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Abstract. Password-protected secret sharing (PPSS) schemes allow a user to publicly share this high-
entropy secret across different servers and to later recover it by interacting with some of these servers
using only his password without requiring any authenticated data. In particular, this secret will remain
safe as long as not too many servers get corrupted. However, servers are not always reliable and the
communication can be altered. To address this issue, a robust PPSS should additionally guarantee that
a user can recover his secret as long as enough servers provide correct answers, and these are received
without alteration. In this paper, we propose new robust PPSS schemes which are significantly more
efficient than the existing ones. We achieve this goal in two steps. First, we introduce a Robust Threshold
Secret Sharing Scheme with respect to Random Failures that allows us to drop the verifiable property
of Oblivious Pseudorandom Functions. Then, we use this new construction to introduce two new robust
PPSS schemes that are quite efficient.
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1 Introduction

Nowadays, cloud storage is quite popular with zettabytes of data spread all over the world. Even if
providers give some backup guarantees, they cannot always prevent compromises, and so the data
are subject to leakage, with possibly huge consequences if the data are sensitive (financial, economic,
medical, etc). Clearly, the provider can encrypt the data before storing them, but this is not an
end-to-end protection for the user: the provider itself has access to the data. For better security, the
user should encrypt the data before sending them to the cloud. But this leads to a key management
issue: Users have to remember their secret keys!

Humans cannot remember large secret keys, but just low-entropy passwords (and not too many).
Such a password is definitely not enough to deterministically derive a symmetric encryption key,
since a simple off-line dictionary attack would allow the recovery. On the other hand, there are
techniques using passwords that are not vulnerable to such off-line dictionary attacks, like password
authenticated key exchange (PAKE) [BM92]. For these PAKE protocols, the best attacks require the
adversary to be on-line, and to make the exhaustive search by interacting with the honest parties,
hence the idea to combine PAKE with secret sharing, in order to achieve the best of the two worlds.
This allows the recovery of a high-entropy symmetric key by interacting with several servers while
just using a low-entropy password [FK00,Jab01], without relying on any authenticated data, where
the best attacks are on-line dictionary attacks.

Password-Protected Secret Sharing. A (t, n)-password-protected secret sharing (PPSS) is a
protocol that allows a user to reconstruct a high-entropy secret from a single (human-memorable)
password, by communicating with at least t+ 1 honest servers (among n possible ones).

This framework formalized in [BJSL11] first defines a secure initialization phase where the secret
is processed together with the password, and some server information, in order to distribute the
secret among n independent servers. Only public information (to enable the later reconstruction) is
eventually stored on each server. We however stress that this public information does not have to
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be authentic for the later security. Then, during the reconstruction phase, the user can recover his
secret by interacting with any subset of t + 1 honest servers using just his password. If the public
information has been altered, the knowledge of the password will be enough to detect it.

A PPSS protocol satisfies the following properties: (i) the user can retrieve the data by executing
the reconstruction protocol with the same password as the one used in the initialization phase and
it is guaranteed to succeed as long as at least t+1 honest servers are available. (ii) An attacker who
controls up to t servers cannot learn any information about the secret other than doing an on-line
dictionary attack with another server. Two additional properties have been defined: Soundness and
Robustness. The first guarantees that even if the adversary compromises all the servers, it cannot
make the user reconstruct a secret different from the one originally stored by the user. On the other
hand, robustness guarantees the recovery of the secret as long as the user communicates without
disruptions with at least t+ 1 honest servers.

Additionally, we point out that the adversary can control all the communication network by
blocking, delaying, altering, or duplicating any flow. As such, no server is trusted, and no PKI is
assumed either, since the only authenticated data we allow is a short password that the user can
remember.

Contributions. Our PPSS protocol follows the methodology from [JKK14]: it is based on the use
of pseudorandom functions (PRFs) evaluated on the password to mask the shares of the secret.
These evaluations are performed with servers that own the PRF keys, in an oblivious way, hence
the so-called oblivious pseudorandom functions (OPRFs).

Our first contribution is to point out that, in order to achieve robustness in such a PPSS protocol,
one does not need to distinguish between correct and incorrect shares on individual shares. When
using oblivious PRFs (OPRFs) to generate the shares, in general, the shares are either correct
(honest server without disruption) or random (dishonest server or alteration of the flows). As a
consequence, this is enough for the reconstruction technique to be able to select the correct shares,
where their number is high enough, under the assumption that the invalid shares are random.

Taking this into account and based on the assumption that at the reconstruction phase the
shares are either correct or random (which will be proven for our OPRFs) we build a new efficient
(t`, tr, n)-Robust Threshold Secret Sharing Scheme with respect to Random Failures that guarantees
to efficiently identify the correct values (and reconstruct the secret) if at least tr shares are correct.
However, if at most t` shares are correct, the protocol leaks no information about which shares are
correct. It is indeed important that not too few correct shares can be detected as correct as this
could result in offline dictionary attacks. For instance, in the case where shares could be individually
checked, a dishonest server could mount an offline dictionary attack. With our new primitive, even
t` corrupted servers cannot perform an offline dictionary attack as they would still need to interact
with at least one additional server.

We use this (t`, tr, n)-Robust Threshold Secret Sharing Scheme with respect to Random Failures
to construct a sound and robust PPSS scheme. More precisely, it allows us to design a generic
(t`, tr, n)-PPSS scheme that ensures the reconstruction of the secret as long as the user communicates
with at least tr honest servers without communication alteration (robustness), still preventing any
leakage of information in presence of up to t` corrupted servers.

While in the same vein as [JKK14], our technique takes advantage of the robustness with respect
to random failures of the threshold secret sharing scheme: it eliminates some strong requirements on
the OPRF (namely the so-called verifiability). This allows us to avoid many zero-knowledge proofs,
and therefore to construct much more efficient OPRF protocols.
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We propose two OPRF constructions: The first one, in the random oracle model (ROM) [BR93],
is based on the CDH assumption; the second one, in the standard model with a CRS, that obliviously
evaluates the Naor-Reingold PRF [NR97], based on the DDH assumption.

For the former, efficiency is quite similar to the one in [JKK14], since we just avoid a NIZK,
that was efficient on the ROM. However, for the latter, we compare very favorably to their obliv-
ious evaluation of the Naor-Reingold PRF: thanks to the relaxation of our OPRF, our protocol
simply uses ElGamal encryption [ElG85] in prime order groups with simple zero-knowledge proofs,
whereas [JKK14] has to work in composite order groups with Paillier encryption [Pai99] and more
complex zero-knowledge proofs. Our communication load is at most half of theirs, while still being
asymptotically the same.

Related Work. The first formal definition of Password Protected Secret Sharing was introduced
by Bagherzandi et al. [BJSL11]. They proved their scheme secure in the random oracle model
assuming an additional PKI. Moreover, if an adversary is able to obtain the keypair of one server,
the adversary can perform an offline attack. Later Camenisch et al. [CLN12] introduce a protocol of
password-authenticated secret sharing that also assumes a PKI and only two servers. Both protocols
contradict the requirement to be password-only, since they assume additional authenticated data.
Whereas this assumption of a safe PKI makes sense during the initialization phase, which can be
run in a safe environment, it is not reasonable to make this assumption for the reconstruction phase,
which will be executed many times on various weak devices.

Later, Camenisch et al. [CLLN14] introduce a (t, n)-PPSS (called TPASS, for Threshold Password-
Authenticated Secret Sharing) in the Universal Composability (UC) framework [Can01] that is
password-only during the reconstruction phase. However, in this protocol all servers jointly vali-
date if the password matches or not. Yi et al. in [YHCL15] propose a more efficient TPASS than
[CLLN14] based on distributing the password, a secret and a digest of the secret. Nevertheless, in
the recovering protocol, at least t servers execute a broadcasting protocol to generate and return the
ElGamal encryptions of both the secret and the digest. Then the users verify it matches. Camenisch
et al. in [CLN15] present a very lightweight protocol with a similar construction to our work, yet
with differences. Each server holds a key that is refreshed at regular time intervals that allows them
to recover from corruption through a non-interactive key refresh protocol making it unfeasible to
perform an offline attack unless all servers are corrupted at the same time. Since this protocol does
not rely on robust secret sharing scheme nor zero-knowledge, it is not possible for the protocol to
identify which shares are valid. Then, if in the end the validation fails, the protocol must restart
with a different set of servers contradicting the requirement of robustness and leading to a possible
Denial-of-Service (DoS) attack.

Jarecki et al. [JKK14] have been the first to design a PPSS scheme that is both password-
only during the reconstruction phase and robust, to avoid too easy DoS attacks. It makes use
of a Verifiable Oblivious Pseudorandom Function (VOPRF) that assures robustness by providing
computation guarantees from the servers: the user actually knows which server has tried to cheat,
or which communication links have been altered.

The solution we propose in this paper follows the previous strategies: we use a secret sharing
scheme to divide the user’s secret. Each server stores one share masked by the pseudorandom value
computed in an oblivious way on the user’s low-entropy password with the server’s PRF key. Because
of this, the server cannot know the value of its share at the reconstruction phase, leading only to
two options: Either the real share or a random one.

Our (t`, tr, n)-robust threshold secret sharing scheme with respect to random failures allows the
user to execute the PPSS protocol in a robust way: If the number of correct servers’ answers is
above the threshold tr, the user can efficiently identify the valid ones. If the number of answers
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is below another threshold t`, no information is leaked. The main difference to [JKK14] is in the
way to achieve robustness: We ask a bit more from the secret sharing scheme, but much less from
the OPRF, allowing more efficient constructions for the latter, which high improves on the global
efficiency.

2 Security Model

In order to analyze the security of Password-Protected Secret Sharing (PPSS) protocols, we first
provide a formal description of the security model. This is a game-based security definition, in the
same vein as [BR94,BR95] for key distribution schemes and [BPR00] for password-authenticated
key exchange. It adapts the PPSS definition from [BJSL11] and the security model from [JKK14].
We define security in terms of a key derivation mechanism or indistinguishability of the actual secret
from a random one, as in [JKK14], since our goal is to later use the secret as a symmetric key. In
particular, we do not want to rely on a PKI or any authenticated public values, hence our model
description is similar to security models for password-authenticated key exchange protocols.

2.1 Password-Protected Secret Sharing

We first describe the participants and the two steps of a PPSS protocol.

Participants and Parameters. We assume a fixed set of participants involved in the protocol,
each of which is either a user or a server. The set of all participants is the union of the nonempty
disjoint and finite sets, User ∪ Server.

Each user U ∈ User holds two threshold values t` and tr, where tr is the number of shares
required to recover the secret and t` the maximum number of shares that can be known without
leaking any information about the secret, as well as some password pw chosen independently and
uniformly from a dictionary D of cardinality #D.

Each server S ∈ Server holds a secret key sk, and possibly an associated public key pk. However
we stress that even if there is a public key pk, authenticity cannot be assumed a priori during the
reconstruction phase since users will just have to remember their passwords and nothing else that
would be required to authenticate additional data.

Initialization. The goal of the user U is to generate a key K so that he later can recover it
with the help of tr servers among n available servers, just using his password. He thus runs an
initialization protocol with n servers, using their public keys, his password and some random coins.
He ends up with a random key K and some additional information PInfo: nobody else than U has
any information about K, however PInfo can be made public.

Secret Reconstruction. While the initialization phase assumes that all the servers are honest,
the public keys are authentic, and the data are not modified during the communication, for the
reconstruction phase, the adversary controls the network and can forward, alter, delay, replay, or
delete any message. The adversary can also provide fake public data: nothing is authenticated
anymore!

Anyway, just using his password, the user U should be able to recover K, with the help of the
servers, in a verifiable/robust way, even if the public keys in PInfo are not guaranteed to be correct.

Each participant (either user or server) can run several executions of the protocol, possibly
concurrently, we thus denote an instance i of player P as P i. Each instance may be activated once
only: the adversary is given oracle accesses to interact with all the user’s and server’s instances that
are stateful interactive polynomial-time Turing machines.
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2.2 The adversarial model

During the reconstruction phase, the adversary is given total control of the network: it can forward,
alter, delay, replay, or delete any message sent by any player. To model this ability, it is given access
to the following oracles:

– Execute(U i, {Sjkk }): This query models a passive attack. This makes an instance U i to interact

with several instances of servers {Sjkk } as they would do during the reconstruction protocol. The
adversary eventually gets back the entire transcript;

– Send(P i,m): This query models an active attack. This sends a message m to the instance P i.
This message m can be a fresh message, or a replay, a forward, etc. A specific message Startjk to

a user’s instance U i makes it initiate a communication with the server’s instance Sjk.

The security goal is to guarantee the privacy of the secret key K reconstructed by the user. This
is usually modeled by an indistinguishability game, with access to a Test-query, where b is a global
secret random bit:

– Test(U i): This query characterizes the indistinguishability of the key K computed by instance
U i. If this instance has not yet completed the reconstruction, the answer is undefined; if the
reconstruction failed, the answer is ⊥; otherwise, the answer is either the real reconstructed
value if b = 1 or a random one (always the same for user U , but independent of the real one) if
b = 0.

The adversary eventually outputs its guess b′ for the bit b, to show its ability to distinguish real
multiple executions of the protocol from ideal executions: one can note that in the random case
(b = 0), which models the ideal executions, a user U always terminates with the same key, or fails.
This means that the adversary should not be able to make him accept a different key.

In addition to control the network and the communications, the adversary can corrupt servers,
and get back their secret keys, due to, e.g., a poorly-administered server, compromise of a host
computer, or cryptanalysis. This is modeled by the Corrupt-query:

– Corrupt(Sk): This outputs the secret key skk of the server Sk.

2.3 Semantic Security

Definition. Once the initialization phase is completed for many users, with random passwords
uniformly and independently drawn from a dictionary D, the security game models the indistin-
guishably of the secret keys, a.k.a. semantic security, the adversary can ask as many oracle queries
(Execute, Send, Test, and Corrupt), as it wants, in any order it wants, in order to guess the bit b: it
outputs its guess b′. We measure the quality of an adversary A by its advantage

Adv(A) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] = 2× Pr[b′ = b]− 1.

Trivial Attacks. Two kinds of “on-line dictionary attacks” are unavoidable:

– if the adversary guesses the correct password, it will be able to reconstruct the actual secret K
after qc corruption queries and tr − qc interactions with honest servers. Even after just t` − qc
interactions, it may come up with t` shares, which may leak some information about the actual
secret key: it thereafter asks for an Execute-query, and tests the instance involved in this session,
to distinguish the real case from the random case. Its success probability is however upper-
bounded by qs/(t`− qc)× 1/#D, where qs is the number of server instances involved during the
attack, qc the number of Corrupt-queries, and #D the size of the password dictionary.
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– whereas the initialization phase was assumed to be done with authentic server public keys, for the
reconstruction phase, the adversary can send totally fake public keys in PInfo that it generated
itself from a randomly chosen password pw. It thus also knows the secret keys and can simulate
the view of the user by emulating all the servers. If the password guess was correct, the user
should successfully terminate, whereas a wrong guess would lead to inconsistent information.
Its success probability is therefore upper-bounded by qu/#D, where qu is the number of user
instances involved in the attack.

2.4 Secure PPSS

As a consequence, we will say a (tr, n)-PPSS scheme is (t`, ε, t)-secure if for any adversary A, running
within time t, asking at most qc Corrupt-queries and invoking at most qu user instances and qs server
instances,

Adv(A) ≤ 1

#D
×
(

qs
t` − qc

+ qu

)
+ ε.

In [JKK14], they proposed such a protocol that achieves the optimal t`-security, for t` = tr, but at
the cost of verifiable oblivious pseudorandom functions. Our goal is to build much more efficient
protocols, possibly lowering the security level: t` = 2tr − n− 2.

Before going into more details about our constructions, let us review the required or expected
properties for a PPSS, initiated with a password pw and secret K for a user U . Some are already
covered by the security model, some offer additional features:

– Correctness. To be viable, a password-protected secret sharing must guarantee that at least
tr honest servers should allow the user that plays with his password pw to recover his secret K.

– Soundness. As already guaranteed by our security model, when a user terminates with a key
K ′, this is the correct key K. More precisely, when playing with the correct password pw, the
user ends up with K ′ ∈ {K,⊥} without any assumption about the communications and the
server behaviors: there are no authenticated channels nor any authenticated data.

– Robustness. Due our communication model messages can be lost, modified, or even totally
faked by the adversary. Of course, one cannot avoid Denial-of-Service (DoS) attacks, since the
adversary can simply block any communication. However, an important property, already re-
quired by [JKK14], is the so-called robustness: even if the adversary alters many messages, as
soon as tr communications with servers are unmodified the user can efficiently recover its secret.

The general issue with robustness is that when the user has interacted with n servers but only tr
shares are valid, the cost of try all the tr subsets is exponential! In [JKK14], they addressed this issue
by making some inner protocols secure against malicious servers, with additional zero-knowledge
proofs of honest behavior, but this is at a high communication cost. Our goal is to provide this
property at a much lower cost.

3 High-Level Description

We review the well-known computational assumptions in the Appendix A and the classical building
blocks in the Appendix B. But here, we present a high-level description of the PPSS protocol, to mo-
tivate the needs. Our general construction follows the one from [JKK14], with first an initialization
phase and then a reconstruction phase.

Each server Sk owns a key-pair (skk, pkk) that defines a PRF Fk, with public parameters defined
by pkk and a secret key defined by skk. For a password pw ∈ D, the user asks for an oblivious eval-
uation of πk = Fk(pw) to n servers, where Π = (pkk)k is the tuple of the public keys of the involved
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servers. The secret key K is then split into shares (s1, . . . , sn) and some extra public information
PInfo, specific to the user is derived from it and distributed to all servers. This information allows
the user to later recover his secret, in a robust way.

We stress that during this initialization phase, (pkk)k are all the true public keys, and (πk)k are
the correct evaluations of the PRFs. However, during the reconstruction phase, the values provided
by the servers are sent through an insecure channel and they might be altered by the adversary:
the user interacts with at least tr servers, that provide him PInfo, and help him to compute each
πk = Fk(pw) in an oblivious way. We assume that the user received the same value PInfo from at
least tr servers, and then the user keeps the majority value. Using PInfo and enough evaluations
πk, the user can extract enough shares among (s1, . . . , sn) and reconstruct a value K. He can then
verify whether this is the expected secret key.

We can note that there are two crucial tools for this generic construction:

– a pseudorandom function F that can be evaluated in an oblivious way: the server input is the
secret key sk and the user input is the password pw, and the user only gets the output Fsk(pw),
but none of the players learn any additional information about the other player’s input;

– a (t`, tr, n)-threshold secret sharing scheme that allows to share a secret among n players so that
any subset of tr shares allows efficient reconstruction of the secret, while t` shares do not leak
any information.

An additional non-malleable commitment scheme [DIO98] will provide the soundness, by limiting
the ability for an adversary to present a modified PInfo.

However, in order to achieve the robustness to the PPSS protocol, we need to make sure that
when tr communications with the servers are unmodified, the user can reconstruct the secret: either
one can detect alterations of the communications during the oblivious evaluations of the PRF,
which is the approach followed by [JKK14] with Verifiable Oblivious PRFs (VOPRFs), or one can
efficiently reconstruct a secret from any set of shares that contains at least tr valid shares, which is
our approach with Robust Threshold Secret Sharing Scheme. Actually, a weaker notion of robustness
for the secret sharing scheme is enough since with the oblivious PRF, if the server is honest and
the flow unmodified, the user gets the correct share, but if the server cheats or the flow is modified,
the user gets a truly random share, hence our notion of robustness with respect to random failures.

4 A Robust Threshold Secret Sharing Scheme with Respect to Random
Failures

Our technique is generic, and so we start from any threshold secret sharing scheme (see Appendix B),
with two algorithms ShareGen and Reconstruct that respectively share a secret and reconstruct it,
to which we will add this new robustness feature, that is enough to get a robust PPSS scheme. Let
us first give the intuition of the technique, and we then explain how we can make it in practice.

4.1 Intuition

The valid shares are denoted (s1, . . . , sn) and the fingerprints of these shares (σ1, . . . , σn). At the
same time of the share distribution, the product S of all fingerprints modulo an integer N is
published. In order to reconstruct the secret, having received m candidate shares, one computes
its fingerprints (τ1, . . . , τm) and the product of them T =

∏
τi. The ratio T /S mod N will cancel

out the fingerprints of all the correct share values leading to the ratio T ′/S ′ mod N , where S ′ is
the product of the fingerprints of the valid shares that the receiver does not have in the list of
candidates and T ′ the product of the fingerprints of the candidates that are invalid. From S ′, one



8

could easily check for every candidate, whether it is in this product or not, and therefore identify
which candidate is correct or not.

Of course, S ′ has to be computed with good precision to allow the last verification, but not too
much in order to avoid individual checks or any unnecessary leakage of information. The computa-
tions are thus performed modulo N , for a well-chosen value.

4.2 Description

We now explain how one can extract S ′ when the candidates are either correct or random.

Initialization. We assume we have a set of n initial values (s1, . . . , sn), and their fingerprints are
k-bit strings (σ1, . . . , σn). We will additionally assume that fingerprints are randomly distributed
between 2k−1 and 2k − 1 when the inputs are random. We can use σi = F (si) = 1‖(si mod 2k−1):
if si it is a uniformly distributed large bitstring, si mod 2k−1 is a (k − 1)-long bitstring uniformly
distributed, hence σi is uniformly distributed between 2k−1 and 2k − 1.

In the following, we will be given a set of m candidate shares, whose fingerprints are (τ1, . . . , τm):
these candidates are either correct or random, and so are their fingerprints. From this set of candidate
shares, if at least tr are correct, we want efficiently to identify the correct values (to recover the
secret in a threshold secret sharing scheme, hence tr). However, if at most t` are correct, the protocol
should not leak any information about which candidates are valid and which are not (hence t`).

From the initial set (σ1, . . . , σn) of size n and the threshold tr, one chooses a prime number N
such that 22k(n−tr)+1 < N ≤ 22k(n−tr)+2, computes the product S =

∏n
i=1 σi mod N , and publishes

SSInfo = (S, N).

Reconstruction. Given the SSInfo = (S, N) and fingerprints (τ1, . . . , τm) of the m ≤ n candidates,
which are either correct (at least tr of them) or random (all the other ones), one computes the ratio
γ =

∏m
i=1 τi/S mod N , which can be written as γ = T ′/S ′ mod N , where T ′ is the product of the

fingerprints of the invalid candidates and S ′ the product of the fingerprints of the values that are
not in the list of the candidates, both over the integers. Then, we know that T ′ ≤ 2k(m−tr) − 1 ≤
2k(n−tr) − 1 and S ′ ≤ 2k(n−tr) − 1.

Using the following result from [FSW03], we can recover both S ′ and T ′ under appropriate
conditions.

Theorem 1. (Numerical Rational Number Reconstruction) Let z = x
y mod N such that −X ≤

x ≤ X and 0 < y ≤ Y . If N is relatively prime to y and 2XY < N then the solution is unique and
it is possible to recover x and y efficiently by using two-dimensional lattice theory.

Considering X = 2k(n−tr)−1 and Y = 2k(n−tr)−1, we indeed have 2XY ≤ 2(2k(n−tr)−1)(2k(n−tr)−
1) < N and X > 0, Y > 0, hence we can efficiently recover T ′ and S ′ from γ. Thereafter, by testing
gcd(T ′, τi) ?= τi, one learns whether τi is among the invalid candidates or not.

We insist that the candidates are either correct or random (and independent). Therefore, it
is quite unlikely that a valid candidate already reduced divides this product. To be more precise,
according to [CN00] that analyzes the collision-intractability notion introduced by [GHR99], this
probability is indeed small: much more than 1000 numbers of 128 bits are required so that one of
them divides the least common common multiple of the others with probability 1%. Since n is much
lower than 100 in general, over 128-bit fingerprints, this probability is very small.

Information Leakage. On the opposite, we would like to evaluate the information leaked by S
when there are at most t` valid values: γ = T ′/S ′ mod N , with S ′ ≥ 2(k−1)(n−t`). If this bound is
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much greater than N , there is still some entropy, and no way to get any additional information
about any individual fingerprint, because of the modular reduction.

We need 2(k−1)(n−t`) ≥ N×2k to still have k bits of entropy (a security in 2−k), which is achieved
if 2(k−1)(n−t`) ≥ 22k(n−tr)+2+k since N ≤ 22k(n−tr)+2. This means that with (k− 1)(n− t`) ≥ 2k(n−
tr)+k+2, the required inequality holds. One can rewrite it as k×((n−t`)−2(n−tr)−1) ≥ n−t`+2 ≥
n+2. When k is bigger than n+2, this essentially means (n−t`)−2(n−tr)−1 = 2tr−n−t`−1 ≥ 1:
by choosing t` = 2tr − n− 2, we are safe. More concretely, with the above bounds, we have shown
that for any set of t` values (correct or incorrect), S ′ > N and so γ can be written as a ratio modulo
N . Hence no one can distinguish a set of t` correct values from a set of t` random values. This is
the argument we will use in the proof of our PPSS protocols.

4.3 Application to Shamir’s Secret Sharing Scheme

One can of course apply this technique to the well-known Shamir’s secret sharing scheme, to build a
(t`, tr, n)-robust threshold secret sharing scheme with respect to random failures for a secret s ∈ Zp,
where p ≥ 22k, and k is the bit-length of the fingerprint: we can safely use k = 128 when tr is below
a few dozens, which allows to share a 128-bit secret, or even a 256 AES secret key.

5 Our Password-Protected Secret Sharing Protocols

Thanks to our new primitive of (t`, tr, n)-robust threshold secret sharing scheme with respect to
random failures, we do not need to use a Verifiable Oblivious PRF, but an Oblivious PRF only,
which guarantees correct or random evaluations. With a classical threshold secret sharing scheme,
as in [JKK14], this is not possible to avoid the verifiability of the OPRF. This verifiability is at the
cost of zero-knowledge proofs of honest behavior of the servers.

We can now describe our general structure of PPSS protocol, using an OPRF as black-box,
assuming it either provides the correct evaluation if the flows with an honest server have not been
altered, or a random value as soon as the adversary tries to cheat.

We thereafter provide two instantiations, with two appropriate OPRFs, in the same vein as the
ones proposed in [JKK14], using similar computational assumptions (see Appendix A):

– the first OPRF relies on the CDH evaluation, similar to the protocol 2HashDH from [JKK14],
but without NIZK. It leads to a PPSS construction quite similar to [JKK14], since the random
oracle model allowed them to use efficient NIZKs for the verifiability.

– the second OPRF is an oblivious evaluation of the Naor-Reingold PRF [NR97], in the standard
model. Then, in the PPSS, the gain of the zero-knowledge proofs by the server is quite significant,
but we still need some proofs from the user, to ensure the input is in the correct domain, otherwise
there is no guarantee on the PRF property.

5.1 General Description

As already presented in the high-level description, our protocols are in two phases: the initialization
phase which is assumed to be executed in a safe environment with reliable communications and
correct inputs from the servers, and the reconstruction phase during which the password only is
considered correct, while all the other inputs can be faked by the adversary.
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Initialization. We assume that each server Sk owns a key pair (skk, pkk) that defines a PRF Fk,
with public parameters defined by pkk and a secret key defined by skk, that admits an OPRF
protocol to allow a user with input m to evaluate Fk(m) without leaking any information on m to
the server. We additionally use a (t`, tr, n)-robust threshold secret sharing scheme with respect to
random failures, where we can assume that tr = 2n/3 + 1 and t` = n/3 (which is compatible with
our previous construction), and a commitment scheme Commit (see Appendix B). The user U first
chooses a secret password pw:

1. the user interacts with n servers to obliviously evaluate πk = Fk(pw), and Π = (pkk)k is the
tuple of the public keys of the involved servers;

2. for a random value R = K‖r, where K is the random secret key the user wants to share and r
some random coins. The user generates (s1, . . . , sn,SSInfo) ← ShareGen(R), so that any subset
of tr shares among {s1, . . . , sn} can efficiently reconstruct R;

3. then, the user builds σk = πk ⊕ sk, for k = 1, . . . , n, and sets Σ = (σk)k;
4. the user generates C = Commit(pw, Π,Σ,SSInfo,K; r). We denote by PInfo = (Π,Σ,SSInfo, C)

the public information that the user will need later to recover its secret K;
5. the user thus gives PInfo to all the servers.

We stress that during this initialization phase, all the values of Π are the real public keys and (πk)k
are the correct evaluations of the PRFs. On the opposite, during the reconstruction phase, all the
values in PInfo will be provided by the servers, but through the adversary, who might alter them.

Reconstruction. For the reconstruction, the user interacts with at least tr servers, that provide
him PInfo = (Π,Σ,SSInfo, C), and help him to compute πk = Fk(pw) for several values of k, using
pkk from Π. No information is trusted anymore, and so the reconstruction phase perform several
verifications:

1. the user first limits the oblivious evaluations of πk = Fk(pw) to the servers that sent the same
majority tuple PInfo = (Π,Σ,SSInfo, C). If the number of such servers is less than tr, one aborts
with K ←⊥;

2. for all these πk (or similarly, all the k he kept), the user computes sk = σk ⊕ πk, using σk from
Σ (from PInfo);

3. using these {sk} with at least tr correct shares, and SSInfo (from PInfo), with robust threshold
secret sharing scheme, the user reconstructs the shared secret R (or aborts with K ←⊥ if the
reconstruction fails);

4. the user parses the secretR asK‖r, and checks, from PInfo, whether C = Commit(pw, Π,Σ, SSInfo,K; r);
5. if the verification succeeds, K is the expected secret key, otherwise the user aborts with K ←⊥.

5.2 Protocol I: in the Random Oracle Model

Our first instantiation is based on CDH-like assumptions in the random oracle model. The arithmetic
is in a finite cyclic group G = 〈g〉 of prime order q. We need a full-domain hash function H1 onto
G, and another hash function H2 onto {0, 1}`2 . Since we already are in the random oracle model for
the PRF, we can implement the commitment scheme with a simple hash function H3 onto {0, 1}`3 :
C = Commit(pw, Π,Σ,SSInfo,K; r) := H3(pw, Π,Σ,SSInfo,K, r), which allows a better efficiency.

For a private key sk = x ∈ Zq, we consider the pseudorandom function Fx(m) = H2(m, g
x, H1(m)x),

for any bitstring m ∈ {0, 1}∗, where the public key is pk = y = gx. In the Appendix C, we prove this
is indeed a PRF. In addition, it admits an oblivious evaluation, that does not leak any information,
thanks to the three simulators Sim, SimU and SimS , as presenter in Figure 1: Sim simulates an
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honest transcript, SimU simulates an honest user interacting with a malicious server, and SimS

simulates an honest server with a malicious user. These simulators will be used by our simulator in
the following security proof. They generate perfectly indistinguishable views to the adversary, but
they require CDHg(y, ·) and DDHg(y, ·, ·) evaluation, and thus oracle access when the secret keys
are not known. Since the indistinguishability of the PRF relies on the CDHg(y, ·) assumption, the
overall security relies on the One-More Gap Diffie-Hellman (OMGDH) assumption (see Appendix
A), as shown in the last step of the proof.

Theorem 2. For any adversary A, against the Protocol I, that corrupts no more than qc servers,
involves at most qs instances of the servers, qu instances of the user, and asks at most q1, q2, q3
queries to H1, H2, H3, respectively

Adv(A) ≤
(
qu +

3qs
n− 3qc

)
× 1

#D
+ n× Succomgdh(q1, qs, t, n · qu + q2) + (q23 + 2) · 2−`3 .

Security Proof. The complete and detailed proof of the Theorem is given in Appendix C. The
rough idea is the following: in the real attack game, we focus on a unique user, against a static ad-
versary (the corrupted servers are known right after the initialization, and before any reconstruction
attempt). All the parameters are honestly generated, the simulator knows the secret informations to
answers the queries, and two random keys K0 (random) and K1 (real), as well as a bit b, are selected
randomly to answer Test-queries. In the final game, we simulate all the answers to the adversary
without using a password. A random value will be chosen at the very end of the simulation and used
as a password in order to decide if some bad events should have occurred, which will immediately
upper-bound the advantage of the adversary.

We first modify the way Execute-queries are answered, using Sim that perfectly simulates honest
transcripts user-servers, and we set user’s key to K1.

Then, we deal with Send-queries to the honest user, trying to exclude the cases of a fake public
information PInfo′ (sent by the majority of servers): first, we do as before if the commitment C ′

in PInfo′ is different from the expected value C generated during the initialization, but eventually
we set K ←⊥. This would just make a difference for the adversary if C ′ indeed contains the good
password pw, which is defined as the event PWinC. This event PWinC can be evaluated using the
list of queries asked to H3. Then, a similar argument applies when a wrong PInfo′ is sent, but with
a correct C, under the binding propriety of the commitment H3.

User Server
m pk = y = gx sk = x

α
$← Z∗q , A← H1(m)α A -

If B = 1, then abort B� B ← Ax

C ← B1/α, R← H2(m, y,C)

Sim

α
$← Z∗q

A← gα A -
B� B ← yα

SimU

A
$←G A -

B�
¬DDHg(y,A,B)
=⇒ fail

SimS

A -
B� B ← CDHg(y,A)

Fig. 1. Secure Oblivious Evaluation of the PRF based on CDH



12

Once we have fixed this, and we trust the public values, we can use SimU , that perfectly
simulates a flow A from the user to a server, and can decide on the honest behavior of the servers.
Then SimU accepts with K ← K1 in the honest case or aborts with K ←⊥ otherwise. Hence, we
remark that we answer Send-queries without calling the H1 or H2 oracles, but just using K1, and
no secret sharing reconstruction is used anymore.

Next step is to replace all the shares in the initialization phase by random and independent
values. We know that until the adversary does not get more than t` = n/3 of these shares, it cannot
detect whether they are random or correct. We define the event PWinF to be the bad event, where
the adversary has enough evaluations of the PRF to notice the change. Again, our simulator is able
to decide the event PWinF by checking whether pw has been queried with the right inputs to H2,
and how many times.

We eventually replace the hash value C in the initialization phase by a random C.

One can note that, in the end, the password pw is not used anymore during the simulation,
but just to determine whether the events PWinC or PWinF happened. In addition, K1 does not
appear anymore during the initialization phase, hence one cannot make any difference between K0

and K1: SuccA = 1/2 in the last game. As a consequence, Adv(A) ≤ Pr[PWinC] + Pr[PWinF] + ε,
where ε comes from the collisions or guess on the random oracles. To evaluate the two events PWinC
or PWinF to happen, we choose a random password pw at the very end only: Pr[PWinC] is clearly
upper-bounded by qu/#D, since qu is the maximal number of fake commitment attempts containing
the right pw that can be different from the expected ones; PWinF means that the adversary managed
to get n/3 − qc evaluations of the PRFs under the chosen pw, since it can evaluate on its own the
values under the qc corrupted servers. But unless the adversary gets more evaluations than the
number qs of queries asked to the servers (which can be proven under the OMGDH assumption),
the number of bad passwords (for which the knows at least n/3 − qc evaluations of the PRFs) is
less than qs/(n/3 − qc). So the probability that the chosen pw is such a bad password is less than
qs/(n/3− qc)× 1/#D.

5.3 Protocol II: in the Standard Model

Our second instantiation makes use of the Naor and Reingold [NR97] pseudorandom function, based
on the DDH assumption, in the standard model, with a CRS. We consider the group G = 〈g〉 of
prime order q that is a safe prime: q = 2s+ 1. In the multiplicative group of scalar Z∗q , we consider
the cyclic group Gs of order s (this is the group of elements in Z∗q with Jacobi symbol equals to
+1). In both groups, the DDH assumption can be made.

The PRF key is a tuple a = (a0, a1, . . . , a`)
$← (Gs\{1})`+1, and Fa(x) = ga0

∏
a
xi
i , where

x = (x1, x2, . . . , x`) ∈ {0, 1}`. This function has been proven to be a PRF under the DDH as-
sumption [NR97] on `-bit inputs. It also admits a simple oblivious evaluation (just the messages
C and G from Figure 2), using a multiplicatively homomorphic encryption scheme in Gs, such
as ElGamal for (Encpk,Decsk), which allows the computation of C from x, α, and the ciphertexts
{ci}i. Unfortunately, without additional proofs, this is not secure against malicious users, since it
works only for honest inputs x ∈ {0, 1}`. Hence the more involved protocol presented in Figure 2
that makes use of a zero-knowledge proof of knowledge of (xi)i ∈ {0, 1}` and α ∈ Gs. This can be
efficiently done under the sole DDH assumption.

As for the previous OPRF, because of the random blinding factor α, either R = Fa(x) or R
is a random element in G, unless G = 1, hence the verification. Therefore, the OPRF protocol
guarantees that the value computed by the client is either correct when the server plays honestly
or random when the server cheats. The full proof can be found in the Appendix C.
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User Server

x = (x1, x2, . . . , x`) ∈ {0, 1}` pk, {ci = Encpk(ai)} sk ∈ Zs
also seen as an `-bit scalar in Zs CK

α
$←Gs, C ← Encpk(α× a0

∏
ai
xi)

C -{� -
Proof(α, xi)� -

}
D ← Decsk(C)

If G = 1, then abort G� G← gD

R← G1/α

Fig. 2. Secure Oblivious Evaluation of the NR-PRF

6 Comparisons

We can assume that PInfo is stored in the Cloud, it does not need to be sent by each server, then
the global communication is linear in n. More precisely, our first protocol in the random oracle
model is quite similar to the one from [JKK14], but with just 2 group elements, since our gain is
essentially one NIZK less, and so half the communication cost. Of course, we did not provide any
security result in the UC framework [Can01], but our ultimate goal was the same as [JKK14]: an
efficient robust password-protected secret sharing scheme, in a BPR-like security model [BPR00].
To this aim, there is no reason to use UC-secure building blocks, but tailored primitives.

Our second protocol in the standard model with a CRS turns out to be much more efficient
than theirs: even if it uses the same Naor-Reingold PRF, the oblivious evaluation is much more
efficient and relies on the DDH assumption only. Our full construction only makes use of ElGamal
and Cramer-Shoup encryption schemes, and no Paillier’s encryption [Pai99] nor Cramer-Shoup
signature [CS99] that require both stronger assumptions, such as the strong-RSA assumption and
the decisional composite residuosity assumption, and much larger parameters, which lead to huge
communication load. The main reason comes from the relaxation on the OPRF: since we do not
need verifiability of server’s computations, it does not have to make any zero-knowledge proof, which
allows us to use a much more efficient OPRF.
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A Computational Assumptions

We consider a finite multiplicative cyclic group G = 〈g〉 of prime order q.

Computational Diffie-Hellman Assumption (CDH). The CDHg assumption states that given
gx and gy, where x and y were drawn at random from Zq, it is hard to compute gxy. We denote
by Succcdh(A) the success probability of the adversary A in computing gxy, and more generally,
Succcdh(t) is the best success probability an adversary can get within time t.

Decisional Diffie-Hellman Assumption (DDH). The DDHg assumption states that given one
of the two tuples (gx, gy, gxy) and (gx, gy, gz) where x, y, z are chosen at random and independently
from Zq, no efficient algorithm can distinguish between them. We denote by Advddh(A) the advantage
of the adversary A in distinguishing between the two distributions, and more generally, Advddh(t)
is the best advantage an adversary can get within time t.

Gap Diffie-Hellman Assumption (GDH). The GDHg assumption [OP01] states that the CDHg
assumption holds even when the adversary has access to a DDHg oracle that exactly answers for any
query DDHg(g

x, gy, gz) whether z = xy or not. Succgdh(A) and Succgdh(t, qd) are defined as above,
where A can ask up to qd DDHg oracle queries.

One-more Gap Diffie-Hellman Assumption (OMGDH). The (n,m)-One-more Gap Diffie-

Hellman assumption [BNPS03] states that given gx where x
$← Zq, a list (g1, · · · , gn)

$←Gn, unlim-
ited access to a DDHg(g

x, ·, ·) oracle, and up to m queries to a CDHg(g
x, ·) oracle, it is hard to

output m+ 1 valid pairs (gi, g
x
i ).

Succomgdh(n,m,A) and Succomgdh(n,m, t, qd) are defined as above, where A can ask up to qd
DDHg oracle queries.

B Building Blocks

B.1 General Definitions

Threshold Secret Sharing Scheme. A threshold secret sharing scheme allows a user to distribute
a secret among different participants preventing a sole party breaking the security or obstructing the
reconstruction. This idea was introduced by Shamir [Sha79] and Blakey [Bla79]. A (t, n)-threshold
secret sharing scheme splits a secret s into n shares, distributed to n participants in such a way
that any subset of t (0 < t ≤ n) participants with valid shares is able to reconstruct the original
secret, whereas any subset of less than t participants leaves the secret completely undetermined.

A (t, n)-threshold secret sharing scheme is called perfect if any subset smaller than t has no
information at all about the secret, in an information-theoretic sense. More precisely, a (t, n)-
threshold secret sharing scheme is defined on a set of n participants P1, . . . , Pn, with algorithms
ShareGen and Reconstruct:

– ShareGen(s, t): on a secret s and a threshold t, this algorithm generates n shares (s1, . . . , sn),
and possible public information SSInfo;
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– Reconstruct({si}, SSInfo): on a set of t shares, and the possible additional information SSInfo,
this algorithm recovers the secret s.

The correctness guarantees that the Reconstruct algorithm recovers the correct initial secret on any
set of t shares. Such a scheme is said secure if any set of less than t shares cannot reconstruct the
secret.

The notion of the threshold secret sharing scheme has been extensively studied, and extensions
like verifiability (which is the capability for the participants to verify their shares are correct),
robustness, cheater detection, and cheater identification, among others, have been proposed to this
basic model [MS81,TW88,Oba11,CFOR12,JS13,LP14].

Verifiable secret sharing schemes actually allow verifiability of individual shares, using the ad-
ditional SSInfo that contains verifiers for every shares. In our proposal we want to have verifiability
of shares at a more global level only and avoid individual verifiability because it could allow to a
unique corrupted server make an off-line dictionary attack on its own. However, when a subset of
valid and invalid shares is given, without verifiability, it is in general quite difficult to extract a
subset of t valid shares and recover the secret. The unique solution is often the exhaustive search
among all the subsets of t shares, which requires an exponential time (in n).

Robust Threshold Secret Sharing Scheme. Several notions of robustness have been defined
in the literature for secret sharing schemes. For our purpose, a secret sharing scheme will be said
robust if, when a user is given m shares with at least tr valid shares, he can efficiently recover the
secret. It will be said robust with respect to random failures when the reconstruction is only possible
if invalid shares are random, and not fabricated by the adversary, which is enough for our purpose.

In the following, we present a generic technique, to enhance a (t, n)-threshold secret sharing
scheme, that allows to efficiently find the appropriate subset of t valid shares among a set of
candidates, without increasing the size of the shares. More precisely, we will assume that we have a
set of m candidates, with at least t correct values, whereas the incorrect values are random. To this
aim, the additional public information SSInfo will contain global information on the shares only, and
no information on the individual shares: for the construction we propose in this paper, SSInfo is the
product of all the fingerprints, modulo a small prime, in order not to leak too much information.

Oblivious Pseudorandom Functions. A pseudorandom function [GGM86] (PRF) is actually a
keyed-family of functions (Fk)k, where the outputs are indistinguishable, for a random key k, from
random elements in the function range. An oblivious PRF (OPRF) [FIPR05] is a protocol that
allows the sender contribute the key k and the receiver compute the value of Fk(x) on any input of
x of the receiver in a way that the sender learns nothing from the protocol.

Encryption Schemes. A public-key encryption scheme is a triple (K, E ,D) of algorithms. They key
generation algorithm K takes as input a security parameter and outputs an encryption/decryption
key pair (ek, dk). The encryption algorithm E takes as input an encryption key ek and a message
m and outputs a ciphertext c. The decryption algorithm D takes a input a decryption key dk and
a ciphertext c and outputs either the decryption m of c or ⊥. The correctness condition required is
that for all (ek, dk) generated by K, and for all messages m, D(dk, E(ek,m)) = m. Classical security
notions for encryption are IND− CPA and IND− CCA, where the adversary tries to distinguish the
ciphertext of two messages of its choice, being given just the encryption key, or also access to the
decryption oracle, respectively.

Commitment Schemes. In a commitment scheme, a sender commits on a message m to a
receiver without revealing any information, but with the guarantee that at the opening time, a
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unique message can be revealed. There are two basic properties: the commitment must be hiding,
which guarantees that no information about m is leaked during the commit phase, and be binding,
which guarantees that only one message can be revealed during the opening phase. Additional
classical properties are extractability, equivocability, and non-malleability.

B.2 Concrete Encryption Schemes
ElGamal Encryption. Introduced in 1985, by ElGamal [ElG85], based on the CDH assumption,
and achieving IND− CPA security under the DDH, the ElGamal encryption scheme works as follows:

Key Generation: Let x ∈ Zq the decryption key, the associated encryption key is y = gx;

Encryption: Given a message m ∈ G, let choose r
$← Zq, then compute u = gr and v = yrm. The

ciphertext is c = (u, v);
Decryption: Given a ciphertext c = (u, v), the message can be decrypted as m = v · u−x.

More precisely, within time t:
Advind−cpa(t) ≤ 2× Advddh(t).

Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme [CS98] achieves IND− CCA
security under the DDH assumption:

Key Generation: Let g1, g2
$←G and x1, x2, y1, y2, z

$← Zq. Let c = gx11 g
x2
2 , d = gy11 g

y2
2 , h = gz1

and a hash function H, chosen from the family of universal one-way functions. The public key
is (g1, g2, c, d, h,H) and the private key is (x1, x2, y1, y2, z);

Encryption: Given a message m ∈ G, let choose r
$← Zq, then compute u1 = gr1, u2 = gr2, e = hrm,

α = H(u1, u2, e), and v = crdrα, the ciphertext is c = (u1, u2, e, v);
Decryption: Given a ciphertext c = (u1, u2, e, v), one first computes α = H(u1, u2, e) and checks

whether ux1+y1α1 ux2+y2α2 = v or not. If this condition does not hold, then it rejects, otherwise it
outputs m = e/uz1.

Such an IND− CCA encryption scheme can be used as a perfectly binding commitment scheme.
The decryption key allows extractability and the IND− CCA security level makes the commitment
scheme non-malleable, but also extractable while still (computationally) hiding.

More precisely, within time t and after at most qd decryption queries:

Advind−cca(t) ≤ 2× Advddh(t) + Succ2ndH (t) + 3qd/q.

C Auxiliary Proofs

C.1 Fx is a PRF

Lemma 3. The above function Fx is a PRF under the Computational Diffie-Hellman (CDH) as-
sumption.

Given an instance (g, y = gx, h), one wants to compute hx = CDHg(y, h). Any H1-query on a new
m is answered by hz, for a random scalar z, and the tuple (m, z) is stored in the list Λ1. For any
PRF evaluation on a new m, one first asks for H1(m), chooses a random value r ∈ {0, 1}`, answers
r and stores (m, z, r) in the list ΛF . For any new H2-query (m, y,H), one first asks for H1(m), and
answers by a random value. A difference happens here from the real case if H = CDHg(y,H1(m))
and (m, z, r) is in ΛF , since the answer should be r, and not a random value. The same problem
happens if the F query is asked later. In both cases, at the end of the game, among all the H
values from the H2-queries and the (m, z, r) ∈ ΛF , one pair (H, z) satisfies H = CDHg(y,H1(m)) =
CDHg(y, h

z) = CDHg(y, h)z. By choosing it at random, one gets CDHg(y, h) with non-negligible
probability.
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C.2 Security Proof of the Protocol I

For the proof we consider an adversary as the one defined in the security model description in
Section 2. After the initialization phase, this adversary can ask as many Execute and Send-queries,
Test-queries and also Corrupt-queries as it wishes, and has access to the extra random oracles H1,
H2, and H3.

The proof will be performed by a sequence of games, starting from the real indistinguishability
game, focusing on a unique user, against a static adversary (the corrupted servers are known right
after the initialization, and before any reconstruction attempt). In the final game, the goal to achieve
is to simulate all the queries to the adversary without using a password. A random value will be
chosen at the very end of the simulation and used as a password in order to decide if some bad
event should have occurred, which will immediately upper-bound the advantage of the adversary.

Game G0: This initial game corresponds to the real attack game, in the random oracle model.
Three oracles are available to the adversary, H1, H2, and H3 and the adversary chooses some
servers to be corrupted: the related secret informations are then revealed to the adversary right
after the initialization.

First, we emulate the initialization phase, which is honestly performed: we choose one random
pw, n random keys (xk)k for the servers’ secret information, which lead to the evaluation of
(πk)k, together with their public part Π = (yk = gxk)k, and one random value corresponding to
the secret K, together with a secret sharing (s1, . . . , sn, SSInfo) of R = K‖r, for a random r. This
last random value r is used to compute the commitment C = H3(pw, Π,Σ,SSInfo,K, r), where

Σ = (σk = πk⊕sk)k. One also chooses a second random key K0, as well as a bit b
$←{0, 1}, both

used in Test-queries: in a reconstruction execution, if a key K1 is reconstructed, the Test-query
outputs Kb, if the reconstruction is not completed or failed, the Test-query outputs undefined
or ⊥. For the reconstruction, we simulate all the instances, the user and the servers, in Execute
and Send-queries, as the real players would do.

The adversary eventually outputs its guess b′ for the bit b. The output of the game is the success
bit S = (b′ = b). By definition we have :

SuccG0 = Pr[S] Adv(A) = 2× SuccG0 − 1

Game G1: We do not modify the initialization, and first deal with Execute-queries, by replacing
the user and the servers by the simulator Sim that perfectly simulates honest transcripts (A,B),
and user’s key is set to K1. The change being just syntactic: SuccG0 = SuccG1 .

Game G2: We now deal with Send-queries to the user, and namely when the adversary fakes
the public information PInfo sent to the user: if the majority of at least tr tuples PInfo′ =
(Π ′, Σ′,SSInfo′, C ′) contains a commitment C ′ different from the expected commitment C, we
make the user play as usual, but eventually set K ←⊥.

This makes a difference only if in the end this commitment would have been accepted by the
user with respect to his password pw. Since we use a hash function H3 modeled as a random
oracle, C ′ must have been obtained with a query containing pw, or the probability to be valid
is 1/2`3 : We thus define the event PWinC to be true if C ′ 6= C but C ′ is the result of a query of
H3 on a tuple that contains pw. And at the end, after the answer b′, if PWinC is set, one sets
the output bit S at random instead of (b′ = b). In this game, we reduce the success probability
of the adversary, but only when PWinC happens: SuccG1 ≤ SuccG2 + 1/2`3 + Pr[PWinC]/2. This
event PWinC can be evaluated by looking at each of the queries asked to H3 and then checking
whether it contains pw or not.
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Game G3: We continue in the same vein for fake public information PInfo′ (but correct C) sent
to the user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′, SSInfo′, C) contains public
information different from the expected ones (the PInfo generated during the honest initialization
phase), we make the user play as usual, but eventually set K ←⊥. Since the hash value C is
unchanged, the input (pw, Π ′, Σ′,SSInfo′) must be unchanged, unless one finds a collision for
H3: SuccG2 ≤ SuccG3 + q23/2

`3+1.
Game G4: We continue with the simulation of the user, but when the majority PInfo is the

expected one, which guarantees the use of the correct public keys, and thus the knowledge of
the associated secret keys. We now use SimU , that perfectly simulates a flow A from the user
to a server, and can decide on the honest behavior of the server thanks to the server’ secret key
xk to evaluate DDHg(yk, ·, ·). If the behaviors of at least tr of the servers are correct, the user
accepts with K ← K1, otherwise the user aborts with K ←⊥. Since the OPRF protocol uses the
random blinding factor α, either C = H1(pw)xk or C is a random element in G, unless B = 1,
hence the verification.
In the previous game, the robust threshold secret sharing scheme with respect to random failures
guaranteed the recovery of the secret in exactly the same cases as here: SuccG3 = SuccG4 . We
remark that during this game, the Send-queries are answered without calling the H1 oracle,
neither H2 oracle is used for the reconstruction of K. Instead, after the DDHg(y, ·, ·) check
(using the secret key x), the secret K is directly set to K1 (or to ⊥ if too many failures).

Game G5: Since the secret sharing reconstruction is not used anymore, we can thus replace all
the shares (s1, . . . , sn) by random and independent values and generate SSInfo accordingly in
the initialization phase. We know that until the adversary does not get more than t` = n/3 of
these shares, it cannot detect whether they are random or correct: let us define the event PWinF
to be true if more than n/3− qc queries have been asked to the H2 oracle for the un-corrupted
key yk on pw with the correct CDH value, since the adversary can evaluate on its own the values
under the qc corrupted servers. And at the end, after the answer b′, if PWinF is set, one sets S
at random. As in Game G2, we have the upper-bound: SuccG4 ≤ SuccG5 + Pr[PWinF]/2. Using
the servers’ secret keys (xk)k (to test DDHg(yk, ·, ·) validity), the simulator can check whether
pw has been queried with the right inputs to H2 to learn some πk, and how many times, to set
the event PWinF.

Game G6: Instead of choosing the shares at random, one generates Σ = (σk)k and SSInfo at
random, without computing the πk’s: SuccG5 = SuccG6 .

Game G7: We now deal with Send-queries to the servers, and replace them by the simulator SimS

to provide answers, using the server’s secret key xk to evaluate CDHg(yk, ·): SuccG6 = SuccG7 .
Game G8: We now replace the hash value C in the initialization phase by a random C. This is

indistinguishable because of the random oracle property: SuccG7 = SuccG8 .

In this last game, one can note that the password pw is not used anymore during the simulation,
but just to determine whether the events PWinC or PWinF happened to define the game output
S. In addition, K1 does not appear any more during the initialization phase (it was just used for
the secret sharing, while the shares have been replaced by random shares, and in the commitment,
while it has been replaced by a random hash), hence one cannot make any difference between K0

and K1: SuccG8 = 1/2. As a consequence,

Adv(A) ≤ Pr[PWinC] + Pr[PWinF] + (q23 + 2) · 2−`3 .

We thus now have to evaluate the probabilities of the two events PWinC or PWinF to happen,
which can be done by choosing a random password pw at the very end only (since it is not used
anymore during the initialization phase, nor in the reconstruction): About Pr[PWinC], it is clearly
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upper-bounded by qu/#D, since qu is the maximal number of fake commitment attempts containing
the right pw that can be different from the expected ones; On the other hand, PWinF means that
the adversary managed to get n/3−qc evaluations of the PRFs under the chosen pw. But unless the
adversary gets more evaluations than the number qs of queries asked to the servers, the number of bad
passwords (for which he knows at least n/3− qc evaluations of the PRFs) is less than qs/(n/3− qc).
So the probability that the chosen pw is such a bad password is less than qs/(n/3− qc)× 1/#D.

The following lemma leads to Pr[PWinF] ≤ qs/(n/3 − qc) × 1/#D + n × Succomgdh(q1, qs, t, n ·
qu + q2), which concludes the proof of the theorem.

Lemma 4. Unless one can break a (q1, qs)−OMGDH with (n · qu + q2) queries to the DDH-oracle,
no adversary, that involves qs instances of the servers, qu instances of the user, and asks q1 queries
to H1 and q2 queries to H2, can get more evaluations of the PRF than the number qs of queries
asked to the servers.

If we denote q1 the number of queries toH1, we can also denote (h1, . . . hq1) the list of the answers,
which are random group elements. Let us be given a random instance (g, y = gx, h1, · · · , hq1) of the
(q1, qs)−OMGDH problem (see Appendix A), then our simulator uses y∗ = y for a randomly chosen
server k∗, and yk = gxk for random scalars xk, for the other servers. Getting one-more evaluation
of the PRF (under non-corrupted keys) than the number of queries to the (non-corrupted) servers
means that this must be the case for at least one of the non-corrupted servers: we hope the k∗-server
to be one of them. Since it is chosen at random, this is a correct guess with probability greater than
1/n.

For the simulation of the qs queries A to the honest servers, for the k∗-server, the simulator
makes one CDHg(y

∗, ·)-query, while for the others the secret key xk is known. For the (at most
n× qu) transcripts (A,B) obtained by the honest user with the adversary, the simulator makes one
DDHg(y

∗, ·, ·)-query when the adversary plays the role of the k∗-server, but can use xk otherwise.
Getting one more evaluation of Fk∗ than the number q of queries to the k∗-server means that for
at least q+ 1 queries (pwi, y

∗, H) to the random oracle H2, H = CDHg(y
∗, H1(pwi)). Since H1(pwi)

has been answered by one of the hj , one gets q+1 correct values CDHg(y
∗, hj), that can be detected

using the DDHg(y
∗, ·, ·) oracle on all the q2 inputs to H2. We can of course upper-bound q by qs,

hence the lemma.

C.3 Security Proof of the Protocol II

Theorem 5. For any adversary A, against the Protocol II using both ElGamal and Cramer-Shoup
encryption schemes, that corrupts no more than qc servers, involves at most qs instances of the
servers, and qu instances of the user

Adv(A) ≤
(
qu +

3qs
n− 3qc

)
× 1

#D
+ ((n− qc)`+ 4)× Advddh(t+ qstexp) + 3× Succ2ndH (t) + 6qu/q,

where ` is the size of the password and texp the time for an exponentiation.

The proof will be performed by a sequence of games, as in the ROM model, focusing on a
unique user, against a static adversary (the corrupted servers are known from the beginning).
A change from the general description of the PPSS protocol in this particular case consists a
more efficient way to compute the commitment C = Commit(pw, Π,Σ,SSInfo,K; r), by first a
fingerprint H = H(Π,Σ,SSInfo,K) with a second-preimage-resistant hash function H, and then
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User Server

x = (x1, x2, . . . , x`) ∈ {0, 1}` pk, {ci = Encpk(ai)} sk ∈ Zs
also seen as an `-bit scalar in Zs CK

α
$←Gs, C ← Encpk(α× a0

∏
ai
xi)

C -{� -
Proof(α, xi)� -

}
D ← Decsk(C)

If G = 1, then abort G� G← gD

R← G1/α

Fig. 3. Secure Oblivious Evaluation of the NR-PRF

C = Enc(pw, H; r), with an IND− CCA encryption scheme. This improves the efficiency, as the infor-
mation (Π,Σ,SSInfo,K) may be long. More precisely, we use the Cramer-Shoup encryption scheme,
denoted (CS.Enc,CS.Dec), for the extractable commitment. We will use the simulators presented
in Figure 4, where the ci’s have been replaced by random ciphertexts, which is indistinguishable
under the IND− CPA security level of the ElGamal encryption scheme, denoted (EG.Enc,EG.Dec).
SimU knows the encrypted value D, and can thus check the answer. In addition, using Proof, a
zero-knowledge proof of knowledge of (xi)i ∈ {0, 1}`, α ∈ Gs, and additional random coins such
that C is correct, we show that this enhanced protocol can check the correctness of the answers
from the server. Indeed, from the extractor of Proof, SimS can extract (xi)i ∈ {0, 1}` to ask the
PRF oracle, that answers either correctly or at random, as well as α ∈ Gs, to send a blinded answer
to the client.

More precisely, using ElGamal encryption, we have (using component-wise multiplication)

C = (gr, hrα)× c0
∏

cxii = (gr, hr)× c0
∏

cxii × (1, α),

and one has to prove its knowledge of (xi)i ∈ {0, 1}`, α ∈ Gs, and r ∈ Zs that satisfy this relation.
To get a straightline extraction, one can use a Cramer-Shoup encryption of α and ux, for a generator
u ∈ Gs (assuming the use of a password small enough to allow discrete logarithm computation),
where the latter can be seen as ux =

∏
(u2

i
)xi . Otherwise, one can encrypt uxi for each index i.

One should note that we only have to do proofs in Gs, which are classical Schnorr-like proofs.

Game G0: This initial game corresponds to the real attack game, in the standard model. As in
the proof for the ROM PPSS scheme, we emulate the initialization phase, which is honestly
performed: we choose one random pw, n random keys (skk)k for the ElGamal encryption scheme
and the PRF keys ak = (ak,0, . . . ak,`)k that represent the servers’ secret information. We gen-
erate their corresponding public part Π = (pkk, (ci = Encpkk(ak,i))k), and one random value
corresponding to the secret K, together with a secret sharing (s1, . . . , sn, SSInfo) of R = K‖r,
for a random r. These shares are masked using the values (πk)k, obtained as PRF evaluations
of pw under all the secret strings ak of the servers. We then set Σ = (σk = πk ⊕ sk)k.
The same random value r in R = K‖r is used to compute the commitment C = CS.Enc(pw, H; r),
where H = H(Π,Σ,SSInfo,K).

One also chooses a second random key K0, as well as a bit b
$←{0, 1}, both used in Test-queries:

if a key K1 is reconstructed, the Test-query outputs Kb, if the reconstruction is not completed
or failed, the Test-query outputs undefined or ⊥. For the reconstruction, we simulate all the
instances, the user and the servers, in Execute and Send-queries, as the real players would do.
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Sim

D
$←Gs, C ← EG.Enc(D) C -{� -

SimProof� -

}
G� G← gD

SimU

D
$←Gs, C ← EG.Enc(D) C -{� -

SimProof� -

}
G 6= gD =⇒ fail G�

SimS

C -{� -
Proof� -

}
(x, α)← Proof
R← Fa(x)

G� G← Rα

SimS extracts x from Proof to build R, the expected PRF value (either real or random value). The
ciphertexts ci have been replaced by random encryptions.

Fig. 4. Simulators for the OPRF based on CDH

The adversary eventually outputs its guess b′ for the bit b. The output of the game is the success
bit S = (b′ = b). By definition we have :

SuccG0 = Pr[S] Adv(A) = 2× SuccG0 − 1

Game G1: We first deal with Execute-queries, without modifying the initialization. We replace
the user and the servers in the reconstruction protocol by the simulator Sim from figure 4. This
perfectly simulates honest transcripts (C,Proof, G), and user’s key is set to K1. The change for
the values C and G is just syntactic, the two values are equivalent to the real ones:

SuccG0(A) = SuccG1(A).

Game G2: We consider an adversary that fakes the public information PInfo in Send-queries to
the user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′, SSInfo′, C ′) contains a commitment
C ′ different from the expected commitment C, we make the user play as usual, but eventually
set K ←⊥.
The reconstruction protocol guarantees that if the majority tuple PInfo = (Π,Σ,SSInfo, C) does
not contain the expected commitment C, the user aborts with K ←⊥. This makes a difference
only if in the end this commitment would have been accepted by the user with respect to his
password. Since we use a perfectly binding commitment (an encryption scheme), the ciphertext
C ′ must contain the correct pw: We thus define the event PWinC to be true if C ′ 6= C but
contains pw.
We simulate the game by checking if PWinC is set at the end, after receiving the answer b′. If
so, one sets the output bit S at random instead of (b′ = b). In this game, we reduce the success
probability of the adversary, but only when PWinC happens:

SuccG1 ≤ SuccG2 + Pr[PWinC]/2

This event PWinC can be evaluated by decrypting the commitment C = CS.Enc(pw, H; r) using
the decryption key, and then checking whether it contains pw or not.

Game G3: We continue in the same vein for fake public information PInfo′ (but correct C) sent
to the user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′, SSInfo′, C) contains public
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information different from the expected ones (the PInfo generated during the honest initialization
phase), we make the user play as usual, but eventually set K ←⊥.
The OPRF protocol guarantees that the value computed by the client is either correct when
the server plays honestly or random when the server cheats and the robustness with respect to
random failures of the threshold secret sharing scheme guarantees the recovery of the secret in
the honest case. When the value C is unchanged, the value H ′ = H(Π ′, Σ′,SSInfo′,K ′) must
be the same as the initial commitment input H = H(Π,Σ,SSInfo,K) in order to be accepted
by the user, since this is an encryption scheme, with a unique decryption. If in the end of the
previous the simulator was accepting the key K ′, this means that we have a second pre-image
(Π ′, Σ′,SSInfo′,K ′) of the initial H = H(Π,Σ,SSInfo,K). As a consequence, this simulation
is perfectly indistinguishable from the previous one unless one finds a second pre-image to
H = H(Π,Σ,SSInfo,K) (where t is essentially the running time of A):

SuccG2(A) ≤ SuccG3(A) + Succ2ndH (t).

Game G4: We are still dealing with Send-queries to the user, but we consider the case of the event
¬PWinC. We now use SimU , that perfectly simulates a flow C from the user to a server, and
can decide on the honest behavior of the server by choosing itself the value D (the decryption
of C), and using it to check the correctness of servers’ answers.
If the behaviors of at least tr of the servers are correct, the user accepts with K ← K1, otherwise
the user aborts with K ←⊥.
In the previous game, the robust threshold secret sharing scheme with respect to random failures
guaranteed the recovery of the secret in exactly the same cases as here:

SuccG3 = SuccG4 .

We remark that during this game, the Send-queries are answered without computing the PRF
for the reconstruction of K. Instead, after G = gD check, the secret K is directly set to K1 (or
to ⊥ if too many failures).

Game G5: We now deal with Send-queries to the servers, and replace them by the simulator SimS

to provide answers, getting x and the blinding factor α from the extractor of the proof: in order
to set the appropriate output to R (that is Fa(x)), the server can simply answer G← Rα. The
simulation is perfect:

SuccG4 = SuccG5 .

Game G6: In the servers’ simulation, the value R is now chosen at random for new x (for the
uncorrupted servers). This corresponds to replace Fa by a truly random function when calling
to the PRF oracle. Under the pseudo-randomness of the Naor-Reingold PRF:

SuccG5 ≤ SuccG6 + (n− qc)`× Advddh(t+ qstexp),

where texp is the additional time for exponentiations in the reduction of the PRF.
Game G7: Instead of choosing the πk at random, one generates Σ = (σk)k and SSInfo at random.

This leads to random and indepenent shares (s1, . . . , sn). We know that until the adversary does
not get more than t` = n/3 of these shares, it cannot detect whether they are independent or
redundant (as should be a secret sharing): let us define the event PWinF′, a little bit different
from the previous proof, to be true if more than n/3−qc queries have been asked to the servers on
pw, since the adversary can evaluate on its own the values under the qc corrupted servers. Then,
from these values it could remark inconsistencies. At the end, after the answer b′, if PWinF′

is set, one sets S at random. Since the PRF’s are replaced by truly random functions, these
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queries do not reveal anything on the other values of the functions, we have the upper-bound:
SuccG6 ≤ SuccG7 + Pr[PWinF′]/2. Thanks to the extractability of x from the proof, we are able
to check whether pw has been used, and how many times in order to set the event PWinF′.

Game G8: We now replace the commitment C in the initialization phase by a dummy commitment
to 0. This is indistinguishable under the indistinguishability of the encryption scheme (Cramer-
Shoup encryption), but the decryption key is required to evaluate PWinC:

SuccG7 ≤ SuccG8 + Advind−ccaCS (t).

.
Game G9: The key K1 does not appear any more in the simulation of the secret sharing, as the

values PInfo have been replaced by random and independent values instead of shares and the
commitment C is currently computed for 0. Then, we can replace K1 by K0 in the reconstruction
phase, which makes the real and random cases indistinguishable:

SuccG8(A) = SuccG9(A) = 1/2.

In this final game, the password does not appear any more in the initialization of PInfo, and
the simulator does not make use of it either, except to abort if PWinC or PWinF happen. But
these events can be evaluated at the very end only, by choosing a random password pw when
the adversary outputs its guess b′:
– Pr[PWinC] is clearly upper-bounded by qu/#D, since qu is the maximal number of fake

commitment attempts that could be different from the expected one but with pw;
– Pr[PWinF′] is clearly upper-bounded by qs/(n/3 − qc) × 1/#D, since qs/(n/3 − qc) is the

maximal number of passwords for which the adversary asked for n/3−qc OPRF evaluations.

In conclusion, we have:

Adv(A) ≤
(
qu +

3qs
n− 3qc

)
× 1

#D
+ (n− qc)`× Advddh(t) + 2× Advind−ccaCS (t) + Succ2ndH (t).

Since we use the Crame-Shoup encryption scheme, this leads to the bound of the Theorem.
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