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Abstract—Appropriately modifying the arithmetic embedded
in a processor causes user data to remain in encrypted form
throughout processing, providing a technical approach to pri-
vacy against the operator and other powerful insiders. The
theory has now been checked in practice via a prototype
superscalar processor design that fully implements a standard
OpenRISC binary interface, modified for encrypted running.
The processor runs in a (one-to-many) encryption in user
mode, and runs unencrypted in operator mode. We report here
cycle-accurate measurements on models that incorporate AES-
128 (symmetric, keyed; the US ‘advanced encryption stan-
dard’) and Paillier-72 (asymmetric, additively homomorphic,
no key in-processor) hardware-based encryption on a 128-bit
platform, and RC2-64 encryption (symmetric, keyed) on 64-bit.
With the symmetric encryptions, the models run at 104–140
MIPS on a 1 GHz base clock, measured on the Dhrystones
2.1 benchmark, equivalent to a 433–582 MHz classic Pentium.
The practical experience gained allows us to propose a RISC
instruction set modified for encrypted working under which
semantic security for user data against the operator is mathe-
matically guaranteed on this kind of platform, in cooperation
with an ‘obfuscating’ compiler. The aim of this paper is to raise
awareness in the light of recent events that computing provably
secure against insiders has not only been logically achievable
for years, but is also plausibly practical and marketable.

1. Introduction

IF the arithmetic in a conventional processor is modi-
fied appropriately, then the processor continues to op-

erate correctly, but all its states are encrypted [1], which
means that encrypted data is read and written at encrypted
addresses, and both data and addresses pass through the
internal registers of the machine in encrypted form. That
is encrypted computing. Running an appropriate machine
code instruction set, it turns out to be mathematically im-
possible for the operator to infer from the computation
either statistically or logically what the user’s encrypted
data means, despite having read and write access to it and
the program code [2]. That is to say, secure against-the-
operator computing in the cloud on behalf of a remote
user is ‘formally solved’ by the approach and it remains to
be shown that a processor design following it is practical.
1.1 Objectives. This paper gives performance measures (our
latest models achieve numbers equivalent to a fast classic
Pentium) on a single pipeline processor design with the

aim of challenging the hardware community to apply the
approach to encrypted computing with more state-of-the-art
computer architectures than our prototype’s, and challenging
the security community to get to grips with the ideas.

Another objective of this paper is to convince that it
does work via the account here. That this class of processor
has nothing but a changed arithmetic inside is hard on an
engineer, while processors are not generally the domain
of theoretical computer scientists and mathematicians, who
know it can be so. From an engineer’s point of view, chang-
ing arithmetic is catastrophic, but mathematics does not care
how 1, 2, 3 are represented, or if they are always the same –
as long as there are no overlaps – and that is a description of
simple one-to-many encryption so a mathematician intuits
that encryption and arithmetic are connected. An engineer
worries that an encrypted memory address changes during
processing and misses its target, and it does, but that is
‘hardware aliasing’ [3], and how to compile for that is
documented in software engineering literature [4] (reuse
encrypted addresses, never recalculate, as that encrypts dif-
ferently). The five fields that bear, computer engineering,
security engineering, computer science, sotware engineering
and mathematics, each cover a fraction of the subject area
and we have to convince each expert of an unknown 4/5.

Having a working platform has helped us understand that
all conventional machine code instruction sets are inherently
insecure even in the encrypted context (see paragraph 2.10),
although we initially set out to prove they could be made to
work in it, and we describe here a machine code instruction
set architecture that provably fixes the problem. Hopefully
the message will get to manufacturers. It requires backing
from a kind of randomised compilation, or it would always
be subject to statistically-based ‘dictionary attacks’ based
on the tendency of human programmers to prefer small
numbers such as 0, 1, 2, and that is described here too.
1.2 Organisation. The organisation of this article is as
follows. Section 2 summarises processor design and working
in this kind of encrypted computing, hoping to banish com-
mon (mis-) preconceptions. The reader should look there
first. The basic processor design is as expected for the
decades-old classic single pipeline RISC processor [5] and
is not intrinsically of interest except for the modifications
as described and that ordinariness is much of the point.

Contemporary efforts at encrypted computing are re-
ported in Section 3. The processor model described in this
paper is running 20,000 times as fast as the only really
practical comparable option, and 150,000,000,000 times as



fast as IBM are achieving (of the order of 1 logical gate op-
eration per second) in their experiments using homomorphic
encryption [6], [7] as their approach to encrypted computing
(homomorphic encryption gives rise to an example of an
‘appropriately modified’ arithmetic as referred to above).

Minor security engineering considerations arising from
putting the principles into practice are described in Sec-
tion 4. A reader should look there for hardware minutia. It
should be noted by the way, that key management (a bugbear
of security engineers) is not a concern of this paper, both
by virtue of arguments given and because it can be done
via extant hardware. It is the business of hardware engineers
where to put keys in the processor and how to get them there,
and the business of security engineers to ensure they do it
right, but that has nothing to do with encrypted computing.

Performance is taken up in Section 5. Some account
is given of what computer architecture approaches for im-
proved performance work well and why. It has been found
that a homomorphic encryption cannot work well in this
context, for example (the encryptions that work well are fast
symmetric encryptions), because classical pipelining1 in the
processor does not let one instruction start while another
is running. The reason is that the ‘execution’ stage of an
arithmetic instruction cannot be short-cut and it takes the full
length of the pipeline so a depending following instruction
must wait to start for the one ahead to finish, making the
pipeline too long as well as just one-instruction-at-a-time.

Vulnerabilities of conventional instruction sets were ex-
plained in Section 2 and Section 6 shows a modified instruc-
tion architecture that makes encrypted computing provably
secure. It requires, however, code to be compiled by an
‘obfuscating’ compiler that takes statistical advantage of its
possibilities. The requirements for the compiler are sketched
in that section (the working compiler’s URL is given). We
contend via this paper that processor, instruction set and
compiler comprise a three-point system for provable security
for the user against the operator in encrypted computing.
1.3 What is new here? This paper primarily puts forward an
argument, but conventional benchmark results are reported
for the first time. That has become possible only with the de-
velopment of a significant software infrastructure (compiler,
assembler, linker, debugging instruments, micro operating
system) in support, representing about 25 person-years of
software engineering effort. Measures carried over from the
earlier report [8] have been bettered by 50% and we say
what computer architecture optimisations have made that
happen. Naysayers on the possibility of operating system
support have been proved wrong, and the security concepts
have meanwhile been proved correct at hardware-level [9]
and in mathematical abstraction [2] and we are reporting that
in summary here along with experimental evidence, to boost
confidence in the practicality of the approach. A specially

1. Pipelining is the means by which procesors (and car factories) achieve
speed-ups. Execution of an instruction (resp. building a car) is divided into
stages carried out at different places in the processor (resp. car factory).
One instruction takes just as long to execute – its latency – but as many
as there are pipeline (resp. production line) stages may be worked on at
the same time, resulting in a 10-20× speed-up overall (the thruput).

adapted instruction set architecture for encrypted working is
shown here too and we report progress with the ‘obfuscating
compiler’ for it. We did not think it would be possible, but
almost all of C has been covered but for computed gotos,
including C’s extensive use of pointers.

2. Reference Points

This section summarises the basic working of the pro-
cessor architecture introduced in [8] and hopes to dispell
misconceptions about processors that security engineers
and software engineers seem to own, and misconceptions
about abstract mathematics that through experience we have
learned hardware engineers are prone to. We cannot antici-
pate everything, so we beg readers to consider that if there is
something fundamental that they do not believe to consider
that they are wrong in that, since they can compile the code,
examine the matematical proofs, run the models, make up
and run their own programs, etc, with the source code at the
URLs given. Everything is open to inspection.
2.1 Encryption is not done in software. There are no
timing or power drain measurement attacks. If encryption
is needed, a dedicated hardware unit inside the processor
pipeline does it, taking the same time every time, using no
memory or anything else programmatically accessible.
2.2 Memory is not part of a processor. RAM is an
external peripheral from a processor’s point of view, like
a keyboard or screen or disk, and the same considerations
apply. Arguments should be based on that view.
2.3 Architecture. The prototype is based on the classic,
simple, single pipelined RISC architecture of [5] taught in
undergraduate computer architecture classes for decades. It
is clocked at a nominal 1 GHz with 3 ns internal cache,
separate for instructions and data, and separate for user and
operator modes of working.

Processors contain registers for temporary storage. The
layout and functionality follows the OpenRISC v1.1 archi-
tecture standard at http://openrisc.io (‘OR1.1’). There are 32
general purpose registers (GPRs) and 65,536 special purpose
registers (SPRs). Some SPRs’ OR1.1-defined functions have
had to be modified for security reasons and that is described
in Section 4. Registers and buses are either 64 or 128
bits wide (it differs per processor model), holding either
encrypted 32-bit data or unencrypted 64-bit data.

The pipeline incorporates basic optimisations such as
speculative branch execution and prediction. Data is for-
warded directly between instructions in different stages be-
fore it has first passed through the processor registers (saving
one clock cycle). Data hazards (input to an instruction needs
to wait for output from an instruction ahead) stall instruc-
tions. Successive models have incorporated cleverer features
into the pipeline, such as on-the-fly instruction reordering,
and their effectiveness is reported in Section 5.
2.4 Modes. There are two modes of working of the proces-
sor: user and operator, as per the OpenRISC specification.
User mode works encrypted on data that is 32-bit beneath
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the encryption and operator mode works on 32- or 64-bit un-
encrypted data. Supervisor mode has no access restrictions,
while user mode is limited as described in Section 4.
2.5 The ABI as attack vector. The only means of attack
considered here is via the machine code instructions under-
stood by the processor, the syntax and semantics of which
consutitute the ‘application binary interface’ (ABI). Phys-
ical attacks via scanning electron microscope are out, but
rebooting, single-stepping user-mode, (‘debugging’) etc. are
in. We the designers control the ABI, but it differs little from
a standard OpenRISC ABI. There is no x+y instruction, for
example, but there is a x+y+k instruction, where k is a
constant embedded (encrypted) in the instruction.
2.6 Adversaries. The operator is the notional adversary
who tries to read the user’s data, and/or rewrite it. By
‘the operator’ is meant the operator mode of operation of
the processor, in which instructions have access to every
register and every memory location. Human agents such
as operating system designers may have indirect and illicit
access to operator mode via backdoors in the operating
system or vulnerabilities in operator-mode applications such
as servers on low IP port numbers or via malware introduced
later, or access may be direct and outwardly ‘legitimate’, by
the owner or administrator of the machine and/or operating
system. Whatever the case, as the most privileged user on
the machine, ‘the operator’ also stands in for all possibilities
as a potential adversary. If we can secure user data from ‘the
operator’, it is secure from all.
2.7 A successful attack consists of ‘the operator’ decrypting
user data, or on the balance of probabilities deducing what it
is likely to be, or modifying a user’s program or interfering
in it to produce data (when decrypted) that takes some
intended value, or some range of intended values with
heightened probability. The subtlety here is the ‘intended’.
It is not a successful attack to overwrite the user’s data
with zeros while the operator does not know yet what
zero decrypts to. If they can say with probability above
chance (1/232 for a single value) what the written value
is when decrypted, then it is a successful attack. Producing
the encrypted key, encrypted, even if the operator cannot
yet read it, would be a successful attack (there exists a
proof that the operator cannot do that particular thing by
any deterministic or statistical method – the reader should
refer to the final theorem in [2] for the general result that
backs that deduction).

More subtlety is that it is not enough for a successful
attack to work out (even only stochastically) what user data
means. Instead the value of the (decrypted) data must be
predicted. It might be guessed, for example, that the program
is an image analysis algorithm because it passes through
a certain point 1024×768 times, so the last time through
probably represents a border pixel that is black. But ‘black’
does not tell what (decrypted) value represents blackness.
The ‘obfuscating compiler’ here takes care to distribute the
value across the full 32-bit range with equal probability.
2.8 Simulation. Our results are verified by simulation. The
open source OpenRISC ‘Or1ksim’ simulator, available from

opencores.org/or1k/Or1ksim, was the original source of the
simulation source code, so the implementation of OpenRISC
instruction semantics departed from an initially correct base.

That has been modified to a cycle-accurate pipeline
simulation over three years and eight processor prototypes.
Pipeline measurement accuracy is inherent in such simu-
lation because the original instruction semantics were split
into multiple decode, prep, read, execute, post and write
steps that take one hardware clock cycle each, and the
pipeline moves all instructions on one stage per cycle at
the same time, insofar as they may be moved – sometimes
an instruction cannot proceed for lack of needed data (from
memory or from an instruction ahead) or a stalled instruction
ahead, and in that case they stall the instructions behind
too. We count how many cycles a program takes in our
benchmarks. Roughly 50% of pipeline slots are unoccupied
on average (see Section 5) and it is not unusual for a cycle
to run without any instruction terminating (i.e., exiting the
pipeline) that cycle. The point is that it is not possible to
‘measure wrong’ this way. The open source code archive in-
cluding a full log history is at http://sf.net/p/or1ksim64kpu.
2.9 Instruction set. In user mode, the processor models here
natively run the 32-bit OpenRISC instruction set modified
for encrypted operation. The modification is chiefly that
any ‘immediate’ data embedded in an OpenRISC instruction
must be in encrypted form. Because encrypted data is too
long to fit in the standard’s 16-bit immediate data field, an
extra prefix instruction has been introduced in order to allow
encrypted immediate data to be started in a prefix to the
instruction, and in a prefix to that, if necessary.

Other instruction set modifications are minor. The dis-
placement (as in an array) from the base address embedded
in a load or store instruction must be zero in user mode,
in order to reduce the arithmetic required in-pipeline. An
extra displacement register is ignored in a ‘move to/from
SPR’ instruction in user mode because it would give away
the encryption directly. A shift instruction has its fields
reordered so the shift is contiguous. That is all.

The 32-bit floating point as well as integer instructions
have been fully implemented for user mode. That makes
the platform logically 32-bit, even though physically it is
128-bit (or longer, in principle). The compiler implements
64-bit (or longer) data and operations for user-mode with
the 32-bit instructions, following standard compile practice.

In operator (unencrypted) mode, the native OpenRISC
instructions for 64-bit operations are available as well.
2.10 Security of encrypted computation. Adapting all
the standard OpenRISC instruction set for encrypted work-
ing has answered questions about what programs can run
in this context, and particularly that it is not hard to
write (unencrypted, operator mode) operating system sup-
port for user programs running encrypted. The operating
system does not need to know what the decrypted value
of a user mode datum is (e.g., in memory fault handlers
and I/O routines). But the experience has clarified that
standard instruction sets are inherently insecure [10] with re-
spect to the operator as adversary, who may steal an (encrypt-
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ed) user datum x and put it through the machine’s division
instruction to get x/x, which is an encrypted 1. It is then sim-
ple to construct any encrypted y by applying the machine’s
addition instruction to get (encrypted) 1+1, etc. By compar-
ing the encrypted 1, 2, 4, etc. obtained with any encrypted z
using the instruction set’s comparator instructions (testing
231 ≤ z, 230 ≤ z, . . . in turn and subtracting whenever a test
succeeds), the decrypted value of z may be deduced. Part of
the contribution described in this paper has been to develop
a ‘FxA’ instruction set for encrypted RISC for which it may
be proved that there is no method of decryption like that
above, or any method that is statistically right at a level
above chance (see Section 6).
2.11 Encryption. The processor models have been tested
while embedding Rijndael-64 and -128 symmetric ciphers
(the latter is the US Advanced Encryption Standard (AES)
[11]), RC2-64 [12] and Paillier-72 [13]. The last is an ad-
ditively homomorphic2 cipher that runs without keys in the
processor. In principle, any block cipher with block size that
fits in a machine word could be integrated. The encryption
hardware is in the pipeline, taking up the majority of stages.
For the symmetric encryptions the hardware consists of an
encryption/decryption unit. An AES encryption/decryption
round takes 1 ns and fits in one hardware stage.3 The com-
plete AES encryption/decryption unit occupies 10 stages.
For other symmetric ciphers, between 1 and 20 pipeline
stages are configured in the simulator. For homomorphic
encryptions, multistage arithmetic occupies that space.

Note that all the encryptions, whether symmetric or
homomorphic, are one-to-many. For symmetric encryptions,
pseudo-random padding under the encryption is generated
by hashing together the inputs’ paddings and the instruc-
tion, allowing a trace to be audited. For Paillier, ‘blinding’
multipliers are generated instead.5

The choice of encryptions has been dictated by the de-
velopment path. The Or1ksim simulator was first expanded
from the original’s 32 bits to 64 (plus the changes that
made it cycle-accurate and pipelined) and at that point 64
bit ciphers could be handled. An extra two 32-bit prefixes
per instruction are required to hold 64 bits of encrypted
immediate data. That prefix configuration is also sufficient
to hold 72 bits of encrypted data, so Paillier-72 could be
accommodated without further alteration to the toolchain,
but required a doubling of path widths from 64 to 128 bits
in the processor models. AES-128 then became possible, re-
quiring four 32-bit prefixes per instruction and the toolchain
to be modified again.

Paillier-72 is insecure for practical purposes but it has
served to investigate the use of a homomorphic encryption in
this setting. Paillier does not become as secure as AES-128
until about 2048-bit blocks are used, but 2048-bit Paillier
arithmetic needs infeasibly many stages for the processor
pipeline. Nevertheless, the closest extant design is HEROIC

2. ‘Homomorphic’ for Paillier means multiplication of encrypted num-
bers corresponds to addition of the unencrypted numbers.

3. The Intel/AMD ‘ASENC’ AES round instruction has latency 0.95ns
(4 cycles at 4.2GHz) on Skylake cores (Table C-9 of [14]), so one round
in one pipeline stage at 1 GHz is very achievable.

[15], [16] (see Section 3, a stack machine running encrypted
with a ‘one instruction’ machine code (the ‘OI’ in HEROIC)
with 2048-bit words encrypting 16 bits of data each. It does
the 2048-bit Paillier arithmetic in hardware, so it is possible
(HEROIC simply takes 4,000 cycles of the base hardware
for each arithmetic operation).
2.12 Toolchain. The existing GNU ‘gcc’ v4.9.1 com-
piler at http://github.com/openrisc/or1k-gcc and ‘gas’ ver-
sion 2.24.51 assembler at http://github.com/openrisc/or1k-
src/gas ports for the OpenRISC 1.1 architecture have been
adapted for the encrypted instruction set. The source code
for the modified compiler is at http://sf.net/p/or1k64kpu-gcc
and that for the modified assembler is at http://sf.net/p/
or1k64kpu-binutils. Only the assembler, not the compiler,
needs to know the encryption key. Executables are written
as standard ELF format files. An experimental ‘obfuscating’
compiler, as described in Section 6, is also coming on-line.
Global variables are a point of difficulty for both compilers
and, currently, explicit link-table entries for them have to
be provided. The difficulty is that the encrypted address
needs to be shared between different compilation units, but
encryption takes place in the assembler, after compilation.
Our stop-gap solution is to impose a common address via
link-table entries, or port the code to remove globals. The
difficulties of providing toolchains for encrypted computa-
tion should not be underestimated, but they are soluble.
2.13 Limits. Word width/encryption block size up to 2048
bits is contemplated for current technology. Memory paths
would have to be appropriately broadened from the current
64 bits, and memory accesses paralleled correspondingly.
2.14 Testing configurations. Tests are centered about a 15-
stage pipeline configuration with a nominal 1 GHz clock.
Of that, 10 stages are for the modified arithmetic/encrypton
hardware, but between 1 and 20 stages have been mapped.
Memory and cache latencies (typically 13.5 ns, 3 ns respec-
tively) are adjustable for testing. Although the data memory
path is always a full word (64 or 128 bits or more) wide,
the program memory path is restricted to 64 bits, which
results in two 32-bit instructions per cycle being pulled to a
split 32-word look-ahead/behind buffer in the pipeline fetch
stage. The relatively narrow (64-bit) instruction path is a
continuing bottleneck that we cannot easily do away with
because of legacy issues.
2.15 Key management. There is no means to read keys
once they have been embedded in the processor, where
they configure the hardware functions. Keys must either be
embedded at manufacture, as with Smart Card technologies
[17] or introduced via a Diffie-Hellman circuit [18] or equiv-
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alent that loads the key in public view without revealing it.4
Hopefully, the basics are now covered for the reader.

3. Related platforms

In this section, the state of the art is discussed and compared.
3.1 HEROIC [15] is the most comparable contemporary.
It is a 16-bit processor working in Paillier-2048 encryp-
tion [13] on a stack-based architecture. Its core does en-
crypted addition in 4000 cycles and 20 µs on 200 MHz
programmable hardware. That is equivalent to a 25 KHz
Pentium.

Stack machine architectures differ from conventional
von Neumann architectures and are not currently manufac-
tured, but there have been hardware prototypes in connection
with Java [19], [20] in the past. Like the processor discussed
in this paper, HEROIC works by substituting a modified
arithmetic. Its basis is the replacement of conventional 16-
bit addition by multiplication of 2048-bit encrypted numbers
modulo a 2048-bit modulus m, and other operations are
done in software using addition as the primitive. The Paillier
encryption E is used. It has the ‘homomorphic’ property that
multiplying encrypted numbers E (x), E (y) is the same as
adding the unencrypted numbers x, y:

E (x)∗E (y) mod m = E (x+ y) (+)

A difficulty with (+) for encrypted computing is that the
addition on the right is not the addition mod 216 of 16-bit
computer arithmetic. The result has to be ‘renormalised’ to a
remainder mod 216 under the encryption, which accounts for
half the cycles taken by HEROIC for the encrypted addition.
The microcode subtracts 216 and looks up a ‘table of signs’
to see whether the encrypted result is negative or positive.
In order to facilitate that, HEROIC encryption is one-to-one,
not one-to-many, or the lookup table would be too large.5
At 216 × 2048 bits, it is already 16 M bytes in size The
‘selling point’ of Paillier is that (+) means that the modified
arithmetic in the processor needs no keys. But, despite the
headline, the table of signs amounts to a secret key per user.

That implementation is also used in our Paillier-based
processor models, except that, at 232×72 bits times the
number of aliases in our one-to-many encryption, the table
of signs is too large to site locally with current technology,

4. There is no direct consequence of running with the wrong key in the
machine: if user A runs with user B’s key in the machine, user A’s program
will produce rubbish, as the processor arithmetic will be meaningless with
respect to it; if user A runs user B’s program with user B’s key in the
machine, then the output will be encrypted for user B’s key, and the input
will need to be encrypted in user B’s key, which user A can neither supply
nor understand. Security depends not on access to encrypted numbers but
on other factors, such as whether A, who may be the operator, can leverage
observed computations that use B’s key to learn about the encryption, and
that question is answered in Section 6 – negatively, for the right instruction
set.

5. Paillier may embed random ‘blinding factors’ into encrypted numbers.
Those are multipliers rn mod m, where n=pq and m=n2 is the public
modulus. Paillier decryption involves raising to the power of the order
φ=(p−1)(q−1) of the multiplicative group mod n, so rn becomes rφn =
(1+kn)n=1+kn2+ . . .=1 mod n2 and does not affect the decrypted value.
HEROIC’s one-to-one encryption does not use different blinding factors.

so signs are calculated remotely on demand and cached
locally, and the time taken in the remote calculation is not
counted.
3.2 Ascend [21] obscures instructions and data from the
operator’s view by a variety of means, both cryptographic
and physical. The processor protects code on the way to the
processor via encryption. I/O is encrypted and the proces-
sor runs in ‘Fort-Knox’-like isolation, matching pre-defined
statistics on observables. Communication with memory is
encrypted too, via ‘oblivious RAM’ [22], [23], [24].

The idea of physical isolation plus encrypted memory
has emerged many times over the years (e.g., [25], [26]) and
success means doing it as well as Ascend does. Otherwise
channels such as cache-hit statistics [27] and power drain
[28] can give away information to a privileged observer.
Ascend runs RISC MIPS instructions [29] and slows down
by a factor of 12-13.5× in encrypted mode with AES-128
(absolute speeds are not given in [21]), as compared to 10-
50% slowdown for our models (Section 5).
3.3 Intel’s SGXTM (‘Software Guard eXtensions’) proces-
sor technology [30] is often cited in relation to secure or
encrypted computation in the cloud, because it enforces
separations between users. However, the mechanism is key
management to restrict users to memory ‘enclaves’. While
the enclaves may be encrypted because there are encryp-
tion/decryption units on the memory path, that is encrypted
and partitioned storage, a venerable idea [25], [26], not
encrypted computing. RAM is a peripheral to a processor.

SGX machines are used [31] by cloud service providers
where the assurance of safety is a selling point. But the
assurance is founded in the customer’s trust in electronics
designers ‘getting it right’ rather than mathematical analysis
and proof, as for our and HEROIC’s technologies (see
Section 6). There are subtle ways for engineering to leak
secrets, e.g. via timing variations and power use [27], and
there have recently been successful attacks against SGX
based on timing [32]. Moreover, use of the enclave areas
is optional for the software author, and it is up to the author
which sections of code to run in enclave and which not to,
meaning that no guarantees can be made on the basis of the
hardware. The security of every piece of software depends
on the software.
3.4 IBM’s efforts at making practical encrypted computation
using very long integer lattice-based fully homomorphic
encryptions (FHEs; additively and also multiplicatively ho-
momorphic) based on Gentry’s 2009 cipher [7] deserve
mention. An FHE E extends the Paillier equation (+) to
cover multiplication on the right too. However, it is single bit
arithmetic, not 16- or 32-bit arithmetic under the encryption.
The single bit operations currently take of the order of a
second each [33] on customised vector mainframes with a
million-bit word size, about the speed of a 0.03 Hz Pentium,
but it may be that newer fully homomorphic ciphers based
on matrix addition and multiplication [34] will be more
practical. The product will never be capable of arbitrary
general purpose computation in any case, just certain finite
calculations. The obstacle to computational completeness is
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the same as that which HEROIC overcomes: an encrypted
comparison operation is needed for practical operation with
potentially unbounded computations, but HEROIC’s ‘table
of signs’ solution is not feasible for a million-bit encryption.

Sometimes applications require a fixed small number of
multiplications and then a somewhat homomorphic encryp-
tion (SHE) may do instead of a FHE. A SHE is without the
periodic renormalisations that are the hallmark of Gentry-
style FHEs, resulting in faster and smaller encryptions.
Without renormalisation, arithmetic eventually takes num-
bers out of range, for example nearing 2m in a calculation
mod m. But before that happens the calculation will have
finished. Lauter et al. [35] quote a scheme with block-
size about 43.5KB and encrypted 1-bit addition in 1ms,
multiplication in 43 ms, achieved on a 2.1 GHz Intel Core 2
Duo in 1 GB of RAM. That equates to a 30Hz (sic) Pentium.
3.5 Moat electronics. Classically, information may leak
indirectly via processing time and power consumption, and
‘moat technology’ [36] to mask those channels has been
developed for conventional processors. The protections may
be applied here too, but there is really nothing to protect
in terms of encryption as encrypted arithmetic is done in
hardware, always taking the same time and power. There are
separate user- and operator-mode caches in our models, and
statistics are not available to the other mode, so side-channel
attacks based on cache-hits [37], [27] are not available.
3.6 Oblivious RAM [22], [23], [24] and its evolutions [38],
[39]) is often cited as a defense against dynamic memory
snooping. That is in contrast to static snooping, so-called
‘cold boot’ attacks [40], [41], [42] – essentially, physically
freezing the memory to retain the memory contents when
power is removed, against which HEROIC, SGX and our
technology automatically defend because memory content
is encrypted; addresses are also randomised in our case.
An oblivious RAM remaps the logical to physical address
relation dynamically, taking care of aliasing, so access pat-
terns are statistically impossible to spot. It also masks the
programmed accesses in a sea of independently generated
random accesses. However, it is no defense against an
attacker with a debugger, who does not care where the data
is stored. It provides no defense against the operator and
operating system, which the technology here can be proved
to do (Section 6).

Some ‘oblivious’ behaviour is naturally present in the
processor described in this paper, because data addresses
are (nondeterministically) encrypted and so the address en-
cryptions naturally vary dynamically at runtime.

4. Engineering for security

This section deals with special adjustments in the hardware
required with respect to the basic OpenRISC architecture
and specification in order to accommodate the ‘encrypted
computing’ mode of working and security.

First of all, from an application programmer’s point
of view, it should be emphasised that in (encrypted) user
mode, the processor executes the 32-bit instruction subset
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Figure 1. The pipeline is configured in two different ways, ‘A’ and ‘B’, for
two different kinds of user mode instructions during encrypted working,
in order to reduce encryption/decryption to at most once per instruction
(this illustration of the principle is adapted from [8]).

of OpenRISC as normal and that is all that the programmer
needs to trust in. The compiler will take care of it, modulo
some issues of the current state of our toolchain that can
make porting source codes nontrivial (e.g., global variables
are problematic when used in different compilation modules,
requiring explicit link table inputs to tie the compilation
together).

For a library or systems programmer, the situation is
nearly the same. User mode coverage of 32-bit integer
and floating point OpenRISC instructions is complete, and
OpenRISC’s application binary interface is supported. Ac-
cess to most SPRs in user mode is already denied by
OpenRISC – e.g., those that configure the memory map –
but there are some further SPRs put off limits to protect the
encryption.??

4.1 Access denials for user mode beyond OpenRISC stan-
dards are to the processor version number SPR, the floating
point unit control SPR and the performance statistics SPRs.
Certain bits in the status SPR (such as the one that is stuck
at 1) are also denied. The timer tick SPR is aliased so there
is a different timer tick per processor mode and it is not the
same between them, so plaintext and encrypted readings of
the same clock cannot be obtained. User mode access is
also denied to the cache control SPR (prefetch, flush), but
in any case, cache is aliased so there is a different cache
per processor mode and no back-channel communication is
possible by that route and we are experimenting to determine
if user mode cache control may be allowed after all.
4.2 Supervisor mode (recall: unencrypted), which the op-
erator has access to, allows all instructions and unrestricted
access to registers and memory. Supervisor mode instruc-
tions can read user data in memory, but it is in encrypted
form. Likewise, user data in registers appears in encrypted
form to operator mode via a hardware protocol (*) sketched
below.

The operator mode instruction pipeline, which in princi-
ple is the classical 5-stage fetch, decode, read, execute, write
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pipeline of a RISC processor, lies embedded in a longer
pipeline containing the encrypted arithmetic stages for user
mode. There are two major ‘tricks’ of implementation for
good performance with symmetric encryptions, both based
on the necessity to decrypt, do the arithmetic, then encrypt
again, in order to carry out the ‘encrypted arithmetic’ that
underpins encrypted computing with such encryptions. The
first trick is that the pipeline is configured in two ways,
‘A’ and ‘B’, for encrypted running. That is illustrated in
Fig. 1. The pipeline stages are named in exploded view
respectively above (A) and below (B) the pipeline in the
figure. The encryption/decryption stages (‘codec’) are shown
in abbreviation, but they consist of one stage per round of
the encryption (10 for AES). A conventional ALU figures in
only one stage in both configurations, and its positioning in
the pipeline relative to the codec is the focus of the figure.
4.3 The dual configuration pipeline is because, for sym-
metric encryptions, there is only room for one multi-stage
encryption/decryption unit in the hardware and some in-
structions need it before the arithmetic stage(s), and some
need it after. The memory load and store instructions would
conventionally need it twice, once for the address displace-
ment sum and once for the data transfer to/from RAM,
but they are restricted in user mode to a zero ‘address
displacement’ field (that slightly impacts program efficiency,
but not functionality), which means they need the unit just
once per instruction, for the data transfer. User data is kept
encrypted in RAM by the protocol (*) described in 4.4 that
manages the transition between user and operator mode in
the processor. The ‘A’ configuration is for instructions that
use the encryption/decryption unit after arithmetic, the ‘B’
configuration when it is the other way around.

There are data hazards generated by conflicts between
the two pipeline configurations for the single codec and
other single functional units, but those are not very signifi-
cant, as the measurements of Section 5 show, and they can
be obviated entirely by physically doubling the number of
units. Section 5 enables rational decisions on doing that.
4.4 The arithmetic logic unit (ALU) comprises the second
trick of implementation for good performance. In order to
reduce the frequency with which the encryption/decryption
unit is used in association with symmetric encryptions, ALU
operation is extended in the time dimension, so it covers

a series of consecutive (encrypted) arithmetic operations
in user mode. The first of the series is associated with a
decryption event and the last with an encryption event (both
the two ‘tricks’ are described in [8]; note that by ‘arithmetic
operations’ is meant the arithmetic stages of individual
instructions, not the whole instructions). In support:

A different set of registers is aliased in for each mode
(*)

The user mode registers ‘shadow’ the operator mode reg-
isters, as illustrated in Fig. 2, where the shadow units
are shown slightly behind the non-shadow (i.e., operator
mode) units. Where the operator mode register contains the
encrypted value or a placeholder, the user mode register
contains the unencrypted number. In user mode, arithmetic
is carried out in shadow registers, which contain decrypted
values. The protocol (*) is mathematically proved to main-
tain invariants that secure operator mode from accessing data
unencrypted that originates in user mode, and vice versa.??

The protocol also assures user data is stored encrypted in
memory, never exposed in unencrypted form.
4.5 Key management is not an issue in itself, by the
following argument. Firstly, changing the encryption key on
a change of user empties the shadow registers so that one
user does not have access to another’s unencrypted data in
registers. Memory always contains encrypted user data that
cannot be read by the newcomer because it is encrypted
with a different key. Secondly, if something does go badly
wrong and the encryption key is not changed on change of
user, then the shadow registers containing the unencrypted
data are preserved and data in them is potentially vulnerable.
However, the argument in the footnote4 says B has no direct
access to A’s unencrypted data or program even in this
situation. I/O is still encrypted with A’s key.

The danger is that B might deduce indirectly what the
data in registers is by running a branching comparator
instruction. B’s problem is what to compare with, as B has
no knowledge of constants in A’s encryption. Unfortunately,
yes, as already argued, with the OpenRISC instruction set B,
can create an encrypted 1 via x/x from nearly any encrypted
x of A’s, and use it to build constants to order. But that attack
works in any context, not only this particular one, and the
fault is the instruction set’s. Using an ‘FxA’ instruction set
(Section 6) cures the problem.
4.6 Cache raises similar questions and is treated similarly to
registers. As remarked, separate data and instruction caches
are aliased in per processor mode, just as for registers.
On change of user, the user cache is flushed. As already
argued for register content, a change of user from A to B
without flushing the caches is not in itself insecure, even if
it mistakenly happens. Any I/O is still encrypted in A’s key.
The danger is tests that B may be able to run on A’s cached
data if B gets control, and the defence against that depends
on the instruction set, as discussed in Section 6.
4.7 Further modifications to conventional processor design
include an address translation look-aside buffer (TLB) in
two parts. A conventional ‘back-end’ to the TLB fills the
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conventional role of remapping addresses page-wise, but the
‘front end’ is organised by single word addresses, not pages,
and its job is to remap encrypted addresses to the physically
backed range in first-come, first-served order. Since data that
will be accessed together tends to be accessed together for
the first time too, this enables cache readahead to continue
to be effective even though encrypted addresses are spread
randomly over the whole cipherspace. The TLB front-end
is eventually a limiting overhead, but it does not affect
programs at all when their footprint fits in cache, which
is sensible software design.

5. Performance

The original Or1ksim OpenRISC test suite codes (written
mostly in assembler) were used as benchmarks for encrypted
running in [8]. Most modern performance benchmark suites
are unavailable because they rely on external library support
such as linear programming packages and math floating
point libraries, as well as faithful system library routines
such as ‘printf’, all of which must be written and de-
bugged. If those could be ported to compilable code in
good time, debugging would take months (the ported gcc
compiler inherits known bugs, such as sometimes not doing
switch statements right, sometimes not initialising arrays
right, etc.). In particular, the well-known ‘spec’ benchmark
suite is unavailable because its source code is commercially
protected. Some standard but less evolved, more standalone,
benchmarks have been got running, such as Dhrystone 2.1.

Table 1 details a base level performance for our proto-
type in the instruction set add test of the Or1ksim suite,
with RC2 64-bit symmetric encryption and before hard-
ware improvements for performance have been applied. The
64:16:20 mix for arithmetic:load/store:control instructions
(no-ops and prefixes discarded) compares to the 60:28:12
mix in the standard textbook [43]. This baseline is 4% better
than the numbers reported in [8]. The test spends 52.7%
of its time in user mode, as against 54.8% in [8] (4% is
2.1/54.8). Pipeline occupation is 1−20.7/52.7=60.7% in
encrypted mode, for 607 Kips (instructions per second) at
1 GHz clock.

The same test with Paillier-72 (128-bit architecture)
gives worse performance, as some of the arithmetic is done
in software. Table 2 compares RC2 with Paillier on the ‘add
test’.

Table 2
add test cycles instructions
RC2 (64-bit) 296368 222006
Paillier-72 438896 226185

The difference is principally due to more pipeline stalls,
because Paillier arithmetic always takes the length of the
pipeline to complete in. There is no such thing as internal
feed forward for the addition carry bit, for instance, because
the result is entirely unknown until it is complete. That stalls
following instructions that need the result almost until the
instruction ahead has exited, leaving most of the pipeline
empty. The disparity increases on swapping addition for

TABLE 1. BASELINE RC2 (64-BIT SYMMETRIC ENCRYPTION)
PERFORMANCE, OR1KSIM ‘ADD TEST’: PROPORTION FINISHING PER

CYCLE.

RC2: cycles 296368, instructions 222006 per cycle

mode user super

arithmetic
{ register instructions 0.2% 0.2%

immediate instructions 7.8% 9.8%

memory
{ load instructions 1.0% 3.0%

store instructions 1.0% 0.0%

control

{
branch instructions 1.1% 5.2%

jump instructions 1.2% 5.1%
sys/trap instructions 0.5% 0.0%

no-op instructions 7.3% 16.8%
prefix instructions 11.8% 0.0%

move from/to SPR instructions 0.1% 2.8%
wait states 20.7% 4.4%

(stalls) (17.4%) ( 3.7%)
(refills) ( 3.3%) ( 0.7%)

total 52.7% 47.3%

Branch Prediction Buffer
hits 10328 ( 55%) misses 8219 ( 44%)

right 8335 ( 44%) right 6495 ( 35%)
wrong 1993 ( 10%) wrong 1724 ( 9%)

User Data Cache
read hits 2942 (99%) misses 0 ( 0%)

write hits 2933 (99%) misses 9 ( 0%)

multiplication, which is entirely done in software. Table 3
compares RC2 with Paillier on the ‘multiplication test’:

Table 3
mul. test cycles instructions
RC2 (64-bit) 235037 141854
Paillier-72 457825 193887

In contrast, performance with symmetric encryptions is
very sensitive to forwarding along the pipeline, allowing
instructions to close up to each other without waiting for
an intermediate write to and read from registers. Table 4
shows that 33% of processor speed is due to forwarding,
while on-the-fly instruction reordering gives another 3%:

Table 4
add test forwarding

RC2 (64-bit) cycles X ×

reordering X 296368 412062
× 315640 441550

Paillier has little sensitivity to forwarding. That is expected
because an arithmetic result is not available before the
penultimate stage. The only prospect for improving Paillier
speed appears to be to compile multithread programs, so
there may be instructions behind that can overtake a stalled
instruction.

We have devised three performance optimisations tai-
lored to the architecture and the bottlenecks noted: (a)
instructions with trivial functionality in the execute phase
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(e.g., ‘cmov,’ the ‘conditional move’ of one register’s data
to another) but stalled in read stage have been allowed to
speculatively proceed on the assumption that they will be
able to pick up the data via forwarding later during their
progress through the pipe6; (b) the fetch stage has been
doubled to get two instructions per cycle and catenate the
prefix instruction to the instruction they prefix instead of
taking up pipeline slots in their own right; (c) a second
pipeline has been introduced to speculatively execute both
sides of a branch at once.
5.1 Flexible staging (a) takes the cycle count in the ‘add
test’ down from 296368 to 259349 cycles. It is very ef-
fective, as may be expected. Innovations (b) and (c) then
contribute as shown in Table 5:

Table 5
add test deprefixing (b)

RC2 (64-bit) cycles X ×

branch both (c) X 237463 257425
× 241992 259349

5.2 Deprefixing (b) is intended to beat the bottleneck caused
by the fact that, in user mode, much of the instruction code
real estate is taken up by embedded (encrypted) constants,
which do not have any functional activity. They take time
to load to the processor and without deprefixing what is
notionally a single instruction would be spread 32 bits at a
time across several stages of the pipeline.

Deprefixing instead binds the embedded constant to
the instruction metadata as the sequence of prefixes and
opcode enters the pipeline, reducing each instruction to a
unit occupying a single pipeline stage. To keep the pipeline
filled, the fetch rate has been increased and a 16×32-bit
instruction buffer is scanned by the decode stage. The last
16 32-bit instructions read are also retained in case of a tight
loop.

The mechanism can sometimes slow down the pipe-
line, because instruction opcodes that are on average closer
together in the pipeline make data hazards more likely.
A mispredicted branch also aborts more partially executed
instruction units than it would have otherwise.
5.3 Branching both ways (c) is not effective in this test
because only 3717 branches were predicted wrongly, but
harder to predict branching code should benefit strongly.

Tables 2-5, though compiled with RC-64, also provide
baselines for AES-128 via the Dhrystone 2.1 benchmarks
shown in the first group of three lines in Table 6:

6. The ‘assumption’ is logically impeccable: the data needed must be
supplied by an instruction ahead, which will finish before this instruction
does and therefore furnish the data while it is still moving through the
pipeline.
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Figure 3. Number of executed cycles with symmetric encryption for the
‘add test’ of Table 1 against number of stages occupied by the multistage
encryption/decryption unit (‘codec’), showing 2.5% extra cost per stage.

Table 6
Dhrystone v2.1 RC2 (64-bit) AES (128-bit) None (32-bit)

Dhrystones per second 246913 183486 350877
VAX MIPS rating 140 104 199

Dhrystone v2.1
(gcc 4.9.2)

Dhrystones per second
VAX MIPS rating

Pentium M 32-bit 1GHz
O0 O2 O6

735294 1470588 2777777
418 836 1580

Dhrystone v2.1
MHz

Dhrystones per second
VAX MIPS rating/GHz

ARM250 ARM926 ARM1176
12 200 772

12300 386540 1695505
583 220 965

That is to say, the numbers in Tables 2-5 should be divided
by 104/140∼ 0.75 to get numbers for AES-128. The slow-
down for 128-bit AES over 64-bit RC2 is mostly due to the
4, not 2, prefixes for an immediate constant in an instruction
carrying immediate data. It illustrates that compilers for
encrypted instruction sets should prefer to avoid inline data.
For comparison, the benchmark run in operator mode, with-
out encryption, is shown in the final column of the first three
lines of the table. Immediate instructions comprise about
half of all instructions in the benchmark mix, and attaching
two or four prefixes to each has a marked effect, even though
the ‘deprefixing’ optimisation is in the hardware. It is not
known yet why it does not do better.

By the Dhrystone measures, the AES-128 prototype runs
as a 330 MHz classic Pentium, or 250 MHz Pentium M. The
list at http://www.roylongbottom.org.uk/dhrystone%20results.htm,
shows a Pentium M is rated at 523 MIPS/GHz and a classic
Pentium is rated at 322 MIPS/GHz. Thus, the RC2 proto-
type equates to a 433 MHz classic Pentium or a 266 MHz
Pentium M. However, the results are compiler-sensitive, as
seen by the variation through optimisation levels 0-6 in the
middle rows of Table 6, and our compiler is rudimentary.

The final group of four lines in Table 6 shows the
manufacturer’s own MIPS ratings for different ARM chips,
ranging from the ARM250 (pre-1990) to the ARM1176
(year 2003). ARM machines run a RISC instruction set
so the benchmarks are more directly comparable with our
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TABLE 7. AN FXA MACHINE CODE INSTRUCTION SET FOR WORKING
WITH ENCRYPTED DATA

fields semantics

add r0 r1 r2 [k]E add r0←[[r1]D +[r2]D + k]E
sub r0 r1 r2 [k]E subtractr0←[[r1]D − [r2]D + k]E
mul r0 r1 r2 [k0]E [k1]E [k2]E multiplyr0←[([r1]D−k1)∗([r2]D−k2)+k0]E
div r0 r1 r2 [k0]E [k1]E [k2]E divide r0←[([r1]D−k1)/([r2]D−k2)+k0]E
xor r0 r1 r2 [k0]E [k1]E [k2]E excl. or r0←[([r1]D−k1)ˆ([r2]D−k2)+k0]E
. . .

movr0 r1 move r0← r1
beq r1 r2 j [k]E skip j instructions if [r1]D = [r2]D + k
bne r1 r2 j [k]E skip j instructions if [r1]D 6= [r2]D + k
blt r1 r2 j [k]E skip j instructions if [r1]D < [r2]D + k
bgt r1 r2 j [k]E skip j instructions if [r1]D > [r2]D + k
ble r1 r2 j [k]E skip j instructions if [r1]D ≤ [r2]D + k
bge r1 r2 j [k]E skip j instructions if [r1]D ≥ [r2]D + k
b j skip j instructions unconditionally
. . .

Legend: the r are register indexes or memory locations, the k are
32-bit integers, the j are instruction address increments, ‘←’ is
assignment. The function [ · ]E represents encryption, [ · ]D decryp-
tion.
prototype’s than are Intel’s. The ARM926 (year 2000) model
is about as fast as our prototype running unencrypted. Those
numbers indicate that our simulation is producing sensible
results. However, compiler details are not available, and the
table has already shown that can make ×2 or more differ-
ence, so ARM’s numbers should be regarded cautiously.

In any case, performance results may be extrapolated as
needed: Fig. 3 shows each extra pipeline stage costs 2.5%,
both with AES and RC2 encryptions.

6. FxA Instruction Set

Standard instruction sets are insecure for encrypted working
(recall the argument in 2.10 that x/x gives an encrypted 1,
which then can be used to generate any desired encrypted
value via addition), but the minimal ‘one instruction’ HERO-
IC instruction set turns out to be immune to the problem.

Denote by a fused anything and add (FxA) instruction
set architecture one in which the compiler is able to displace
the operands x1, x2 arbitrarily via constants k1, k2 embedded
in the instruction, and also displace the result by a constant
k3. So FxA multiplication does:

(x1− k1)∗ (x2− k2)+ k3

That principle governs the design of all instructions. Most
of a complete FxA instruction set for encrypted working is
shown in Table 7. Each arithmetic instruction needs at least
one embedded (encrypted) constant, by which the compiler
may exercise control. Some FxA instructions, e.g. addition,
need only one constant, as

(x1− k1)+(x2− k2)+ k3 = x1 + x2 +(k3− k1− k2)

HEROIC’s instructions are a (tiny) subset.

FxA instructions are secure with respect to several cryp-
tographic notions. First of all, suppose that the processor
enforces the rule that no collisions are possible between
(i) encrypted constants that appear in instructions and (ii)
runtime encrypted data values in registers or memory. For
symmetric encryptions, our prototype can do that via dif-
ferent pseudo-random padding under the encryption. For
a homomorphic encryption like Paillier, a different set of
‘blinding’ factors (a multiplier of the encrypted value that
vanishes without effect during the decryption process) may
be used. Then:

Fact 1. There is no deterministic method by which the op-
erator can read a program C built from FxA instructions,
nor alter it to give an intended encrypted output.

The supporting argument?? depends on the operator, who
is the adversary in this scenario, not being able to assign
any particular meaning to observed changes in encrypted
runtime data or instruction constants. That is true for an
encryption with a relatively long expected time between
re-occurrences of the same encrypted values for some
same underlying unencrypted values (such as AES-128).
However, HEROIC’s one-to-one encryption maps collisions
to equalities underneath the encryption, invalidating the
assumption.

Moreover, the probability of guessing correctly that an
encrypted constant in an instruction is a 1 or 0 is high
whenever a human being has written the code. That makes
a dictionary attack against the encryption feasible. All those
objections may be met by using an obfuscating compiler to
generate the FxA machine code.

We have such a C compiler written in Haskell at http:
//nbd.it.uc3m.es/∼ptb/obfusc comp-0 9.hs. Now understand
by location a register or memory cell, then:

Fact 2. There is a strategy for compiling to FxA code such
that the probability across different compilations that any
particular runtime 32-bit value x for [x]E is in location
l at any given point in the program is uniformly 1/232.

‘The (obfuscating) compiler did it’ is a valid cover story for
any runtime cipherspace collision. The compiler’s strategy
takes advantage of the constants in each FxA instruction
to vary the runtime data written at location l by a random
offset each time the same source code is (re-)compiled.??

For example, the paradigmatic Ackermann function [44]

int A(int m, int n) {
if (m <= 0) return n+1;
if (n <= 0) return A(m-1, 1);
return A(m-1, A(m, n-1));

}

(this function has as much computational complexity as any
computable function) compiles to FxA code that runs with
the trace shown in Table 8 for arguments (3,1). Although the
source contains only the constants 0, 1, the trace shows that
the FxA instructions have been compiled with seemingly
random embedded constants (the decrypted form is shown
in the table, with an ‘E[-]’ to indicate encryption). The trace
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TABLE 8. RUNTIME TRACE (ABRIDGED) FOR THE ACKERMANN
FUNCTION ON (3,1), RESULT 13.

PC instruction update
. . .

35 add t0 a0 zer E[-86921031] t0 = E[-86921028]
36 add t1 zer zer E[-327157853] t1 = E[-327157853]
37 beq t0 t1 2 E[240236822]
38 add t0 zer zer E[-1242455113] t0 = E[-1242455113]
39 b 1
41 add t1 zer zer E[-1902505258] t1 = E[-1902505258]
42 xor t0 t0 t1 E[-1734761313] E[1242455113] E[1902505258]

t0 = E[-17347613130]
43 beq t0 zer 9 E[-1734761313]
53 add sp sp zer E[800875856] sp = E[1687471183]
54 add t0 a1 zer E[-915514235] t0 = E[-915514234]
55 add t1 zer zer E[-1175411995] t1 = E[-1175411995]
56 beq t0 t1 2 E[259897760]
57 add t0 zer zer E[11161509] t0 = E[11161509]
. . .

143 add v0 t0 zer E[42611675] v0 = E[13]
. . .

147 jr ra
STOP

Legend: E[-] denotes an encrypted value. Instructions as in Table 7.

shows random (and encrypted) runtime data values being
written to registers before the return value of (encrypted) 13
is written. That is only recognisable because the compiler
has been told on this occasion not to vary the result value
in register v0 (the standard OpenRISC return value regis-
ter). Otherwise the return value would have been another
random-looking value, displaced, however, by an amount
known to the code author.

Every time the compiled code is to be reused on new
(encrypted) data, it must be recompiled and reencrypted
from source, so the compiler can introduce new variations.
But if the input data is known in advance, it can safely
be embedded in the code and the code furnished with
an outer loop over the data instances. So, the platform is
primarily practical as a secure server for arbitrary remote
computations with that mode of working. However, it seems
that the obfuscating scheme may be varied dynamically at
runtime too, though we have not yet begun to explore the
details, and that would allow continuous computation to be
carried out safely.

Whatever the ultimate mode of use, Fact 2 formally
implies?? the cryptographic notion of semantic security for
runtime data against the operator as adversary. That is, the
data is as safe as if the computation were carried out in a
locked safe, only the final output showing [45].

It is planned to equip the prototype processor for FxA by
installing an extra pre-decode stage to split incoming FxA
instructions into sequences of OpenRISC instructions.

7. Conclusion

Computing in which user data is secure against the operator,
operating system and other insiders is logically possible,
using the ‘encrypted computing’ approach. That means a
processor that ‘works encrypted’, taking encrypted inputs
and passing them through encrypted intermediate states to
produce encrypted outputs, plus the appropriate machine

code instruction set, plus an ‘obfuscating compiler’. Each
of those is logically necessary for security, and the three
together can be proved to provide it. The question is whether
the combination forms a system that works well and quickly
enough to be acceptable or practical. This paper has at-
tempted to show that the answer is already ‘yes’, in order
to interest the community in bringing the hardware to state
of the art levels.

A superscalar pipelined design for a 32-bit RISC pro-
cessor that works encrypted has been described here as the
basis of that system. It uses the principle of a modified arith-
metic to generate encrypted working. Performance measures
running the standard OpenRISC instruction set with AES
encryption have been reported, achieving around the level
of a 330 MHz Pentium M, given a 1 GHz clock. We believe
that these figures should be enough to provide a convincing
case.

In the processor, the operator has unlimited, privileged
access to registers and memory in the conventional way, yet
cannot access unencrypted user data, because of the hard-
ware protocol embedded in the design. The ‘FxA’ modified
RISC instruction set has the property that the encrypted
data in every program code and trace may be interpreted
arbitrarily, allowing semantic security to be proved for data
in the three-part system of processor, instruction set and
compiler.
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