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Abstract. This paper introduces Simpira, a family of cryptographic
permutations that supports inputs of 128 × b bits, where b is a posi-
tive integer. Its design goal is to achieve high throughput on virtually
all modern 64-bit processor architectures, that nowadays already have
native instructions to support AES computations. To achieve this goal,
Simpira uses only one building block: the AES round function. For b = 1,
Simpira corresponds to 12-round AES with fixed round keys, whereas
for b ≥ 2, Simpira is a Generalized Feistel Structure (GFS) with an
F -function that consists of two rounds of AES. From the security view-
point, we claim that there are no structural distinguishers for Simpira
with a complexity below 2128, and analyze its security against a variety
of attacks in this setting. From the efficiency viewpoint, we show that
the throughput of Simpira is close to the theoretical optimum, namely,
the number of AES rounds in the construction. For example, on the lat-
est Intel Skylake processor, Simpira has throughput below 1 cycle per
byte for b ≤ 4 and b = 6. For larger permutations, where moving data in
memory has a more pronounced effect, Simpira with b = 32 (512 byte in-
puts) evaluates 732 AES rounds, and performs at 802 cycles (1.56 cycles
per byte), i.e., less than 10% off the theoretical optimum. The Simpira
family offers an efficient solution for multiple usages where operating on
wide blocks, larger than 128 bits, is desired.

Keywords. Cryptographic permutation, AES-NI, Generalized Feistel
Structure (GFS), hash function, Lamport signature, wide-block encryp-
tion, Even-Mansour.

1 Introduction

The introduction of AES instructions by Intel (subsequently by AMD, and re-
cently ARM) has changed the playing field for symmetric-key cryptography on
modern processors, because it significantly reduced the encryption overheads.
The performance of these instructions has been steadily improving in every new
generation of processors. By now, on the latest Intel Architecture Codename



Skylake, the AESENC instruction that computes one round of AES has latency
of 4 cycles and throughput of 1 cycle. The improved AES performance trend can
be expected to continue, with the increasing demand for fast encryption of more
and more data.

To understand the impact of the AES instructions in practice, consider for
example, the way that Google Chrome browser connects to https://google.

com. In this situation, Google is in a privileged position, as it controls both
the client and the server side. To speed up connections, Chrome (the client)
is configured to identify the processor’s capabilities. If AES-NI are available, it
would offer (to the server) to use AES-128-GCM for performing authenticated
encryption during the TLS handshake. The high-end server would accept the
proposed cipher suite, due to the high performance of AES-GCM on its side.
This would capture any recent 64-bit PC, tablet, desktop, or even smartphone.
On older processors, or architectures without AES instructions, Chrome resorts
to proposing the ChaCha20-Poly1305 algorithm during the secure handshake
negotiation.

An advantage of AES-GCM is that the message blocks can be processed
independently for encryption. This allows pipelining of the AES round instruc-
tions, so that the observed performance is dominated by their throughput, and
not by their latency [43, 44]. We note that even if a browser negotiates to use
an inherently sequential mode such as CBC encryption, the web server can pro-
cess multiple independent data buffers in parallel to achieve high throughput
(see [43, 44]), and this technique is already used in the recent OpenSSL version
1.0.2. This performance gain by collecting multiple independent encryption tasks
and pipelining their execution, is important for the design rationale of Simpira.

Setting. This paper should be understood in the following setting. We focus
only on processors with AES instructions. Assuming that several independent
data sources are available, we explore several symmetric-key cryptographic con-
structions with the goal of achieving a high throughput. Our reported bench-
marks are performed on the latest Intel processor, namely Architecture Code-
name Skylake, but we expect to achieve similar performance on any processor
that has AES instructions with throughput 1.

In particular, we focus here on applications where the 128-bit block size of
AES is not sufficient, and support for a wider range of block sizes is desired. This
includes various use cases such as permutation-based hashing and wide-block
encryption, or just to easily achieve security beyond 264 input blocks without
resorting to (often inefficient) modes of operation with “beyond birthday-bound”
security. For several concrete suggestions of applications, we refer to Sect. 7.

Admittedly, our decision to focus on only throughput may result in unopti-
mized performance in certain scenarios where the latency is critical. However,
we point out that this is not only a property of Simpira, but also of AES it-
self, when it is implemented on common architectures with AES instructions.
To achieve optimal performance on such architectures, AES needs to be used
in a parallelizable mode of operation, or in a protocol that supports processing
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independent inputs. Similarly, this is the case for Simpira as well. In fact, for
128-bit inputs, Simpira is the same as 12-round AES with fixed round keys.

Origin of the name. Simpira is named after a mythical animal of the Peruvian
Amazon. According to the legend, one of its front legs has the form of a spiral
that can be extended to cover the entire surface of the earth [26]. In a similar
spirit, the Simpira family of permutations extends itself to a very wide range
of input sizes. Alternatively, Simpira can be seen as an acronym for “SIMple
Permutations based on the Instruction for a Round of AES.”

2 Related Work

Block ciphers that support wide input blocks have been around for a long time.
Some of the earliest designs are Bear and Lion [2], and Beast [59]. They are
higher-level constructions, in the sense that they use hash functions and stream
ciphers as underlying components.

Perhaps the first wide-block block cipher that is not a higher-level construc-
tion is the Hasty Pudding Cipher [72], which supports block sizes of any positive
number of bits. Another early design is the Mercy block cipher that operates on
4096-bit blocks [27]. More recently, low-level constructions that can be scaled up
to large input sizes are the spongent [17,18] permutations and the LowMC [1]
block ciphers.

Our decision to use only the AES round function as a building block for
Simpira means that some alternative constructions are not considered in this
paper. Of particular interest are the EGFNs [6] used in Lilliput [7], the AESQ
permutation of PAEQ [13], and Haraka [54]. The security claims and benchmark
targets of these designs are very different from those of Simpira. We only claim
security up to 2128. However unlike Haraka, we consider all distinguishing attacks
up to this bound. Also, we focus only on throughput, and not on latency. An
interesting topic for future work is to design variants of these constructions
with similar security claims, and to compare their security and implementation
properties with Simpira.

3 Design Rationale of Simpira

AES [31] is a block cipher that operates on 128-bit blocks. It iterates the AES
round function 10, 12 or 14 times, using round keys that are derived from a
key of 128, 192 or 256 bits, respectively. On Intel (and AMD) processors, the
AES round function is implemented by the AESENC instruction. It takes a 128-bit
state and a 128-bit round key as inputs, and returns a 128-bit output that is
the result of applying the SubBytes, ShiftRows, MixColumns and AddRoundKey

operations. An algorithmic description of AESENC is given in Alg. 1 of Sect. 4,
where we give the full specification of Simpira.
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A cryptographic permutation can be obtained by setting the AES round keys
to fixed, publicly-known values. It is a bad idea to set all round keys to zero. Such
a permutation can easily be distinguished from random: if all input bytes are
equal to each other, the AES rounds preserve this property. Such problems are
avoided when round constants are introduced: this breaks the symmetry inside
every round, as well as the symmetry between rounds.

We decided to use two rounds of AES in Simpira as the basic building block.
As the AESENC instruction includes an XOR with a round key, this can be used
to introduce a round constant in one AES round, and to do a “free XOR” in the
other AES round. An added advantage is that two rounds of AES achieve full

bit diffusion: every output bit depends on every input bit, and every input bit
depends on every output bit.

Another design choice that we made, is to use only AES round functions in
our construction, and no other operations. Our hope is that this design would
maximize the contribution of every instruction to the security of the crypto-
graphic permutation. It also simplifies the analysis and the implementation.
From the performance viewpoint, the theoretically optimal software implemen-
tation would be able to dispatch a new AESENC instruction in every CPU clock
cycle. A straightforward way to realize this design strategy is to use a (Gener-
alized) Feistel Structure (GFS) for b ≥ 2 that operates on b input subblocks of
128 bits each, as shown in Fig. 1.

F

F

F

F

F F

F F

Fig. 1. Two common classes of Generalized Feistel Structures (GFSs) are the Type-1
GFS (left) and the Type-2 GFS (right). For each example, two rounds are shown of
a GFS that operates on b = 6 subblocks. We will consider these GFSs in this paper,
as well as other GFSs with a different number of F -functions per round, and other
subblock shuffles at the end of every round.

As with any design, our goal is to obtain a good trade-off between security
and efficiency. In order to explore a large design space, we use simple metrics to
quickly estimate whether a given design reaches a sufficient level of security, and
to determine its efficiency. In subsequent sections, we will formally introduce the
designs, and study them in detail to verify the accuracy of our estimates.
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3.1 Design Criteria

Our design criteria are as follows. The significance of both criteria against crypt-
analysis attacks will be explained in Sect. 6.

– Security: We calculate the number of Feistel rounds to achieve either full

bit diffusion, as well as the number of Feistel rounds to achieve at least
25 (linearly or differentially) active S-boxes. To ensure a sufficient security
margin against known attacks, we require that the number of rounds is three
times the largest of these two numbers.

– Efficiency: As explained in Sect. 1, we will only focus on throughput. Given
that we use no other operations besides the AES round function, we will use
the number of AES round functions as an estimate for the total number of
cycles.

Suzaki and Minematsu [73] formally defined DRmax to calculate how many
Feistel rounds are needed for an input subblock to affect all the output subblocks.
We will say that full subblock diffusion is achieved after DRmax of the permuta-
tion or its inverse, whichever is greater. To achieve the strictly stronger criterion
of full bit diffusion, one or two additional Feistel rounds may be required.

To obtain a lower bound for the minimum number of active S-boxes, we use
a simplified representation that assigns one bit to every pair of bytes, to indicate
whether or not they contain a non-zero difference (or linear mask). This allows
us to use the Mixed-Integer Linear Programming (MILP) technique introduced
by Mouha et al. [67] quickly find a lower bound for the minimum number of
active S-boxes.

3.2 Design Space Exploration

For each input size of the permutation, we explore a range of designs, and choose
the one that maximizes the design criteria. If the search returns several alterna-
tives, it does not really matter which one we choose. In that case, we arbitrarily
choose the “simplest” design. The resulting Simpira design is shown in Fig. 2.

Case b = 1. Full bit diffusion is reached after two rounds of AES, and four
rounds of AES ensures at least 25 active S-boxes [31]. Following the design
criteria, we select a design with 12 AES rounds.

Case b = 2. This is a (standard) Feistel structure. Full subblock diffusion is
achieved after two Feistel rounds, and three Feistel rounds are needed to reach
full bit diffusion. We find that five rounds ensures that there are at least 25 active
S-boxes (see Fig. 4). Consequently, we select a design with 15 Feistel rounds.
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b = 1 b = 2 b = 3

b ≥ 4 (except b = 6 and b = 8)

· · ·

· · ·

x0 x0 x1 x0 x1 x2

x0 x1 x2 x3 x4 x5 xb−2 xb−1

F F F

x0 x1 x2 x3 x4 x5

b = 6

F F F F

b = 8

x0 x1 x2 x3 x4 x5 x6 x7

Fig. 2.One round of the Simpira construction for various choices of b. The total number
of rounds is 6b + 3 for b ≤ 3 and 6b − 9 for b ≥ 4, with three exceptions: 6 for b = 1,
15 for b = 6, and 18 for b = 8. F is shorthand for Fc,b, where c is a counter that is
initialized by one, and incremented after every evaluation of Fc,b. Every Fc,b consists
of two AES round evaluations, where the round constants that are derived from (c, b).
The last round is special: the MixColumns is omitted when b = 1, and the subblock
shuffle may be different when b ≥ 2. See Sect. 4 for a full specification.

6



Case b = 3. There are several designs that are optimal according to our
criteria. They have either one or two F -functions per Feistel round, and various
possibilities exist to reorders the subblocks at the end of every Feistel round. We
choose what is arguably the simplest design: a Type-1 GFS according to Zheng
et al.’s classification [79]. Full subblock diffusion requires five Feistel rounds, and
at least six Feistel rounds are needed to ensure that there are least 25 active S-
boxes. As seven Feistel rounds are needed to achieve full bit diffusion, we select
a design with 21 Feistel rounds.

Case b ≥ 4. The Type-1 GFS does not scale well for larger b, as diffusion be-
comes the limiting factor. More formally, Yanagihara and Iwata [75, 76] proved
that the number of rounds required to reach full subblock diffusion is (at best)
quadratic in the number of subblocks, regardless of how the subblocks are re-
ordered at the end of every Feistel round. In subsequent work, Yanagihara and
Iwata [77] introduced a GFS with two F -functions per round, where the number
of rounds for full subblock diffusion is linear b. More specifically, their Type-1.x
(b,2) GFS reaches full subblock diffusion after 2b− 4 rounds.

To simplify the implementation, we use a variant of their construction with
a cyclic left shift of the subblocks at the end of every Feistel round. For b = 4,
five Feistel rounds are sufficient for both full bit diffusion and 25 active S-boxes.
When b ≥ 5, full bit diffusion is reached after 2b − 4 rounds. For b ≤ 128, we
used the MILP technique to verify that 2b − 3 rounds are needed to ensure 25
active S-boxes. In fact, the tool shows that there will be at least 30 active S-
boxes. We conjecture that this property will hold for larger b as well. Therefore,
our criterion tells us to go for 6b − 9 rounds. See Appendix A for linear and
differential characteristics that were output by the tool.

Note that GFSs with more than two F -functions reach full subblock diffusion
even quicker, but this seems to come at the cost of using more F -functions in
total. Looking only at the tabulated values of DRmax(π) and DRmax(π−1) in
literature [73,75–77], we can immediately rule out almost all alternative designs.
However, two improved Type-2 GFS designs by Suzaki and Minematsu [73]
turned out be superior. Instead of a cyclic left shift, they reorder the subblocks
in a different way at the end of every Feistel round. We now explore these in
detail.

Case b = 6. Let the subblock shuffle at the end of every Feistel round be pre-
sented by a list of indices that indicates which input subblock is mapped to which
output subblock, e.g. {b− 1, 0, 1, 2, . . . , b− 2} denotes a cyclic left shift. Suzaki
and Minematsu’s improved Type-2 GFS with subblock shuffle {3, 0, 1, 4, 5, 2}
reaches full block diffusion and full bit diffusion after five Feistel rounds. At
least 25 active S-boxes (in fact at least 30) are reached after four Feistel rounds.
Following the design criteria, we end up with a design with 15 Feistel rounds. As
this design has three F -functions in every Feistel round, it evaluates 3 · 15 = 45
F -functions. This is less than the general b ≥ 4 case that requires 6b− 9 Feistel
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rounds with 2 F -functions per round, which corresponds to (6 · 6 − 9) · 2 = 54
F -functions.

Case b = 8. Suzaki and Minematsu’s improved Type-2 GFS with subblock
shuffle {3, 0, 7, 4, 5, 6, 1, 2} ensures both full block diffusion and full bit diffusion
after six rounds. After four Feistel rounds, there are at least 25 active S-boxes
(in fact at least 30). According to the design criteria, we end up with a design
with 18 Feistel rounds, or 18 · 4 = 72 F -functions in total. The general b ≥ 4
design would have required (6b− 9) · 2 F -functions, which for b = 8 corresponds
to (6 · 8− 9) · 2 = 78 F -functions.

3.3 Design Alternatives

Until now, the only designs we discussed were GFS constructions where the F -
function consists of two rounds of AES. We now take a step back, and briefly
discuss alternative design choices.

As explained earlier, it is convenient to use two rounds of AES as a building
block. It not only means that we reach full bit diffusion, but also that a “free
XOR” is available to add a round constant on Intel and AMD architectures.

It is nevertheless possible to consider GFS designs with an F -function that
consists of only one AES round. A consequence of this design choice is that
extra XOR instructions will be needed to introduce round constants, which could
increase the cycle count. But this design choice also complicates the analysis. For
example when b = 2, we find that 25 Feistel rounds are then needed to ensure
at least 25 linearly active S-boxes. As shown in Fig. 3, this is because the tool
can only ensure one active S-box for every Feistel round. Using two rounds of
AES avoids this problem (see Fig. 4), and also significantly speeds up the tool: it
makes bounding the minimum number of active S-boxes is rather easy, instead
of becoming increasingly complicated for a reasonably large value of b.

Likewise, we could also consider designs with more than two AES rounds per
F -function. In our experiments, we have not found any cases where this results
in a design where the total number of AES rounds is smaller. The intuition
is as follows: the number of Feistel rounds to reach full subblock diffusion is
independent of the F -function, therefore adding more AES rounds to every F
function is not expected to result in a better trade-off.

If we take another step back, we might consider to use other instructions
besides AESENC. Clearly, AESDEC can be used as an alternative, and both the
security properties and the benchmarks will remain the same. In fact, we use
AESDEC when b = 1, to implement the inverse permutation. We do not use
the AESENCLAST and AESDECLAST instructions, as they omit the MixColumns

(resp. MixColumns) operation that crucial to the wide trail design strategy [30]
of AES. We do, however, use only one AESENCLAST for the very last round of
the b = 1 permutation, as this makes an efficient implementation of the inverse
permutation possible on Intel architectures. This is equivalent to applying a
linear transformation (InvMixColumns) to the output of the b = 1 permutation,
therefore it does not reduce its cryptographic properties.
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AC SB SR MC

Fig. 3. A linear characteristic for an AES-based Feistel that uses only one round of
AES inside its F -function. Crosshatches represent bytes with non-zero linear masks.
The AES round consists of the AddConstant (AC), SubBytes (AC), ShiftRows (SR),
and MixColumns (MC) operations. This round has only one active S-box. Therefore, 25
rounds are needed to ensure that there are least 25 linearly active S-boxes.

SB
SR MC

AC
SB
SR MC

Fig. 4. A linear characteristic for one round of Simpira with b = 2 with 5 active S-
boxes. Crosshatches represent bytes with non-zero linear masks. As Simpira uses two
AES rounds per F -function, it can reach 25 active S-boxes in only 5 Feistel rounds,
corresponding to 10 AES rounds in total.
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Of course, it is possible to use non-AES instructions, possibly in combination
with AES instructions. Actually, we do not need to be restricted to (generalized)
Feistel designs for b ≥ 2. However, such considerations are outside of the scope
of this paper.

4 Specification of Simpira

An algorithmic specification of the Simpira design of Fig. 2 is given in Alg. 3-10.
It uses one round of AES as a building block, which corresponds to the AESENC

instruction on Intel processors (see Alg. 1). For byte ordering conventions and
other implementation details, we refer to [44].

The F -function is specified in Alg. 2. It is parameterized by a counter c and
by the number of subblocks b. Here, SETR EPI32 converts four 32-bit values into
a 128-bit value, using the same byte ordering as the mm setr epi32() compiler
intrinsic.5

Both the input and output of Simpira consist of b blocks of 128 bits. The
arrays use zero-based numbering, and array subscripts should be taken modulo
the number of elements of the array. The subblock shuffle is done implicitly:
we do not reorder the subblocks at the end of a Feistel round, but instead we
apply the F -functions to other subblock inputs in the subsequent round. It is
rather straightforward to implement the cyclic left shift in this way. For b = 6
and b = 8, the implementation of the subblock shuffle uses a decomposition into
disjoint cycles.

As a result of this implementation choice, Simpira and its reduced-round
variants are not always equivalent to a (generalized) Feistel with identical rounds.
For example, for b = 2 the F -function is alternatingly applied from left to right
and from right to left. When the number of rounds is odd, this is not equivalent
to a Feistel with identical rounds: the two output subblocks will be swapped.

When b = 1, an extra InvMixColumns operation is applied to the output.
This is equivalent to omitting the MixColumns operation in the last round, and
is required to efficiently implement the inverse Simpira permutation using Intel’s
AES instructions. For details on how to efficiently implement both Simpira and
Simpira−1 when b = 1, see Appendix B.

The design strategy of Simpira is intended to be very conservative. Because
we think that the security of Simpira with very large b may not yet be well-
understood, we recommend to use Simpira with b ≤ 65536, corresponding to
inputs of at most one megabyte. However, the external cryptanalysis of Simpira
for any value of b is highly encouraged.

5 Benchmarks

We measured the performance of Simpira on the latest Intel processor, Architec-
ture Codename Skylake. On this platform, the latency of AESENC is 4 cycles, and

5 mm setr epi32(e3, e2, e1, e0) yields a 128-bit destination: dst[31:0] := e3

dst[63:32] := e2 dst[95:64] := e1 dst[127:96] := e0
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Algorithm 1 AESENC (see [44])

1: procedure AESENC(state, key)
2: state ← SubBytes(state)
3: state ← ShiftRows(state)
4: state ← MixColumns(state)
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 2 Fc,b(x)

1: procedure Fc,b(x)
2: C ← SETR EPI32(c, b, 0, 0)
3: return AESENC(AESENC(x,C), 0)
4: end procedure

Algorithm 3 Simpira (b /∈ {1, 6, 8})

1: procedure Simpira(x0, . . . , xb−1)
2: if b ≤ 3 then

3: R← 6b+ 3
4: else

5: R← 6b− 9
6: end if

7: c← 1
8:
9: for r = 0, . . . , R − 1 do

10: xr+1 ← xr+1 ⊕ Fb,c(xr)
11: c← c+ 1
12: if b ≥ 4 then

13: xr+2 ← xr+2 ⊕ Fb,c(xr+3)
14: c← c+ 1
15: end if

16: end for

17: return (x0, x1, . . . , xb−1)
18: end procedure

Algorithm 4 Simpira−1 (b /∈ {1, 6, 8})

1: procedure Simpira
−1(x0, . . . , xb−1)

2: if b ≤ 3 then

3: R← 6b + 3
4: c← R

5: else

6: R← 6b − 9
7: c← 2R
8: end if

9: for r = R − 1, . . . , 0 do

10: if b ≥ 4 then

11: xr+2 ← xr+2 ⊕ Fb,c(xr+3)
12: c← c− 1
13: end if

14: xr+1 ← xr+1 ⊕ Fb,c(xr)
15: c← c− 1
16: end for

17: return (x0, x1, . . . , xb−1)
18: end procedure

Algorithm 5 Simpira (b = 1)

1: procedure Simpira(x0)
2: R← 6
3: for c = 1, . . . , R do

4: x0 ← Fb,c(x0)
5: end for

6: InvMixColumns(x0)
7: return x0

8: end procedure

Algorithm 6 Simpira−1 (b = 1)

1: procedure Simpira(x0)
2: R← 6
3: MixColumns(x0)
4: for c = R, . . . , 1 do

5: x0 ← F−1

b,c (x0)
6: end for

7: return x0

8: end procedure

11



Algorithm 7 Simpira (b = 6)

1: procedure Simpira(x0, . . . , x5)
2: R← 15
3: c← 1
4: s← (0, 1, 2, 5, 4, 3)
5: for r = 0, . . . , R − 1 do

6: xs
r+1
← xs

r+1
⊕ Fb,c(xsr )

7: c← c+ 1
8: xs

r+5
← xs

r+5
⊕ Fb,c(xs

r+2
)

9: c← c+ 1
10: xs

r+3
← xs

r+3
⊕ Fb,c(xs

r+4
)

11: c← c+ 1
12: end for

13: return (x0, x1, . . . , x5)
14: end procedure

Algorithm 8 Simpira−1 (b = 6)

1: procedure Simpira
−1(x0, . . . , x5)

2: R← 15
3: c← 45
4: s← (0, 1, 2, 5, 4, 3)
5: for r = R − 1, . . . , 0 do

6: xs
r+3
← xs

r+3
⊕ Fb,c(xs

r+4
)

7: c← c− 1
8: xs

r+5
← xs

r+5
⊕ Fb,c(xs

r+2
)

9: c← c− 1
10: xs

r+1
← xs

r+1
⊕ Fb,c(xsr )

11: c← c− 1
12: end for

13: return (x0, x1, . . . , x5)
14: end procedure

Algorithm 9 Simpira (b = 8)

1: procedure Simpira(x0, . . . , x7)
2: R← 18
3: c← 1
4: s← (0, 1, 6, 5, 4, 3)
5: t← (2, 7)
6: for r = 0, . . . , R − 1 do

7: xs
r+1
← xs

r+1
⊕ Fb,c(xsr )

8: c← c+ 1
9: xs

r+5
← xs

r+5
⊕ Fb,c(xtr )

10: c← c+ 1
11: xs

r+3
← xs

r+3
⊕ Fb,c(xs

r+4
)

12: c← c+ 1
13: xt

r+1
← xt

r+1
⊕ Fb,c(xs

r+2
)

14: c← c+ 1
15: end for

16: return (x0, x1, . . . , x7)
17: end procedure

Algorithm 10 Simpira−1 (b = 8)

1: procedure Simpira
−1(x0, . . . , x7)

2: R← 18
3: c← 72
4: s← (0, 1, 6, 5, 4, 3)
5: t← (2, 7)
6: for r = R − 1, . . . , 0 do

7: xt
r+1
← xt

r+1
⊕ Fb,c(xs

r+2
)

8: c← c− 1
9: xs

r+3
← xs

r+3
⊕ Fb,c(xs

r+4
)

10: c← c− 1
11: xs

r+5
← xs

r+5
⊕ Fb,c(xtr )

12: c← c− 1
13: xs

r+1
← xs

r+1
⊕ Fb,c(xsr )

14: c← c− 1
15: end for

16: return (x0, x1, . . . , x7)
17: end procedure
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its throughput is 1 cycle. It follows that the software can be written in a way that
fills the pipeline, by operating on four independent inputs. To obtain maximum
throughput for all permutation sizes, we wrote functions that compute Simpira
on four independent inputs. All Simpira permutations are benchmarked in the
same setting, to makes the results comparable.

Note that when b ≥ 4, Simpira uses two independent F -functions, which
means that maximum throughput could already be reached with only two in-
dependent inputs. For b = 8, where Simpira has four independent F -functions,
even a single-stream Simpira implementation would fill the pipeline.

The measurements are performed as follows. We benchmark a function that
evaluates Simpira for four independent inputs, and computed the number of
cycles to carry out 256 calls to this function, as a “unit.” This provides us
with the throughput of Simpira. The results were obtained by using the RDTSCP
instruction, 250 repetitions as a “warmup” phase, averaging the measurement
on subsequent 1000 runs. Finally, this experiment was repeated 30 times, and
the best result was selected. The platform was set up with Hyperthreading and
Turbo Boost disabled.

Table 1 shows the results obtained by our experiments. We present only
benchmarks for the forward Simpira permutation; the benchmarks for Simpira−1

turned out to be very similar.

Table 1. Benchmarking results for the throughput of the Simpira permutations. For
every b, we benchmark a function that applies the 128b-bit permutation to four in-
dependent inputs. We give the number of cycles per input, as well as the overhead
compared the theoretical optimum of performing only AESENC instructions.

b bits # AESENC cycles overhead

1 128 12 12 1.01
2 256 30 30 1.01
4 512 60 60 1.01
6 768 90 91 1.01
8 1,024 144 145 1.01

16 2,048 348 370 1.06
32 4,096 732 802 1.10
64 8,192 1,500 1,683 1.12

128 16,384 3,036 3,502 1.15
256 32,768 6,108 7,384 1.21

For comparison, we now provide the throughput of SHA-256, SHA-512, and
Rijndael256 (with a 256-bit block size), measured on the same platform, and
using the same methodology. In the case of SHA-256 and SHA-512, we wrote
an optimized throughput-oriented implementation that uses the AVX2 archi-
tecture, available on the discussed platform. For SHA-256 and SHA-512, this
implementation processes 4 and 8 independent (long) buffers respectively. For
Rijndael256, we prepared optimized code that uses AES-NI (see details in [44]).
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We measured is in ECB mode, operating on 8 blocks in parallel, to get the
highest throughput possible on this platform.

Under this setup, the throughput of SHA-256, SHA-512, and Rijndael256 is
2.35, 3.13, and 1.54 cycles per byte, respectively. Therefore, for b = 2, it is clearly
much faster to use the Simpira permutation, which requires only 0.94 cycles
per byte. This permutation is to be used inside an Even-Mansour construction
(for encryption), or with a Davies-Meyer feedforward (for hashing); but these
operations not change the throughput in a noticeable way.

6 Cryptanalysis

The design criteria of Sect. 3 are not meant to be sufficient to guarantee security.
In fact, it is not difficult to come up with trivially insecure constructions that
satisfy (most of) the criteria. Rather, the design criteria are meant to assist
us in identifying interesting constructions, which must then pass the scrutiny
of cryptanalysis. Actually, during the design process of Simpira, we stumbled
upon designs that were either insecure, or for which the security analysis was
not so straightforward. When this happened, we adjusted the design criteria and
repeated the search for constructions.

As such, we will not directly use the design criteria to argue the security
of Simpira. Instead, we will use the fact that Simpira uses (generalized) Feistel
structures and the AES round function, both of which have been extensively
studied in literature. This allows us to focus our cryptanalysis efforts on the
most promising attacks for this type of construction. We have tried to make
this section easy to understand, which will hopefully convince the reader that
Simpira should have a very comfortable security margin against all currently-
known attacks.

Security claim. In what follows, we will only consider structural distinguish-
ers [8] with a complexity up to 2128. Simpira can be used in constructions that
require a random permutation, however no statements can be made for adver-
saries that exceed 2128 queries. This type of security argument was first made
by the SHA-3 [38] design team in response to high-complexity distinguishing
attacks on the underlying permutation [19–21], and has since been reused for
other permutation-based designs.

Symmetry attacks. As explained in Sect. 3, the round constants are meant to
avoid symmetry inside a Simpira round, as well as symmetry between rounds.
The round constants also depend on b, which means that Simpira permutations
of different widths should be indistinguishable from each other. The round con-
stants are generated by a simple counter: this not only makes the design easy to
understand and to implement, but also avoids any concerns that the constants
may contain a backdoor. Every F -function has a different round constant: this
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does not seem to affect performance on recent Intel platforms, but greatly re-
duces the probability that a symmetry property can be maintained over several
rounds.

State collisions. For most block-cipher-based modes of operation, it is possible
to define a “state,” which is typically 128 bits long. This can be the chaining
value for CBC mode, the counter for CTR mode, or the checksum in OCB.
When a collision is found in this state, which is expected to happen around 264

queries, the mode becomes insecure. For the Feistel-based Simpira (b ≥ 2), there
is no such concept of a “state.” In fact: all subblocks receive an equal amount
of processing after b rounds. This is ensured either by the cyclic left shift, or
because every other round an F -function is applied to each subblock (for b = 6
and b = 8). This allows Simpira to reach security beyond 264 queries after a
sufficient amount of Feistel rounds.

Linear and differential cryptanalysis. Simpira’s security argument against
linear [12] and differential [60] cryptanalysis (up to attacks with complexity 2128)
is the same as the argument for AES, which is based on counting the number of
active S-boxes. As explained in [31], four rounds of AES have at least 25 (linearly
or differentially) active S-boxes. Then any four-round differential characteristic
holds with a probability less than 2−6·25 = 2−150, and any four-round linear
characteristic holds with a correlation less than 2−3·75 = 2−75.

Here, 2−6 refers to the maximum difference propagation probability, and 2−3

is the maximum correlation amplitude of the S-box used in AES. The afore-
mentioned reasoning makes the common assumptions that the probabilities of
every round of a characteristic can be multiplied, and that this leads to a good
estimate for the probability of the characteristic, and also of the corresponding
differential.

The number of rounds typically needs to be slightly higher to account for
partial key guesses (for keyed constructions), and to have a reasonable security
margin. For any of the Simpira designs, we have at least three times the number
of rounds required to reach 25 active S-boxes. This should give a sizable secu-
rity margin against linear and differential cryptanalysis, and even against more
advanced variants such as saturation and integral cryptanalysis [29].

Boomerang and differential-linear cryptanalysis. Instead of using one
long characteristic, boomerang [74] and differential-linear [11, 56] cryptanalysis
combine two shorter characteristics. But even combined with partial key guesses,
the fact that Simpira has at least three times the number of rounds that result
in 25 active S-boxes, should be more than sufficient to protect against this type
of attacks.

Truncated and impossible differential cryptanalysis. When full bit dif-
fusion is not reached, it is easy to construct a truncated differential [52] charac-
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teristic with probability one. A common way to construct an impossible differ-
ential [9,10] is the miss in the middle approach. It combines two probability-one
truncated differentials, whose conditions cannot be met together.

However, every Simpira variant has at least three times the number of rounds
to reach full bit diffusion. This should not only prevent truncated and impossible
differential attacks, but result in a satisfactory security margin against such
attacks.

Meet-in-the-middle and rebound attacks. Meet-in-the-middle-attacks [34]
separate the equations that describe a symmetric-key primitive into two or three
groups. This is done in such a way that some variables do not appear into at
least one of these groups. A typical rebound attack [62] also splits a cipher into
three parts, and combines this with techniques from differential cryptanalysis.
Low-probability differential characteristics satisfied by solving equations, and
high-probability characteristics are satisfied in a probabilistic way.

With Simpira, splitting the construction in three parts will always result in
one part that has at least 25 active S-boxes, or that reaches full bit diffusion.
This should not only prevent meet-in-the-middle and rebound attacks, but also
provide a large security margin against these attacks.

On Simpira with b = 1 (corresponding to 12-round AES with fixed round
keys), the best known distinguisher is a rebound attack by Gilbert and Peyrin [42]
that attacks 8 rounds out of 12.

Generic attacks. A substantial amount of literature exists on generic attacks
of Feistel structures. In particular, we are interested in attacks in Maurer et
al.’s indifferentiability setting [61], which is an extension of the indistinguisha-
bility notion for constructions that use publicly available oracles. In Simpira,
the F -functions contain no secret key, and are therefore assumed to be publicly
available.

Coron et al. [25] showed that five rounds of Feistel are not indifferentiable
from a random permutation, and presented a indifferentiability proof for six
rounds. Holenstein et al. [50] later showed that their proof is flawed, and provided
a new indifferentiability proof for fourteen rounds. In very recent work, Dai
and Steinberger [32] and independently Dachman-Soled et al. [28] announced
an indifferentiability proof for the 10-round Feistel, which Dai and Steinberger
subsequently improved to a proof for 8 rounds [33].

A problem with the aforementioned indifferentiability proofs is that they are
rather weak: if the F -function is 128 bits wide, security is only proven up to
about 216 queries. The indistinguishability setting is better understood, where
many proofs are available for not only Feistel, but also various generalized Feistel
structures. But even in this setting, most proofs do not go beyond 264 queries,
and proving security with close to 2128 queries requires a very large number for
rounds [49].

So although Simpira’s Feistel-based permutations can be proven to be indis-
tinguishable from random permutations using [63, 79], it is an open problem to
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prove stronger security bounds for Simpira and other generalized Feistel struc-
tures. Nevertheless, no generic attacks are known for Simpira, even when up to
2128 are made.

Note that strictly speaking, there is an exception to the previous sentence for
Simpira with b = 1. It is guaranteed to be an even permutation [22, Thm. 4.8],
and therefore 2128−1 queries can distinguish it from a random permutation with
advantage 0.5. We only mention this for completeness; actually all of Simpira’s
permutations can be shown to be even, but this is typically not considered to be
more than just a mathematical curiosity.

Other attacks. We do not consider brute-force-like attacks [70], such as the
biclique attacks on AES [16]: they perform exhaustive search on a smaller number
of rounds, and therefore do not threaten the practical security of the cipher.
However, it will be interesting to investigate such attacks in future work, as they
give an indication of the security of the cipher in the absence of other attacks. We
also do not look into algebraic attacks, as AES seems to very resistant against
such attacks.

7 Applications

Simpira can be used in various scenarios where AES does not permit an efficient
construction with security up to 2128 evaluations of the permutation. We present
a brief overview possible applications.

A block cipher without round keys. The (single-key) Even-Mansour con-
struction [37, 39, 40] uses a secret key K to turn a plaintext P into a ciphertext
C as follows:

C = EK(P ) = π(P ⊕K)⊕K , (1)

where π is an n-bit permutation. As argued by Dunkelman et al. [37], the con-
struction is minimal, in the sense that simplifying it, for example by removing
one of its components, will render it completely insecure. Mouha and Luykx [65]
explained that the Even-Mansour is also minimal in the multi-key setting, where
several keys are independently and uniformly drawn from the key space.

When D plaintext-ciphertexts are available, the secret key K of the Even-
Mansour construction can be recovered in 2n/D (off-line) evaluations of the per-
mutation π [37]. This may be acceptable in lightweight authentication algorithms
which rekey regularly, but may not be sufficient for encryption purposes [64,65].
In order to achieve security up to about 2128 queries against all attacks in the
multi-key setting, the Even-Mansour construction requires a permutation of at
least 256 bits.

An important advantage of the Even-Mansour construction is that it avoids
the need to precalculate round keys (and store them securely!) or to calculate
them on the fly. But it also allows the easy construction of a tweakable block
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cipher. For a given tweak T , one can turn the Even-Mansour construction into
a tweakable block cipher [57, 58]:

C = EK(P ) = π(P ⊕K · T )⊕K · T , (2)

that can be proven to be secure up to 2n/2 queries in the multi-key setting using
the proof of [65,66]. For concreteness, we use the multiplication K ·T in GF (2n),
which restricts the tweaks to T 6= 0. However, any ǫ-AXU hash function can be
used instead of this multiplication [23].

If the cipher is computed in a parallelizable mode of operation, independent
blocks can be pipelined, and the performance would be dominated by Simpira
with the relevant value of b, plus the overhead the key addition.

Permutation-based hashing. Achieving 128-bit collision resistance with a
128-bit permutation has been shown to be impossible [71]. Typically, a large
permutation size is used to achieve a high throughput, for example 1600 bits in
the sponge construction of SHA-3 [38]. The downside of using a large permu-
tation is that performance is significantly reduced when many short messages
need to be hashed, for example to compute a Lamport signature [55]. Simpira
overcomes these problems by providing a family of efficient permutations with
different input sizes.

In particular for hashing short messages, one may consider to use Simpira
with a Davies-Meyer feed-forward: π(x) ⊕ x. This construction has been shown
to be optimally preimage and collision-resistant [14, 15], and even preimage
aware [35], but not indifferentiable from a random oracle [24] as it is easy to
find a fixed point: π−1(0). To match the intended application, padding of the
input and/or truncation of the output of Simpira may be required.

Wide-block encryption and robust authenticated encryption. Wide-
block encryption can be used to security against chosen ciphertext attacks when
short (or even zero-length) authentication tags are used. In the context of full-
disk encryption, there is usually no space to store an authentication tag. In an
attempt to reduce the risk that ciphertext changes result in meaningful plaintext,
a possibility is to use a wide block cipher to encrypt an entire disk sector, which
typically has a size of 512 to 4096 bytes.

The same concern also exists when short authentication tags are used, and
can be addressed by an encode-then-encipher approach [5]: add some bits of
redundancy, and then encrypt with an arbitrary-input-length block cipher. Note
that this technique achieves robust authenticated encryption [48].

Typical solutions for wide-block encryption such as the VIL [4], CMC [46] and
EME [45,47] modes of operation have the disadvantage that they are patented,
and do not provide security beyond 264 blocks of input. We are unaware of any
patents related to Simpira.

When used in an Even-Mansour construction, Simpira with b ≥ 2 can provide
a wide block cipher that provides security up to 2128 blocks. When the block
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size exceeds the key size, the Even-Mansour construction can be generalized as
follows:

C = EK(P ) = π(P ⊕ (K · T )‖0∗)⊕ (K · T )‖0∗) , (3)

where we set T = 1 if no tweak is provided. Note that this straightforward
extension of the Even-Mansour construction appears in the proof for various
sponge constructions. The first proof of security of this construction in the multi-
key setting was given by Andreeva et al. [3].

8 Conclusion

We introduced Simpira, which is a family of cryptographic permutations that
processes inputs of 128× b bits. It is intended to be a very conservative design
that achieves high throughput on processors with AES instructions. We decided
to use two rounds of AES as a building block, with the goal of simplifying
the design space exploration, and making the cryptanalysis and implementation
straightforward.

With this building block, we explored a large number of generalized Feistel
structures, and calculated how many rounds are required to reach either full bit
diffusion, or 25 linearly or differentially active S-boxes, whichever is greater. To
ensure a large security margin, we multiplied this number of rounds by three.
Of all designs that we considered, we selected the ones with the lowest amount
of F -functions in total.

Following these design criteria, Simpira resulted in six different designs. For
b = 1, we have AES with fixed round keys. Simpira uses a Feistel structure for
b = 2, and a Type-1 GFS for b = 3. The b ≥ 4 design corresponds to Yanagihara
and Iwata’s Type-1.x (b,2) GFS, which uses two F -functions per round. For
b = 6 and b = 8, we use Suzaki and Minematsu’s improved Type-2 GFS, as it
has fewer F -functions than the Type-1.x (b,2) GFS.

The design criteria were only intended to quickly identify promising designs,
and are not by themselves sufficient to guarantee a secure construction. We
analyzed the security of Simpira against a wide variety of attacks, based on
the large amount of literature that exists on AES and on generalized Feistel
structures. We found that Simpira has a very comfortable security margin against
currently-known attacks.

Our benchmarks on Intel Skylake showed that Simpira is close to the theoret-
ical optimum of only executing AESENC instructions. For b ≤ 32, corresponding
to inputs of up to 512 bytes, Simpira is less than 10% away from this optimum.
This justifies our assumption that the number of F -functions is a good metric
for the throughput of the implementation.

It is unfortunate that many methods to encrypt wide input blocks, such as
VIL, CMC, and EME, have not seen widespread adoption. The main obstacle
appears to be that they are patented. We hope that Simpira can provide an
interesting alternative: it is not only free from patent concerns, but offers security
way beyond the 264 limit for typical AES-based modes.
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A Differential and Linear Characteristics for b = 6

For b = 6, two differential characteristics that were output by the MILP tool are
shown in Fig. 5-6, and two linear characteristics are shown in Fig. 7-8. Each of
these characteristics have 30 (linearly or differentially) active S-boxes. The tool
proved that no characteristics exist with fewer active S-boxes.

As the linear characteristics of Fig. 7-8 show, removing either the first or the
last round (respectively) would result in a characteristic with only 10 linearly
active S-boxes. Therefore, reducing the number of rounds would clearly violate
the requirement that there must be at least 25 active S-boxes.

B Efficient Implementation For b = 1

We recall the four Intel instructions to implement one round of AES: AESENC
(Alg. 11), AESENCLAST (Alg. 12), AESDEC (Alg. 13), and AESENCLAST (Alg. 14).
The AESIMC instruction corresponds to the InvMixColumns operation. Then for
b = 1, Simpira can be implemented as in Alg. 15, and Simpira−1 as in Alg. 16.
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Fig. 5. A differential characteristic for b = 6 with 30 active S-boxes. A thick full line
indicates a difference in every byte, a thick dotted line refers to a difference in only
one byte – it does not matter which one. A normal line indicates that no difference is
present. When non-zero, the number of active S-boxes is shown above every F -function.
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Fig. 6. Another differential characteristic for b = 6 with 30 active S-boxes. A thick full
line indicates a difference in every byte, a thick dotted line refers to a difference in only
one byte – it does not matter which one. A normal line indicates that no difference is
present. When non-zero, the number of active S-boxes is shown above every F -function.
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Fig. 7. A linear characteristic for b = 6 with 30 active S-boxes. A thick full line indicates
a non-zero linear mask in every byte, a thick dotted line refers to a non-zero linear mask
in only one byte – it does not matter which one. A normal line indicates that the linear
masks of every byte are zero. When non-zero, the number of active S-boxes is shown
above every F -function.

28



F F

F F

F F

F F

F F

F F

F F

F F

F F

5

5

20

Fig. 8. Another linear characteristic for b = 6 with 30 active S-boxes. A thick full line
indicates a non-zero linear mask in every byte, a thick dotted line refers to a non-zero
linear mask in only one byte – it does not matter which one. A normal line indicates
that the linear masks of every byte are zero. When non-zero, the number of active
S-boxes is shown above every F -function.
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Algorithm 11 AESENC (= Alg. 1)

1: procedure AESENC(state, key)
2: state ← SubBytes(state)
3: state ← ShiftRows(state)
4: state ← MixColumns(state)
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 12 AESENCLAST

1: procedure AESENCLAST(state, key)
2: state ← SubBytes(state)
3: state ← ShiftRows(state)
4:
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 13 AESDEC

1: procedure AESDEC(state, key)
2: state ← InvSubBytes(state)
3: state ← InvShiftRows(state)
4: state ← InvMixColumns(state)
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 14 AESDECLAST

1: procedure AESDECLAST(state, key)
2: state ← InvSubBytes(state)
3: state ← InvShiftRows(state)
4:
5: state ← state ⊕ key
6: return state
7: end procedure

Algorithm 15 Simpira (b = 1)
(= Alg. 5)

1: procedure Simpira(x0)
2: R← 6
3: for r = 1, . . . , R − 1 do

4: C ← SETR EPI32(r,R, 0, 0)
5:
6: x0 ← AESENC(x,C)
7: x0 ← AESENC(x, 0)
8: c← c+ 1
9: end for

10: C ← SETR EPI32(R,R, 0, 0)
11:
12: x0 ← AESENC(x,C)
13: x0 ← AESENCLAST(x, 0)
14: return x0

15: end procedure

Algorithm 16 Simpira−1 (b = 1)
(= Alg. 6)

1: procedure Simpira(x0)
2: R← 6
3: for r = R, . . . , 1 do

4: C ← SETR EPI32(r,R, 0, 0)
5: C ← AESIMC(C)
6: x0 ← AESDEC(x,C)
7: x0 ← AESDEC(x, 0)
8: c← c+ 1
9: end for

10: C ← SETR EPI32(1, R, 0, 0)
11: C ← AESIMC(C)
12: x0 ← AESDEC(x,C)
13: x0 ← AESDECLAST(x, 0)
14: return x0

15: end procedure
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