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Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, and fur-
thermore the first side-channel attack on cryptosystems
leveraging P-256 constant-time scalar multiplication.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak
critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-

tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [7], and attacks continue on the same code path to
this date [3, 5, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations
from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both
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the required amount of signatures and side-channel data
compared to previous work [2], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [3] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

• We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

• We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.1)

• We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

• We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.2)

2 Background

2.1 Elliptic Curve Cryptography

Developed in the mid 1980’s, elliptic curves were intro-
duced to cryptography by Miller [20] and Koblitz [17]
independently. Elliptic Curve Cryptography (ECC) be-
came popular mainly for two important reasons: no sub-
exponential time algorithm to solve the elliptic curve dis-
crete logarithm problem is known for well-chosen pa-

rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y ∈ GF(p) solutions the equation

E : y2 = x3 +ax+b

along with an identity element form an abelian group.
Parameters of interest here are the NIST standard curves
that set a = −3 and p a Mersenne-like prime, both cho-
sen for their performance characteristics.

2.2 Digital Signatures

ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).
Parameters: A generator G∈E of an elliptic curve group
of prime order n and an approved hash function h (e.g.
SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen from {1 . .n−1} and the corresponding
public key D = [α]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.
Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(αA,DA), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k < n.

2. Compute r = ([k]G)x mod n.
3. Compute s = k−1(h(m)+αAr) mod n.
4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 < s < n.

2. Compute w = s−1 mod n and h(m).
3. Compute u1 = h(m)w mod n and u2 = rw mod n.
4. Compute (x,y) = [u1]G+[u2]DA.
5. Accept the signature if and only if x = r mod n

holds.
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Side-channel attacks against ECDSA. Thanks to the
adoption of ECC and the increasing use of digital sig-
natures, ECDSA has become a popular algorithm choice
for digital signatures. ECDSA’s popularity makes it a
good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces ki from the side-channel, leading to a bound
on the value αti − ui that is shorter than the interval
{1 . .n−1} for some known integers ti and ui. This leads
to a version of the Hidden Number Problem (HNP) [6]:
recover α given many (ti,ui) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [7] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [8] attack ECDSA with binary
curves in OpenSSL 0.9.8o. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [5] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [3] improve on previous results by using
a performance-degradation attack to amplify the side-

channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.4,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 Binary Extended Euclidean Algorithm

The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 2, 4].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Figure 1 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Aciiçmez et al.
[1], Aravamuthan and Thumparthy [4] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [4] attacked BEEA using Power Anal-
ysis attacks, whereas Aciiçmez et al. [1] attacked BEEA
through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce k, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
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Input: Integers k and p such that gcd(k, p) = 1.
Output: k−1 mod p.
v← p, u← k, X ← 1, Y ← 0
while u 6= 0 do

while even(u) do
u← u/2 /* u loop */

if odd(X) then X ← X + p
X ← X/2

while even(v) do
v← v/2 /* v loop */

if odd(Y ) then Y ← Y + p
Y ← Y/2

if u≥ v then
u← u− v
X ← X−Y

else
v← v−u
Y ← Y −X

return Y mod p

Figure 1: Binary Extended Euclidean Algorithm.

3. Number and order of subtractions u := u− v.
4. Number and order of subtractions v := v−u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [4] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Aldaya et al. [2] demonstrated
a Simple Power Analysis (SPA) attack against a custom
implementation of the BEEA. The authors’ main contri-
bution consists of demonstrating it is possible to partially
determine the order of subtractions on branches u and
v only by knowing the number of right-shift operations
performed in every while-loop iteration. Under a perfect
SPA trace, the authors use an algebraic algorithm to de-
termine a short execution sequence of u and v subtraction
branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on

the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.4 OpenSSL History

OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-
brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.
0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN FLG CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN mod exp mont consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].
0.9.8. The work by Aciiçmez et al. [1] targeting BEEA
prompted the introduction of the BN mod inverse no -

branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN div updated to respect the BN FLG CON-

STTIME flag. Tracking callers to BN mod inverse, the
commit1 enables the BN FLG CONSTTIME across several
cryptosystems where the modular inversion inputs were

1https://github.com/openssl/openssl/commit/

bd31fb21454609b125ade1ad569ebcc2a2b9b73c

4

https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c


deemed security critical, notably the published attack tar-
geting RSA.

1.0.1. Based on the work by Käsper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [7] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit2 included sev-
eral new EC METHOD implementations, of which arguably
EC GFp nistp256 method has the most real world ap-
plication to date. This new scalar multiplication imple-
mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec nistp 64 gcc 128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.

1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC GFp nistz256 -

method. Here we focus on a cherry picked commit3

that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Möller
observes4: “It seems that the BN MONT CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN mod exp mont const-

time and Fermat’s Little Theorem (FLT).

2https://github.com/openssl/openssl/commit/

3e00b4c9db42818c621f609e70569c7d9ae85717
3https://github.com/openssl/openssl/commit/

8aed2a7548362e88e84a7feb795a3a97e8395008
4https://rt.openssl.org/Ticket/Display.html?id=

3149&user=guest&pass=guest

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN mod exp mont consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

OpenSSL version 0.9.6 0.9.7 0.9.8 1.0.0 1.0.1 1.0.2
BN mod inverse X X X X X X
BN FLG CONSTTIME — X X X X X
BN mod inverse no branch — — X X X X
ec nistp 64 gcc 128 — — — — X X
BN mod exp mont consttime — — — — — X
EC GFp nistz256 method — — — — — X

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction
cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec -

nistp 64 gcc 128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN mod in-

verse no branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN mod -

inverse function was modified to first check the BN -

FLG CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN mod inverse no -

branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN mod inverse within the li-
brary, and enable the BN FLG CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN FLG EXP -

CONSTTIME flag that was replaced with BN FLG CONST-

TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec nistp 64 gcc 128 provides constant-
time scalar multiplication to compute the r component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN mod inverse function, not taking the BN -

mod inverse no branch code path. In the end, the root
cause is that the ECDSA signing implementation does
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+--bn_gcd.c--------------------------------------------------------------------+

|226 BIGNUM *BN_mod_inverse(BIGNUM *in, |

|227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |

|228 { |

B+ |229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |

|230 BIGNUM *ret = NULL; |

|231 int sign; |

|232 |

|233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |

>|234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |

|235 return BN_mod_inverse_no_branch(in, a, n, ctx); |

|236 } |

+------------------------------------------------------------------------------+

|0x7ffff77da1c7 <BN_mod_inverse+56> mov -0x90(%rbp),%rax |

|0x7ffff77da1ce <BN_mod_inverse+63> mov 0x14(%rax),%eax |

|0x7ffff77da1d1 <BN_mod_inverse+66> and $0x4,%eax |

|0x7ffff77da1d4 <BN_mod_inverse+69> test %eax,%eax |

|0x7ffff77da1d6 <BN_mod_inverse+71> jne 0x7ffff77da1e9 <BN_mod_inverse+90> |

|0x7ffff77da1d8 <BN_mod_inverse+73> mov -0x98(%rbp),%rax |

|0x7ffff77da1df <BN_mod_inverse+80> mov 0x14(%rax),%eax |

|0x7ffff77da1e2 <BN_mod_inverse+83> and $0x4,%eax |

|0x7ffff77da1e5 <BN_mod_inverse+86> test %eax,%eax |

>|0x7ffff77da1e7 <BN_mod_inverse+88> je 0x7ffff77da212 <BN_mod_inverse+131> |

+------------------------------------------------------------------------------+

native process 3399 In: BN_mod_inverse L234 PC: 0x7ffff77da1e7

(gdb) run dgst -sha256 -sign prime256v1.pem -out lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256v1.pem ...

Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182

#2 0x00007ffff782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105

#3 0x00007ffff782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007ffff782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74

#5 0x00007ffff782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007ffff782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...

(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)

expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1 = 0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 = 0

Figure 2: Modular inversion within OpenSSL 1.0.1u
(built with ec nistp 64 gcc 128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN mod -

inverse no branch never takes place, since the caller
ecdsa sign setup fails to set the BN FLG CONSTTIME

flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

not set the BN FLG CONSTTIME flag for nonces. Scalar
multiplication with ec nistp 64 gcc 128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN mod inverse requires said
flag to take the new secure code path.

Figure 2 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa sign setup

contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing both r and s, and so on.
When control flow reaches callee BN mod inverse, in-
puts a and n are the nonce and generator order, respec-
tively. Stepping by instruction, it shows that the call
to BN mod inverse no branch never takes place, since
the BN FLG CONSTTIME flag is not set for either of these
operands. Failing this security critical branch, the control
flow continues to the stock, classical BEEA implementa-
tion.

3.1 Forks
OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.
LibreSSL. An 04 Nov 2016 commit5 cherry picked the
EC GFp nistz256 method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN mod exp mont consttime ECDSA nonce inver-
sion. That is, as of this writing the current LibreSSL mas-
ter branch can feature constant-time P-256 scalar multi-
plication with either EC GFp nistz256 method or EC -

GFp nistp256 method callees depending on compile-
time options and minor code changes, but inverts all EC-
DSA nonces with the BN mod inverse callee that fails
the same security critical branch as OpenSSL, due to
the caller ecdsa sign setup not setting the BN FLG -

CONSTTIME flag for ECDSA signing nonces. We con-
firmed the vulnerability using a LibreSSL build with de-
bug symbols, checking the inversion code path with a
debugger.
BoringSSL. An 03 Nov 2015 commit6 picked up
the EC GFp nistz256 method implementation for Bor-
ingSSL. That commit also included the BN mod exp -

mont consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree7 is slightly
older on the same day. It features constant-time P-256
scalar multiplication with callee EC GFp nistp256 -

method, but inverts ECDSA signing nonces with callee
BN mod inverse that fails the same security critical
branch, again due to the BN FLG CONSTTIME flag not be-
ing set by the caller—i.e. it follows essentially the same
code path as OpenSSL. We verified the vulnerability af-
fects said tree using a debugger.

4 Exploiting the Vulnerability

Our attack setup consists of an Intel Core i5-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.

We built OpenSSL 1.0.1u with debugging symbols on
the executable. Debugging symbols facilitate mapping

5https://github.com/libressl-portable/openbsd/

commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
6https://boringssl.googlesource.com/boringssl/+/

18954938684e269ccd59152027d2244040e2b819%5E%21/
7https://boringssl.googlesource.com/boringssl/+/

27a0d086f7bbf7076270dbeee5e65552eb2eab3a

6

https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a


source code to memory addresses, serving a double pur-
pose to us: (1) Improve our degrading attack (see Sec-
tion 4.1); (2) Probing the sequence of operations accu-
rately. Note that debugging symbols are not loaded dur-
ing run time, thus not affecting victim’s performance.
Attackers can map source code to memory addresses by
using reverse engineering techniques [9] if debugging
symbols are not available. We set enable-ec nistp -

64 gcc 128 at build time to ensure faster execution and
constant-time scalar multiplication. Also, we set shared
to compile OpenSSL as a shared object.

As seen in the Figure 2 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa sign -

setup to prepare the required parameters and compute
the actual signature. The random nonce k is created and
to avoid possible timing attacks [8] an equivalent fixed
bit-length nonce is computed. The length of the equiv-
alent nonce k̂ is fixed to one bit more than that of the
group’s prime order n, thus the equivalent nonce satisfies
k̂ = k+ γ ·n where γ ∈ {1,2}.

Additionally, ecdsa sign setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by s, the latter
for which OpenSSL first needs to compute the modular
inverse k−1. To do so, it calls BN mod inverse, where
the BN FLG CONSTTIME flag is checked but due to the
vulnerability discussed in Section 3 the condition fails,
therefore proceeding to compute k−1 using the classical
BEEA.

Note that before executing the BEEA, the equivalent
nonce k̂ is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa sign setup.

The goal of our attack is to accurately trace and re-
cover side-channel information of the BEEA execution,
allowing us to construct the sequence of right-shift and
subtraction operations. To that end, we identify the rou-
tines used in the BN mod inverse method leaking side-
channel information.

The BN mod inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN uadd, which is a wrapper
for bn add words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN rshift1 routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test u and v bit values at this off-

set. This is an optimization allowing u and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN usub routine, which is a pure C implementation.

Similar in spirit to previous works [5, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.3, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code func-
tions BN rshift1 and BN usub. These two functions
provide the best resolution and combination of probes,
allowing us to identify the critical input-dependent
branches.

The modular inversion operation is an extremely fast
operation and only a small part of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.1.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.

Our attack scenario exploits three CPU cores by run-
ning a malicious process in every core and the vic-
tim process—OpenSSL’s dgst command—in the fourth
core. The attack consists of a spy process probing the
right-shift and subtraction operations running in parallel
with the victim application. Additionally, two degrad-
ing processes slow down victim’s execution, allowing us
to capture the LS sequence almost perfectly. Unfortu-
nately there is not always a reliable indicator in the signal
for transitions from one right-shift operation to the next,
therefore we estimate the number of adjacent right-shift
operations by the horizontal distance between subtrac-
tions. Figure 3 contains sample raw traces captured in
our test environment.

Our spy process captures all the subtraction operations
but duplicates some right-shift operations, therefore we
focus on the first part of the sequence to recover some
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Figure 3: Raw traces for the beginning of two BEEA
executions. The L probe tracks right-shift latencies and
S probe subtraction. Latency is in CPU clock cycles.
For visualization, focus on the amplitude valleys, i.e. low
latency. Top: LS sequence starting SLLLL corresponds
to j = 5, `i = 4, ai = 1. Bottom: LS sequence starting
LSLLSLS corresponds to j = 7, `i = 5, ai = 10. See
Section 4.2 for notation.

bits of information from every trace. (See Section 4.2.)

4.1 Improving Performance Degradation
Performance degradation attacks amplify side-channel
signals, improving the quality and amount of information
leaked. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]). It can be difficult and time consuming to
identify the “hot” memory addresses to degrade that re-
sult in the best information leak.

Allan et al. [3] suggest two approaches to find suitable
memory lines to degrade. The first approach is to read
and understand the victim code in order to identify fre-
quently accessed code sections such as tight loops. This
approach requires understanding the code, a task that
might not always be possible, takes time and it is prone to
errors [26], therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to gcov output.

In addition to the caveats mentioned previously, we

note that gcov profiling tool adds instrumentation to the
code, skewing the performance of the program, therefore
following this approach requires building the target code
twice, one with instrumentation to identify code lines and
other only with debugging symbols to measure the per-
formance.

To that end, we use a similar but faster and more
quantitative approach, potentially more accurate since it
leverages additional metrics. Similar to [3] we test the
efficiency of the attack for several candidate memory
lines. We compare cache-misses during a regular exe-
cution against a degraded modular inversion operation,
resulting in a list of the “hottest” memory lines, building
the code only once with debugging symbols and using
hardware register counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s inverse operation, counting the num-
ber of cache-misses during a regular execution of the op-
eration. Next, we degrade—by flushing in a loop from
the cache—one memory line at a time from the caller
BN mod inverse and callees BN rshift1, BN rshift,
BN uadd, bn add words, BN usub.

The perf command output gives us the real count
of cache-misses during the regular execution of BN -

mod inverse, then under degradation of each candidate
memory line. This effectively identifies the “hottest” ad-
dresses during a modular inverse operation with respect
to both the cache and the actual malicious processes we
will use during the attack.

Table 2 summarizes the results over 1,000 iterations of
regular modular inversion execution versus the degrada-
tion of different candidate memory lines identified using
our technique. The table shows cache-miss rates rang-
ing from ~35% (BN rshift and BN usub) to ~172%
(BN rshift1) for one degrading address. Degrading the
overall 6 “hottest” addresses accessed by the BN mod -

inverse function results in an impressive cache-miss
rate of ~1,146%.

Interestingly, the last column of Table 2 reveals the
real impact of cache-misses in the execution time of
the modular inversion operation. Despite the impres-
sive cache-miss rates, the clock cycle slow down is more
modest with a maximum slow down of ~18. These re-
sults suggest that in order to get a quality trace, the goal is
to achieve an increased rate of cache-misses rather than a
CPU clock cycle slow down because whereas the cache-
misses suggest a CPU clock cycle slow down, it is not
the case for the opposite direction.

The effectiveness of the attack varies for each use case
and for each method called, since some of the routines
contain internal loops called several times (e.g. BN -
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rshift1) whereas in some other routines the internal
loops are called only few times (e.g. BN usub) or there
are no internal loops at all.

For our use case, we observe the best results with 6
degrading addresses across two degrading processes ex-
ecuting in different CPU cores. Additional addresses do
not provide any additional slow down, negatively impact-
ing the FLUSH+RELOAD technique.

4.2 Improving Key Recovery

Arguably the most significant contribution of [2] is they
show the LS sequence is sufficient to extract a certain
number of LSBs from nonces, even when it is not known
whether branch u or v gets taken. They give an algebraic
method to recover these LSBs, and utilize these partial
nonce bits in a lattice attack, using the formalization in
[21, 22]. The disadvantage of that approach is that it fixes
the number of known LSBs (denoted `) per equation [2,
Sec. 5]: “when a set of signatures are collected such that,
for each of them, [`] bits of the nonce are known, a set
of equations . . . can be obtained and the problem of find-
ing the private key can be reduced to an instance of the
[HNP].” Fixing ` impacts their results in two important
ways. First, since their lattice utilizes a fixed `, they fo-
cus on the ability to algebraically recover only a fixed
number of bits from the LS sequence. From [2, Tbl. 1],
our target implementation is similar to their “Standard-
M0” target, and they focus on ` ∈ {8,12,16,20}. For
example, to extract ` = 8 LSBs they need to query on
average 4 signatures, discarding all remaining signatures
that do not satisfy `≥ 8. Second, this directly influences
the number of signatures needed in the lattice phase.
From [2, Tbl. 2-3], for 256-bit n and ` = 8, they re-
quire 168 signatures. This is because they are discard-
ing three out of four signatures on average where ` < 8,
then go on to construct a d + 1-dimension lattice where
d = 168/4 = 42 from the signatures that meet the ` ≥ 8
restriction. The metric of interest from the attacker per-
spective is the number of required signatures.

In this section, we improve with respect to both
points—extracting a varying number of bits from every
nonce, subsequently allowing our lattice problem to uti-
lize every signature queried, resulting in a significantly
reduced number of required signatures.
Extracting nonce bits. Rather than focusing on the aver-
age number of required signatures as a function of a num-
ber of target LSBs, our approach is to examine the aver-
age number of bits extracted as a function of LS sequence
length. We empirically measured this quantity by gener-
ating βi uniformly at random from {1 . .n−1} for P-256
n, running the BEEA on βi and n to obtain the ground
truth LS sequence, and taking the first j operations from
this sequence. We then grouped the βi by these length- j

subsequence values, and finally determined the maximal
shared LSBs value of each group. Intuitively, this maps
any length- j subsequence to a known LSBs value. For
example, a sequence beginning LLS has j = 3, ` = 3,
a = 4 interpreted as a length-3 subsequence that leaks 3
LSBs with a value of 4.

We performed 226 trials (i.e. 1 ≤ i ≤ 226) for each
length 1 ≤ j ≤ 16 independently and Figure 4 contains
the results. Naturally as the length of the sequence
grows, we are able to extract more bits. But at the
same time, in reality for practical side-channels longer
sequences are more likely to contain trace errors (i.e. in-
correctly inferred LS sequences), ultimately leading to
nonsensical lattice problems for key recovery. So we are
looking for the right balance between these two factors.
Figure 4 allows us to draw several conclusions, includ-
ing but not limited to: (1) Sequences of length 5 or more
allow us to extract a minimum of 3 nonce bits per sig-
nature; (2) Similarly length 7 or more for a minimum of
4 nonce bits; (3) The average number of bits extracted
grows rapidly at first, then the growth slows as the se-
quence length increases. This observation pairs nicely
with the nature of side-channels: attempting to target
longer sequences (risking trace errors) only marginally
increases the average number of bits extracted. From the
lattice perspective, ` ≥ 3 is a practical requirement [21,
Sec. 4.2] so in that respect sequences of length 5 is the
minimum to guarantee that every signature can be used
as an equation for the lattice problem.

To summarize, the data used to produce Figure 4 al-
lows us to essentially build a dictionary that maps LS
sequences of a given length to an (`i,ai) pair, which we
now define and utilize.
Recovering private keys. We follow the formalization
of [21, 22] with the use of per-equation `i due to [5,
Sec. 4]. Extracted from our side-channel, we are left with
equations ki = 2`ibi +ai where `i and ai are known, and
since 0 < ki < n it follows that 0 ≤ bi ≤ n/2`i . Denote
bxcn modular reduction of x to the interval {0 . .n− 1}
and |x|n to the interval {−(n−1)/2 . .(n−1)/2}. Define
the following (attacker-known) values.

ti = bri/(2`isi)cn
ûi = b(ai−hi/si)/2`icn

It now follows that 0≤ bαti− ûicn < n/2`i . Setting

ui = ûi +n/2`i+1, we obtain

vi = |αti−ui|n ≤ n/2`i+1,

i.e. integers λi exist such that |vi−λin| ≤ n/2`i+1 holds.
The ui approximate αti since they are closer than a uni-
formly random value from {1 . .n−1}, leading to an in-
stance of the HNP [6]: recover α given many (ti,ui)
pairs.
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Target Cache-misses (CM) Clock cycles (CC) CM/CMBL CC/CCBL

No attack—Base line (BL) 13.881 211,324.839 1 1

BN rshift1 2,396.813 947,925.793 172.668 4.485

BN usub 489.072 364,399.371 35.233 1.724

BN mod inverse 956.531 540,357.253 68.909 2.556

BN uadd 855.165 485,088.491 61.606 2.295

bn add words 1,124.368 558,839.554 81 2.644

BN rshift 514.938 367,929.058 37.096 1.741

Previous “hot” addresses 1,0280.147 2,576,360.921 740.591 12.191

Overall “hottest” addresses 1,5910.457 3,817,748.641 1,146.203 18.065

Table 2: perf cache-misses and CPU clock cycle statistics over 1,000 iterations for relevant routines called by the
BN mod inverse method.
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Figure 4: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. Error bars are one standard deviation on each side.

Consider the rational d + 1-dimension lattice gener-
ated by the rows of the following matrix.

B =



2`1+1n 0 . . . . . . 0

0 2`2+1n
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 2`d+1n 0

2`1+1t1 . . . . . . 2`d+1td 1


Setting

~x = (λ1, . . . ,λd ,α)

~y = (2`1+1v1, . . . ,2`d+1vd ,α)

~u = (2`1+1u1, . . . ,2`d+1ud ,0)

establishes the relationship~xB−~u =~y. Solving the CVP
with inputs B and ~u yields ~x and hence α . We use the
embedding strategy [13, Sec. 3.4] to heuristically reduce
CVP approximations to Shortest Vector Problem (SVP)
approximations. Consider the rational d + 2-dimension
lattice generated by the rows of the following matrix.

B̂ =

[
B 0
~u n

]
There is a reasonable chance that lattice-reduced B̂ will
contain the short lattice basis vector (~x,−1)B̂ = (~y,−n),
revealing α . To extend the search space, we use the ran-
domization technique inspired by Gama et al. [12, Sec.
5], shuffling the order of ti and ui and multiplying by a
random sparse unimodular matrix between lattice reduc-
tions.
Empirical results. Table 3 contains our empirical results
for various lattice parameters targeting P-256. As part
of our experiments, we were able to successfully repro-
duce and verify the ` ∈ {8,12}, lgn≈ 256 lattice results
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Table 3: P-256 ECDSA lattice attack improvements for
BEEA leakage. Empirical values are over 200 trials (4hr
max trial duration). Lattice dimension is d + 2. The
number of leaked LSBs per nonce is `. LS subsequence
length is j. The average total number of leaked nonce
bits per successful HNP instance is µl . CPU time is the
median.

Signa- Success CPU
Source tures d ` j µl Rate (%) Minutes
Aldaya et al. [2] 168 42 8 — 336.0 100.0 0.7
Aldaya et al. [2] 312 24 12 — 288.0 100.0 0.6
This work 50 50 {4 . .7} 7 249.7 14.0 79.5
This work 55 55 {4 . .7} 7 268.8 98.0 1.7
This work 60 60 {4 . .7} 7 293.4 100.0 0.7
This work 70 70 {3 . .5} 5 258.2 5.0 130.8
This work 80 80 {3 . .5} 5 286.1 94.5 13.2
This work 90 90 {3 . .5} 5 321.2 100.0 4.0

of Aldaya et al. [2] in our environment for comparison.
While the goal is to minimize the number of required
signatures, this should be weighed with observed HNP
success probability, affecting search duration. From Fig-
ure 4 we focus on LS subsequence lengths j ∈ {5,7} that
yield `i nonce LSBs from ranges {3 . .5} and {4 . .7}, re-
spectively. Again this is in contrast to [2] that fixes `
and discards signatures—this is the reason their signature
count is much higher than the d +2 lattice dimension in
their case, but equal in ours.

A relevant metric affecting success probability is the
total number of known nonce bits for each HNP instance.
Naturally as this sum approaches lgn one expects correct
solutions to start emerging. On the other hand, increas-
ing this sum demands querying more signatures, at the
same time increasing d and lattice methods become less
precise. For a given HNP instance, denote l =∑

d
i=1 `i, i.e.

the total number of known nonce bits over all the equa-
tions for the particular HNP instance. Table 3 denotes µl
the mean value of l over all successful HNP instances—
intuitively tracking how many known nonce bits needed
in total to reasonably expect success.

We ran 200 independent trials for each set of param-
eters on a computing cluster with Intel Xeon X5650
nodes. We allowed each trial to execute at most four
hours, and we say successful trials are those HNP in-
stances recovering the private key within this allotted
time. Our lattice implementation uses Sage software
with BKZ [25] reduction, block size 30.

To summarize, utilizing every signature in our HNP
instances leads to a significant improvement over previ-
ous work with respect to both the number of required
signatures and amount of side-channel data required.

5 Conclusion

In this work, we disclose a new vulnerability in widely-
deployed software libraries that causes ECDSA nonce
inversions to be computed with the BEEA instead of a
code path with microarchitecture attack mitigations. We
design and demonstrate a practical cache-timing attack
against this insecure code path, leveraging our new per-
formance degradation metric. Combined with our im-
proved nonce bits recovery approach and lattice parame-
terization, this enable us to recover P-256 ECDSA pri-
vate keys from OpenSSL despite constant-time scalar
multiplication. As far as we are aware, this is the first
cache-timing attack targeting nonce inversion in Open-
SSL, and furthermore the first side-channel attack against
cryptosystems leveraging its constant-time P-256 scalar
multiplication methods. Our contributions traverse both
practice and theory, recovering keys with as few as 50
signatures and corresponding traces.

Stepping back from the concrete side-channel attack
we realized here, our improved nonce bit recovery ap-
proach coupled with tuned lattice parameters demon-
strates that even small leaks of BEEA execution can have
disastrous consequences. Observing as few as the first 5
operations in the LS sequence allows every signature to
be used as an equation for the lattice problem.

The rapid development of cache-timing attacks paired
with the need for fast solutions and mitigations led to
the inclusion of the BN FLG CONSTTIME flag in Open-
SSL. Over the years, the flag proved to be useful when
introducing new constant-time implementations, but un-
fortunately its usage is now beyond OpenSSL’s original
design. As new cache-timing attacks emerged, the us-
age of the flag increased throughout the library. At the
same time the programming error probability increased,
and many of those errors permeated to forks such as
LibreSSL and BoringSSL. The recent exploitation sur-
rounding the flag’s usage, this work included, highlights
it as a prime example of why failing securely is a fun-
damental concept in security by design. For example,
P-256 takes the constant-time scalar multiplication code
path by default, oblivious to the flag, while in stark con-
trast modular inversion relies critically on this flag being
set to follow the code path with microarchitecture attack
mitigations.

Following responsible disclosure procedures, we re-
ported the issue to the developers of the affected products
after our findings. Additionally we provided a patch, the
simplest software-based solution, to mitigate our attack.
OpenSSL assigned CVE-2016-7056 based on our work.
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A Mitigation

Below is the fix for CVE-2016-7056 in uuencode format.

begin-base64 664 fix_CVE-2016-7056.patch
RnJvbSAyNDliY2YzMTQwNWUxNjIyZDA1ZWY2MGRjNWU3M2M1NGVmYTY0ZjNj
IE1vbiBTZXAgMTcgMDA6MDA6MDAgMjAwMQpGcm9tOiA9P1VURi04P3E/Q2Vz
YXI9MjBQZXJlaWRhPTIwR2FyYz1DMz1BRGE/PSA8Y2VzYXIucGVyZWlkYWdh
cmNpYUB0dXQuZmk+CkRhdGU6IEZyaSwgMTYgRGVjIDIwMTYgMTI6MDI6MTkg
KzAyMDAKU3ViamVjdDogW1BBVENIXSBFQ0RTQSB2dWxuZXJhYmxlIHRvIGNh
Y2hlLXRpbWluZyBhdHRhY2suIEJOX21vZF9pbnZlcnNlIGZhaWxzCiB0byB0
YWtlIGNvbnN0YW50LXRpbWUgcGF0aCwgdGh1cyBsZWFraW5nIG5vbmNlJ3Mg
aW5mb3JtYXRpb24uCgotLS0KIGNyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIHwg
MiArKwogMSBmaWxlIGNoYW5nZWQsIDIgaW5zZXJ0aW9ucygrKQoKZGlmZiAt
LWdpdCBhL2NyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKaW5kZXggNGM1ZmE2Yi4uNzJlN2MwNSAxMDA2NDQKLS0t
IGEvY3J5cHRvL2VjZHNhL2Vjc19vc3NsLmMKKysrIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKQEAgLTE0Nyw2ICsxNDcsOCBAQCBzdGF0aWMgaW50IGVj
ZHNhX3NpZ25fc2V0dXAoRUNfS0VZICplY2tleSwgQk5fQ1RYICpjdHhfaW4s
IEJJR05VTSAqKmtpbnZwLAogICAgICAgICAgICAgaWYgKCFCTl9hZGQoaywg
aywgb3JkZXIpKQogICAgICAgICAgICAgICAgIGdvdG8gZXJyOwogCisgICAg
ICAgIEJOX3NldF9mbGFncyhrLCBCTl9GTEdfQ09OU1RUSU1FKTsKKwogICAg
ICAgICAvKiBjb21wdXRlIHIgdGhlIHgtY29vcmRpbmF0ZSBvZiBnZW5lcmF0
b3IgKiBrICovCiAgICAgICAgIGlmICghRUNfUE9JTlRfbXVsKGdyb3VwLCB0
bXBfcG9pbnQsIGssIE5VTEwsIE5VTEwsIGN0eCkpIHsKICAgICAgICAgICAg
IEVDRFNBZXJyKEVDRFNBX0ZfRUNEU0FfU0lHTl9TRVRVUCwgRVJSX1JfRUNf
TElCKTsKLS0gCjIuNy40Cgo=
====
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