix The question of if our simulations are valid
deserves a preliminary answer, as the hardware community
may be unfamiliar with the use for model-driven design and
exploration [13], rather than validating an existing design.

In the first place, it does not matter if simulations are ac-
curate, as our results are for encrypted as opposed to unen-
crypted working in the same basic design (50-80% as fast),
which is also the approach taken in the accounts of other
contemporary designs reported in Section 3. If there are
mistakes, they are the same mistakes on either side of the
division sign. Secondly, mistakes that make a design appear
faster than it should be would make the comparison worse,
as the slowness of encrypted working over unencrypted work-
ing becomes more exposed. Thirdly, the design is clocked at
less than a quarter of the speed fabricated chips run at nowa-
days, so it is not pushing the envelope. Care has been taken
to configure conservative latencies for memory and cache
(13.5ns and 3ns respectively, adjustable). Fourthly, there is
no room to get a pipeline simulation wrong in software – the
pipeline moves instructions on by one pipeline stage at ev-
ery clock tick. Instructions that need data do not move on
until it is available, creating an empty space in the pipeline
ahead and ‘stalling’ the instructions behind. The simulation
would not work at all if that were miscoded, and timing is
counting clock ticks. Model development has been incre-
mental on that foundation, and we have been able to detect
anomalies along the way. More than a million lines of final
code are invested in the simulation software, for an estimated
25 years of total software engineering effort. The difficult
code relates to the interaction between memory, cache and
pipeline timings, but only programs with footprint that fits
in the (8 MB, write-back) cache are reported here, and they
are bug-free in the respect that data is always written before
it is read. That ensures a cache hit on read. So, it suffices
that cache interactions alone are correctly modelled in order
for the results to be correct. RAM modelling is not a prac-
tical issue for dispute. Fifth, running unencrypted at 1GHz,
the machine is registering 199 MIPS for the (unoptimised)
Dhrystones v2.1 benchmark, or 0.2 MIPS/MHz. That is only
half as good as ARM RISC machines a decade old, so the
numbers from simulation pass sanity checking. Sixth and
lastly, simulation is specification, not validation. It identifies
what engineers working at the logic gate level must achieve.
A gate-level simulation on silicon (aka ‘reality’) will have
its own numbers. Simulation drives what becomes real, not
preempts it.
1.6 What is new?x Conventional benchmark results for this
class of architecture are reported for the first time, which

has required development of a significant software infras-
tructure in support. Measures carried over from earlier re-
ports have been bettered by 50% and it is detailed here what
architectural optimisations work to make that happen. Cor-
rect interaction with operating system support has been ex-
perimentally validated now, as well as proved secure, which
boosts confidence in the practicality of the approach. This
is also the first report of the approach for a computer engi-
neering audience. We are also able here to pair it for the first
time with theory that gives formal foundations for security.
For that, a specially modified instruction set architecture is
crucially necessary and it is shown here for the first time.
Security in encrypted computing cannot work without it, so
it does engineers no good to ignore it.
1.7 Organisation. The organisation of this article is as fol-
lows. Section 2 summarises processor design and working
in this approach to encrypted computing, giving bullet points
for the reader to take away. The reader should look there
first for an understanding. This approach does not work via
a radically different architecture so a detailed schematic is
not included here. The design is as expected for thexi decades-
old classic single pipeline RISC processor [14], with modifi-
cations as described. The ordinariness is much of the point.

Contemporary efforts at encrypted computing are reported
in Section 3. The processor model described in this paper is
running 20,000 times as fast as the only really practical com-
parable option, and 150,000,000,000 times as fast as IBM
are achievingxii (of the order of 1 logical gate operation per
second) in their experiments using homomorphic encryp-
tion [15, 16] as their approach to encrypted computing (ho-
momorphic encryption gives rise to a homomorphic arith-
metic, which is the ‘appropriately modified’ arithmetic de-
scribed in the first sentence of this Introduction).

The security engineering considerations arising from put-
ting these principles into practice are described in Section 4.
A reader should look there for the minutia of the hardware
concerns, but more is discussed. It should be noted in partic-
ular that key management is not in any way a concern here,
both by virtue of the security arguments given and because
it can be done via extant hardware.

Performance is taken up in Section 5, which comprises the
heart of the paper. An account is given of what computer ar-
chitecture approaches for improved performance work well
and why. It has been found that a homomorphic encryp-
tion cannot work well in this context, for example (the en-
cryptions that work well are fast symmetric encryptions), be-
cause pipelining is unsuccessful in allowing one instruction
to start while another is still running. The reason is that the
‘execution’ stage of an arithmetic instruction necessarily oc-
cupies nearly the whole of the pipeline, but the results cannot
be anticipated, so a following instruction must generally wait
to start for the one ahead to complete, making the pipeline
one-instruction-at-a-time.

The security vulnerabilities of conventional instruction sets
were explained in Section 2, but Section 6 shows a modified
instruction set that makes encrypted computing provably se-
cure. It requires, however, code to have been compiled by an
‘obfuscating’ compiler that takes advantage of the possibili-
ties in the instruction set. The requirements for the compiler
are sketched in that section (the compiler’s URL is given).xiii Pro-



cessor, instruction set and compiler together comprise a three-
point system for provable security in encrypted computing.

2. REFERENCE POINTS
This section summarises the basic working of the proces-
sor architecture framework introduced in [10] and intends to
provide touchstone points to which the reader can refer.
2.1 Architecture. The processor architecture is based on
the classic single pipelined RISC design of [14], clocked
here at a nominal 1 GHz with 3 ns cache. Register layout
and functionality follows the OpenRISC v1.1 architectural
specification at http://openrisc.io. There are 32 gen-
eral purpose registers (GPRs) and up to 65,536 special pur-
pose registers (SPRs). Some SPRs’ defined functions have
had to be modified for security reasons and that is described
in Section 4. Registers and buses are either 64 or 128 bits
wide (it differs per processor model), in both cases holding
either encrypted 32-bit data or unencrypted 64-bit data.

The pipeline incorporates standard optimisations such as
speculative branch execution and prediction. Data is for-
warded directly between instructions in different stages be-
fore it has first passed through the processor registers (saving
one clock cycle). Data hazards (input to an instruction needs
to wait for output from an instruction ahead) stall instruc-
tions. Successive models have incorporated cleverer features
into the pipeline, such as on-the-fly instruction reordering.
2.2 Modes. There are just two processor modes: user and
supervisor mode, as per the OpenRISC specification. User
mode works encrypted on data that is 32-bit beneath the en-
cryption and supervisor mode works on 32- or 64-bit unen-
crypted data. Supervisor mode has no access restrictions,
while user mode is limited as described in Section 4.
2.3 Adversaries. The operator is the notional adversary who
tries to read the user’s data, and/or rewrite it. By ‘the oper-
ator’ is meant also the supervisor mode of operation of the
processor, in which instructions have access to every register
and every memory location. As the most privileged user on
the machine, the operator stands in for all as adversary. If
user data is secure from the operator, it is secured from all.
2.4 Simulation. The open source OpenRISC ‘Or1ksim’ sim-
ulator, available from opencores.org/or1k/Or1ksim, was
the original source of the simulation code, so the OpenRISC
instruction semantics were initially correct. It has been mod-
ified to a cycle-accurate pipeline simulator,xiv in which the orig-
inal monolithic instruction semantics for OpenRISC have
been split into decode, prep, read, execute, post and write
steps for the pipeline (there are multiple prep and post steps,
dedicated to the encrypted arithmetic). The decode stage
code is generated from specifications, as in the original source.
The decode stage creates a ‘microcode’ that accompanies the
instruction down the pipeline and configures the processing
of the instruction in each later pipeline stage. Some bits of
the microcode are writable, allowing the semantics to vary
dynamically. If data is available from ahead in the pipe-
line before it is available from registers is marked in the mi-
crocode, for example. The open source code archive and
history is at http://sf.net/p/or1ksim64kpu.
2.5 Instruction set. In user mode, the processor models
here natively run the 32-bit OpenRISC instruction set modi-

fied for encrypted operation. The modification is chiefly that
any ‘immediate’ data embedded in an OpenRISC instruction
must be in encrypted form. Because encrypted data is too
long to fit in the 16-bit immediate data field of the OpenRISC
standard, an extra prefix instruction has been introduced in
order to allow encrypted immediate data to be started in a
prefix to the instruction, and in a prefix to that, if necessary.

Other modifications are minor. The displacement (as in
an array) from the base address embedded in a load or store
instruction must be zero in user mode,xv in order to reduce the
amount of arithmetic required in the pipeline. The displace-
ment register for the SPR index is ignored in a ‘move to/from
SPR’ instruction in user mode because it would be a give-
away for the encryption. A shift instruction has its fields
reordered so the shift is contiguous. That is all.

xvi The OpenRISC 32-bit floating point as well as integer in-
structions have been fully implemented for user mode.

In supervisor (unencrypted) mode, the OpenRISC instruc-
tions for 64-bit operations are available as well.
2.6 Security of encrypted computation. Adapting all the
standard OpenRISC instruction set for encrypted working
has answered questions about what programs can run in this
context, and particularly that it is possible to write (unen-
crypted, supervisor mode) operating system support for user
programs running encrypted. The operating system does not
need to know what the decrypted value of a user mode datum
is for the system support provided so far (e.g., memory fault
handlers, I/O routines). But the experience has clarified that
standard instruction sets are inherently insecure [17] with re-
spect to the operator as adversary, who may steal an (encrypt-
ed) user datum x and put it through the machine’s division
instruction to get x/x, which is an encrypted 1. With a 1 in
hand, it is simple to construct any encrypted y by repeatedly
applying the machine’s addition instruction. By comparing
the encrypted 1, 2, 4, etc. so-obtained with any encrypted z
using the instruction set’s comparator instructions (testing
231 ≤ z, 230 ≤ z, . . . in turn and subtracting whenever a test
succeeds), the decrypted value of z may be deduced. Part of
the contribution described in this paper has been to develop a
‘FxA’ instruction set for encrypted RISC for which it may be
proved that there is no method of decryption like that above,
or any method that is even statistically right at a level above
chance. The FxA instructions are described in Section 6.
2.7 Encryption. The processor models have been tested
while embedding Rijndael-64 and -128 symmetric ciphers
(the latter is the US Advanced Encryption Standard (AES)
[18]), RC2-64 [19] and Paillier-72 [20]. The last is an ad-
ditively homomorphic4 cipher that runs without keys in the
processor. In principle, any block cipher with block size that
fits in a machine word could be integrated. The associated
hardware fits in the pipeline, taking up most of the stages.
For the symmetric encryptions the hardware consists of an
encryption/decryption unit. An AES encryption/decryption
round takes 1 ns and fits in one hardware stage. The com-
plete AES encryption/decryption unit occupies 10 stages.
For other symmetric ciphers, between 1 and 20 pipeline sta-
ges can be configured in the simulator. For homomorphic

4‘Homomorphic’ for Paillier means multiplication of encrypted
numbers corresponds to addition of the unencrypted numbers.

http://openrisc.io
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encryptions a multistage arithmetic unit occupies their place.
Note that the encryptions here, whether symmetric or ho-

momorphic, are one-to-many. For symmetric encryptions,
pseudo-random padding under the encryption is generated
by hashing together the inputs’ paddings and the instruction,

xvii allowing a trace to be audited. For Paillier, ‘blinding’ multi-
pliers are generated instead.6

The choice of encryptions has been dictated by the devel-
opment path. The Or1ksim simulator was expanded from the
original’s 32 bits to 64 (plus the changes that made it cycle-
accurate and pipelined) and at that point 64 bit ciphers could
be handled. An extra two 32-bit prefixes per instruction are
required to hold 64 bits of encrypted immediate data. That
prefix configuration is also sufficient to hold 72 bits of en-
crypted data, so Paillier-72 could be accommodated without
further alteration to the toolchain, but required a doubling
of path widths from 64 to 128 bits in the processor models.
AES-128 then became possible, requiring four 32-bit pre-
fixes per instruction and the toolchain to be modified again.

Paillier-72 is insecure for practical purposes but it has
served to investigate the use of a homomorphic encryption
in this setting. Paillier does not become as secure as AES-
128 until about 2048-bit blocks are used, but 2048-bit Pail-
lier arithmetic needs infeasibly many stages for the processor
pipeline. Nevertheless, the closest extant design is HEROIC
[21, 22] (see Section 3, a stack machine running encrypted
with a ‘one instruction’ machine code (the ‘OI’ in HEROIC)
with 2048-bit words encrypting 16 bits of data each. It does
the 2048-bit Paillier arithmetic in hardware, so it is possible
(HEROIC simply takes 4,000 cycles of the base hardware
for each arithmetic operation).
2.8 Toolchain. The existing GNU ‘gcc’ v4.9.1 compiler at
http://github.com/openrisc/or1k-gcc and ‘gas’ ver-
sion 2.24.51 assembler at http://github.com/openrisc/
or1k-src/gas ports for the OpenRISC 1.1 architecture have
been adapted for the encrypted instruction set. The source
code for the modified compiler is at http://sf.net/p/
or1k64kpu-gcc and that for the modified assembler is at
http://sf.net/p/or1k64kpu-binutils. Only the as-
sembler, not the compiler, needs to know the encryption key.
Executables are written as standard ELF format files.xviii An ex-
perimental ‘obfuscating’ compiler, as described in Section 6,
is also coming on-line. We are also experimenting with the
appropriate format for read-only global data in ELF files.
Each (encrypted) word must have its unique (encrypted) ad-
dress specified along with it, but it is unsatisfactory to dedi-
cate an ELF section to each. Yet that is the only fully standards-
compatible way to do it in ELF. A custom solution would
require matching changes in program loaders. Global vari-
ables are a point of difficulty for the compiler too, and, cur-
rently, explicit link-table entries for them have to be pro-
vided. The difficulty is that the encrypted address needs to
be shared between different compilation units, but encryp-
tion takes place in the assembler, after compilation. Our
stop-gap solution is to impose a common address via link-
table entries, or port the code to remove globals. The dif-
ficulties of providing toolchains for encrypted computation
should not be underestimated, but they are soluble.
2.9 Limits. Word widths up to 2048 bits are contemplated
for current technology. Memory paths would have to be ap-

propriately broadened from the current 64 bits, and memory
accesses paralleled correspondingly.
2.10 Configuration. Tests are centered about a 15-stage
pipeline configuration with a nominal 1 GHz clock. Of that,
10 stages are for the modified arithmetic, but between 1 and
20 stages have been mapped. Memory and cache latencies
(typically 13.5 ns, 3 ns respectively) are adjustable for test-
ing. Although the data memory path is a full word (64 or
128 bits or more) wide, the program memory path is still a
legacy 64 bits wide, which results in two 32-bit instructions
per cycle being pulled to a split look-ahead/behind buffer in
the pipeline fetch stage.xix The fetch stage should look at groups
of instructions together because some instructions may carry
extra data in one or more prefix instructions. The split fetch
buffer is configurable (32 instructions wide by default), half
(ahead) to span the average interval between branches in a
typical code mix and half (behind) to cover for tight loops.

xx The latter consideration avoids buffer thrashing. The rela-
tively narrow (64-bit) instruction path is a continuing bottle-
neck that we cannot configure away because of legacy issues
in the simulator. The fetch buffer only helps make up for
that.
2.11 Key management. There is no means to read keys once
they have been embedded in the processor, where they con-
figure the hardware functions. Keys must either be embed-
ded at manufacture, as with Smart Card technologies [23]
or introduced via a Diffie-Hellman circuit [24] or equivalent
that loads the key in public view without revealing it.5

Hopefully, the bases have now been covered for the reader.

3. RELATED PLATFORMS
In this section, the state of the art is discussed and compared.
3.1 HEROIC [21] is the most comparable contemporary.
It is a 16-bit processor working in Paillier-2048 encryption
[20] on a stack-based architecture. Its core does encrypted
addition in 4000 cycles and 20 µs on 200 MHz programmable
hardware. That is equivalent to a 25 KHz Pentium.

Stack machine architectures differ from conventional von
Neumann architectures and are not currently manufactured,
but there have been hardware prototypes in connection with
Java [25,26] in the past. Like the processor discussed in this
paper, HEROIC works by substituting a modified arithmetic.
Its basis is the replacement of conventional 16-bit addition
by multiplication of 2048-bit encrypted numbers modulo a
2048-bit modulus m, and other operations are done in soft-
ware using addition as the primitive. The Paillier encryption
E is used. It has the ‘homomorphic’ property that multiply-
ing encrypted numbers E (x), E (y) is the same as adding the

5There is no direct consequence of running with the wrong key in
the machine: if user A runs with user B’s key in the machine, user
A’s program will produce rubbish, as the processor arithmetic will
be meaningless with respect to it; if user A runs user B’s program
with user B’s key in the machine, then the output will be encrypted
for user B’s key, and the input will need to be encrypted in user
B’s key, which user A can neither supply nor understand. Security
depends not on access to encrypted numbers but on other factors,
such as whether A, who may be the operator, can leverage observed
computations that use B’s key to learn about the encryption, and
that question is answered in Section 6 – negatively, for the right
instruction set.
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unencrypted numbers x, y:

E (x)∗E (y) mod m = E (x+ y) (+)

A difficulty with (+) for encrypted computing is that the ad-
dition on the right is not the addition mod 216 of 16-bit com-
puter arithmetic. The result has to be ‘renormalised’ to a re-
mainder mod 216 under the encryption, which accounts for
half the cycles taken by HEROIC for the encrypted addition.
The microcode subtracts 216 and looks up a ‘table of signs’
to see whether the encrypted result is negative or positive.
In order to facilitate that, HEROIC encryption is one-to-one,
not one-to-many, or the lookup table would be too large.6 At
216×2048 bits, it is already 16 M bytes in size The ‘selling
point’ of Paillier is that (+) means that the modified arith-
metic in the processor needs no keys. But, despite the head-
line, the table of signs amounts to a secret key per user.

That implementation is also used in our Paillier-based pro-
cessor models, except that, at 232×72 bits times the number
of aliases in our one-to-many encryption, the table of signs
is too large to site locally with current technology, so signs
are calculated remotely on demand and cached locally, and
the time taken in the remote calculation is not counted.
3.2 Ascend [27] obscures instructions and data from the op-
erator’s view by a variety of means, both cryptographic and
physical. The processor protects code on the way to the
processor via encryption. I/O is encrypted and the proces-
sor runs in ‘Fort-Knox’-like isolation, matching pre-defined
statistics on observables. Communication with memory is
encrypted too, via ‘oblivious RAM’ [28–30].

The idea of physical isolation plus encrypted memory has
emerged many times over the years (e.g., [31, 32]) and suc-
cess means doing it as well as Ascend does. Otherwise chan-
nels such as cache-hit statistics [33] and power drain [34] can
give away information to a privileged observer. Ascend runs
RISC MIPS instructions [35] and slows down by a factor of
12-13.5× in encrypted mode with AES-128 (absolute speeds
are not given in [27]), as compared to 10-50% slowdown for
our models (Section 5).
3.3 Intel’s SGXTM (‘Software Guard eXtensions’) proces-
sor technology [36] is often cited in relation to secure or en-
crypted computation in the cloud, because it enforces sep-
arations between users. However, the mechanism is key
management to restrict users to memory ‘enclaves’. While
the enclaves may be encrypted because there are encryp-
tion/decryption units on the memory path, that is encrypted
and partitioned storage, a venerable idea [31, 32], not en-
crypted computing. RAM is a peripheral to a processor.

SGX machines are used [37] by cloud service providers
where the assurance of safety is a selling point. But the as-
surance is founded in the customer’s trust in electronics de-
signers ‘getting it right’ rather than mathematical analysis
and proof, as for our and HEROIC’s technologies (see Sec-
tion 6). There are subtle ways for engineering to leak secrets,

6Paillier may embed random ‘blinding factors’ into encrypted num-
bers. Those are multipliers rn mod m, where n=pq and m=n2 is the
public modulus. Paillier decryption involves raising to the power
of the order φ=(p−1)(q−1) of the multiplicative group mod n, so
rn becomes rφn = (1+kn)n=1+kn2+ . . .=1 mod n2 and does not
affect the decrypted value. HEROIC’s one-to-one encryption does
not use different blinding factors.

e.g. via timing variations and power use [33],xxi and there have
recently been successful attacks against SGX based on tim-
ing [38]. Moreover, use of the enclave areas is optional for
the software author, and it is up to the author which sections
of code to run in enclave and which not to, meaning that no
guarantees can be made on the basis of the hardware. The
security of every piece of software depends on the software.
3.4 IBM’s efforts at making practical encrypted computation
using very long integer lattice-based fully homomorphic en-
cryptions (FHEs; additively and also multiplicatively homo-
morphic) based on Gentry’s 2009 cipher [16] deserve men-
tion. An FHE E extends the Paillier equation (+) to cover
multiplication on the right too. However, it is single bit arith-
metic, not 16- or 32-bit arithmetic under the encryption. The
single bit operations currently take of the order of a second
each [39] on customised vector mainframes with a million-
bit word size, about the speed of a 0.03 Hz Pentium, but it
may be that newer fully homomorphic ciphers based on ma-
trix addition and multiplication [40] will be more practical.
The product will never be capable of arbitrary general pur-
pose computation in any case, just certain finite calculations.
The obstacle to computational completeness is the same as
that which HEROIC overcomes: an encrypted comparison
operation is neededxxii for practical operation with potentially
unbounded computations, but HEROIC’s ‘table of signs’ so-
lution is not feasible for a million-bit encryption.

xxiii Sometimes applications require a fixed small number of
multiplications and then a somewhat homomorphic encryp-
tion (SHE) may do instead of a FHE. A SHE is without the
periodic renormalisations that are the hallmark of Gentry-
style FHEs, resulting in faster and smaller encryptions. With-
out renormalisation, arithmetic eventually takes numbers out
of range, for example nearing 2m in a calculation mod m.
But before that happens the calculation will have finished.
Lauter et al. [41] quote a scheme with block-size about 43.5KB
and encrypted 1-bit addition in 1ms, multiplication in 43 ms,
achieved on a 2.1 GHz Intel Core 2 Duo in 1 GB of RAM.
That equates to a 30Hz (sic) Pentium.
3.5 Moat electronics. Classically, information may leak in-
directly via processing time and power consumption, and
‘moat technology’ [42] to mask those channels has been de-
veloped for conventional processors. The protections may
be applied here too, but there is really nothing to protect in
terms of encryption as encrypted arithmetic is done in hard-
ware, always taking the same time and power. There are sep-
arate user- and supervisor-mode caches in our models, and
statistics are not available to the other mode, so side-channel
attacks based on cache-hits [33, 43] are not available.
3.6 Oblivious RAM [28–30] and its evolutions [44, 45]) is
often cited as a defense against dynamic memory snoop-
ing. That is in contrast to static snooping, so-called ‘cold
boot’ attacks [46–48] – essentially, physically freezing the
memory to retain the memory contents when power is re-
moved, against which HEROIC, SGX and our technology
automatically defend because memory content is encrypted;
addresses are also randomised in our case. An oblivious
RAM remaps the logical to physical address relation dynam-
ically, taking care of aliasing, so access patterns are statisti-
cally impossible to spot. It also masks the programmed ac-
cesses in a sea of independently generated random accesses.



However, it is no defense against an attacker with a debug-
ger, who does not care where the data is stored. It provides
no defense against the operator and operating system, which
the technology here can be proved to do (Section 6).

Some ‘oblivious’ behaviour is naturally present in the pro-
cessor described in this paper, because data addresses are
(nondeterministically) encrypted and so the address encryp-
tions naturally vary dynamically at runtime.

4. ENGINEERING FOR SECURITY
This section deals with special adjustments in the hardware
required with respect to the basic OpenRISC architecture
and specification in order to accommodate the ‘encrypted
computing’ mode of working and security.

First of all, from an application programmer’s point of
view, it should be emphasised that in (encrypted) user mode,
the processor executes the 32-bit instruction subset of Open-
RISC as normal and that is all that the programmer needs to
trust in. The compiler will take care of it, modulo some is-
sues of the current state of our toolchain that can make port-
ing source codes nontrivial (e.g., global variables are prob-
lematic when used in different compilation modules, requir-
ing explicit link table inputs to tie the compilation together).

For a library or systems programmer, the situation is nearly
the same. User mode coverage of 32-bit integer and floating
point OpenRISC instructions is complete, and OpenRISC’s
application binary interface is supported. Access to most
SPRs in user mode is already denied by OpenRISC – e.g.,
those that configure the memory map – but there are some
further SPRs put off limits to protect the encryption.2

4.1 Access denials for user mode beyond OpenRISC stan-
dards are to the processor version number SPR, the floating
point unit control SPR and the performance statistics SPRs.
Certain bits in the status SPR (such as the one that is stuck
at 1) are also denied. The timer tick SPR is aliased so there
is a different timer tick per processor mode and it is not the
same between them, so plaintext and encrypted readings of
the same clock cannot be obtained. User mode access is
also denied to the cache control SPR (prefetch, flush), but
in any case, cache is aliased so there is a different cache per
processor mode and no back-channel communication is pos-
sible by that route and we are experimenting to determine if
user mode cache control may be allowed after all.
4.2 Supervisor mode (recall: unencrypted), which the oper-
ator has access to, allows all instructions and unrestricted ac-
cess to registers and memory. Supervisor mode instructions
can read user data in memory, but it is in encrypted form.
Likewise, user data in registers appears in encrypted form to
supervisor mode via a hardware protocol (*) sketched below.

The supervisor mode instruction pipeline, which in princi-
ple is the classical 5-stage fetch, decode, read, execute, write
pipeline of a RISC processor, lies embedded in a longer
pipeline containing the encrypted arithmetic stages for user
mode. There are two major ‘tricks’ of implementation for
good performance with symmetric encryptions, both based
on the necessity to decrypt, do the arithmetic, then encrypt
again, in order to carry out the ‘encrypted arithmetic’ that
underpins encrypted computing with such encryptions. The
first trick is that the pipeline is configured in two ways, ‘A’

A

B

Fetch Decode Read Write

Fetch Decode Read WriteExecute

Execute

ALU

ALU

encryption

decryption

,

Figure 1: The pipeline is configured in two different
ways, ‘A’ and ‘B’, for two different kinds of user mode in-
structions during encrypted working, in order to reduce
encryption/decryption to at most once per instruction
(this illustration of the principle is adapted from [10]).

and ‘B’, for encrypted running. That is illustrated in Fig. 1.
The pipeline stages are named in exploded view respectively
above (A) and below (B) the pipeline in the figure. The en-
cryption/decryption stages (‘codec’) are shown in abbrevia-
tion, but they consist of one stage per round of the encryption
(10 for AES). A conventional ALU figures in only one stage
in both configurations, and its positioning in the pipeline rel-
ative to the codec is the focus of the figure.
4.3 The dual configuration pipeline is because, for sym-
metric encryptions, there is only room for one multi-stage
encryption/decryption unit in the hardware and some instruc-
tions need it before the arithmetic stage(s), and some need it
after. The memory load and store instructions would con-
ventionally need it twice, once for the address displacement
sum and once for the data transfer to/from RAM, but they
are restricted in user mode to a zero ‘address displacement’
field (that slightly impacts program efficiency, but not func-
tionality), which means they need the unit just once per in-
struction, for the data transfer. User data is kept encrypted
in RAMxxiv by the protocol (*) described in 4.4 that manages
the transition between user and supervisor mode in the pro-
cessor. The ‘A’ configuration is for instructions that use the
encryption/decryption unit after arithmetic, the ‘B’ configu-
ration when it is the other way around.

There are data hazards generated by conflicts between the
two pipeline configurations for the single codec and other
single functional units, but those are not very significant, as
the measurements of Section 5 show, and they can be ob-
viated entirely by physically doubling the number of units.
Section 5 enables rational decisions on doing that.
4.4 The arithmetic logic unit (ALU) comprises the second
trick of implementation for good performance. In order to
reduce the frequency with which the encryption/decryption
unit is used in association with symmetric encryptions, ALU
operation is extended in the time dimension, so it covers a se-
ries of consecutive (encrypted) arithmetic operations in user
mode. The first of the series is associated with a decryp-
tion event and the last with an encryption event (both the
two ‘tricks’ are described in [10]; note that by ‘arithmetic
operations’ is meant the arithmetic stages of individual in-
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Figure 2: Pipeline integration, showing shadow units for
user mode. This illustration adapts drawings in [10].

structions, not the whole instructions). In support:

A different set of registers is aliased in for each mode (*)

The user mode registers ‘shadow’ the supervisor mode reg-
isters, as illustrated in Fig. 2, where the shadow units are
shown slightly behind the non-shadow (i.e., supervisor mode)
units. Where the supervisor mode register contains the en-
crypted value or a placeholder, the user mode register con-
tains the unencrypted number. In user mode, arithmetic is
carried out in shadow registers, which contain decrypted val-
ues. The protocol (*) is mathematically proved to maintain
invariants that secure supervisor mode from accessing data
unencrypted that originates in user mode, and vice versa.A
The protocol also assures user data is stored encrypted in
memory, never exposedxxv in unencrypted form.
4.5 Key management is not an issue in itself, by the fol-
lowing argument. Firstly, changing the encryption key on
a change of user empties the shadow registers so that one
user does not have access to another’s unencrypted data in
registers. Memory always contains encrypted user data that
cannot be read by the newcomer because it is encrypted with
a different key. Secondly, if something does go badly wrong
and the encryption key is not changed on change of user,
then the shadow registers containing the unencrypted data
are preserved and data in them is potentially vulnerable. How-
ever, the argument in the footnote5 says B has no direct ac-
cess to A’s unencrypted data or program even in this situa-
tion. I/O is still encrypted with A’s key.

The danger is that B might deduce indirectly what the data
in registers is by running a branching comparator instruction.
B’s problem is what to compare with, as B has no knowledge
of constants in A’s encryption. Unfortunately, yes, as already
argued, with the OpenRISC instruction set B, can create an
encrypted 1 via x/x from nearly any encrypted x of A’s, and
use it to build constants to order. But that attack works in
any context, not only this particular one, and the fault is the
instruction set’s. Using an ‘FxA’ instruction set (Section 6)
cures the problem.
4.6 Cache raises similar questions and is treated similarly to
registers. As remarked, separate data and instruction caches
are aliased in per processor mode, just as for registers. On
change of user, the user cache is flushed. As already argued
for register content, a change of user from A to B without
flushing the caches is not in itself insecure, even if it mis-
takenly happens. Any I/O is still encrypted in A’s key. The
danger is tests that B may be able to run on A’s cached data

if B gets control, and the defence against that depends on the
instruction set, as discussed in Section 6.
4.7 Further modifications to conventional processor design
include an address translation look-aside buffer (TLB) in
two parts. A conventional ‘back-end’ to the TLB fills the
conventional role of remapping addresses page-wise, but the
‘front end’ is organised by single word addresses, not pages,
and its job is to remap encrypted addresses to the physically
backed range in first-come, first-served order. Since data that
will be accessed together tends to be accessed together for
the first time too, this enables cache readahead to continue
to be effective even though encrypted addresses are spread
randomly over the whole cipherspace. The TLB front-end
is eventually a limiting overhead, but it does not affect pro-
grams at all when their footprint fits in cache, which is sen-
sible software design.

5. PERFORMANCE
The original Or1ksim OpenRISC test suite codes (written
mostly in assembler) were used as benchmarks for encrypted
running in [10]. Most modern performance benchmark suites
are unavailable because they rely on external library sup-
port such as linear programming packages and math float-
ing point libraries, as well as faithful system library routines
such as ‘printf’, all of which must be written and debugged.
If those could be ported to compilable code in good time, de-
bugging would take months (the ported gcc compiler inher-
its known bugs, such as sometimes not doing switch state-
ments right, sometimes not initialising arrays right, etc.).
In particular, the well-known ‘spec’ benchmark suite is un-
available because its source code is commercially protected.
Some standard but less evolved, more standalone, bench-
marks have been got running, such as Dhrystone 2.1.

Table 1 details a base level performance for our prototype
in the instruction set add test of the Or1ksim suite, with RC2
64-bit symmetric encryption and before hardware improve-
ments for performance have been applied. The 64:16:20 mix
for arithmetic:load/store:control instructions (no-ops and pre-
fixes discarded) compares to the 60:28:12 mix in the stan-
dard textbook [49]. This baseline is 4% better than the num-
bers reported in [10]. The test spends 52.7% of its time in
user mode, as against 54.8% in [10] (4% is 2.1/54.8). Pipe-
line occupation is 1−20.7/52.7=60.7% in encrypted mode,
for 607 Kips (instructions per second) at 1 GHz clock.

The same test with Paillier-72 (128-bit architecture) gives
worse performance, as some of the arithmetic is done in soft-
ware. Table 2 compares RC2 with Paillier on the ‘add test’.

Table 2
add test cycles instructions
RC2 (64-bit) 296368 222006
Paillier-72 438896 226185

The difference is principally due to more pipeline stalls, be-
cause Paillier arithmetic always takes the length of the pipe-
line to complete in. There is no such thing as internal feed
forward for the addition carry bit, for instance, because the
result is entirely unknown until it is complete. That stalls
following instructions that need the result almost until the
instruction ahead has exited, leaving most of the pipeline
empty. The disparity increases on swapping addition for



Table 1: Baseline RC2 (64-bit symmetric encryption)
performance, Or1ksim ‘add test’: proportion finishing
per cycle.

RC2: cycles 296368, instructions 222006 per cycle

mode user super

arithmetic
{ register instructions 0.2% 0.2%

immediate instructions 7.8% 9.8%

memory
{ load instructions 1.0% 3.0%

store instructions 1.0% 0.0%

control

{
branch instructions 1.1% 5.2%

jump instructions 1.2% 5.1%
sys/trap instructions 0.5% 0.0%

no-op instructions 7.3% 16.8%
prefix instructions 11.8% 0.0%

move from/to SPR instructions 0.1% 2.8%
wait states 20.7% 4.4%

(stalls) (17.4%) ( 3.7%)
(refills) ( 3.3%) ( 0.7%)

total 52.7% 47.3%

Branch Prediction Buffer

hits 10328 ( 55%) misses 8219 ( 44%)

right 8335 ( 44%) right 6495 ( 35%)
wrong 1993 ( 10%) wrong 1724 ( 9%)

User Data Cache

read hits 2942 (99%) misses 0 ( 0%)
write hits 2933 (99%) misses 9 ( 0%)

multiplication, which is entirely done in software. Table 3
compares RC2 with Paillier on the ‘multiplication test’:

Table 3
mul. test cycles instructions
RC2 (64-bit) 235037 141854
Paillier-72 457825 193887

In contrast, performance with symmetric encryptions is very
sensitive to forwarding along the pipeline, allowing instruc-
tions to close up to each other without waiting for an inter-
mediate write to and read from registers. Table 4 shows that
33% of processor speed is due to forwarding, while on-the-
fly instruction reordering gives another 3%:

Table 4
add test forwarding

RC2 (64-bit) cycles X ×

reordering X 296368 412062
× 315640 441550

Paillier has little sensitivity to forwarding. That is expected
because an arithmetic result is not available before the penul-
timate stage. The only prospect for improving Paillier speed
appears to be to compile multithread programs, so there may
be instructions behind that can overtake a stalled instruction.

We have devised three performance optimisations tailored
to the architecture and the bottlenecks noted: (a) instructions
with trivial functionality in the execute phase (e.g., ‘cmov,’
the ‘conditional move’ of one register’s data to another) but
stalled in read stage have been allowed to speculatively pro-
ceed on the assumption that they will be able to pick up the
data via forwarding later during their progress through the

pipe7; (b) the fetch stage has been doubled to get two in-
structions per cycle and catenate the prefix instruction to the
instruction they prefix instead of taking up pipeline slots in
their own right; (c) a second pipeline has been introduced to
speculatively execute both sides of a branch at once.
5.1 Flexible staging (a) takes the cycle count in the ‘add test’
down from 296368 to 259349 cycles. It is very effective, as
may be expected. Innovations (b) and (c) then contribute as
shown in Table 5:

Table 5
add test deprefixing (b)

RC2 (64-bit) cycles X ×

branch both (c) X 237463 257425
× 241992 259349

5.2 Deprefixing (b) is intended to beat the bottleneck caused
by the fact that, in user mode, much of the instruction code
real estate is taken up by embedded (encrypted) constants,
which do not have any functional activity. They take time
to load to the processor and without deprefixing what is no-
tionally a single instruction would be spread 32 bits at a time
across several stages of the pipeline.

Deprefixing instead binds the embedded constant to the
instruction metadata as the sequence of prefixes and opcode
enters the pipeline, reducing each instruction to a unit oc-
cupying a single pipeline stage. To keep the pipeline filled,
the fetch rate has been increased and a 16×32-bit instruction
buffer is scanned by the decode stage. The last 16 32-bit in-
structions read are also retained in case of a tight loop.

The mechanism can sometimes slow down the pipeline,
because instruction opcodes that are on average closer to-
gether in the pipeline make data hazards more likely. A mis-
predicted branch also aborts more partially executed instruc-
tion units than it would have otherwise.
5.3 Branching both ways (c) is not effective in this test
because only 3717 branches were predicted wrongly, but
harder to predict branching code should benefit strongly.

Tables 2-5, though compiled with RC-64, also provide
baselines for AES-128 via the Dhrystone 2.1 benchmarks
shown inxxvi the first group of three lines in Table 6:

Table 6
Dhrystone v2.1 RC2 (64-bit) AES (128-bit) None (32-bit)

Dhrystones per second 246913 183486 350877
VAX MIPS rating 140 104 199

Dhrystone v2.1
(gcc 4.9.2)

Dhrystones per second
VAX MIPS rating

Pentium M 32-bit 1GHz
O0 O2 O6

735294 1470588 2777777
418 836 1580

Dhrystone v2.1
MHz

Dhrystones per second
VAX MIPS rating/GHz

ARM250 ARM926 ARM1176
12 200 772

12300 386540 1695505
583 220 965

That is to say, the numbers in Tables 2-5 should be divided
by 104/140∼ 0.75 to get numbers for AES-128. The slow-
down for 128-bit AES over 64-bit RC2 is mostly due to the
7The ‘assumption’ is logically impeccable: the data needed must
be supplied by an instruction ahead, which will finish before this in-
struction does and therefore furnish the data while it is still moving
through the pipeline.
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Figure 3: Number of executed cycles with symmetric en-
cryption for the ‘add test’ of Table 1 against number of
stages occupied by the multistage encryption/decryption
unit (‘codec’), showing 2.5% extra cost per stage.

4, not 2, prefixes for an immediate constant in an instruc-
tion carrying immediate data. It illustrates that compilers for
encrypted instruction sets should prefer to avoid inline data.

xxviiFor comparison, the benchmark run in supervisor mode, with-
out encryption, is shown in the final column of the first three
lines of the table. Immediate instructions comprise about
half of all instructions in the benchmark mix, and attach-
ing two or four prefixes to each has a marked effect, even
though the ‘deprefixing’ optimisation is in the hardware. It
is not known yet why it does not do better.

By the Dhrystone measures, the AES-128 prototype runs
as a 330 MHz classic Pentium, or 250 MHz Pentium M. The
list at http://www.roylongbottom.org.uk/dhrystone%20results.
htm, shows a Pentium M is rated at 523 MIPS/GHz and a
classic Pentium is rated at 322 MIPS/GHz. Thus, the RC2
prototype equates to a 433 MHz classic Pentium or a 266 MHz
Pentium M. However, the results are compiler-sensitive, as
seen by the variation through optimisation levels 0-6 in the
middle rows of Table 6, and our compiler is rudimentary.

The final group of four lines in Table 6 shows the manu-
facturer’s own MIPS ratings for different ARM chips, rang-
ing from the ARM250 (pre-1990) to the ARM1176 (year
2003). ARM machines run a RISC instruction set so the
benchmarks are more directly comparable with our proto-
type’s than are Intel’s. The ARM926 (year 2000) model is
about as fast as our prototype running unencrypted. Those
numbers indicate that our simulation is producing sensible
results. However, compiler details are not available, and the
table has already shown that can make ×2 or more differ-
ence, so ARM’s numbers should be regarded cautiously.

The Intel/AMD ‘ASENC’ AES round instruction has la-
tency 0.95ns (4 cycles at 4.2GHz) on Skylake cores (Table
C-9 of [50]), so modelling it as one pipeline stage at 1 GHz
is realistic. In any case, performance results may be extrapo-
lated as needed: Fig. 3 shows each extra pipeline stage costs
2.5%,xxviii both with AES and RC2 encryptions.

6. FXA INSTRUCTION SET
Standard instruction sets are insecure for encrypted working
(recall the argument in 2.6 that x/x gives an encrypted 1,

Table 7: An FxA machine code instruction set for work-
ing with encrypted data

fields semantics

add r0 r1 r2 [k]E add r0←[[r1]D +[r2]D + k]E
sub r0 r1 r2 [k]E subtract r0←[[r1]D − [r2]D + k]E
mul r0 r1 r2 [k0]E [k1]E [k2]E multiplyr0←[([r1]D−k1)∗([r2]D−k2)+k0]E
div r0 r1 r2 [k0]E [k1]E [k2]E divide r0←[([r1]D−k1)/([r2]D−k2)+k0]E
xor r0 r1 r2 [k0]E [k1]E [k2]E excl. or r0←[([r1]D−k1)ˆ([r2]D−k2)+k0]E
. . .
mov r0 r1 move r0← r1
beq r1 r2 j [k]E skip j instructions if [r1]D = [r2]D + k
bne r1 r2 j [k]E skip j instructions if [r1]D 6= [r2]D + k
blt r1 r2 j [k]E skip j instructions if [r1]D < [r2]D + k
bgt r1 r2 j [k]E skip j instructions if [r1]D > [r2]D + k
ble r1 r2 j [k]E skip j instructions if [r1]D ≤ [r2]D + k
bge r1 r2 j [k]E skip j instructions if [r1]D ≥ [r2]D + k
b j skip j instructions unconditionally
. . .

Legend: the r are register indexes or memory locations, the k are 32-bit
integers, the j are instruction address increments, ‘←’ is assignment. The
function [ · ]E represents encryption, [ · ]D decryption.

which then can be used to generate any desired encrypted
value via addition), but the minimal ‘one instruction’ HERO-
IC instruction set turns out to be immune to the problem.

Denote by a fused anything and add (FxA) instruction set
architecture one in which the compiler is able to displace the
operands x1, x2 arbitrarily via constants k1, k2 embedded in
the instruction, and also displace the result by a constant k3.
So FxA multiplication does:

(x1− k1)∗ (x2− k2)+ k3

xxixThat principle governs the design of all instructions. Most
of a complete FxA instruction set for encrypted working is
shown in Table 7. Each arithmetic instruction needs at least
one embedded (encrypted) constant, by which the compiler
may exercise control. Some FxA instructions, e.g. addition,
need only one constant, as

(x1− k1)+(x2− k2)+ k3 = x1 + x2 +(k3− k1− k2)

HEROIC’s instructions are a (tiny) subset.
FxA instructions are secure with respect to several cryp-

tographic notions. First of all, suppose that the processor en-
forces the rule that no collisions are possible between (i) en-
crypted constants that appear in instructions and (ii) runtime
encrypted data values in registers or memory. For symmetric
encryptions, our prototype can do that via different pseudo-
random padding under the encryption. For a homomorphic
encryption like Paillier, a different set of ‘blinding’ factors (a
multiplier of the encrypted value that vanishes without effect
during the decryption process) may be used. Then:

FACT 1. There is no deterministic method by which the
operator can read a program C built from FxA instruc-
tions, nor alter it to give an intended encrypted output.

The supporting argumentB depends on the operator, who is
the adversary in this scenario, not being able to assign any
particular meaning to observed changes in encrypted run-
time data or instruction constants. That is true for an en-
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Table 8: Runtime trace (abridged) for the Ackermann
function on (3,1), result 13.

PC instruction update
. . .
35 add t0 a0 zer E[-86921031] t0 = E[-86921028]
36 add t1 zer zer E[-327157853] t1 = E[-327157853]
37 beq t0 t1 2 E[240236822]
38 add t0 zer zer E[-1242455113] t0 = E[-1242455113]
39 b 1
41 add t1 zer zer E[-1902505258] t1 = E[-1902505258]
42 xor t0 t0 t1 E[-1734761313] E[1242455113] E[1902505258]

t0 = E[-17347613130]
43 beq t0 zer 9 E[-1734761313]
53 add sp sp zer E[800875856] sp = E[1687471183]
54 add t0 a1 zer E[-915514235] t0 = E[-915514234]
55 add t1 zer zer E[-1175411995] t1 = E[-1175411995]
56 beq t0 t1 2 E[259897760]
57 add t0 zer zer E[11161509] t0 = E[11161509]
. . .
143 add v0 t0 zer E[42611675] v0 = E[13]
. . .
147 jr ra
STOP

Legend: E[-] denotes an encrypted value. Instructions as in Table 7.

cryption with a relatively long expected time between re-
occurrences of the same encrypted values for some same un-
derlying unencrypted values (such as AES-128). However,
HEROIC’s one-to-one encryption maps collisions to equali-
ties underneath the encryption, invalidating the assumption.

Moreover, the probability of guessing correctly that an en-
crypted constant in an instruction is a 1 or 0 is high whenever
a human being has written the code. That makes a dictionary
attack against the encryption feasible. All those objections
may be met by using an obfuscating compiler to generate the
FxA machine code.

We have such a C compiler written in Haskell at http:
//nbd.it.uc3m.es/~ptb/obfusc_comp-0_9.hs. Now
understand by location a register or memory cell, then:

FACT 2. There is a strategy for compiling to FxA code
such that the probability across different compilations
that any particular runtime 32-bit value x for [x]E is in
location l at any given point in the program is uniformly
1/232.

‘The (obfuscating) compiler did it’ is a valid cover story for
any runtime cipherspace collision. The compiler’s strategy
takes advantage of the constants in each FxA instruction to
vary the runtime data written at location l by a random offset
each time the same source code is (re-)compiled.C

For example, the paradigmatic Ackermann function [51]

int A(int m, int n) {
if (m <= 0) return n+1;
if (n <= 0) return A(m-1, 1);
return A(m-1, A(m, n-1));

}

(this function has as much computational complexity as any
computable function) compiles to FxA code that runs with
the trace shown in Table 8 for arguments (3,1). Although the
source contains only the constants 0, 1, the trace shows that
the FxA instructions have been compiled with seemingly
random embedded constants (the decrypted form is shown
in the table, with an ‘E[-]’ to indicate encryption). The trace

shows random (and encrypted) runtime data values being
written to registers before the return value of (encrypted) 13
is written. That is only recognisable because the compiler
has been told on this occasion not to vary the result value
in register v0 (the standard OpenRISC return value register).
Otherwise the return value would have been another random-
looking value, displaced, however, by an amount known to
the code author.

Every time the compiled code is to be reused on new (en-
crypted) data, it must be recompiled and reencrypted from
source, so the compiler can introduce new variations. But if
the input data is known in advance, it can safely be embed-
ded in the code and the code furnished with an outer loop
over the data instances. So, the platform is primarily practi-
cal as a secure server for arbitrary remote computations with
that mode of working. However, it seems that the obfus-
cating scheme may be varied dynamically at runtime too,
though we have not yet begun to explore the details, and that
would allow continuous computation to be carried out safely.

Whatever the ultimate mode of use, Fact 2 formally impliesD

the cryptographic notion of semantic security for runtime
data against the operator as adversary. That is, the data is
as safe as if the computation were carried out in a locked
safe, only the final output showing [5].

It is planned to equip the prototype processor for FxA by
installing an extra pre-decode stage to split incoming FxA
instructions into sequences of OpenRISC instructions.

7. CONCLUSION
Computing in which user data is secure against the operator,
operating system and other insiders is logically possible, us-
ing the ‘encrypted computing’ approach. That means a pro-
cessor that ‘works encrypted’, taking encrypted inputs and
passing them through encrypted intermediate states to pro-
duce encrypted outputs, plus the appropriate machine code
instruction set, plus an ‘obfuscating compiler’. Each of those
is logically necessary for security, and the three together can
be proved to provide it. The question is whether the combi-
nation forms a system that works well and quickly enough
to be acceptable or practical. This paper has attempted to
show that the answer is already ‘yes’, in order to interest the
community in bringing the hardware to state of the art levels.

A superscalar pipelined design for a 32-bit RISC proces-
sor that works encrypted has been described here as the basis
of that system. It uses the principle of a modified arithmetic
to generate encrypted working. Performance measures run-
ning the standard OpenRISC instruction set with AES en-
cryption have been reported, achieving around the level of a
330 MHz Pentium M, given a 1 GHz clock. We believe that
these figures should be enough to provide a convincing case.

xxx In the processor, the operator has unlimited, privileged ac-
cess to registers and memory in the conventional way, yet
cannot access unencrypted user data, because of the hard-
ware protocol embedded in the design. The ‘FxA’ modified
RISC instruction set has the property that the encrypted data
in every program code and trace may be interpreted arbitrar-
ily, allowing semantic security to be proved for data in the
three-part system of processor, instruction set and compiler.
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APPENDIX
In order to preserve the anonymity protocol, proofs of the ‘facts’ claimed in
the text are sketched here rather than being referenced back to the refereed
publications where they may be found, as that would be too big a give-away.

In order to get to the second proof here, a little of the obfuscating com-
piler strategy that it refers to has to be sketched too.

This appendix is not for publication. It is provided as a courtesy to ref-
erees, in deference to the double blind reviewing protocol (referees, please
note that you should not break the protocol yourselves – in particular, googl-
ing should be avoided if there is risk of exposing who we authors are).

A. THE (*) PROTOCOL
To show that the protocol (*) of Section 4 separates user and supervisor
mode data, one may show that it preserves three invariants that hold at pro-
cessor startup, and which are then maintained forever. Identify five data
types:

i 32-bit unencrypted data that originated as encrypted user data;

ê encrypted user data occupying 64 or 128 bits;

$ 32-bit plaintext data that originated in supervisor mode;

% 32-bit program addresses that originate in supervisor mode and have
been tagged with 0x7fff in the top 16 available bits;

* a placeholder that stands for pending decryption (i) or encryption
(ê) but physically looks like program address zero (%).

The invariants are as follows:

1. In supervisor mode, real/shadow registers contain types ê/i or ê/*
or */i or $/% respectively.

2. In user mode, real/shadow registers contain types i/ê, or */ê or
i/* or %/$ respectively.

3. Memory contains ê or $or *.

Note that 1) says that type i unencrypted user data is not exposed in super-
visor mode. i/?, where ‘?’ stands for ‘anything’, is missing from all of the
allowed combinations. Also note that 1) and 2) are mutually maintained by
the protocol (*), as it swaps real/shadow registers on mode change.

Every instruction preserves those invariants in both processor modes –
a design principle. User mode addition, for example, does i/?+i/?=i/*,
requiring type i in both addend registers, otherwise it raises a ‘range’ ex-
ception and leaves registers as they are.

So all invariants hold throughout, and 1) states that the operator (super-
visor mode) can never see the unencrypted value of a datum that originated
encrypted in user mode.

B. PROOFS
PROOF (FACT 1). First consider programs C constructed from the HER-

OIC (equivalent) instructions: assignments x←[y+k]E and branches based
on a test [x<K]E .

Suppose for contradiction that the operator has a method f (T,C)=y
of knowing that the output [y]E of C encrypts y, having observed the trace
T . Now imagine that every number has h 6=0 added to it under the encryp-
tion. The additions y←[x+k]E in C still make sense, adding k under the
encryption to a number that is h more than it used to be to get a number
that is h more than it used to be. Comparisons [x<K]E in C need changing,
however, because the x, which are h more than they used to be, now need
to be compared with K′ equal to K+h for the program to make sense. So
the branch instructions in the program must be modified to contain [K′]E
instead of [K]E . To the operator, the new program code C′ ‘looks the same’,
C′ ∼C, because one encrypted number is as meaningful as another without
the key (by the ‘no collisions’ hypothesis, the operator cannot tell either by
a new collision or lack of an old one that the K have changed), and the
program trace T ′ looks the same up to the encrypted numbers in it, which
the operator cannot read, so it looks the same, T ′ ∼ T , and the method f
must declare the output of C to be f (T ′,C′)= f (T,C)=y. But it is not [y]E
but [y+h]E , so the method fails. It does not exist.

Now suppose for contradiction that the operator builds a new program
C′= f (C) that returns [y]E . Then its constants [k]E are found in C and its
constants [K]E likewise, because f has no way of arithmetically combining
them (the ‘no collisions’ condition means they cannot be combined arith-
metically in the processor and the operator does not have the encryption
key). The first half of this proof shows the operator cannot read outputs [y]E
of C′, yet knows what they are. That is a contradiction.

The proof applies with minor adaptations when arbitrary FxA arith-
metic assignment instructions are considered in place of simple assignments
x←[y+k]E . Changing the constants in the instruction by h under the en-
cryption allows the change by h under the encryption of the data entering
and exiting the instruction. That is, replace every FxA instruction of the
form r0← [(r1−k1)Θ(r2−k2)+k0]E with r0← [(r1−k′1)Θ(r2−k′2)+k′0]E
where k′i = ki +h, i = 0,1,2.

C. OBFUSCATING COMPILATION
The compiler works with a database

D : DB=Loc→ Int

of (32-bit) integer offsets indexed per register or memory location. As the
compiler works through the source code, the offset represents by how much
the runtime data underneath the encryption is to vary from nominal at that
point in the program. All that need be done is to show that what is in D
can be controlled as required, and then an information-theoretic argument
can be made that the distribution of possible offsets is uniformly flat across
compilations. The compiler also maintains a database

L : Var→Loc

of the locations (registers, memory) for the source code variables’ place-
ments in registers or memory. The compiler, producing FxA machine code,
has type:

CL[_ : _] : DB× source_code→ DB×machine_code

As syntactic sugar, a pair in the cross product will be written D : s.
In order to simplify here, details of the management of database L are

omitted. It is entirely standard in terms of compiler technique.
C.4 Sequence: The compiler works left-to-right through a source code se-
quence s1;s2:

CL[D0 : s1;s2] = D2 : m1;m2

where D1 : m1 = CL[D0 : s1]

D2 : m2 = CL[D1 : s2]

The database D1 that results from compiling the left source code sequent
s1, emitting machine code m1, is passed in to the subsequent compilation
of the right sequent s2, emitting machine code m2 that follows on directly
from m1 in the object code file and its memory image when loaded.
C.5 Assignment: An opportunity for varying an offset arises at any assign-
ment to a source code variable x. An offset ∆x = D1Lx for the data in the
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target register or memory location Lx is generated randomly, replacing the
old offset D0Lx that previously held for the data at that location. The com-
piler emits code m1 for the expression e which puts the result in a designated
temporary location t0 with offset ∆e = D1t0. It is transferred from there to
the location Lx by a following add instruction (the zer location dummy in
the add instruction means that field does not contribute):

CL[D0 : x=e] = D1 : m1; add Lx t0 zer [i]E
where i = ∆x−∆e

D1 : m1 = CL
t0[D0 : e]

The t0 subscript for the expression compiler tells it to aim at location t0 for
the result of expression e. That is one of the registers reserved for temporary
values.
C.6 Return: The compiler at a ‘return e’ from function f selects a final
offset ∆ fret (functions f are subtyped by offsets ∆ fpar0 , ∆ fpar1 , etc. in their
formal parameters and ∆ fret in their return value) and emits an add instruc-
tion with target the standard function return value register v0 prior to the
conventional function trailer (ending with a jump back to the address in the
return address register ra). The add instruction adjusts to the offset ∆ fret
from the offset ∆e = D1t0 with which the result from e in t0 is computed
by the code m1 compiled for e:

CL[D0 : return e] = D1 : m1; add v0 t0 zer [i]E
. . . # restore stack
jr ra # jump return

where i = ∆ fret −∆e

D1 : m1 = CL
t0[D0 : e]

The offset accounted for v0 is updated in D1 to D1v0=∆ fret .
The remaining source code control constructs are treated like return. For

an if statement, for example, final offsets in each branch are adjusted to
match at the join.

The offsets ∆l at each point in the program are inputs to the compila-
tion. One should choose them stochastically with flat probability across the
whole 32-bit range.

PROOF (FACT 2). Suppose that at the point just before the FxA instruc-
tion I in the program, for all locations l the value x+∆x with [x+∆x]E in l
varies randomly across recompilations with respect to a nominal value x
with probability p(x+∆x=X)=1/232, and I writes value [y]E in one par-
ticular location l. That y has an additive component k that is generated by
the compilation so as to offset y from the nominal functionality f (x+∆x)
by an amount ∆y that is uniformly distributed across the possible range.
Then p(y=Y )=p( f (x+∆x)+∆y=Y ) and the latter probability is p(y=Y ) =
∑
Y ′

p( f (x+∆x)=Y ′∧∆y=Y−Y ′). The probabilities are independent (because

I is only generated once by the compiler and ∆y is newly introduced for it),
so that sum is p(y=Y )=∑

Y ′
p( f (x+∆x)=Y ′)p(∆y=Y−Y ′). That is

p(y=Y )=
1

232 ∑
Y ′

p( f (x+dx)=Y ′)

Since the sum is over all possible Y ′, the total of the summed probabilities
is 1, and p(y=Y )=1/232. The distribution of x+∆x in other locations is
unchanged.

A helpful intuition is that ∆y has maximal entropy, so adding it in in an
instruction completely swamps any other information the instruction might
have exposed.

D. SEMANTIC SECURITY
Fact 2 provides the probabilistic setting for semantic security as follows.
Consider a probabilistic method F that guesses for a particular runtime
value beneath the encryption ‘the top bit is 1, not 0’, with probability pC,T
for program C with trace T . By Fact 2, 1 and 0 are equally likely across
all possible compilations C, and the probability F is right is p(bitC,T =
1 and F(C,T ) = 1)+p(bitC,T = 0 and F(C,T ) = 0). Splitting the conjunc-
tions, that is p(bitC,T = 1)p(F(C,T )= 1 |bitC,T = 1)+p(bitC,T = 0)p(F(C,T )=
0 |bitC,T = 0). But the method F cannot distinguish the compilations it is
looking at as the codes and traces are the same to look at, modulo the (en-
crypted) values in them. The method F applied to C and T has nothing

to cause it to give different answers but incidental features of encrypted
numbers and its internal spins of a coin. Those are independent of if the
bit is 1 or 0 beneath the encryption, supposing the encryption is effective.
So p(F(C,T ) = 1 |bitC,T = 1) = p(F(C,T ) = 1) = pC,T and p(F(C,T ) =
0 |bitC,T = 0) = p(F(C,T ) = 0) = 1− pC,T , and the probability F is right
reduces to 0.5pC,T +0.5(1− pC,T ) = 0.5. That is no better than chance.

X. CHANGES FOR REBUTTAL
i Emphasise application area in abstract.

ii Since a referee says the English is “poor" whereas in fact it is excel-
lent (the writers are experienced authors and native British English
speakers), we deduce that may be a problem. We were as sparing
of words as possible, as we have observed that hardware engineers
dislike reading. Here we have put words back in to help the non-
native reader. We have done this at a few more points in the text
too, but this is the only time we will formally comment on it.

iii Emphasise that we are not playing race-the-fastest, for the benefit
of referees with experience of nothing else but that, rather introduc-
ing a radically new approach. Others may improve it.

iv Anonymity forces the referees to a choice – either stop making
complaints about “self-plagiarism", which is impossible in an anony-
mous work and would mean the referees have disqualified them-
selves by breaking the double blind protocol, or just accept that
an author will have to longwindedly repeat explanations found in
previous work rather than neatly reference it. There is just one
best way to explain something. In particular, there is just one best
pictorial illustration of a concept, whoever drew something like it
first, and it is either that, or do something second best, or throw
away anonymity with a self-reference. ‘Plagiarism’ means ‘copy-
ing’ and no copying takes place in repeated original creation from
zero. Copyright law makes the distinction, as does science, else
Einstein could not twice draw a picture of a photon passing a train.

v Quibble, because hardware security can not be enough on its own,
and referees should not think it is. Try a program that takes twice
as long to produce an answer numerically twice as large.

vi Unable because of anonymity to reference our own security papers,
we reference an appendix instead, emphasise that security of data is
formally claimed, not control flow, and go on to show it equivalent.

vii Treat basic security questions early, for referees with a hardware
engineering orientation who may otherwise not see a problem. We
are not able to logically infer referees’ misconceptions when they
are not plainly expressed as ‘I do not know X, please explain it to
me’, but we have tried our best to second-guess at the root causes
in referees’ remarks, and treat those here.

viii Give reference and highlight for referees that doing IEEE floating
point encrypted is elsewhere seen as computationally impractical
but there is no problem here. FP is done in the pipeline just as
integer arithmetic is, with the FPU in the role of the ALU.

ix Deal with a referee’s invitation to expound on what role simulation
plays and how ‘accurate’ it is (a meaningless question, all said).

x Devote one paragraph to precisely what is new here, as hardware
engineers seem to want headlines.

xi Make clear that the reference is to an old design, for a referee who
may be a security expert rather than a computer engineer

xii Make clearer how this number may be calculated, so referees should
not think it is made up. 0.5× 109 comes from the KPU speed as
against IBM’s 1Hz. Another 30× comes from 32-bitness of the
KPU versus 1-bit operations in IBM. Another factor 10× comes
from the number of gates to build a full 1-bit adder with.

xiii Sum up the interdependent nature of security in one sentence for
referees’ convenience at end of Introduction, for those that do not
draw abstract threads together easily or did not read the text.

xiv Give some more details of how simulation works, to assuage refer-
ees’ possible doubts that it is done right. The anonymity require-
ments forbid us referencing our own books on VHDL and articles
on VHDL refinement and so on, so no more can be done.

xv Give intuition as to why changes in OpenRISC instruction set are
necessary rather than just state them.

xvi Emphasise for referees that floating point as well as integer is work-



Appendix – not for publication

ing encrypted, for those that did not absorb the footnote about the
IEEE test suite.

xvii Draw more attention to the pseudo-random padding and what it is
for, in case a hardware referee weights looking at diagrams higher
than reading or thinks if it is not shown in a diagram it is not there.

xviii Give more insight into areas where real effort is required, for the
benefit of referees who may be insensible to how hard is software.

xix Give insight that feeding the processor with instructions at the rate
it really needs is bottlenecked by legacy issues, and that the buffer
in the fetch stage is there to help fix that, as well as give the decode
stage a broadside view of several instructions at once.

xx Explain for referees how much of a kludge the inherited fetch stage
is, so they get insight into how hard fighting a million lines of sim-
ulation code is and where real improvements can be easily bought.

xxi Point out even more forcefully via a recent reference that SGX is
broken, for referees that may try ‘what is wrong with SGX?’ to
dismiss the paper.

xxii Give the hint that completeness is the ‘real deal’ for computing and
homomorphic encryption cannot do it, so just forget the hype.

xxiii For completeness, mention SHEs, in case referees think we do not
know that they can be ‘good as’ FHEs for specific fixed calcula-
tions, while 1,000× as fast (which is as fast as a 30Hz Pentium).

xxiv Forward reference to next numbered paragraph for referees to ex-
plain what might otherwise seem to be an ‘unjustified claim’.

xxv Clarify for referees without a security background what ‘exposed’
means here.

xxvi Augment Table 6 with a benchmark for no encryption at all. Add
RISC machine comparisons in rows at end of table, with corre-
sponding additions in text nearby. This is to comfort referees that
simulation is saying normal and believable things (ARM’s own
benchmarks possibly exaggerate by ×2 to ×4, via optimised com-
pilation as per Table 6’s O0-6 row, putting our numbers spot on).

xxvii Although we intend always to report failures and unknowns as
well as successes, for scientific reporting, ‘admission’ of unknowns
seems to be taken badly by hardware referees, who perhaps may be
unused to pinpointing what is unknown to them. So we have gen-
erally been loath to dwell on unknowns, but this is one point where
we say ‘we do not know yet’ why deprefixing does not mostly make
up the difference between encrypted and unencrypted running, as
we would naively predict. Referees, please note that our seeing
that is a research success. Identifying an unknown is the first step
to knowing it (paraphrasing D. Rumsfeld, Feb., 2002).

xxviii Emphasise that the graph is original, for referees who might think
that keeping the same format as in the referenced publications, for
the purpose of easier comparison, is ‘plagiarism’. The graph is
different. It has different numbers. Gnuplot makes all look alike.

xxix Clean up description of FxA for referee. That single example for
multiplication is enough for any mathematician. The explicit list
given only leaves out those RISC instructions that have no arith-
metic content, like jal, rfe, mtspr, etc., that are (vacuously) fine for
FxA as is. You will not get a complete list without a NDA. But you
could check the list of target instructions for the compiler. It is at
the referenced URL.

xxx Focus the conclusion on referees’ (deduced) interests, using as plain
language as possible to say that we have solved the problem of
computing securely, at speeds that a person can live with, and we
would now like the h/w community to take over. Our job is to say
what to do and show to a reasonable approximation that a person
skilled in the art could make this work well, your job is to do it.
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