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Abstract. We introduce a new technique for tight security proofs called work
factor partitioning. Using this technique in a modified version of the framework
of Döttling and Schröder (CRYPTO 2015), we obtain the first generic construc-
tion of tightly-secure pseudorandom functions (PRFs) from PRFs with small do-
main.
By instantiating the small-domain PRFs with the Naor-Reingold function (FOCS
1997) or its generalization by Lewko and Waters (ACM CCS 2009), this yields
the first fully-secure PRFs whose black-box security proof loses a factor of only
O(log2 λ), where λ is the security parameter.
Interestingly, our variant of the Naor-Reingold construction can be seen as a stan-
dard Naor-Reingold PRF (whose security proof has a loss ofΘ(λ)), where a spe-
cial encoding is applied to the input before it is processed. The tightness gain
comes almost for free: the encoding is very efficiently computable and increases
the length of the input only by a constant factor smaller than 2.

1 Introduction

Pseudorandom functions. A pseudorandom function (PRF) is a function F : K×D →
G with the following security property. For random k

$← K, the function F (k, ·) is com-
putationally indistinguishable from a random function R(·), given oracle access to ei-
ther F (k, ·) orR(·). PRFs are a foundational cryptographic primitive with countless ap-
plications. They can be used to obtain simple and efficient constructions of message au-
thentication codes, symmetric encryption, and key derivation algorithms, and form use-
ful building blocks for many other primitives, like digital signatures. See [19,4,6,20,26],
for example. While PRFs can be constructed generically from one-way functions (via
pseudorandom generators) [19], this generic construction is rather inefficient and not
“tight”. Therefore we seek to construct efficient PRFs from as-weak-as-possible as-
sumptions and with tight security proof.

Tight security. In a cryptographic security proof, we often consider an adversary A
against a primitive like a PRF, and describe a reduction B that runs A as a subroutine
to break some computational problem which is assumed to be hard. Let (tA, εA) and
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(tB, εB) denote the running time and success probability ofA and B, respectively. Then
we say that adversary B loses a factor `, if

tB
εB
≥ ` · tA

εA

A reduction is considered “efficient”, if ` is bounded by a polynomial in the security
parameter. We say that a reduction is “tight”, if ` is small. Our goal is to construct
reductions B such that ` is as small as possible. Ideally we would like to have ` = O(1)
constant, but there are many examples of cryptographic constructions and primitives
where this is impossible to achieve, see [15,25,22,28,3] for instance.

The search for tight reductions is motivated by the theoretical search for provably-
secure cryptosystems whose security guarantees are independent of adversarial behav-
ior and the practical necessity of concrete security bounds for the theoretically-sound
selection of cryptographic parameters, such as key lengths.

Black-box vs. non-black-box reductions. One can consider two different types of re-
ductions:

1. Non-black-box reductions, which may use some a priori information about the ad-
versary.
For example, in the PRF security experiment a reduction may have to prepare for
a certain number of oracle queries by the adversary. If this number is not known,
then the reduction may prepare for too many or too few queries. This would either
increase the running time or decrease the success probability of the reduction, at
the cost of tightness.

2. Black-box reductions, which do not require any a priori information about a given
adversary.

There are settings where it may be reasonable to assume that a reduction has access
to certain a priori information about the adversary. For example, an adversary A may
be given as a circuit with a certain number of “oracle query gates”. A non-black-box
reduction may count the number of these gates to estimate the number of oracle queries.
However, we caution that this only yields an upper bound on the number of queries
made by A. For example, circuit A may contain a very large number of “oracle query
gates”, but with most of these gates lying on an execution path which is rarely or never
visited. Here a reduction which counts the “oracle query gates” would prepare for too
many oracle queries, an thus lose tightness.

Furthermore, a reduction is usually not able to perform any sophisticated analysis
of the given adversary without losing tightness. For example, a reduction may run the
adversary to determine the (expected) number of oracle queries, but this would increase
the running time of the reduction.

In the context of tight reductions we should therefore consider the black-box set-
ting, where no a priori information about the adversary is assumed. There are tightly-
secure constructions of many primitives like public key encryption [5,21,18], digi-
tal signatures [8,31,21,1,9], key exchange [2], or (hierarchical) identity-based encryp-
tion [14,10]. All of these works consider a black-box setting without a priori informa-
tion about the adversary.



PRFs from small-domain PRFs. A very elegant approach for the construction of PRFs
was presented in [16]. Let us sketch their approach. Döttling and Schröder [16] start
from small-domain PRFs, where the input space is polynomially bounded. Such PRFs
can be constructed very efficiently, from weak complexity assumptions, and with tight
security. The authors then show that small-domain PRFs can be turned generically into
full-fledged PRFs with exponential-size domain (e.g., {0, 1}λ, where λ is the security
parameter), via an intermediate tool called bounded PRFs.

PRF g
Small domain

O(1) security loss−−−−−−−−−→
λ invocations of g

PRF G
Large domain
q-bounded

O(1) security loss (non-black-box)−−−−−−−−−−−−−−−−−→
ω(log λ) copies ofG

PRF F

Fig. 1. High-level perspective on the approach of [16].

The framework of [16] performs two steps (cf. Figure 1). Starting with a small-
domain PRF g, it first applies a generic domain extension technique to g. It is shown that
a clever λ-wise execution of g yields an “intermediate” PRF G with large (exponential-
size) domain. However, G is only secure against adversaries that issue at most q oracle
queries, where q may be small. In a second step it is then shown how a full-fledged
PRF F can generically be constructed from ω(log λ) copies of G via a technique called
on-the-fly adaptation.

The reduction in the first step is very tight, it loses only a negligibly small additive
term. However, the reduction in the second step is only tight in a non-black-box setting,
where the number of queries q of the PRF-adversary is known in advance. (One can turn
this into a reduction black-box setting by simply guessing q, but this incurs a polynomial
loss which makes the reduction non-tight).

Thus, so far there exists no generic construction of tightly-secure pseudorandom
functions from small-domain PRFs, unless one considers non-black-box reductions.

Contributions. In this work we introduce a new technique for tight security proofs
called work factor partitioning. Using this technique, we develop a variant of the ap-
proach of Döttling and Schröder [16] with the following properties:

– We obtain the first generic construction of full PRFs from bounded-domain PRFs,
which is tightly secure (up to a small factor O(log λ)) in a black-box setting which
requires no a priori information about the adversary.

– Our generic construction is more efficient, since our construction of a bounded PRF
G from a small-domain PRF g requires only a single invocation of g (in contrast to
λ invocations in [16]). Our analysis of this step much simpler, too.

– In a non-black-box setting, where both the running time and the success probability
of the adversary are known, we achieve a constant security loss of O(1) (note that
this is a stronger requirement than in [16], which only requires to know the number
of oracle queries).

This gives rise to new variants of the Naor-Reingold PRF [29] and its generalization by
Lewko and Waters [27]. Most interestingly, we consider a variant of the Naor-Reingold



construction, where a special encoding function E is applied to the input before it is
processed by the PRF. That is, we consider a construction F ′ defined as

F ′(K,x) := F (k,E(x))

where K = (k,E), F is the Naor-Reingold PRF, and E is our special encoding func-
tion. We show that F ′ is tightly secure under the 1-Linear assumption (also known as
the Decisional Diffie-Hellman assumption), with a security loss of onlyO(log2 λ) in the
black-box setting (and O(log λ) in a non-black-box setting). In comparison, the classi-
cal security proof of [29] loses a factor Θ(λ). The Naor-Reingold variant of [16] loses
O(log λ), but only in a non-black-box setting. The tightness gain comes almost for free:
the encoding scheme is very efficiently computable and increases the input length only
by a factor of 2. Since the secret keys of the Naor-Reingold PRF grows linearly with the
size of the input, we thus have secret keys that are larger by a factor of two, but receive
much tighter security proofs in exchange.

Technical approach: work factor partitioning. Like Döttling and Schröder [16], we
proceed in two steps (cf. Figure 2). The major difference of our approach is that we
construct an intermediate tool with similar, but different security properties.

PRF g
Small domain

O(1) security loss−−−−−−−−−→
1 invocation of g

PRF G
Large domain

(εA, tA)-bounded

O(log λ) (black-box),O(1) (non-black-box)−−−−−−−−−−−−−−−−−−−−−−→
O(log λ) copies ofG

PRF F

Fig. 2. High-level perspective on our approach.

Recall that Bellare and Ristenpart [7] have defined the work factor of an adversary
A as tA/εA, where tA is the running time and εA is the success probability of A.
We start from a small-domain PRF g, and use g construct a large domain PRF G with
security against adversaries with bounded work factor. (For simplicity we deviate from
the standard definition of [7], and define the work factor as q2/εA in this work.) The
construction is tightly-secure, it loses only a constant factor of 2.

In the second step, we then give a generic construction of a standard PRF F , which
is composed of bounded-secure PRFsG1, . . . , Glog λ. Here we require thatGj is secure
against adversaries Bj with work factor 2q2/εB ∈ [22

j−1

, 22
j

]. Intuitively, our goal will
be to turn a given adversary A on F into an adversary Bj on Gj , such that j is as small
as possible. (This will enable us to instantiate Gj with tight security from an as weak
as possible assumption).

To this end, we use a technique that we call work factor partitioning. We construct
a family of reductions B = (B1, . . . ,Blog λ), where Bj is a tight reduction that uses an
adversary A against F to break the bounded security of Gj . Given a PRF-adversary A,
we pick a reduction Bj

$← B at random, hoping that we pick j that satisfies 22
j−1

<

q2/εA ≤ 22
j

. Since |B| = log λ is very small, we pick the “right” reduction (i.e.,



the reduction Bj that allows us to break Gj with j as small as possible) correctly with
probability 1/ log λ. This yields a fully black-box reduction to the security of Gj with
j as small as possible, with security loss of only O(log λ).

Considering alternatively a non-black-box setting, where the number of queries q
and the success probability of a given adversary are explicitly known, we can compute
j from εA and q directly and thus do not have to guess. In this case we get a reduction
with only constant security loss.

Efficiency. Both our constructions of G from g and of F from G are more efficient than
the corresponding constructions of [16]. We obtain a tightly-secure bounded PRF G,
which evaluates the underlying small-domain PRF g only once (where [16] needed λ
evaluations of g). Also the construction of F from G is more efficient, but only very
slightly. In our case t = O(log λ) functions G1, . . . , Gt are sufficient, while [16] re-
quired t = ω(log λ) to be slightly super-logarithmic.

2 Preliminaries

Let λ ∈ N denote a security parameter. All our results are in the asymptotic setting,
that is, we view all expressions involving λ as functions in λ. This includes the running
time tA = tA(λ) and success probability εA = εA(λ) of adversaries, even though we
omit λ in this case to simplify our notation. Similarly, all algorithms implicitly receive
the security parameter 1λ as their first input.

Notation. If A is a finite set, then we write a $← A to denote the action of sampling a
uniformly random element a from A. If A is a probabilistic algorithm, then a $← A(x)
denotes the action of running A(x) on input x with uniform coins and output a.

Let G be an algebraic group with generator g. Following the “implicit notation”
of [17], we write [a] shorthand for ga whenever the reference to some given generator
g is clear. This notation generalizes to vectors, where we write [a] shorthand for ga =
(ga1 , . . . , gak)> with a = (a1, . . . , ak)

> ∈ Zkq , and to matrices in the analogous way.

Pseudorandom Functions. LetK,D be sets such that there is an efficient algorithm that
samples uniformly random elements k $← K. Let F : K × D → G be an efficiently
computable function. For an adversary A and i ∈ {0, 1} define the following security
experiment Expprf,iA,F (λ).

1. The experiment generates a random key k $← K.
2. The experiment provides adversary AO(1λ) with an oracle O which takes as input
x ∈ D and responds as follows.

– If i = 0, then O computes y = F (k, x) and responds with y.
– If i = 1, then O returns S(x), where S : D → G is a random function.

3. When the adversary terminates and outputs a bit b, then the experiment outputs b.

Definition 1. We say that adversary A (εA, tA, q)-breaks the pseudorandomness of F ,
if A runs in time tA, issues q queries in the PRF security experiment, and∣∣∣Pr [Expprf,0A,F (λ) = 1

]
− Pr

[
Expprf,1A,F (λ) = 1

]∣∣∣ ≥ εA



Universal hash functions.

Definition 2 ([13]). A family H of hash functions mapping finite set D to finite set
{0, 1}v is universal, if for all x, x′ ∈ D with x 6= x′ holds that

Pr
H

$←H
[H(x) = H(x′)] ≤ 2−v

Universal hash functions can be constructed very efficiently and without additional
complexity assumptions, see e.g. [13,24].

The Decisional k-Linear assumption.

Definition 3. Let G be a finite group of order q with generator g. Let

[t] := [(h1, . . . , hk, h1 · s1, . . . , hk · sk)]

for h1, . . . , hk, s1, . . . , sk
$← Zq , and let r $← Zq . We say that adversary A (εA,tA)-

breaks the k-Linear assumption in G, if it runs in time tA and

εA ≤

∣∣∣∣∣Pr
[
A([1] , [t] ,

[
k∑
i=1

si

]
) = 1

]
− Pr [A([1] , [t] , [r]) = 1]

∣∣∣∣∣
The Decisional k-Linear assumption [11] is a generalization of the Decisional Diffie-
Hellman (DDH) assumption, which gets weaker with increasing k [23,32]. The DDH
assumption corresponds to the case k = 1. The k-Linear assumption with k ≥ 2 can, for
instance, be used in groups with symmetric bilinear pairing, where the DDH assumption
does not hold.

3 Generic Constructions

In this section we describe a new generic approach to construct pseudorandom func-
tions from pseudorandom functions with small domain. Similar to the approach of [16],
we first construct pseudorandom functions with bounded security as an “intermediate”
primitive. The main difference is that we consider a different form of bounded security.
Essentially, [16] considered a setting where the number of oracle queries in the PRF
security experiment is bounded. Instead, we consider a setting where the work-factor
of a given adversary is bounded. This allows us to obtain a more efficient construction

Then we describe a generic construction of standard (large-domain) pseudorandom
functions from PRFs that are bounded-secure in our sense. The most important feature
of this construction is that we obtain tight security with a black-box reduction, even
though the underlying bounded-secure PRF depends on the work-factor of a given ad-
versary. In contrast, [16] did not consider black-box reductions here, as they assume
that the number of oracle queries of the adversary is known a priori.

3.1 Bounded-secure PRFs from small-domain PRFs

In this section we describe a generic construction of pseudorandom functions with se-
curity against adversaries with bounded work factor from small-domain PRFs.



Construction. Let β > 0 and letH be a family of universal hash functions with domain
D and range {0, 1}β . Let g : K × {0, 1}β → {0, 1}w be a function with key space
K and (small) domain {0, 1}β . Define function G with key space K × H and (large)
domain D as

G(K,x) = g(k,H(x)) (1)

where K = (k,H) for k ∈ K and H ∈ H.

Theorem 1. From each adversary A that (tA, εA, q)-breaks the security of construc-
tion G with log(2q2/εA) ≤ β we can construct an adversary B that uses A as a black-
box to (tB, εB)-break the security of g with

tB ≈ tA and εB ≥ εA/2

PROOF. Consider the following sequence of games, where Oi denotes the function
provided by the PRF security experiment to A in Game i. Note that the sequence of
games is identical to the sequence of games in the proof of [16, Theorem 1], but their
analysis is different.

Game 0. This game is identical to the “real” security experiment Expprf,0A,G(λ) with func-
tion G from Equation (1) and adversary A. Thus, we have

O0(x) = G(k, x) = g(k,H(x))

Game 1. This game is identical to Game 0, except that we replace function g(k, ·) with
a random function. Thus, the experiment in this game provides A with

O1(x) = R(H(x))

where R is a random function.

Game 2. This game is identical to Game 1, except that we now replace G1 with a
random function. Thus, the experiment in this game provides A with

O2(x) = S(x)

where S is random. Therefore Game 2 is identical to the “random” security experiment
Expprf,1A,G(λ).

Analysis. Let Xi denote the event that A outputs 1 in Game i. By definition of εA and
the triangle inequality we have

εA ≤
∣∣∣Pr [Expprf,0A,G(λ) = 1

]
− Pr

[
Expprf,1A,G(λ) = 1

]∣∣∣
= |Pr [X0]− Pr [X2]|
= |Pr [X0]− Pr [X1]|+ |Pr [X1]− Pr [X2]| (2)



We first show that

|Pr [X1]− Pr [X2]| <
εA
2

(3)

To see this, consider an execution of a A in Game 1 with O1(x) = R(H(x)). When
A queries O1(x1), then it receives back y1 = R(H(x1)), which is uniformly random
and independent of H , because r is a random function. In particular, y1 contains no
information about H . Next, A may query y2 = O1(x2). The experiment will evaluate
R on a different position than in the first query, unless H(x2) = H(x1). Due to the
universality ofH and the fact that y1 is independent ofH , this happens with probability
at most 1/2β . Therefore A will receive another uniformly random value y2, which
is independent of H , except with probability at most 1/2β . Continuing this argument
inductively over all q queries ofA, we see that on its i-th queryA will receive a random
response which is independent of H , except with probability (i− 1)/2β , provided that
all previous responses were independent of H .

A union bound now yields that therefore Game 1 and Game 2 are indistinguishable,
except with probability

|X1 −X2| ≤
q∑
i=2

i− 1

2β
<
q2

2β
=
q2εA
2q2

=
εA
2

Note that we use here that β ≥ log(2q2/εA).
It remains to construct adversary B against g. B plays the Expprf,iB,g (λ) security ex-

periment with oracle Og , and runs A as a subroutine by simulating the Expprf,iA,G(λ)
experiment with oracle OG. B proceeds exactly like Game 0, except that it uses its or-
acle to implement function g. That is, at the beginning of the experiment B samples a
random hash function H $← H. When adversary A outputs x to OG, then B computes
H(x), queries y := Og(H(x)), and returns y toA. WhenA terminates, then B outputs
whatever A outputs and terminates.

Note that if Og implements g, then the view of A is identical to its view in Game
0, while if if Og implements a random function, then A’s view is identical to Game 1.
Thus, B has advantage at least εB ≥ |Pr [X0]− Pr [X1]|. By plugging (3) into (2) we
obtain

εB ≥ |Pr [X0]− Pr [X1]| ≥ εA −
εA
2

=
εA
2

�

Comparison to the bounded-secure PRFs of Döttling and Schröder. We remark that the
construction in (1) is similar to the construction of bounded-secure PRFs from [16] in
that the construction of G first applies a universal hash function H to its input, and then
evaluates a small-domain PRF on the result. The main difference is that the construction
in [16] is

G′(K,x) =

λ⊕
i=1

g(k,H`(x))



which requires λ evaluations of g and λ independent hash functions H1, . . . ,Hλ, while
our construction from Equation (1) requires only a single evaluation of g and one hash
function H .

From a high level perspective the proof of Theorem 1 uses the same sequence of
games as the proof of [16, Theorem 1], but their analysis is different. In particular, it
is simpler and more direct, as we do not need the concept of cover-free vectors used
in [16].

3.2 Unbounded Generic Construction from Bounded-secure PRFs

In this section we give a generic, tightly-secure construction of standard (large-domain)
pseudorandom functions with provable security against arbitrary polynomial-time ad-
versaries. The security analysis is based on work-factor partitioning.

Construction. For ` ∈ {1, . . . , log λ} let G2` : K` × D → {0, 1}w be functions with
key spaceK` and domainD. Define function Fλ with key spaceK = K1×· · ·×Klog λ,
domain D, and range {0, 1}w as

Fλ(K,x) =

log λ⊕
`=1

G2`(k`, x) (4)

where k`
$← K` for ` ∈ {1, . . . , log λ} and ⊕ is the bitwise exclusive-or operation.

Security analysis. Before we state the formal security results for the above construction,
we prove the following lemma, which contains the core argument of the security proof.

Lemma 1. One can efficiently construct a family of adversaries B = {B1, . . . , Blog λ}
such that the following holds: LetA be an adversary that (tA, εA, q)-breaks the security
of Fλ and let j ∈ {1, . . . , log λ} such that

2j−1 < log(2q2/εA) ≤ 2j (5)

Then Bj ∈ B (tB, εB, q)-breaks the of G2j with

tB ≈ tA and εB ≥ εA
Remark 1. Note that the lemma states essentially that Bj is able to break the security
of G2j with work factor

2q2

εB
≤ 2q2

εA
Thus, for Fλ to be secure it suffices to instantiate it with pseudorandom functions
G21 , . . . , G2log λ , such that G2j is secure against adversaries with work factor 2q2/εA.
Intuitively, the smaller the work factor ofA, the smaller is the security required from the
underlying PRF. For each work factor below 2λ (which holds for all adversaries with
polynomially-bounded tA = tA(λ) and εA = εA(λ)), construction Fλ contains a func-
tion G2j which is “just secure enough” for A. Note also that we have 2j ∈ O(log λ).

Moreover, the family of reductions B has only size log λ. This will be useful for
tight black-box reductions, where q and εA may be unknown and hard to determine for
a given adversary A.



PROOF. Consider an adversary Bj in the PRF security experiment with function G2j

and oracle OG. Bj runs A as a subroutine, by simulating the PRF security experiment
with function Fλ for A.

Initialization. Bj samples a key k`
$← K` for each ` ∈ {1, . . . , log λ} \ {j}.

Handling of oracle queries. Whenever A outputs xi ∈ D, Bj queries its oracle to
obtain yi := OG(xi), computes

zi := yi ⊕
log λ⊕

`=1, 6̀=j

G2`(k`, x)

and returns zi to A.

Finalization. Finally, when A terminates, then B outputs whatever A outputs, and ter-
minates.

Analysis of Bj . Note that the running time of Bj is essentially identical to the running
time of A, thus we have tB ≈ tA. If OG(x) = G2j (kj , x), then it holds that zi =⊕log λ

`=1 G2`(k`, x) for all i ∈ {1, . . . , q}. Thus, the view of A is identical to the “real”
PRF-security experiment Expprf,0A,Fλ with Fλ. If OG(x) implements a random function,
then zi is uniformly random for all i ∈ {1, . . . , q}. Thus, in this case the view of A is
identical to the “random” PRF-security experiment Expprf,1A,Fλ . This yields

εB ≥ εA

�

Now we can state the formal security claims for construction Fλ.

Theorem 2. LetA be an adversary that (tA, εA, q)-breaks the security of Fλ, such that
tA and 1/εA are bounded by a polynomial in λ. Then we can construct an adversary B
that (tB, εB, q)-breaks Gβ with

tB ≈ tA and εB ≥
εA
log λ

and β ∈ O(log λ)

PROOF. We construct the family of adversaries B = {B1, . . . ,Blog λ} from Lemma 1,
pick j

$← {1, . . . , log λ} at random, and run algorithm Bj . Since tA and 1/εA are
bounded by a polynomial in λ, also 2q2/εA is polynomially bounded, such that we
have 2q2/εA < 2λ. With probability 1/ log λ we choose j that satisfies (5), and in this
case we have β = 2j ∈ O(log λ), so the claim follows from Lemma 1. �

Note that the above bounds are nearly tight, up to a small loss of only log λ, which
stems from that fact that we may not be able to efficiently determine q and εA for a
given adversary A.



Assuming that we are able to efficiently determine q and εA (in a non-black-box
setting where e.g. the code of A provides us with this information) we can get a fully-
tight reduction with only constant security loss.

Theorem 3. LetA be an adversary that (tA, εA, q)-breaks the security of Fλ, such that
q and 1/εA are bounded by a polynomial in λ. Provided that q and εA are explicitly
known, we can construct an adversary B that (tB, εB, q)-breaks Gβ with

tB ≈ tA and εB ≥ εA and β ∈ O(log λ)

The proof of Theorem 3 is identical to the proof of Theorem 2, except that we do not
have to guess j because tA and εA are explicitly known.

Remark 2. We remark the the construction in (4) and its security analysis generalize
from PRFs with range {0, 1}w to any set G, if the exclusive-or operation⊕ over {0, 1}w
is replaced with an arbitrary operation ⊗ over G that satisfies the following two proper-
ties:

1. For uniformly distributed y $← G, the distributions (x, x⊗y) and (x, y) are identical
for all x ∈ G.

2. Operation ⊗ need not be efficiently computable, but we require that there exists an
efficient algorithm that, given function valueG2j (kj , x), input value x, and keys k`
for all ` ∈ {1, . . . , log λ} \ {j}, computes

Fλ(K,x) =

log λ⊗
`=1

G2`(k`, x)

This will be useful for the analysis of PRFs with range G = G, where G is an algebraic
group.

Comparison to the generic PRF construction of Döttling and Schröder. Most impor-
tantly, the security analysis of the corresponding construction in [16] required that the
number of queries q of A in the PRF experiment is known to achieve a reduction with
constant security loss O(1). Without this a priori information, the reduction in [16]
has to guess q, which leads to a security loss of O(p(λ)) for some polynomial p. In
contrast, we give a reduction which requires no information about A, but loses a factor
of O(log λ) in the black-box setting. In non-black-box setting, where both q and εA
are known (which is a stronger requirement than in [16]), we also achieve a constant
security loss.

The generic construction in [16] needed ω(log λ) copies of the underlying PRF. The
above construction is slightly more efficient, as it needs only O(log λ) copies. But this
efficiency gain is very small and may not be significant in practice, so we view this
rather as a theoretical improvement.

3.3 Direct construction of standard PRFs from small-domain PRFs

For ` ∈ {1, . . . , log λ} let g2` : K` × {0, 1}2
` → {0, 1}w be a function with key

space K`, and let H` be a family of universal hash functions with domain D and range



{0, 1}2` . Define function F with key space K = K1 × · · · × Klog λ, domain D, and
range {0, 1}w as

F (K,x) =

log λ⊕
`=1

g2`(k
′
`, H(x)) (6)

where K = (k1, . . . , klog λ) with k` = (k′`, H`) ∈ K` ×H` for ` ∈ {1, . . . , log λ}.

Security analysis. By combining Theorem 1 with Theorem 2 we obtain the following
statement.

Theorem 4. Let A be an adversary that (tA, εA, q)-breaks the security of F , such that
tA and 1/εA are bounded by a polynomial in λ. Then we can construct an adversary B
that (tB, εB, q)-breaks g2` with

tB ≈ tA and εB ≥
εA

2 log λ
and 2` ∈ O(log λ)

Note that the above bounds are nearly tight, up to a small loss of only O(log λ).
Again, additionally assuming that we are able to efficiently determine tA and εA for

a given adversaryA, we can get a fully-tight reduction with only constant security loss.
By combining Theorem 1 with Theorem 3 we obtain the following.

Theorem 5. Let A be an adversary that (tA, εA, q)-breaks the security of F , such that
q and 1/εA are bounded by a polynomial in λ. Provided that q and εA are explicitly
known, we can construct an adversary B that (tB, εB, q)-breaks g2` with

tB ≈ tA and εB ≥
εA
2

and 2` ∈ O(log λ)

4 Tightly-Secure Number-Theoretic PRFs

In this section we show how the generic techniques described in Section 3 can be used
to easily obtain a tight security proof for simple variants of the pseudorandom functions
of Naor and Reingold [29] and Lewko and Waters [27].

Tighly-secure Naor-Reingold PRFs via Input Encoding. We first consider a “Naor-
Reingold PRF with encoded input”, which is identical to the standard Naor-Reingold
function, except that a special encoding function E is applied to the input before it is
processed by the PRF. When instantiated in a group of order q, we will be able to use
the commutativity of multiplication in Zq to explain this variant of the Naor-Reingold
function as a particular instantiation of our construction, which in turn allows us to
give a tight security proof under the Decisional 1-Linear assumption (i.e., Decisional
Diffie-Hellmann).



Tighly-secure PRFs from the Decisional k-Linear asusmption. This approach seems
not to generalize in a straightforward way to the Lewko-Waters PRF [27], essentially
because here a product of matrices is computed “in the exponent”, which is not commu-
tative. However, via the generic approach from Section 3 we obtain a different construc-
tion of tightly-secure pseudorandom functions from the Decisional k-Linear assumption
for any k ≥ 1 with tight security reduction in the black-box setting.

4.1 Tightly-secure Naor-Reingold PRFs from Input Encoding

The Naor-Reingold PRF. Let G be an abelian group of prime order q, let G∗ := G\{1},
and let g $← G∗ be random. Note that g is a generator of G. Let β ∈ N. The Naor-
Reingold pseudorandom function [29], instantiated with domain {0, 1}β , is defined as

F βNR : (Z∗q)β × {0, 1}β → G∗ F βNR(k, x) :=

[
β∏
i=1

axii

]
(7)

where k = (a1, . . . , aβ) ∈ (Z∗q)β and x = (x1, . . . , xβ) ∈ {0, 1}β . The following
theorem is from [29].

Theorem 6 ([29]). From each adversary A that (εA, tA, q)-breaks the security of F βNR
with input space {0, 1}β , we can construct an adversary B that (εB, tB)-breaks the
1-Linear assumption (aka. Decisional Diffie-Hellman) in G with

tB ≈ tA and εB ≥
εA
β

Note that the security loss is linear in the size of the input space. In particular, if β ∈
O(log λ), then the security loss is only logarithmic in λ.

Encoding families. For each ` ∈ {1, . . . , log λ} let H` be a family of universal hash
functions with domain D and range {0, 1}2` . Define

E := H1 × · · · × Hlog λ

where each E = (H1, . . . ,Hlog λ) ∈ E defines the function

E(x) := H1(x)|| · · · ||Hlog λ(x) (8)

Note that

|E(x)| =
log λ∑
`=1

|Hi(x)| =
log λ∑
i=1

2` = 2log λ+1 − 2 = 2(λ− 1)

and thus E is a function E : D → {0, 1}2(λ−1).



Naor-Reingold with input encoding. Let E be the above family of efficiently com-
putable functions E with domain D and range {0, 1}2(λ−1). Let F 2(λ−1)

NR be the Naor-
Reingold PRF from (7), instantiated with β = 2(λ − 1). The Naor-Reingold pseudo-
random function with E-encoded input is the function defined as

F ENR :
(
(Z∗q)2(λ−1) × E

)
×D → G∗ F ENR(K,x) := F

2(λ−1)
NR (k,E(x))

with K = (k,E) ∈ (Z∗q)β × E .

Security analysis. Again we can use work factor partitioning to analyze the security
of this construction. The main idea behind the security proof is that the encoding E
described above allows us to view F ENR as a composition of ` = O(log λ) copies of
the standard Naor-Reingold function FNR. This allows us to apply Theorems 4 and 5
to reduce breaking F ENR to breaking function F βNR with small domain {0, 1}β , where
β ∈ O(log λ). Again, the reductions are tight (with a security loss of O(log λ) in the
black-box setting and O(1) in the non-black-box setting).

We begin with the following lemma, which again captures the core argument of the
proof.

Lemma 2. One can efficiently construct a family of adversaries B = {B1, . . . , Blog λ}
such that the following holds: LetA be an adversary that (tA, εA, q)-breaks the security
of F ENR and let j ∈ {1, . . . , log λ} such that

2j−1 < log(2q2/εA) ≤ 2j (9)

Then Bj ∈ B (tB, εB, q)-breaks the security of the Naor-Reingold PRF F 2j

NR with do-
main {0, 1}2j with

tB ≈ tA and εB ≥ εA

Note that we have 2j ∈ O(log λ), thus the lemma claims that we can break the security
of a Naor-Reingold PRF with very small input space.

PROOF. Instead of giving a direct security proof of F ENR under the 1-Linear assumption,
we show that F ENR is actually a specific instantiation of the generic construction from
Section 3.3, such that Lemma 2 follows from Lemma 1.

To this end, let us introduce some notation. For a given Naor-Reingold secret key
(a1, . . . , a2(λ−1)) ∈ (Z∗q)2(λ−1), let us define

k1 := (a1, a2)

k2 := (a3, . . . , a6)

k3 := (a7, . . . , a14)

...
klog λ := (aλ−1, . . . , a2(λ−1))



Using this notation and the definition of E(x) := H1(x)|| · · · ||Hlog λ(x) from (8), we
can write F ENR equivalently as a composition of log λ copies of the Naor-Reingold PRFs
FNR:

F ENR(K,x) =

log λ⊗
`=1

F 2`

NR(k`, H`(x)) (10)

with operation ⊗ : G∗ × G∗ → G∗ defined with respect to the given generator g of G
as [x]⊗ [y] = [xy] for all x, y ∈ Z∗p.

This perspective on the Naor-Reingold function with encoded inputs allows us to
view F ENR as a specific instantiation of the generic construction considered in Lemma 1,
applied to log λ copies of the “small-domain” functions F 2`

NR. Thus, the family of ad-
versaries B proceeds exactly like the family of adversaries from the proof of Lemma 1,
using the following two claims (cf. Remark 2).

Lemma 3. For uniformly distributed [y]
$← G∗, the distributions ([x] , [x] ⊗ [y]) and

([x] , [y]) are identical for all [x] ∈ G∗.

This follows directly from the fact that (G∗,⊗) is isomorphic to (Z∗q , ·).
Lemma 4. Even though ⊗ is not necessarily efficiently computable, there exists an
efficient algorithm that, given function value FNR(kj , Hj(x)), input value x, and keys
k` for all ` ∈ {1, . . . , log λ} \ {j}, computes

F ENR(K,x) =

log λ⊗
`=1

FNR(k`, H`(x))

Its running time is dominated by a single exponentiation in G.

The running time of each Bj ∈ B is essentially equal to the running time of A, and by
Lemma 1 we have εB ≥ εA. �

Proof of Lemma 4. For a given Naor-Reingold key (a1, . . . , a2(λ−1)) ∈ (Z∗q)2(λ−1), let
us define k` ∈ (Z∗q)2

`

and bi,j ∈ (Z∗q) as

k1 := (b1,1, b1,2) := (a1, a2)

k2 := (b2,1, b1,4) := (a3, . . . , a6)

k3 := (b3,1, b3,8) := (a7, . . . , a14)

...

Then we can write
⊗log λ

`=1 F 2`

NR(k`, H`(x)) equivalently as

log λ⊗
`=1

F 2`

NR(k`, H`(x)) =

log λ∏
`=1

2j∏
i=1

b
H`(x)i
`,i

 =

 2j∏
i=1

b
Hj(x)i
j,i


∏
` 6=j

∏2j

i=1 b
H`(x)i
`,i

= (FNR(kj , Hj(x)))
∏
` 6=j

∏2j

i=1 b
H`(x)i
`,i (11)



where H`(x)i denotes the i-th bit of H(x). Clearly we can compute the last term (11)
efficiently, given (FNR(kj , Hj(x)), x, (k`)`∈{1,...,log λ}\{j}). This yields Lemma 4.

Security of the Naor-Reingold PRF with input encoding By combining Lemma 2 with
Theorem 6 we now obtain that F ENR is tightly-secure under the 1-Linear assumption
with security loss O(log2 λ) in the black-box setting and O(log λ) in the non-black-
box setting.

Theorem 7. Let A be an adversary that (tA, εA, q)-breaks the security of F ENR defined
over group G, such that tA and 1/εA are bounded by a polynomial in λ. Then we can
construct an adversary B that (tB, εB)-breaks the1-Linear assumption in G with

tB ≈ tA and εB ≥
εA

O(log2 λ)

PROOF. We construct the family of adversaries B = {B1, . . . ,Blog λ} from Lemma 2,
pick j $← {1, . . . , log λ} at random, and run algorithm Bj . With probability 1/ log λ we
choose j that satisfies (9). Thus, by Lemma 2 we obtain an algorithm B′ that (ε′B, t

′
B)-

breaks the security of the Naor-Reingold PRF with domain 2j ∈ O(log λ) with t′B ≈ tA
and ε′B ≥ εA/2.

By Theorem 6 we furthermore know that from the above adversary B′ we can con-
struct an adversary B that (εB, tB)-breaks the 1-Linear assumption in G with tB ≈ t′B ≈
tA and

εB ≥
ε′B

O(log λ)
≥ εA

O(log2 λ)

so the claim follows. �

Similarly, we obtain the following theorem for non-black-box reductions.

Theorem 8. Let A be an adversary that (tA, εA, q)-breaks the security of F ENR defined
over group G, such that tA and 1/εA are bounded by a polynomial in λ. Provided that
q and εA are explicitly known, we can construct an adversary B that (tB, εB)-breaks
1-Linear assumption in G with

tB ≈ tA and εB ≥
εA

O(log λ)

The proof of Theorem 8 is identical to Theorem 7, except that again we can use the
non-black-box setting to avoid guessing the bounds on work-factor of the adversary
determined by j.

4.2 Tightly-secure PRFs from the k-Linear assumption

The Lewko-Waters PRF. Again let G be an abelian group of prime order q, let G∗ := G\
{1}, and let g $← G∗ be random. Note that g is a generator of G. Let β ∈ N and define



Kβ := ((Z∗q)k×k)β . The Lewko-Waters pseudorandom function [27], instantiated with
domain {0, 1}β , is defined as

F βLW : Kβ × {0, 1}β → (Gk)∗ F βLW(k, x) := π1

([
a>

β∏
i=1

Axi
i

])
(12)

where k = (a,A1, . . . ,Aβ) ∈ Zkq × (Zk×kq )β, x = (x1, . . . , xβ) ∈ {0, 1}β , and
π1 : Gk → G is the projection that, on input a vector h = (h1, . . . , hk)

> ∈ Gk,
outputs h1. The following theorem is from [27].

Theorem 9 ([27]). From each adversary A that (εA, tA, q)-breaks the security of F βLW
with input space {0, 1}β , we can construct an adversary B that (εB, tB)-breaks the
k-Linear assumption in G with

tB ≈ tA and εB ≥
εA
kβ

Note that k is a constant, so that the security loss is linear in the size of the input space.
In particular, if β ∈ O(log λ), then the security loss is only logarithmic in λ.

Tightly-secure PRFs from the Lewko-Waters PRF. For ` ∈ {1, . . . , log λ} let H` be a
family of universal hash functions from some domain D to {0, 1}2` . Define function F
as

F (K,x) :=
∏̀
i=1

F 2`

LW(k`, H`(x))

where k` ∈ Zkq×(Zk×kq )` is a secret key forF 2`

LW, andK := (k1, H1, . . . , klog λ, Hlog λ).

Security analysis. Note that F is identical to the generic construction from Section 3.3,
where (6) is instantiated with g2` := F 2`

LW and the ⊕-operation is replaced with multi-
plication in G. Trivially, the properties from Remark 2 hold for this construction. Thus,
by combining Theorem 9 with Theorems 4 and 5, we obtain the following results.

Theorem 10. LetA be an adversary that (tA, εA, q)-breaks the security of F , such that
tA and 1/εA are bounded by a polynomial in λ. Then we can construct an adversary
B that (tB, εB)-breaks the Decisional k-Linear assumption with tB ≈ tA and εB ≥
εA/O(log2 λ).

Theorem 11. LetA be an adversary that (tA, εA, q)-breaks the security of F , such that
q and 1/εA are bounded by a polynomial in λ. Provided that q and εA are explicitly
known, we can construct an adversary B that (tB, εB)-breaks the Decisional k-Linear
assumption with tB ≈ tA and εB ≥ εA/O(log λ).
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