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ABSTRACT
Appropriatelymodifying the arithmetic in a processor causes data to
remain in encrypted form throughout processing, providing privacy
against other users and the operator. Progresswith a simple proto-
type superscalar pipelined RISC processor design is reported here.
Themathematics has now been tested in the context of a convention-
al processor architecture and application binary interface (OpenRISC
v1.1).We are reporting cycle-accurate results for AES-128 and Paillier-
72 encrypted computing on a 128-bit architecture, and RC2-64 on
64-bit. Those obtain 104-140DhrystoneMIPSwith the symmetric
encryptions on a 1GHz base clock, equivalent to a 433MHz classic
Pentium. This paper aims to alert the hardware community that en-
crypted computing provably secure against insiders is theoretically
possible and also possibly practical. Amodified RISC instruction set
is proposed in which every program and trace in the processor may
be interpreted arbitrarily, which formally guarantees semantic se-
curity for user data in combination with an ‘obfuscating’ compiler.
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1 INTRODUCTION

If the arithmetic in a conventional processor is modified appropri-
ately, then the processor continues to operate correctly, but all its

states are encrypted [14], which means that encrypted data is read
and written at encrypted addresses, and both data and addresses
pass through the internal registers of the machine in encrypted
form. Running the appropriate machine code instruction set, it is
mathematically impossible for the operator to infer from the compu-
tation either statistically or logically what the user’s encrypted data
means, despite having read and write access to it and the program
code (see Section 6). Those observations have opened the way to a
processor that runs ‘profoundly encrypted’ at near conventional
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speeds in user mode, because in principle only one piece of stateless
logic in the processor, the arithmetic logic unit, needs changing
with respect to a conventional design. In supervisor mode the pro-
cessor runs unencrypted, and encryption acts as a security barrier.
The approach aims at supplying a secure platform for remote com-
puting in the cloud [33], perhaps also for embedded systems in
sensitive contexts, such as automobiles or uranium centrifuges.

A sequence of cycle-accurate behavioral models have been built
to (i) demonstrate the principle is correct, and (ii) explore the limits.
With respect to (ii), it was unknown beforehand if conventional
instruction sets and processor architectures would be compatible,
and now that is confirmed, it is clear that not every program can run
encrypted – compilers and programs that arithmetically transform
the addresses of program instructions (as distinct from addresses of
program data) must run unencrypted because program addresses
are unencrypted to prevent a known plaintext attack (KPA) on en-
crypted address sequences. The largest application suite1 ported
so far is 22,000 lines of C, but it and every other application ported
(now about fifty), has worked well, surprising the authors.

The accurate models have provided good metrics and the mea-
sures are reported here. The Dhrystone v2.1 benchmark shows 104-
140MIPS running encrypted, 320-433MHz classic Pentium speed.
But the paper’s objective is to summarise the state of knowledge
for the first time in a hardware engineering forum and convince
that it does work, encouraging the community’s focus in future.

The organisation of this article is as follows. Section 2 encapsu-
lates processor design and working in bullet points for the reader.
After reviewing contemporary related architectures in Section 3, se-
curity engineering considerations in putting principles into practice
are described in Section 4 and performance is described in Section 5.
Section 6 sets out for the first time a modified RISC [28] instruction
set that makes encrypted computation secure, in combination with
the processor that runs encrypted and an ‘obfuscating’ compiler.

2 SUMMARY OF DESIGN ANDWORKING
This section summarises the processor design and working in
‘touchstone points’ for the reader to take forward and refer back to.
2.1 Architecture. The basic layout, described in [15], is the classic
single pipelined RISC processor of [28], clocked at a nominal 1 GHz
with 3 ns cache. Register layout and functionality follows the Open-
RISC v1.1 specification (see openrisc.org), with 32 general purpose
registers (GPRs) and up to 216 special purpose registers (SPRs). Some
SPRs with control/monitor functions are modified for security as
described in Section 4. Registers and buses are 64 or 128 bits wide (it
differs per model) for encrypted 32-bit or unencrypted 64-bit data.

1IEEE floating point test suite at www.jhauser.us/arithmetic/TestFloat.html.
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The prototypes have all incorporated speculative branch execut-
ion/prediction, and data forwarding along the pipeline in the same
clock (bypassing registers). Successive design iterations have incor-
porated extra features, such as on-the-fly instruction reordering.
2.2Modes. The processor operates in two modes: user and supervi-
sor (aka ‘operator’), as per the OpenRISC specification. User mode
works encrypted on data that is 32-bit beneath the encryption and
supervisor mode works unencrypted on 32- or 64-bit data.
2.3Adversaries.The operator is the adversarywho tries to read the
user’s data, and/or rewrite it. The notion of ‘operator’ is conflated
with the supervisormode of operation of the processor, inwhich in-
structions have access to every register and memory location. The
idea is that, as themost privileged user, ‘operator’ stands in for all, in
that user data that is secure from the operator is secure from all.
2.4 Simulation. The open source OpenRISC ‘Or1ksim’ simula-
tor, available from http://opencores.org/or1k/Or1ksim, has been
modified to run the processor models. It is now a cycle-accurate
pipeline simulator, 800,000 lines of C code having been written
over 2 years real time and 25 years estimated software engineering
effort, through 8 processor prototypes. The source code archive and
development history is available at http://sf.net/p/or1ksim64kpu.
2.5 Instruction set. In user mode, the processor runs the 32-bit
OpenRISC instruction set modified for encrypted operation. Op-
codes and register indices are not encrypted, but a prefix instruction
has been introduced that allows a following instruction to contain
an encrypted constant, which otherwise would not fit in the 32-bit
long instruction. In supervisor mode, the (32-bit long) OpenRISC
instructions for 64-bit arithmetic on unencrypted data are available.
2.6 Security of computation. Adapting all the standard Open-
RISC instruction set for encrypted working has confirmed that it is
possible to write (unencrypted, supervisor mode) operating system
support for user programs (running encrypted). The operating sys-
tem generally does not need the decryption of a user datum to do
what is required (e.g., output it, encrypted, as is). But the experience
has clarified that conventional instruction sets are inherently inse-
cure with respect to the operator as adversary, who may steal an
(encrypted) user datum x and put it through the machine’s division
instruction to get x/x , which is an encrypted 1. Then any encrypted
y may be constructed by repeatedly applying the machine’s addi-
tion instruction. By comparing the encrypted 1, 2, 4, etc. obtained
with an encrypted z using the instruction set’s comparator instruc-
tions (testing 231≤z, 230≤z, . . . in turn and subtracting whenever it
succeeds), the value of z can be efficiently deduced. This is a chosen
instruction attack (CIA) [29]. Part of the novel contribution of this
paper is a ‘FxA’ instruction set for encrypted RISC against which
every attack fails, in that it is no better than guessing (Section 6).
2.7 Encryption. The prototypes models have been tested fitted
with Rijndael-64 and -128 symmetric encryption (the latter is the US
advanced encryption standard (AES) [3]), RC2-64 [21] and Paillier-72
[26]. The last is an additively homomorphic2 cipher that runs with-
out keys in the processor. In principle any ‘reasonable’ block cipher
with a block size that fits in the machine word may be integrated in
the pipeline. For symmetric encryptions, multistage en-/decryption

2‘Homomorphic’ in the Paillier encryption means that multiplication of encrypted
numbers corresponds to addition of unencrypted numbers.

hardware is fitted in the pipeline.3 For homomorphic encryptions
a multistage arithmetic unit occupies the same space. All encryp-
tions are one-to-many. For symmetric encryptions, pseudo-random
padding under the encryption is generated by hashing operands.
For Paillier, ‘blinding’ multipliers are generated instead.4

The choice of trialled encryptions has been dictated by the de-
velopment path. The open source Or1ksim simulator had to be
expanded from 32 bits to 64 (as well as made cycle-accurate and
pipelined) and at that point 64-bit ciphers could be handled. The
OpenRISC instructions require two 32-bit prefixes per instruction
for 64 bits of encrypted data. Two prefixes is also sufficient for 72
bits of encrypted data, so Paillier-72 could be accommodated with-
out further toolchain changes, but it required doubling processor
path widths from 64 to 128 bits to hold 72-bit data. AES-128 then
became possible, requiring four 32-bit prefixes per instruction.

Paillier-72 is insecure in practical terms but has served to investi-
gate use of a homomorphic encryption in this setting. Paillier does
not become as secure as AES-128 until 2048 bits, but 2048-bit Pail-
lier arithmetic would use too many pipeline stages for practicality.
Nevertheless, the closest competing design is HEROIC [32] (see Sec-
tion 3), a stack machine running encrypted with a ‘one instruction’
machine code and 2048-bit words encrypting 16 bits of data. It does
2048-bit Paillier arithmetic in hardware, so it is possible (HEROIC
runs 4000 cycles of 200MHz hardware per arithmetic operation).
2.8 Toolchain. The existingGNU gcc v4.9.1 compiler (github.com/
openrisc/or1k-gcc) and gas v2.24.51 assembler (github.com/openrisc/
or1k-src/gas) ports for OpenRISC v1.1 have been adapted for the
encrypted instruction set. Executables are standard ELF format
files. The source codes are at sf.net/p/or1k64kpu-gcc and sf.net/p/
or1k64kpu-binutils. Only the assembler needs the encryption key.
2.9 Limits. Word width (i.e., encryption block size) up to 2048 bits
is contemplated with current technology. Memory paths would
need to be appropriately broadened and accesses paralleled.
2.10 Key management. There is no means to read keys once they
have been embedded in the processor, where they configure the
hardware functions. In a design nearer production, keys may be em-
bedded at manufacture, aswith Smart Cards [23] or introduced via a
Diffie-Hellman circuit [2] that securely loads the key in public view.

Note there is no direct consequence of running with the wrong
key because if user A runs with user B’s key, then user A’s program
will produce rubbish, as the processor arithmetic will be meaning-
less; if user A runs user B’s program while user B’s key is in the
machine, then the output will be encrypted for user B’s key, and
the input will need to be encrypted in user B’s key, and user A can
neither supply nor understand that. Security depends not on access
but on whether A, who may be the operator, can leverage observa-
tions of B’s computations to learn about the encryption, and that is
answered in Section 6 – negatively, for the right instruction set.
2.11 Security guarantees. A hardware protocol described in [16]
guarantees that data originating in user mode can never be seen in
unencrypted form in supervisor mode, and conversely (see 4.3A).

3AnAES round is budgeted at 1ns in themodels. That is 10 pipeline stages occupied by
the encryption/decryption hardware. The Intel/AMD ‘ASENC’ AES round instruction
takes 0.95 ns (4 cycles at 4.2 GHz) on Skylake cores (Table C-9 of [19]), so this is realistic.

http://opencores.org/or1k/Or1ksim
http://sf.net/p/or1ksim64kpu
github.com/openrisc/or1k-gcc
github.com/openrisc/or1k-gcc
github.com/openrisc/or1k-src/gas
github.com/openrisc/or1k-src/gas
sf.net/p/or1k64kpu-gcc
sf.net/p/or1k64kpu-binutils
sf.net/p/or1k64kpu-binutils
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3 RELATED PLATFORMS
HEROIC [32] is the most comparable contemporary platform, run-
ning a 16-bit machine in Paillier-2048 encryption [26] on a stack-
based architecture. Its core does encrypted 16-bit addition in 4000
cycles and 20 µs on the foundation of 200MHz programmable hard-
ware, equivalent to a 25 KHz Pentium (one 32-bit addition in 40 µs).

Stack machines are different from conventional von Neumann
architectures and are not manufactured, but there have been hard-
ware prototypes in connection with Java [11]. HEROIC works by
substituting 16-bit addition by multiplication of 2048-bit encrypted
numbers modulo a 2048-bit modulus m. Multiplying above the
Paillier encryption E is the same as adding beneath the encryption:

E (x ) ∗ E (y) modm = E (x + y) (+)

A difficulty is that the addition on the right is not mod 216, so the
sum has to be renormalised mod 216 under the encryption, which
accounts for half the cycles taken. It is done by subtracting 216
via (+) and looking up a ‘table of signs’ for encrypted numbers to
see if the result is negative or positive. To facilitate that, HEROIC
encryption is one-to-one, not one-to-many,4 or the table would be
too large. It is already 16M bytes in size (216 × 2048 bits). The same
table is also used for comparison operations (less than, etc).

That technique is also used with Paillier in our models, except
that the table of signs is too large to site locally with current tech-
nology (at 232×72 bits times the number of aliases per encryption),
so signs are calculated outside the simulation and cached.

Encrypted multiplication and other operations are subroutines
under Paillier. The ‘selling point’ is that (+) means that the modified
arithmetic in the processor needs no keys. But despite the headline,
the table of signs amounts to a key that must be changed per user.
3.1 Ascend [4] protects instructions and data from the operator
by both cryptographic and physical means. Code on the way to
the processor is encrypted, data I/O is encrypted and the processor
runs in ‘Fort-Knox’-like isolation, matching pre-defined statistics
on observables. Communication with memory is encrypted.

Physical isolation plus encrypted memory has emerged many
times (e.g., [13]) and success means doing it as well as Ascend
does. Otherwise side-channels such as cache-hit statistics [34] and
power drain [22] can leak information. Ascend runs RISC MIPS
instructions [27] and slows down by 12-13.5× in encrypted mode
with AES-128 (absolute speeds are not given in [4]), as compared
to 10-50% slowdown for our models (Section 5).
3.2 Intel’s SGX™ (‘Software Guard eXtensions’) processor technol-
ogy [1] is often cited in relation to secure computation in the cloud,
because it enforces separations between users. However, the mech-
anism is key management to restrict users to memory ‘enclaves’.
While the enclaves may be encrypted because there are encryp-
tion/decryption units on the memory path, that is encrypted and
partitioned storage, a venerable idea [12], not encrypted computing.

SGX machines are used [30] by cloud service providers where
assurance of safety is a marketing point. But that is founded in cus-
tomer belief in electronics designers ‘getting it right’ rather than
4Paillier may embed ‘blinding factors’ in the encryption. Those are multipliers rn mod
m, where n=pq andm=n2 is the public modulus. Paillier decryption involves raising
to the power of the order ϕ=(p−1) (q−1) of the multiplicative group mod n, so rn

becomes rϕn = (1+kn)n=1+kn2+ . . . =1mod n2 and does not affect the decrypted
value. HEROIC’s one-to-one encryption does not use different blinding factors.
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mathematical analysis and proof, as for our and HEROIC’s tech-
nologies (see Section 6). Engineering may leak secrets via timing
variations and power use and SGX has recently fallen victim [9].
3.3 IBM’s efforts at making practical encrypted computation us-
ing very long integer lattice-based fully homomorphic encryptions
(FHEs) based on Gentry’s 2009 cipher [5] deserve mention. An FHE
E extends the Paillier equation (+) to multiplication on the right.
But it is 1-bit, not 16- or 32-bit arithmetic under the encryption.
The 1-bit logic operations take of the order of 1s [6] on customised
vector mainframes with a million-bit word, about equivalent to a
0.003Hz Pentium, but it may be that newer FHEs based on matrix
addition and multiplication [7] will be faster. The obstacle to com-
putational completeness is that which HEROIC overcomes with
its ‘table of signs’: encrypted comparison with plain 1/0 output is
needed, as well as the encrypted addition (and multiplication), but
HEROIC’s solution is not feasible for a million-bit encryption.
3.4 Moat electronics. Classically, information may leak indirectly
via processing time and power consumption, and ‘moat technology’
[20] to mask those channels has been developed for conventional
processors. The protections may be applied here too, but there
is really nothing to protect in terms of encryption as encrypted
arithmetic is done in hardware, always taking the same time and
power. There are separate user- and supervisor-mode caches in
our models, and statistics are not available to the other mode, so
side-channel attacks based on cache hits [34] are not available.
3.5 Oblivious RAM (ORAM) [25] and its evolutions [24] is often
cited as a defense against dynamic memory snooping. That is in
contrast to static snooping, so-called ‘cold boot’ attacks [10] – phys-
ically freezing the memory to retain the contents when power is
removed – against which HEROIC, SGX and our technology defend
because memory content is encrypted. Also, in our technology, data
addresses are encrypted and vary during running. ORAM extends
that by continuously remapping the logical to physical address
translation, taking care of aliasing, so access patterns are masked.
It also hides programmed accesses among randomly generated ac-
cesses. But it is no defense against an attacker with a debugger, who
does not care where the data is stored. So it does not defend against
the operator and operating system, as the technology here does.

4 ENGINEERING FOR SECURITY
Two major ‘tricks’ of implementation for good performance were
described in [15] in 2016 and are summarised below in 4.1, 4.2.
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4.1 Dual pipeline configuration. There are two configurations
of the pipeline, ‘A’ and ‘B’, for encrypted running with symmetric
encryption (Fig. 2). There is only space for one (multi-stage) en-
cryption/decryption unit and some instructions need encryption
after the execute stage (‘A’), some need decryption before (‘B’). A
variant ‘A’ configuration is used for Paillier (Fig. 2 top).
4.2 The arithmetic logic unit (ALU) operation is extended in the
time dimension to cover a series of consecutive (encrypted) arith-
metic operations in user mode. The first of a series is associated
with a decryption event and the last with an encryption event (note
that by ‘arithmetic operations’ is meant the arithmetic stages of
individual instructions, not the whole instructions). That reduces
the frequency with which the encryption/decryption unit is used.
4.3 ALU operation is supported by a hardware protocol and invar-
iant described in [16]. There are shadow registers/caches (Fig. 1) and

Protocol Shadow units are aliased-in for user mode.
Invariant In user mode, each instruction expects and puts en-

crypted values (or a neutral placeholder) in non-
shadow registers and unencrypted values in shadow
registers. The reverse is true in supervisor mode.

(*)

In [16] the protocol (*) plus the invariant is provedA to guarantee
(2.11) that supervisor mode never sees in unencrypted form data
that originated (encrypted) in user mode, and vice versa. It is also
proved in [16] to guarantee user data is stored encrypted in memory.

The upshot is that user mode arithmetic as per 4.2 does not leak.
4.4 Multiuser. Changing the encryption key signals a change of
user and empties the shadow registers, so one user cannot gain
access to another’s unencrypted data in registers, but in any case
the argument in 2.10 says that access is not be an issue in itself and
the instruction set is the actual danger (fixed in Section 6).
4.5 Further modifications to conventional design include an ad-
dress translation look-aside buffer (TLB) in two parts. The conven-
tional TLB is now a back-end that remaps addresses page-wise, and
a new front-end maps individual encrypted addresses to a phys-
ically backed range in first-come, first-served order. As data that
will be accessed together tends to be accessed together for the first
time too, this enables cache readahead to continue to be effective
though encrypted addresses are spread randomly over the whole
cipherspace. The TLB front-end will eventually be limiting, but it

Table 1: Baseline v. optimised performancewith 64-bit RC2
encryption, Or1ksim ‘add test’: % finishing per cycle.

RC2 cycles 296368 237463

222006 instructions mode user super user super

arithmetic
{ register instructions 0.2% 0.2% 0.3% 0.2%
immediate instructions 7.8% 9.8% 9.6% 12.1%

memory
{ load instructions 1.0% 3.0% 1.2% 3.7%

store instructions 1.0% 0.0% 1.2% 0.0%

control
{

branch instructions 1.1% 5.2% 1.3% 6.4%
jump instructions 1.2% 5.1% 1.5% 6.3%

sys/trap instructions 0.5% 0.0% 0.7% 0.0%
no-op instructions 7.3% 16.8% 4.4% 20.8%
prefix instructions 11.8% — 5.5% —

move from/to SPR instructions 0.1% 2.8% 0.1% 3.5%
wait states 20.7% 4.4% 18.6% 2.4%

(stalls) (17.4%) ( 3.7%) ( 7.4%) ( 0.0%)
(refills) ( 3.3%) ( 0.7%) (11.2%) ( 2.4%)

total 52.7% 47.3% 44.5% 55.5%

Branch Prediction
(18547 tot.)

hit ✓ ×

55% 44% 10%
miss ✓ ×

44% 35% 9%

UserData Cache
(2933 tot.)

hit miss
read 100.0% 0.0%
write 99.7% 0.3%

UserModeCrypto.
Encryptions 639
Decryptions 12326

does not affect programs whose footprint is designed to fit in cache.

5 PERFORMANCE
The original Or1ksim OpenRISC test suite codes (written mostly
in assembler) established benchmarks for early prototypes, when
no or very rudimentary code (C) compilation was available. Most
modern performance suites still cannot be compiled because they
rely on support such as linear programming and math floating
point libraries, as well as system support such as ‘printf’. If those
could be ported in good time, debugging would take months (the
original OpenRISC gcc compiler has bugs, such as sometimes not
doing switch statements right, sometimes not initialising arrays
right, etc.). In particular the well-known ‘spec’ benchmark suite is
unavailable because its source code is commercially protected. Some
less evolved benchmarks are running, in particular Dhrystone v2.1.

Table 1 shows baseline performance (red) in the instruction set add
test of the suite, with RC2 64-bit symmetric encryption, repeat-
ing the 2016 test in [16] so progress can be seen. The 64:16:20 mix for
arithmetic:load/store:control instructions (no-ops and prefixes ig-
nored) is close to the 60:28:12mix in the standard textbook [18]. At
the time of the 2016 test, the program spent 54.8% of the time in user
mode, and 52.7% now,which is 2.1/54.8 = 4% better encrypted run-
ning. Pipeline occupation is now 1−20.7/52.7 = 60.7% in encrypted
mode, for 607Kips (instructions per second) with the 1GHz clock.

The top right subtable shows that individual branch records (hits)
gain little (44/10) over aggregated data (misses; 35/9). Themiddle rig-
ht subtable shows all data iswrite-before-read (read hits 100%) and
near all (99.7%)writes are repeats to a few (0.3%) locations. The crypto
table shows thatmost en-/decryptions are elided viawrite-back cach-
ing. The rawnumberswould be 2942 (store) and 25995 (load+immed).

The same test with Paillier-72 (128-bit architecture) shows worse
performance, as some arithmetic is done in software (Table 2):

Ta
bl
e
2 add test cycles instructions

RC2 (64-bit) 296368 222006
Paillier-72 438896 226185

Paillier arithmetic takes the length of the pipeline to complete. That
stalls following instructions that need the result until the instruction
ahead has finished, leaving the pipeline mostly empty. The disparity
is greater on multiplication, which is done in software (Table 3):
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Ta
bl
e
3 mul. test cycles instructions

RC2 (64-bit) 235037 141854
Paillier-72 457825 193887

Performancewith symmetric encryptions, but notwith Paillier, is
sensitive to data-forwarding along the pipeline. Turning off for-
warding and instruction reordering shows 33% of processor speed
is due to forwarding, while reordering gives another 3% (Table 4):

Ta
bl
e
4 add test forwarding

RC2 (64-bit) cycles ✓ ×

reordering ✓ 296368 412062
× 315640 441550

Paillier’s insensitivity is expected because arithmetic results are
not available before the penultimate stage of the pipeline. A work-
around may be to create hyperthreaded programs, so instructions
from an independent thread may overtake a stalled instruction.

Since the 2016 account in [15] three solutions tailored to the ar-
chitecture and the bottlenecks noted above have been implemented:
(a) instructions with trivial functionality in the execute phase (e.g.,
‘cmov,’ the ‘conditional move’ of one register’s data to another) but
stalled in read stage have been allowed to speculatively proceed
on the assumption that they will be able to pick up the data via
forwarding later during their progress through the pipe5; (b) the
fetch stage has been doubled to get two instructions per cycle and
catenate the prefix instruction to the instruction they prefix instead
of taking up pipeline slots in their own right; (c) a second pipeline
has been introduced to speculatively execute both sides of a branch.

‘Flexible staging’ (a) drops cycle count from 296368 to 259349
cycles and then innovations (b), (c) contribute as follows (Table 5):

Ta
bl
e
5 add test deprefixing (b)

RC2 (64-bit) cycles ✓ ×

branch both (c) ✓ 237463 257425
× 241992 259349

Branching bothways is not effective here because only 3717 branches
were predicted wrongly, but harder-to-predict code does benefit.

Those RC2-64 tables can also provide approximate numbers for
AES-128 via the following Dhrystone v2.1 benchmarks (Table 6):

Ta
bl
e
6

Dhrystone v2.1 RC2 (64-bit) AES (128-bit) None (32-bit)
Dhrystones per second 246913 183486 350877

VAX MIPS rating 140 104 199
Dhrystone v2.1 Pentium M 32-bit 1GHz

(gcc 4.9.2) O0 O2 O6
Dhrystones per second 735294 1470588 2777777

VAX MIPS rating 418 836 1580

By that measure, the AES-128 prototype is running as a 320MHz
classic Pentium, or 250MHz Pentium M.6 The results are compiler-
sensitive, as shown by variation through optimisation levels O0-O6
for the PentiumM in Table 6, and our compiler is rudimentary. The
slowdown for 128-bit AES over 64-bit RC2 is due to the 4, not 2,
prefixes for an immediate constant in an instruction carrying imme-
diate data. That illustrates that compilers for encrypted instruction
sets must avoid inline data in instructions. The RC2 prototype
equates to a 433MHz classic Pentium, or 266MHz PentiumM.

5The ‘assumption’ is logically impeccable: the data needed must be supplied by an
instruction ahead, which will finish before this instruction does and therefore furnish
the data while it is still moving through the pipeline.
6See Dhrystones table at http://www.roylongbottom.org.uk/dhrystone%20results.htm.
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Figure 3: Number of executed cycles with symmetric encryp-
tion for the ‘add test’ of Table 1 (red/blue) against number of
stages occupied by the encryption/decryption unit (‘codec’).

Table 7: FxAmachine code instructions for encrypted running.
fields semantics

add r0 r1 r2[k]E add r0←[[r1]D + [r2]D + k]E
sub r0 r1 r2[k]E subtract r0←[[r1]D − [r2]D + k]E
mul r0 r1 r2[k0]E [k1]E [k2]E multiply r0←[([r1]D−k1 )∗([r2]D−k2 )+k0]E
div r0 r1 r2[k0]E [k1]E [k2]E divide r0←[([r1]D−k1 )/([r2]D−k2 )+k0]E
xor r0 r1 r2[k0]E [k1]E [k2]E excl. or r0←[([r1]D−k1 ) ˆ ([r2]D−k2 )+k0]E
. . .
mov r0 r1 move r0← r1
beq r1 r2 j [k]E skip j instructions if [r1]D = [r2]D + k
bne r1 r2 j [k]E skip j instructions if [r1]D , [r2]D + k
blt r1 r2 j [k]E skip j instructions if [r1]D < [r2]D + k
bgt r1 r2 j [k]E skip j instructions if [r1]D > [r2]D + k
ble r1 r2 j [k]E skip j instructions if [r1]D ≤ [r2]D + k
bge r1 r2 j [k]E skip j instructions if [r1]D ≥ [r2]D + k
b j skip j instructions unconditionally
. . .

Legend: r is a register index or memory location, k is a 32-bit integer, j is
an instruction address increment, ‘←’ is assignment. The function [ · ]E
represents encryption, [ · ]D decryption.

The results may be extrapolated as required to encryption that
take more pipeline stages: Fig. 3 shows that each stage costs 3.1%
more cycles in the baseline, and 1.7% with hardware optimisations.

6 FXA INSTRUCTION SET
Standard instruction sets are insecure for encrypted working (re-
call the chosen instruction attack of 2.6), but the minimal ‘one
instruction’ HEROIC instruction set is immune to the problem.

Denote by a fused anything and add (FxA) instruction set one
where arithmetic instructions add constants −k1, −k2 to operands
x1,x2 and adds a constantk0 to the result. So FxAmultiplication does:

x0 ← (x1 − k1) ∗ (x2 − k2) + k0

AnFxA instruction set for encryptedworking is shown in Table 7.
Some instructions, e.g. addition, need only one constant, as

(x1 − k1) + (x2 − k2) + k0 = x1 + x2 + (k0 − k1 − k2)

HEROIC’s instructions are a (tiny) subset. The processor enforces
no collisions between (i) encrypted constants that appear in instruc-
tions and (ii) runtime encrypted data values in registers or memory.
The implementation introduces different types of padding/blinding
factors for (i), (ii) and checks them in the processor pipeline. Then:

http://www.roylongbottom.org.uk/dhrystone%20results.htm
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Table 8: Runtime trace for Ackermann(3,1), result 13.
PC instruction update
. . .

35 add t0 a0 zer E[-86921031] t0 = E[-86921028]
36 add t1 zer zer E[-327157853] t1 = E[-327157853]
37 beq t0 t1 2 E[240236822]
38 add t0 zer zer E[-1242455113] t0 = E[-1242455113]
39 b 1
41 add t1 zer zer E[-1902505258] t1 = E[-1902505258]
42 xor t0 t0 t1 E[-1734761313] E[1242455113] E[1902505258]

t0 = E[-17347613130]
43 beq t0 zer 9 E[-1734761313]
53 add sp sp zer E[800875856] sp = E[1687471183]
54 add t0 a1 zer E[-915514235] t0 = E[-915514234]
55 add t1 zer zer E[-1175411995] t1 = E[-1175411995]
56 beq t0 t1 2 E[259897760]
57 add t0 zer zer E[11161509] t0 = E[11161509]
. . .

143 add v0 t0 zer E[42611675] v0 = E[13]
. . .

147 jr ra
STOP

Fact 1. There is no deterministic method by which the operator
can read a program C built from FxA instructions, nor alter it to
give an intended encrypted output.

The supporting argumentB depends on the operator not being able
to read anything from changes in encrypted data or instruction
constants. However, HEROIC’s one-to-one encryption maps col-
lisions to equalities underneath the encryption, invalidating the
assumption. The objection is met by an obfuscating compiler [17]
that itself varies the runtime data under the encryption.

Fact 2. There is a strategy for compiling to FxA code such that
the probability across different compilations that any particular
runtime 32-bit value x for [x]E is in register or memory location
l at any given point in the trace is uniformly 1/232.

‘The (obfuscating) compiler did it’ is a valid cover for runtime
cipherspace collisions. The compiler uses the constants in FxA
instructions to vary the runtime data written at location l by a
different random offset each time the source code is recompiled.C

For example, the paradigmatic Ackermann function [31] com-
piles to FxA code that runs with the trace shown in Table 8 for
arguments (3,1). Although the source contains only the constants
0, 1, the trace shows that the FxA instructions have instead been
compiled with random-looking embedded constants (the decrypted
form is shown in the table, with E[-] indicating encryption). The
runtime trace also shows (encrypted) random-looking data values
are written to registers before the return value (encrypted) 13 is
written. Fact 2 formally impliesD semantic security of runtime data
from the operator [8]. That is, no attack does better than guessing.

It is planned to accommodate FxA instructions by adding a pre-
decode stage that splits them into OpenRISC instructions on entry.

7 CONCLUSION
This paper aims to communicate to the community that encrypted
working in a near conventional processor is a real possibility. A sim-
ple superscalar pipelined 32-bit OpenRISC design is described as
proof of concept, but the community should be able to apply the
principle more generally: it is that an appropriately modified arith-
metic generates encrypted working. AES-encrypted computing
here benchmarks as a 320MHz Pentium, on a 1GHz clock. A modi-
fied ‘FxA’ RISC instruction set has been introduced for which every

program and trace may be interpreted arbitrarily, making encrypted
computing formally as safe as the encryption key is physically.
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Appendix – not for publication

In order to comply with the anonymity protocol, proofs of the claims in the
text are sketched here as identifying elements of refereed publications cited
in the text have had to be blanked out in the bibliography.

This appendix is not for publication and is provided as a courtesy to, aid
and convenience for referees.

Please note that, in common with all scientists, early versions of our
submitted papers, including this one, are archived as technical reports on
our own institutions’ web pages and other sites, and, particularly in the
case of security-relevant papers such as this, on the IACR electronic archive
https://eprint.iacr.org/ where they also have the status of technical reports.

The Cryptology ePrint Archive provides rapid access to re-
cent research in cryptology. Papers have been placed here by
the authors and did not undergo any refereeing process other
than verifying that the work seems to be within the scope of
cryptology and meets some minimal acceptance criteria and
publishing conditions.
. . .

Posting a paper to the Cryptology ePrint Archive does
not prevent future or concurrent submission to any jour-
nal or conference with proceedings: the papers in the
Cryptology ePrint Archive have the status of technical
reports in this respect.

The academic principle is that unrefereed work does not count.
To avoid breaking the double-blind protocol at their end, referees should

use Google with caution, as it would likely reveal the authors’ names.
Referees may ask second persons to do web searches on their behalf.

A THE (*) PROTOCOL
To show that the protocol (*) of Section 4 separates user and supervisormode
data, one shows that the design establishes three invariants at processor
startup, and then maintains them forever (this is a reprise of the argument
in [16])). Begin by naming five kinds of data:

i 32-bit unencrypted data that originated as encrypted user data;
ê encrypted user data occupying 64 or 128 bits;
D 32-bit plaintext data that originated in supervisor mode;
A 64-bit program addresses that notionally originate in supervisor

mode (some addresses like return addresses for a subroutine call
look like they are generated in user mode but the user has no control
over them and they are ‘really’ created and injected by the system
independently of the user – being unencrypted they cannot be read
or manipulated arithmetically at all by the user);

* a placeholder that stands for pending decryption (i) or encryption
(ê) but physically looks like program address zero (A).

The invariants are as follows:

(1) In supervisor mode, real/shadow registers contain typesê/i orê/*
or */i orD/A respectively.

(2) In user mode, real/shadow registers contain typesi/ê, or */ê ori/*
orA/D respectively.

(3) Memory containsê orDorA.

Note that (1) says that type i unencrypted user data is not exposed in
supervisor mode.i/?, where ‘?’ stands for ‘anything’, is missing from all of
the allowed combinations. Also note that (1) and (2) are mutually maintained
by the protocol (*), as it swaps real/shadow registers on mode change.

Every instruction preserves those invariants in both processor modes
– a design principle. User mode addition, for example, does i/?+i/?=i/*,
requiring type i in both addend registers, otherwise it raises a ‘range’
exception and leaves registers as they are. The start condition is D in
memory and real/shadow registers appropriately configured for (1). Then
all invariants are maintained by the program semantics.

B PROOFS
Proof of Fact 1. First consider programsC constructed from the HEROIC

(equivalent) instructions: assignments x←[y+k]E and branches based on a
test [x<K ]E .

Suppose for contradiction that the operator has a method f (T ,C ) =y of
knowing that the output [y]E of C encrypts y , having observed the trace T .
Now imagine that every number has h,0 added to it under the encryption. The
additions y←[x+k]E inC still make sense, adding k under the encryption to
a number that is h more than it used to be to get a number that is h more than
it used to be. Comparisons [x<K ]E in C need changing, however, because
the x , which are h more than they used to be, now need to be compared with
K ′ equal to K+h for the program to make sense. So the branch instructions
in the program must be modified to contain [K ′]E instead of [K ]E . To the
operator, the new program code C′ ‘looks the same’, C′ ∼ C , because one
encrypted number is as meaningful as another without the key (by the ‘no
collisions’ hypothesis, the operator cannot tell either by a new collision or lack
of an old one that the K have changed), and the program trace T ′ looks the
same up to the encrypted numbers in it, which the operator cannot read, so it
looks the same, T ′ ∼ T , and the method f must declare the output of C to be
f (T ′,C′)=f (T ,C )=y . But it is not [y]E but [y+h]E , so the method fails. It
does not exist.

Now suppose for contradiction that the operator builds a new program
C′=f (C ) that returns [y]E . Then its constants [k]E are found in C and its
constants [K ]E likewise, because f has no way of arithmetically combining
them (the ‘no collisions’ condition means they cannot be combined arithmeti-
cally in the processor and the operator does not have the encryption key). The
first half of this proof shows the operator cannot read outputs [y]E of C′, yet
knows what they are. That is a contradiction.

The proof applies with minor adaptations when arbitrary FxA arithmetic as-
signment instructions are considered in place of simple assignments x←[y+k]E .
Changing the constants in the instruction by h under the encryption al-
lows the change by h under the encryption of the data entering and exit-
ing the instruction. That is, replace every FxA instruction of the form r0 ←
[(r1 − k1) Θ(r2 − k2) + k0]E with r0 ← [(r1 − k ′1) Θ(r2 − k

′
2) + k

′
0]E where

k ′i = ki + h, i = 0, 1, 2. □

C OBFUSCATING COMPILATION
The compiler works with a database

D : DB= Loc→ Int

of (32-bit) integer offsets indexed per register or memory location. As the
compiler works through the source code, the offset represents by how much
the runtime data underneath the encryption is to vary from nominal at that
point in the program. All that need be done is to show that what is in D
can be controlled as required, and then an information-theoretic argument
can be made that the distribution of possible offsets is uniformly flat across
compilations. The compiler also maintains a database

L : Var→ Loc

of the locations (registers, memory) for the source code variables’ place-
ments in registers or memory. The compiler, producing FxA machine code,
has type:

CL[_ : _] : DB × source_code→ DB ×machine_code

As syntactic sugar, a pair in the cross product will be written D : s .
In order to simplify here, details of the management of database L are

omitted. It is entirely standard in terms of compiler technique.

https://eprint.iacr.org/
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3.1 Sequence: The compiler works left-to-right through a source code
sequence s1; s2:

CL[D0 : s1; s2] = D2 : m1;m2

where D1 :m1 = C
L[D0 : s1]

D2 :m2 = C
L[D1 : s2]

The database D1 that results from compiling the left source code sequent
s1, emitting machine codem1, is passed in to the subsequent compilation
of the right sequent s2, emitting machine codem2 that follows on directly
fromm1 in the object code file and its memory image when loaded.
3.2 Assignment: An opportunity for varying an offset arises at any assign-
ment to a source code variable x . An offset ∆x = D1Lx for the data in the
target register or memory location Lx is generated randomly, replacing
the old offset D0Lx that previously held for the data at that location. The
compiler emits codem1 for the expression e which puts the result in a des-
ignated temporary location t0 with offset ∆e = D1t0. It is transferred from
there to the location Lx by a following add instruction (the zer location
dummy in the add instruction means that field does not contribute):

CL[D0 : x=e] = D1 : m1; add Lx t0 zer [i]E
where i = ∆x − ∆e

D1 :m1 = C
L
t0[D0 : e]

The t0 subscript for the expression compiler tells it to aim at location t0 for
the result of expression e . That is one of the registers reserved for temporary
values.
3.3Return: The compiler at a ‘return e ’ from function f selects a final offset
∆fret (functions f are subtyped by offsets ∆fpar0 , ∆fpar1 , etc. in their formal
parameters and ∆fret in their return value) and emits an add instruction
with target the standard function return value register v0 prior to the
conventional function trailer (ending with a jump back to the address in the
return address register ra). The add instruction adjusts to the offset ∆fret
from the offset ∆e = D1t0 with which the result from e in t0 is computed
by the codem1 compiled for e :

CL[D0 : return e] = D1 : m1; add v0 t0 zer [i]E
. . . # restore stack
jr ra # jump return

where i = ∆fret − ∆e

D1 :m1 = C
L
t0[D0 : e]

The offset accounted for v0 is updated in D1 to D1v0=∆fret .
The remaining source code control constructs are treated like return.

For an if statement, for example, final offsets in each branch are adjusted to
match at the join.

The offsets ∆l at each point in the program are inputs to the compilation.
One should choose them stochastically with flat probability across the whole
32-bit range.

Proof of Fact 2. Suppose that at the point just before the FxA instruc-
tion I in the program, for all locations l the value x+∆x with [x+∆x ]E in
l varies randomly across recompilations with respect to a nominal value
x with probability p (x+∆x=X )=1/232, and I writes value [y]E in one
particular location l . That y has an additive component k that is gener-
ated by the compilation so as to offset y from the nominal functionality
f (x + ∆x ) by an amount ∆y that is uniformly distributed across the possi-
ble range. Then p (y=Y )=p (f (x+∆x )+∆y=Y ) and the latter probability is
p (y=Y ) =

∑
Y ′
p (f (x+∆x )=Y ′ ∧ ∆y=Y−Y ′). The probabilities are indepen-

dent (because I is only generated once by the compiler and ∆y is newly in-
troduced for it), so that sum is p (y=Y )=

∑
Y ′
p (f (x+∆x )=Y ′)p (∆y=Y−Y ′).

That is p (y=Y )= 1
232
∑
Y ′
p (f (x+dx )=Y ′). Since the sum is over all possi-

ble Y ′, the total of the summed probabilities is 1, and p (y=Y )=1/232. The
distribution of x+∆x in other locations is unchanged. □

A helpful intuition is that ∆y has maximal entropy, so adding it in in an
instruction completely swamps any other information the instruction might
have exposed.

D SEMANTIC SECURITY
Fact 2 provides the probabilistic setting for semantic security as follows.
Consider a probabilistic method F that guesses for a particular runtime
value beneath the encryption ‘the top bit is 1, not 0’, with probability pC,T
for program C with trace T . By Fact 2, 1 and 0 are equally likely across
all possible compilations C , and the probability F is right is p(bitC,T =

1 and F (C,T ) = 1) + p(bitC,T = 0 and F (C,T ) = 0). Splitting the con-
junctions, that is p(bitC,T = 1)p(F (C,T ) = 1 | bitC,T = 1) + p(bitC,T =

0)p(F (C,T ) = 0 | bitC,T = 0). But the method F cannot distinguish the
compilations it is looking at as the codes and traces are the same to look at,
modulo the (encrypted) values in them. The method F applied to C and T
has nothing to cause it to give different answers but incidental features of
encrypted numbers and its internal spins of a coin. Those are independent
of if the bit is 1 or 0 beneath the encryption, supposing the encryption is
effective. So p(F (C,T ) = 1 | bitC,T = 1) = p(F (C,T ) = 1) = pC,T and
p(F (C,T ) = 0 | bitC,T = 0) = p(F (C,T ) = 0) = 1 − pC,T , and the proba-
bility F is right reduces to 0.5pC,T + 0.5(1 − pC,T ) = 0.5. That is no better
than chance.
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