
Fully-Secure Lattice-Based IBE as Compact as PKE

Daniel Apon ∗ Xiong Fan † Feng-Hao Liu ‡

February 11, 2016

Abstract

We construct an identity-based encryption (IBE) scheme from the standard Learning with Errors
(LWE) assumption, which both has a compact public-key (with size similar to known lattice-based PKE
schemes) and also achieves adaptive security in the standard model. This improves over previous IBE
schemes from lattices, which either have a public key that grows at least linearly with the length of the
supported identities, or achieve a non-adaptive notion of security, or require a random oracle.

Additionally, our techniques from IBE can be adapted to construct a compact digital signature
scheme, which achieves existential unforgeability under the standard Short Integer Solution (SIS) as-
sumption with small polynomial parameters.

1 Introduction

Identity-Based Encryption (IBE), first introduced by Shamir [Sha84], enables any pair of users to commu-
nicate securely and to verify each other’s signatures without exchanging private or public keys, without
managing a public key infrastructure, and without the online assistance of a third party. Instead, users
initially register an arbitrary string id (such as an email or IP address) with a central key authority, who
generates the corresponding private key skid for each user using a master secret msk. Moreover, there is a
single public key mpk that allows encrypting private messages to any identity.

Boneh and Franklin [BF01] proposed the first construction of IBE based on bilinear groups in the random
oracle model, and Waters [Wat05] gave the first standard-model instantiation of IBE also using bilinear
groups. For lattice-based constructions, Gentry, Peikert, and Vaikuntanathan [GPV08] proposed the first
lattice-based IBE in the random oracle model, and the concurrent works of Cash et al. [CHKP10] and
Agrawal et al. [ABB10] gave standard-model IBE from lattices.

A central open question is to construct efficient and fully secure identity-based encryption schemes from
standard lattice assumptions, as measured by the size of the keys and ciphertexts in the system (cf. [Pei15,
Question 9]). Indeed, the state-of-the-art IBE schemes from bilinear groups [Lew12, BKP14, Wee16] en-
joy a constant-size public key and ciphertexts, whereas the most efficient and fully-secure IBE from lat-
tices [ABB10] requires a public key consisting of a number of matrices linear in the dimension of the sup-
ported identities. By comparison, the public key of Dual Regev type public key encryption (PKE) [GPV08]
has size dominated by a single matrix.

Historically speaking, a key technical barrier for progress on efficient IBE in the lattice world follows
from a “one-line” observation of Boneh and Franklin [BF01]: identity-based encryption implies existentially
∗University of Maryland, dapon@cs.umd.edu.
†Cornell University, xfan@cs.cornell.edu.
‡Florida Atlantic University, fenghao.liu@fau.edu.

1

mailto:dapon@cs.umd.edu
mailto:xfan@cs.umd.edu
mailto:fenghao.liu@fau.edu

unforgeable digital signatures in a generic, black-box manner. Moreover in the case of lattices, there is a non-
black-box transformation [ABB10] that is efficiency-preserving; that is, constant-sized IBE from lattices
(effectively) implies constant-sized signatures from lattices.

This latter question of lattice-based signature efficiency has remained wide open until a recent, break-
through line of work: Ducas and Micciancio [DM14] first demonstrated how to reduce the public key of
lattice-based signatures to a logarithmic number of matrices. Böhl et al. [BHJ+15] showed how to reduce
the size of the signatures to a logarithmic number of lattice vectors. And ultimately, Alperin-Sheriff [Alp15]
proposed a lattice-based signature scheme with a constant number of matrices in the public key by extending
the homomorphic trapdoor function technique of Gorbunov, Vaikuntanathan, and Wichs [GVW15] — orig-
inally used to construct leveled fully homomorphic signatures (but without the short public key of [Alp15]).

As such, the question of efficient identity-based encryption from lattices is ripe for additional progress.
We then ask:

Is there a standard-model, fully-secure, lattice-based Identity-Based Encryption scheme
that is comparably efficient to existing lattice-based Public Key Encryption schemes?

Or more concretely:

Is there a fully-secure, lattice-based IBE with a compact public key?

1.1 Our Contributions

In this work, we construct a fully-secure identity-based encryption scheme from the standard Learning with
Errors [Reg05] assumption with a compact public key of bit-size (about) 2nm log(q), where m and q are
small polynomials in n. This asymptotically matches the public space complexity of known lattice-based
PKE schemes, and points us toward real-world-efficient implementations of lattice-based IBE. We empha-
size that prior fully-secure, lattice-based IBE schemes [CHKP10, ABB10] have a public key whose size
grows at least linearly with `, the length of identities, whereas our IBE’s PK size is (at least) asymptotically
sublinear in the identity length. For a succinct comparison to prior work, see Table 1 below.

Formally, we obtain the following result:

Theorem 1.1 (Main). Under the standard Learning with Errors (LWE) assumption, there is an identity-
based encryption (IBE) scheme with full (i.e. adaptive) security, where

• the modulus q is a prime of size polynomial in the security parameter n,

• ciphertexts consist of a vector in Z2m+1
q , and

• the public key consists of two matrices in Zn×mq and one vector in Znq .

Additionally, following Boneh and Franklin [BF01], Agrawal et al. [ABB10] and Boyen [Boy10], we
show how to map our new IBE scheme into a similarly efficient digital signature scheme (see the appendix
for details):

Theorem 1.2. Under the standard Short Integer Solution (SIS) assumption, there is an existentially unforge-
able digital signature scheme, where

• the modulus q is a prime of size polynomial in the security parameter n,

• signatures consist of a vector in Z2m
q , and

• the (public) verification key consists of two matrices in Zn×mq .

We note that this latter signature scheme, as induced by our IBE, is comparable in efficiency to the recent,
compact signature scheme of Alperin-Sheriff [Alp15], but with somewhat better LWE/SIS parameters.

2

Scheme Type # Matrices in PK Security Type

PKE [GPV08] 1 IND-CPA
IBE [GPV08] 1 Adaptive (in the ROM)
IBE [CHKP10] `2 Adaptive
IBE [ABB10] 2 Selective
IBE [ABB10] ` Adaptive

IBE – This paper 2 Adaptive

Table 1: Comparison of lattice PKE/IBE efficiency and security. Matrices are in Zn×mq , where q = poly(n)
and – minimally – ` = ω(1) (in n) is the identities’ dimension. (Note that compressing the number of
matrices to O(1) with CRT is easy, but naively requires modulus q = nω(1).)

1.2 Our Techniques

Our high-level approach to compact identity-based encryption from LWE begins by revisiting the lattice-
mixing and vanishing trapdoor techniques of Boyen [Boy10] and their use in Agrawal et al. [ABB10]. An
initial observation is that the related notions of “admissible hash functions” and “abort-resistant hash func-
tions” can be replaced generically by pairwise independent hash functions plus the random isolation tech-
nique of Valiant and Vazirani [VV85]. We use the freedom afforded by this insight to design a new encoding
scheme for identities. To do so, we take a new conceptual view of the public parameters: Each matrix is (po-
tentially) a fully homomorphic ciphertext, modeled after the Gentry-Sahai-Waters FHE scheme [GSW13],
and our main goal will be to allow senders to homomorphically evaluate a totally hidden pairwise indepen-
dent hash function Hh on their chosen identities during encryption.

The Agrawal-Boneh-Boyen IBE. We first review the construction and proof techniques of [ABB10].
Lattices in this type of system are built from “left” and “right” (sub)lattices, denoted A and B respectively.
Each of these two systems are associated with a distinct trapdoor. As was the case in [ABB10], the left
trapdoor TA serves as the true master secret msk of the real system. This left trapdoor is a “complete”
trapdoor, which enables generating secret keys skx for every string x allowed by the system. In contrast, the
right trapdoor TB is a “partially faulty” trapdoor used only in the security proof, which enables generating
secret keys skx for every string x except some adaptively chosen challenge identity x∗.

To encode identities x = (x1, ..., x`) according to [ABB10], the sender first constructs an identity-
specific lattice, called the target lattice for x,

[
A
∣∣ Y] =

[
A

∣∣∣∣ ∑̀
i=1

(−1)xiBi

]
by “mixing” a long public key (A,B1, ...,B`). That is, if the i-th bit of the identity xi is 0, the sender
adds Bi; otherwise, the sender subtracts Bi. (Encryption then proceeds according to usual Dual Regev
PKE [GPV08] using “this” target lattice as the PK.)

In the security proof, a hash function Hh is embedded in the computation by using the the Leftover
Hash Lemma to replace each Bi with another matrix ARi + hiB for “short” Ri, random “polluter” B, and
hash key h = (h1, ..., h`). The identity encoding mechanism and hash are jointly designed so that the target
lattice for identity x, i.e. [A|

∑
(−1)xiBi] , becomes

[
A
∣∣ Yproof

]
=

[
A

∣∣∣∣
(∑̀
i=1

(−1)xiARi

)
+Hh(x)B

]

3

in the proof of security.
Intuitively, for challenge identity x∗ and adaptively queried identities {x1, ...,xQ}, the security reduc-

tion will proceed whenever Hh(x∗) = 0 and for i ∈ [Q], Hh(xi) 6= 0. This is due to the fact that the matrix
B survives in the target lattices for all of {x1, ...,xQ}, but the matrix B vanishes on the target lattice for the
challenge identity x∗, and therefore, the security reduction can SampleRight with TB for every identity in
the adversary’s view, except the single challenge point x∗.

In what follows, we will execute this same process, but with a short public key of only two matrices
(A,B) (and a vector u).

Getting to ω(log(n)) with a public CRHF. A first idea to compress the public key, due to folklore, is
to compress any identity string x ∈ {0, 1}` (or even x ∈ {0, 1}∗) with a collision-resistant hash function.
Since there is one matrix in the ABB public key for every bit of the identity, this asymptotically allows us
to consider identities that look like x ∈ {0, 1}ω(log(n)) for security parameter (and lattice row dimension) n.
Therefore, the core of our task is to compress an ABB-like public key consisting of ω(log(n)) matrices in
Zn×mq into O(1) matrices of same size.

Getting to ω(1) with algebraic identities. A simple idea in order to proceed further is to injectively map
boolean identities x ∈ {0, 1}ω(log(n)) to algebraic identities x ∈ Zω(1)

poly(n) by simply interpreting the string x
in a polynomial, rather than constant, base. If we do so, the corresponding target lattice of the real system
becomes [

A
∣∣ Y] =

A ∣∣∣∣ ω(1)∑
i=1

xiBi

for xi ∈ Zpoly(n), and the public key shrinks from ω(log(n)) matrices to ω(1) matrices.

Unfortunately, we cannot continue increasing the base to a superpolynomial (in order to achieve constant
matrices in the public key), as this results in a large noise growth in the security proof causing SampleRight
to fail. (Concretely, SampleRight requires that the matrix R contained in the target lattice’s description has
sufficiently small norm.) To see this, consider using this idea and then replacing the public key matrices Bi

for i ∈ [O(1)] with matrices ARi + hiB as before. The target lattice in the security proof becomes

[
A
∣∣ Yproof

]
=

A ∣∣∣∣
O(1)∑

i=1

xiARi

+Hh(x)B

for xi ∈ Zsuperpoly(n), which contains in its description the matrix R =

∑
i∈[O(1)] xiRi of superpolynomial

norm, which is too large.

A new perspective on the IBE public key from SIMD-style FHE. Our new observations start here. We
begin by preparing the scheme for the transition to O(1) matrices in the public key. As mentioned earlier,
we draw a connection between the public key of our IBE system and the GSW-FHE scheme [GSW13].
To be more exact, we borrow an insight due to Hiromasa, Abe, and Okamoto [HAO15], who showed that
by applying SIMD (Single Instruction Multiple Data) message-packing techniques to the GSW-FHE, the
resulting scheme is matrix-multiplication-homomorphic. (Notably, their scheme requires a circular security
assumption to enable publicly encrypting messages to this form; we will not require a public encryption
mechanism, and so do not need to make the additional assumption.)

Ciphertexts in this SIMD GSW-FHE scheme can be viewed in the form AR + MG ∈ Zn×mq , where
for modulus q = poly(n), A ∈ Zn×mq ,R ∈ Zm×mq , where M ∈ Zn×nq contains a message vector µ ∈ Znq
along the diagonal, and where G ∈ Zn×mq is the “gadget matrix” as first (explicitly) introduced in the work

4

of Micciancio and Peikert [MP12]. The salient point is that there is an efficiently computable function G−1,
so that

1. the desired homomorphism holds (roughly that ct1 ·G−1(ct2) = ct×), and

2. G−1(AR + MG) is a matrix in {0, 1}m×m, and thus has small norm.

This technique should be reminiscent of typical bit-decomposition techniques for readers who are familiar
with recent FHE developments.

This scheme is also naturally equipped with a matrix-multiplication-by-a-constant operation of the fol-
lowing form:

(AR + MG) ·G−1(CG) = AR · small + MCG

for any diagonal matrices C,M ∈ Zn×nq . This leads us to consider a new, real-world IBE scheme where
the (uniform) public key matrices Bi ∈ Zn×mq are “multiplied by a constant” Xi ∈ Zn×nq , where the matrix
Xi contains the i-th identity coordinate xi ∈ Zq on each coordinate of its diagonal, for i = [ω(1)]. In other
words, the target lattice in our real scheme becomes

[
A
∣∣ Y] =

A ∣∣∣∣ ω(1)∑
i=1

(
Bi ·G−1 (XiG)

) .
To match the above in the security proof, we would find a choice of hash key h and its matrix-encoding

Hi ∈ Zn×nq , then use the Leftover Hash Lemma to replace real-world public key matrices Bi with their
ciphertext form ARi + HiG. The target lattice in the security proof becomes

[
A
∣∣ Yproof

]
=

A ∣∣∣∣ ω(1)∑
i=1

(
(ARi + HiG) ·G−1 (XiG)

)
=

A ∣∣∣∣ ω(1)∑
i=1

(
ARi ·G−1 (XiG) + HiXiG

)
=

A ∣∣∣∣
ω(1)∑
i=1

ARi · small

+Hh(x)G

 .
A critical detail at this juncture is the observation that our real IBE system contains no homomorphic

ciphertexts whatsoever. Indeed, these “ciphertexts” are introduced into the security proof by a purely sta-
tistical argument via the Leftover Hash Lemma. In order to ensure that a statistical indistinguishability
argument via the Leftover Hash Lemma holds, it must be the case that the public key’s “homomorphic ci-
phertexts” cannot be decrypted — ever. Otherwise, they will fail to be statistically close to the true public
key of the real system, and will instead be only computationally close to the original public key, which is
technically insufficient for our purposes. (We require that the adversary’s view is statistically independent
of the hash key used in the proof.)

Nonetheless by viewing these public keys as matrix-multiplication-homomorphic ciphertexts as above,
we find that our security reduction can SampleRight using a trapdoor TG for the gadget matrix G,whenever
the hash output Hh(x) :=

∑
HiXi is full-rank; i.e. whenever the gadget matrix G does not vanish.

5

Achieving a public key of two matrices. Our final step is to bring this ω(1) term down to O(1). The
intuition for the final step is that a pairwise independent hash function achieving the requirements of the
ABB-type [ABB10] security proof can be computed by a “low-rank” matrix-multiplication operation of
the form H · X, where H ∈ Zn×n`q and X ∈ Z`n×nq for ` = ω(1) � log(n). (The reader may picture
` = log log(n).) The technical details of this hash function are found in Section 4.

In order to achieve a compact IBE public key, we will encode this computation in a single public key
matrix B and a single multiply-by-constant X operation. Implementing this strategy (and aligning the
matrices’ dimensions) is somewhat subtle; we defer the details to Section 3. At a high level though, we will
use a gadget matrix Ĝ and flattening function Ĝ−1 in logarithmic base plus the usual gadget matrix G so
that:

Breal · Ĝ−1 (X ·G)
stat
≈ Bproof · Ĝ−1 (X ·G)

= (AR + H · Ĝ) · Ĝ−1 (X ·G)

= AR · Ĝ−1 (X ·G) + H ·X ·G
= AR · small +Hh(x)G,

which implies that an ABB-type security proof will proceed as desired.
As such, our final real system contains only two matrices (A,B) (and a vector u), and has target lattice

[
A
∣∣ Y] =

[
A

∣∣∣∣ B · Ĝ−1 (X ·G)

]
,

where X ∈ Z`n×nq encodes identity x ∈ Z`q by n-fold repetition along ` diagonals.
This yields a fully-secure, compact IBE from LWE.

2 Preliminaries

Notation. Let λ be the security parameter, and let PPT denote probabilistic polynomial time. We use
bold uppercase letters to denote matrices M, and bold lowercase letters to denote vectors v. We write M̃ to
denote the Gram-Schmidt orthogonalization of M.We write [n] to denote the set {1, ..., n}, and |t| to denote
the number of bits in the string t. We denote the i-th bit s by s[i]. We say a function negl(·) : N→ (0, 1) is
negligible, if for every constant c ∈ N, negl(n) < n−c for sufficiently large n.

2.1 Identity Based Encryption

We recall that identity based encryption (IBE) was introduced by Shamir [Sha84], and that Boneh and
Franklin [BF01] proposed the first construction based on bilinear groups. An IBE scheme Π consists of the
4-tuple (Setup,KeyGen,Enc,Dec) :

The PPT Setup algorithm takes the security parameter λ, and outputs the master key pair (mpk,msk).

The PPT key generation algorithm KeyGen takes an identity id from identity space ID and the master secret
key msk, then outputs a secret key skid for the identity id.

The PPT encryption algorithm Enc encrypts message µ ∈M for some identity id under mpk.

The deterministic decryption algorithm Dec decrypts ciphertexts to messages µ′ using the secret key skid.

6

Definition 2.1. We say an IBE scheme Π is correct if for every identity id ∈ ID, every message µ ∈M, and
every (mpk,msk)← Setup,

Pr[Dec(skid,Enc(mpk, id, µ)) = µ] ≥ 1− negl(λ).

For the security definition of IBE, we use the following experiment to describe it. Formally, for any PPT

adversary A, we consider the experiment ExptIBEA (1λ):

• Setup: A challenger runs the Setup algorithm, and sends the master public key mpk to the adversary.

• Query Phase I: Proceeding adaptively, the adversaryA queries a sequence of identities (id1, ..., idm).
On the i-th query, the challenger runs KeyGen(msk, idi), and sends the result skidi to A.

• Challenge: Once adversary A decides that Query Phase I is over, it outputs the challenge identity id∗

and two length-equal messages (µ∗0, µ
∗
1), under the constraint that the challenge identity id∗ has never

been queried before. In response, the challenger selects random b ∈ {0, 1}, and sends the ciphertext
Enc(mpk, id∗, µ∗b) to A.

• Query Phase II: Adversary A continues to issue identity queries (idm+1, ..., idn) adaptively, under
the restriction that idi 6= id∗. The challenger responds by issuing keys skidi as in Query Phase I.

• Guess: Adversary A outputs a guess b′ ∈ {0, 1}.

We define the advantage of adversary A in attacking an IBE scheme Π as

AdvA(1λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ,
where the probability is over the randomness of the challenger and adversary.

Definition 2.2. We say an IBE scheme Π is fully secure, if for all PPT adversaries A, we have

AdvA(1λ) ≤ negl(λ).

2.2 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is Rm.
The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly Λ. Every integer
lattice is generated as the Z-linear combination of linearly independent vectors B = {b1, ..., bm} ⊂ Zm.
For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λuq is a coset of Λ⊥q .
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let

ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We

abbreviate this as DΛ,σ when c = 0.
Let Sm denote the set of vectors in Rm+1 whose length is 1. Then the norm of a matrix R ∈ Rm×m

is defined to be supx∈Sm ||Rx||. Then we have the following lemma, which bounds the norm for some
specified distributions.

Lemma 2.3 ([ABB10]). Regarding the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then we have Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

7

2.3 Randomness Extraction

We will use the following lemma to argue the indistinghishability of two different distributions, which is a
generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].

Lemma 2.4 ([ABB10]). Suppose that m > (n + 1) log q + ω(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

2.4 Learning With Errors

The LWE problem was introduced by Regev [Reg05], who showed that solving it on average is as hard as
(quantumly) solving several standard lattice problems in the worst case.

Definition 2.5 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the
Learning With Errors problem LWEn,m,q,χ is to distinguish between the following pairs of distributions (e.g.
as given by a sampling oracle O ∈ {Os,O$}):

{A,As+ x} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and x $← χn.

2.5 Two-Sided Trapdoors and Sampling Algorithms

We will use the following algorithms to sample short vectors from specified lattices.

Lemma 2.6 ([GPV08, AP10]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large m =
Ω(n log q). There exists a PPT algorithm TrapGen(q, n,m) that with overwhelming probability outputs a
pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and TA is a basis
for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

Lemma 2.7 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n. There are two algorithms as follows:

• There is a PPT algorithm SampleLeft(A,B,TA,u, s): It takes as input

– a rank-n matrix A ∈ Zn×mq , and any matrix B ∈ Zn×m1
q ,

– a “short” basis TA for lattice Λ⊥q (A), a vector u ∈ Znq ,

– and a Gaussian parameter s > ||T̃A|| · ω(
√

log(m+m1)),

then outputs a vector r ∈ Zm+m1 distributed statistically close to DΛu
q (F),s where F := (A|B).

• There is a PPT algorithm SampleRight(A,B,R,TB,u, s): It takes as input

– any matrix A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq ,

– a matrix R ∈ Zm×mq , where sR := ||R|| = supx:||x||=1 ||Rx||,
– a “short” basis TB for lattice Λ⊥q (B), a vector u ∈ Znq ,

– and a Gaussian parameter s > ||T̃B|| · sR · ω(
√

logm),

then outputs a vector r ∈ Z2m distributed statistically close to DΛu
q (F),s where F := (A|AR + B).

8

3 Gadget Matrices for Lattices, and Gadget-Based Matrix Operations

In this section, we first review the gadget matrix G technique proposed by Micciancio and Peikert [MP12],
and show that this matrix G can be tweaked to support “invariant-preserving” pseudo-commutative matrix
multiplication operations. Then, we generalize matrix G and its trapdoor to other integer powers or mixed-
integer products. At the end of this section, we explore a new arrangement of matrix operations for the
generalized gadget matrices that is critical to our main result.

3.1 The Gadget Matrix G

Micciancio and Peikert [MP12] introduced a universal structured (primitive) matrix G, typically in Zn×Ω(n log q)
q ,

also known as the “gadget matrix.” The (typical) gadget matrix G has an associated, public trapdoor basis
TG that is “short” – i.e. ||T̃G|| ∈ (

√
5, 5), depending on the factorization of the modulus q.

Consider a basic matrix Gbasic := gT ⊗ In ∈ Zn×nkq , for row gT =
[
1, 2, 22, ..., 2k−1

]
∈ Z1×k

q and for
k = dlog2 qe. For arbitrary m ≥ nk, we can use a padded matrix, i.e. G = [Gbasic | 0] ∈ Zn×mq , where

0 is a zero matrix in Zn×(m−nk)
q . Since the columns of Gbasic generates all of Znq , so do the columns of

G. Therefore, by the extended basis technique of the work [CHKP10], we are able to derive an associated
public trapdoor basis for the padded matrix G such that ||T̃G|| = ||T̃Gbasic

|| ∈ (
√

5, 5) as well.
Notably, the shortness of TG implies that it is a useful input to the SampleRight algorithm to generate

short vectors r in the u-coset of lattices of type{
Λuq (A|AR + MG)

}
A,R,M,u

for A ∈ Zn×mq , u ∈ Znq , “short” R ∈ Zm×mq (c.f. Lemma 2.7), and rank-nM ∈ Zn×nq .

3.2 (Pseudo-Commutative) Matrix Operations with G via the Flattening Function G−1

Over general lattices, the only matrices that commute with G ∈ Zn×mq are scaled identity matrices αI, in
the sense that

G · (αIm) = (αIn) ·G.

Note that if the G here is padded (from the matrix Gbasic as above), then αIm could alternatively be the
block matrix A containing αIn in the appropriate quadrant with zeroes everywhere else.

The works of Xagawa [Xag13] and Alperin-Sheriff and Peikert [AP14], among others, describe a tech-
nique (also implicit in the earlier dimension-modulus trade-off ideas of homomorphic encryption, e.g. [BV11])
that resolves this non-commutativity problem for G. In particular, there is an efficiently computable func-
tion G−1 so that for any matrix B ∈ Zn×mq , so that G−1(B) = X ∈ {0, 1}m×m and GX = B. This allows
for “pseudo-commutative” multiplication of the gadget matrix (resp. matrices) G by any square matrix M
of dimension n, by observing that

G ·
(
G−1(MG)

)
= M ·G.

We note that the matrix X = G−1(B) has small norm independent of B, and refer the reader to the
representative works for further details.

3.3 Non-Binary Gadgets Gn,b,m, and Batch Change-of-Base G−1
n′,b′,m′(·)

As mentioned by [MP12], their results for G and its trapdoor can be extended to other integer powers or
mixed-integer products. In this direction, we give a generalized notation for gadget matrices as follows:

For any modulus q ≥ 2, for integer base 2 ≤ b ≤ q, let gTb :=
[
1, b, b2, ..., bkb−1

]
∈ Z1×kb

q for
kb = dlogb qe. (Note that the typical base-2 gT is gT2 .) For row dimension n and b as before, we let Gn,b =

9

gTb ⊗ In ∈ Zn×nkbq . The public trapdoor basis TGn,b
is given analogously. Similar to the above padding

argument, Gn,b ∈ Zn×nkbq can be padded into a matrix Gn,b,m ∈ Zn×mq for m ≥ nkb without increasing the

norm of T̃Gn,b,m
from that of T̃Gn,b

.

For this paper, we do not need to use T̃Gn,b
or T̃Gn,b,m

at all, but we keep the discussion for exposition.

We also mention that under this notation, the typical G in dimension n is either Gn,2 ∈ Zn×n log2 q
q or its

padded version Gn,2,m ∈ Zn×mq depending on the setting.
Following [Xag13] and [AP14], we now introduce a related function — the Batch Change-of-Base

function G−1
n′,b′,m′(·) — as follows:

For any modulus q ≥ 2, and for any integer base 2 ≤ b′ ≤ q, let integer kb′ := dlogb′(q)e. For any
integers n′ ≥ 2 andm′ ≥ n′kb′ the function G−1

n′,b′,m′(·) takes as input a matrix from Zn′×m′q , first computes
a matrix in {0, 1, ..., b′ − 1}n′ logb′ (q)×m′ using the typical G−1 procedure (except with base-b′ output), then
pads with rows of zeroes as needed to form a matrix in {0, 1, ..., b′ − 1}m′×m′ . For example, the typical
base-2 G−1 = G−1

n,2,m takes Zn×mq to {0, 1}m×m as expected.

3.4 Further Gadget-Based Matrix Multiplication Operations

In what follows, we explore a new arrangement of matrix operations (pseudo-commutative and non-commutative)
that is critical to our main result in this paper. First, fix any integer n. Then, for some sufficiently small
` = ω(1) � log2(q) ≈ log2(n), define `′ := 2` such that `′ = ω(1) < log2(q) ≈ log2(n). (We remark
that in principle `′ may be made an arbitrarily small super-constant function of the security parameter n, e.g.
`′ ≈ log∗(n).) Finally, fix any integer m ≥ n`k`′ .

Then for any two matrices H ∈ Zn×n`q ,X ∈ Z`n×nq , consider the following terms, in order:

1. First, consider the base-2, dimension-n “gadget-encoding” of X ∈ Z`n×nq , i.e. the matrix

X ·Gn,2,m ∈ Z`n×mq = Zn log2(`′)×m
q .

2. Next, consider the base-`′, dimension-(n`) flattening (with zero-row padding) of the above:

G−1
n`,`′,m (X ·Gn,2,m) ∈ {0, 1, ..., `′ − 1}m×m (Zm×mq .

3. Then, consider the base-`′, dimension-(n`) gadget-encoding of H ∈ Zn×n`q , i.e. the matrix

H ·Gn`,`′,m ∈ Zn×mq .

4. Finally — for sufficiently large m, we find the following relationship holds:(
H ·Gn`,`′,m

)
·
(
G−1
n`,`′,m (X ·Gn,2,m)

)
= (H ·X) ·Gn,2,m ∈ Zn×mq

with
∣∣∣∣∣∣G−1

n`,`′,m (X ·Gn,2,m)
∣∣∣∣∣∣ = small, conditioned on the sufficiently small choice of ` = ω(1). We

emphasize that only public information, n,m, `, is required to perform this batch base-change-then-multiply
operation, when given as input any M ∈ Zn×mq (equal to H ·Gn`,`′,m ∈ Zn×mq) and any X ∈ Z`n×nq .

Definition 3.1. We refer to the matrix H ·Gn`,`′,m ∈ Zn×mq as the predicate-encoding of H ∈ Zn×n`q , and
to the matrix G−1

n`,`′,m (X ·Gn,2,m) ∈ {0, 1, ..., `′−1}m×m (Zm×mq as the input-encoding of X ∈ Z`n×nq .

10

4 Hashing, Encoding, and Randomly Isolating Unique Solutions

In this section, we construct a hash function family H∗ that will be used in our main security proof, and
prove that it satisfies certain properties developed along the way. Toward this end, we first show that all
pairwise independent hash functions allow for “nice, random isolations” following Valiant and Vazirani.
Then we describe an intermediate, pairwise independent hash function family H used to build H∗ later.
Next, we recall a notion of embedding vectors into invertible matrices due to Cramer and Damgård (also
used regularly in the lattice-based FE literature). Finally, we present the hash family H∗, and prove that it
both randomly isolates nicely, and has either invertible or zero output.

To begin, we recall the definition of pairwise independent hash function families.

Definition 4.1 (Pairwise Independent Hash Functions). A family of functions H = {H : X → Y} is called
a family of pairwise independent hash functions if for all x1 6= x2 ∈ X and y1, y2 ∈ Y , it holds that

PrH∈H[H(x1) = y1 ∧H(x2) = y2] =
1

|Y|2

4.1 Isolations of Random Hash Functions

Unambiguous Satisfiability (USAT) is the promise problem of deciding if a given boolean formula F
is unsatisfiable, or has exactly one satisfying assignment. In [VV85], Valiant and Vazirani show that a
polynomial-time algorithm for USAT implies NP = RP. Their proof relies on a key technical lemma regard-
ing isolations of random hash functions. The idea is that by intersecting a formula F with sufficiently many
random hyperplanes (each of which are affine in F), the resulting formula F ′ will have a unique solution x′

(also satisfying F) with constant probability. In more detail, [VV85] shows that for any pairwise indepen-
dent hash function family H : {0, 1}n → {0, 1}k and any set Q ⊂ {0, 1}n such that 2k−2 ≤ |Q| ≤ 2k−1, it
holds that PrH∈H

[∣∣H−1(0) ∩Q
∣∣ = 1

]
≥ 1

8 .
We show a similar lemma, but for |Q| based on the range Y of an arbitrary, pairwise independentH:

Lemma 4.2. For any pairwise independent hash function family H : X → Y, for any δ ∈ (0, 1), for any
fixed set Q ⊆ X such that |Q| ≤ δ|Y|, and any element x ∈ X \Q, we have

PrH∈H[H(x) = 0 ∧H(x′) 6= 0, ∀x′ ∈ Q] ∈
(

1− δ
|Y|

,
1

|Y|

)
.

Proof. For the lower bound, we can unfold the probability equation as follows:

PrH∈H[H(x) = 0 ∧H(x′) 6= 0, ∀x′ ∈ Q]

=PrH∈H[∀x′ ∈ Q,H(x′) 6= 0|H(x) = 0] · PrH∈H[H(x) = 0]

=PrH∈H[∀x′ ∈ Q,H(x′) 6= 0|H(x) = 0] · 1

|Y|

=(1− PrH∈H[∃x′ ∈ Q,H(x′) = 0]) · 1

|Y|

≥(1−
∑
x′∈Q

PrH∈H[H(x′) = 0]) · 1

|Y|

=(1− |Q|
|Y|

) · 1

|Y|
=

1− δ
|Y|

where we get the second equation from the pairwise independent property of hash function H , and the
inequality from the union bound.

11

For the upper bound, we have simply

PrH∈H[H(x) = 0 ∧H(x′) 6= 0,∀x′ ∈ Q]

≤PrH∈H[H(x) = 0] =
1

|Y|
.

This completes the proof.

Remark 4.3. We observe that in applications, the exact “probability gap” in the above lemma can be tuned
smaller (or larger) by changing the size of the application’s hash function’s range |Y| (conditioned on fixed
query set size |Q|). We give a concrete instantiation of this idea in our hash functions that follow.

Remark 4.4. In prior works, e.g. [Wat05, HK12, BR09, ABB10], the property of Lemma 4.2 is known as
“abort-resistance,” due to its usefulness in combination with the artificial abort proof technique. This is
somewhat detacted from the idea of pairwise independent hashing. In the spirit of [VV85], we take an
alternate perspective, and simply say that “pairwise independent hash functions randomly isolate nicely.”

4.2 An Intermediate Hash Function Family

We define a hash function familyH′ : X → Y, where X = Z`q,Y = Ztq, which is either used by each of the
representative works in the above remark, or is a variation thereof. Each function of H′ is indexed by a set
of integer vectors h = {hi}i∈{0,...,`} where each hi ∈ Ztq. Then for x = (x1, . . . , x`) ∈ Z`q, define

H ′h(x) = h0 +
∑
i∈[`]

xihi.

We show that this hash function family is a pairwise independent hash function family.

Lemma 4.5. Let q be a prime. For h = (h0, ...,h`) ∈ (Ztq)`+1, the collectionH′h : Z`q → Ztq defined above
is a pairwise independent hash function family.

Proof. Let x1 6= x2 ∈ Z`q and y1,y2 ∈ Ztq. Writing each vector hi of the hash key h as a row, we have

Pr
h=h0,...,h`

[
H ′h(x1) = y1 ∧H ′h(x2) = y2

]
= Pr

h

[1 x1,1 ... x1,`

1 x2,1 ... x2,`

]h0,1 ... h0,t
...

. . .
...

h`,1 ... h`,t

 =

[
y1,1 ... y1,t

y2,1 ... y2,t

]
=
∏
j∈[t]

 Pr
h0,j ,...,h`,j

[1 x1,1 ... x1,`

1 x2,1 ... x2,`

]h0,j
...
h`,j

 =

[
y1,j

y2,j

]

where the second equality follows from the facts that each coordinate of h is chosen i.i.d. and that the t
sub-systems are distinct. Observe that each sub-system is a linear transformation of the h0,j , ..., h`,j .

Since rank

([
1 x1,1 ... x1,`

1 x2,1 ... x2,`

])
= 2, we have

Pr
h0,j ,...,h`,j

[1 x1,1 ... x1,`

1 x2,1 ... x2,`

]h0,j
...
h`,j

 =

[
y1,j

y2,j

] = 1/q2,

12

which gives
Pr

h=h0,...,h`

[
H ′h(x1) = y1 ∧H ′h(x2) = y2

]
= 1/q2t = 1/|Y|2

as required.

4.3 The Matrix Embedding M of Ft into Ft×t

In their work on the amortized complexity of zero knowledge, Cramer and Damgård [CD09] describe an
encoding function that maps a superpolynomially-sized domain Ft to matrices in Ft×t with certain, strongly
injective properties. (We state the definition ofM in the language of general fields, but will later always take
F = Zq.) This encoding notion has been repurposed (and updated) in works such as [ABB10, AFV11] under
the name “Full-Rank Difference encoding,” or more recently in [Xag13, Alp15] under the name “Invertible
Difference encoding.” We refer to this function as the Matrix Embedding M, describe it, and show the
properties we need of it.

The goal in designing M is to construct an additive subgroup G of Ft×t of size qt with all non-zero
matrices in G of full-rank. For a polynomial g ∈ F[X] of degree at most t−1, coeff(g) ∈ F1×t is the t-row of
coefficients of g (padding zeroes on the right, as needed). Let f be some polynomial of degree t, irreducible
in F[X]. Then for g ∈ F[X], the polynomial g mod f has degree at most t− 1, so coeff(g mod f) ∈ Ft.

For any field F, any integer t ≥ 2, and input h = (h0, ..., ht−1) ∈ Ft, define gh(X) =
∑t−1

i=0 hix
i ∈

F[X]. Then let the matrix-embedding function Mt,q : Ft → Ft×t be defined as follows:

Mt,q(h) :=

coeff(gh mod f)

coeff(X · gh mod f)
coeff(X2 · gh mod f)

...
coeff(Xt−1 · gh mod f)

 ∈ Ft×t.

From here on, we will take F := Zq for q prime. It is straightforward to verify that the matrix embedding
function M := Mt,q : Ztq → Zt×tq obeys the following (expected) properties:

Fact 4.6 (M is linear). M(ah1 + bh2) = aM(h1) + bM(h2) for any a, b ∈ Zq,h1,h2 ∈ Ztq.

Fact 4.7 (The image of M is invertible or zero). For any vector h 6= 0, M(h) is invertible, and M(0) = 0.

4.4 Our Main Hash Function Family

We describe our main hash function family H∗`,t,n,q : Z`q → Zn×nq for integers `, t, n, q. Each func-
tion of H∗`,t,n,q is indexed by a set of integer vectors h = {hi}i∈{0,...,`} where each hi ∈ Ztq. For
x = (x1, . . . , x`) ∈ Z`q,

H∗h(x) = Mt,q(h0)⊗ In/t +
∑
i∈[`]

xiMt,q(hi)⊗ In/t.

The hash function above is similar to one hash function used in the work [ABB], except that they use
In for the first term, and we use Mt,q(h0) ⊗ In/t. While it is possible to directly prove that their hash
function has the desired isolation property (as the work [ABB] did), we consider the modified construction
that achieves a simpler and more modular analysis – we will use the intermediate pairwise independent hash
function described in Section 4.2 and the embedding properties in Section 4.3 in a modular way.

In our subsequent IBE security proof, we will “encode” the family H∗ in such a way that (`, n, q) are
public, but the exact choice of t ∈ [n], and thus the order of the implicit additive subgroup G underlying

13

Ft×t embedded in Fn×n, will be “hidden” by an external statistical argument. Indeed, our security proof
(in the sequel) hinges on the ability to hide the calculation of the following theorem from IBE adversaries
holding a given PK.

Now, we show that the (plain) hash function familyH∗ has the following, nice isolation property.

Theorem 4.8. For any integers `, t, n, and a prime q, letH∗`,t,n,q be the hash function family defined above.
Then for any δ ∈ (0, 1), for any fixed set Q ⊆ Z`q such that |Q| ≤ δqt, and any x ∈ Z`q \Q, we have

Pr
h←(Ztq)`+1

[
H∗h(x) = 0

∧
∀x′ ∈ Q : H∗h(x′) is full rank

]
∈
(

1− δ
qt

,
1

qt

)
Proof of Theorem 4.8. We consider another intermediate hash family H̄`,t,n,q : Z`q → Zt×tq , where each
function of the family is indexed by hi ∈ Ztq. For x = (x1, . . . , x`) ∈ Z`q,

H̄h(x) = Mt,q(h0) +
∑
i∈[`]

xiMt,q(hi) ∈ Zt×tq .

Basically, H̄`,t,n,q is the same as H∗`,t,n,q except it does not compute the tensor product. By a simple obser-
vation, we have (1) H∗h(x) = 0 if and only if H̄h(x) = 0, and (2) H∗h(x) is full rank if and only if H̄h(x)
is full rank. These facts imply that

Pr
h←(Ztq)`+1

[
H∗h(x) = 0

∧
∀x′ ∈ Q : H∗h(x′) is full rank

]
= Pr
h←(Ztq)`+1

[
H̄h(x) = 0

∧
∀x′ ∈ Q : H̄h(x′) is full rank

]
.

Define H ′h(x) = h0 +
∑

i∈[`] xihi as in Subsection 4.2. By the linearity of Mt,q (Fact 4.6), we can

rewrite H̄h(x) as Mt,q

(
h0 +

∑
i∈[`] xihi

)
= Mt,q(H

′
h(x)). By Fact 4.7, we know that (1) H̄h(x) = 0 if

and only if H ′h(x) = 0, and (2) H̄h(x) is full rank if and only if H ′h(x) 6= 0. Therefore, we have:

Pr
h←(Ztq)`+1

[
H̄h(x) = 0

∧
∀x′ ∈ Q : H̄h(x′) is full rank

]
= Pr
h←(Ztq)`+1

[
H ′h(x) = 0

∧
∀x′ ∈ Q : H ′h(x′) 6= 0

]
.

By Lemma 4.5, we know the hash functions {H ′h}h∈(Ztq)`+1 form a pairwise independent family map-
ping from Z`q to Ztq. Then finally we apply Lemma 4.2 to obtain:

Pr
h←(Ztq)`+1

[
H ′h(x) = 0

∧
∀x′ ∈ Q : H ′h(x′) 6= 0

]
∈
(

1− δ
qt

,
1

qt

)
.

This concludes the proof of the theorem.

5 Compact Fully-Secure Identity-Based Encryption from LWE

Now, we present our compact IBE scheme, its correctness proof, and its parameter settings. The proof of
full security follows in the sequel. Let the message space beM = {0, 1}, and the identity space be ID = Z`q
for q = poly(n) and slightly super-constant ` = ω(1)� log2(n). As discussed in the introduction, we can
use the technique of collision resistant hash functions, so that it is without loss of generality to consider ID
spaces of super-polynomial-size. We write identities x and messages µ.

As discussed in the work [ABB], the message spaceM can easily be extended from bits to bit-strings.
For technical reasons, we need to either set the first coordinate of each identity x to 1, or exclude the
all-zeroes identity; we choose the former for ease of overall presentation.

14

5.1 Our Construction

Our identity-based encryption scheme Π = (Setup,KeyGen,Enc,Dec) is as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm does:

1. Set lattice parameters n = n(λ),m = m(λ), q = q(λ), Gaussian parameter s = s(λ), and the
dimension ` of identity space ID = {1} × Z`−1

q as specified in Section 5.3, and define `′ = 2`.

2. Generate a matrix A ∈ Zn×mq associated with its trapdoor TA, using algorithm TrapGen(q, n,m).
3. Sample a uniformly random matrix B ∈ Zn×mq , and a random vector u ∈ Znq .
4. Output master public key mpk and master secret key msk as

mpk = (A,B,u), msk = TA

KeyGen(mpk,msk,x): On input the master secret key msk and identity x = (1, x1, ..., x`−1) ∈ {1} ×
Z`−1
q , the key generation algorithm does:

1. Define the input-encoding matrices

X′ :=

In

x1In
x2In

...
x`−1In

 ∈ Z`n×nq , and X := G−1
n`,`′,m

(
X′ ·Gn,2,m

)
∈ [`′]m×m.

2. Set the ID matrix for x to be
Y := B ·X ∈ Zn×mq .

3. Compute short vector r ∈ Z2m
q , using

r ← SampleLeft(A,TA,Y,u, s)

such that [A|Y] · r = u mod q.
4. Output skx := r.

Enc(mpk,x, µ): On input the master public key mpk, an identity x = (1, x2, ..., x`) and message µ, the
encryption algorithm does:

1. Define the input-encoding matrix X and the ID matrix Y for x as in KeyGen.

2. Choose a uniformly random vector s ∈ Znq , an error vector e0 ← DZmq ,α and an error integer
e← DZq ,α.

3. Choose a random rotation matrix R ∈ {−1, 1}m×m, and let R′ := RX. Then define error
vector eT1 := eT0 R

′.
4. Set ciphertext (c0, c1) as

c0 := sT [A|Y] + (eT0 |eT1), c1 := sTu+ e+
⌊q

2

⌋
µ

5. Output ciphertext ctx := (c0, c1) ∈ Z2m+1
q .

Dec(sk, ct): On input a secret key sk and ciphertext ct, the decryption algorithm does:

1. Parse secret key sk = r ∈ Z2m
q and ciphertext ct = (c0, c1) ∈ Z2m+1

q .
2. Output µ′ := Round(c1 − (〈c0, r〉 mod q)) ∈ {0, 1}.

15

5.2 Correctness

We prove correctness of our scheme as follows.

Lemma 5.1. The identity-based encryption scheme Π is correct (cf. Definition 2.1).

Proof. For any identityx ∈ ID, recall that the secret key skx = r is generated using SampleLeft(A,TA,Y,u, s),
where Y = BX, and the input is encoded as

X′ :=

In

x1In
x2In

...
x`−1In

 ∈ Z`n×nq , and X := G−1
n`,`′,m

(
X′ ·Gn,2,m

)
∈ [`′]m×m.

Further recall that the ciphertext ctx = (c0, c1) for identity x and message µ is set as

c0 := sT [A|Y] + (eT0 |eT1), c1 := sTu+ e+
⌊q

2

⌋
µ

where s $← Znq , e0 ← DZnq ,α, e← DZq ,α, and eT1 := eT0 R
′, where R′ := RX and R← {0, 1}m×m.

Then the decryption procedure produces

µ′ = Round (c1 − (〈c0, r〉 mod q))

= Round

⌊q
2

⌋
µ+ e− (eT0 |eT1)r︸ ︷︷ ︸

small

= µ ∈ {0, 1}

where the second equality follows from the definitions of c0, c1, and r, and the third equality follows if
e− (eT0 |eT1)r is indeed small, which holds w.h.p. by setting parameters appropriately as in Section 5.3.

This completes the proof of correctness.

5.3 Parameter Setting

For arbitrarily small constant δ > 0, we set the system parameters according to Table 2.

Parameters Description Setting
λ security parameter
n PK-lattice row dimension n = λ

m PK-lattice column dimension m = n1+δ

q modulus q = n4.5+4δ log3.5+2δ(n)

s SampleLeft and SampleRight width s = n1.5+1.5δ log1.5+δ(n)

α error width α =
√
n log1+δ(n)

` identity-space dimension ` = log log(n)

`′ integer-base parameter `′ = log(n)

Table 2: IBE Parameters and Example Setting

These values are chosen in order to satisfy the following constraints:

16

• To ensure correctness, we require |e− (eT0 |eT1)r| < q/4; here we bound the dominating term:

|eT1 r| ≤ ||eT0 || · ||R|| · ||X|| · ||r|| ≈ α
√
m ·
√
m · `′m · s

√
m = m2.5sα`′ < q/4.

• For SampleLeft, we know ||T̃A|| = O(
√
n log(q)), so require that the sampling width s satisfies

s >
√
n log(q) · ω(

√
log(m)).

• For SampleRight, we know ||T̃G|| ≤ 5 and that

sR ≤ ||R∗|| · ||X||
≤ 12

√
2m · (`′m)

= O(2`m1.5).

Therefore, we need the (joint) sampling width s to, in fact, satisfy the stronger constraint

s > 2`m1.5ω(
√

log(m)).

• To apply the Leftover Hash Lemma, we need m ≥ (n+ 1) log(q) + ω(log(n)).

• To apply Regev’s reduction, we need α >
√
nω(log(n)) (α here is an absolute value, not a ratio).

Lattice Approximation Factor. Regev [Reg05] showed that there exists an efficiently samplable B-
bounded distribution χ for B ≥

√
n · ω(log n), so that if there is an efficient algorithm that solves the

(average-case) LWEn,m,q,χ problem, then there is an efficient quantum algorithm that solves GapSVP
Õ(n·q/B)

and SIVP
Õ(n·q/B)

on any n-dimensional lattice. The work of Brakerski et al. [BLP+13] shows an analogous-
but-classical result for any

√
n-dimensional lattice. For the case of our example parameter setting in Table 2,

the resulting lattice problems’ approximation factor is Õ
(
n5+ε

)
, for ε > 0.

Further Optimizations. Above, we upper bound the matrix ||X|| by `′m using a trivial bound, as every
entry of X is at most `′ − 1. However, as X is a highly sparse matrix in our construction, it is possible
to significantly optimize ||X||; e.g. about `′ log2(q). Assuming this tighter bound, the parameters s and q
can be selected more aggressively, e.g. key width s ≈

√
m and modulus q ≈ n2.5. This will result in a

somewhat better approximation factor of about Õ(n3+ε).
Using the tag-based sampling algorithms of the [MP12]-style trapdoor framework in place of [ABB]’s

explicit SampleRight procedure leads to an approximation factor of Õ(n1.5), matching the (minimum) ap-
proximation factor of Dual Regev type PKE, up to polylogarithmic factors in the security parameter n.

6 Security Proof

In this part, we show the security proof of our IBE construction as follows:

Theorem 6.1. Assuming the hardness of the standard LWE assumption, our IBE construction is fully secure
(cf. Definition 2.2).

Proof. We prove the security of our IBE construction by a sequence of hybrids, where the first hybrid
is identical to the original security experiment ExptIBEA (1λ) as in Definition 2.2. We show that if a PPT

adversary A that makes at most |Q| secret key queries, can break the IBE scheme described above with
non-negligible advantage ε (i.e. success probability 1

2 + ε), then there exists a reduction that can break the
LWE assumption with advantage poly(ε)− negl(λ). Given such an adversary A, we consider the following
hybrids.

17

The Sequence of Hybrids (H0,H1,H2,H3,H4) :

Hybrid H0: This is the original security experiment ExptIBEA (1λ) from Definition 2.2 between the adver-
sary A and the challenger.

Hybrid H1: Hybrid H1 is identical to hybrid H0 except that we add an abort event that is independent of
the adversary’s view. Let |Q| be the maximum size of thatA can query, ε be the advantage ofA in H0,
and n, `, q be the parameters specified in the scheme’s setup algorithm. Now this hybrid experiment
selects t = dlogq(2|Q|/ε)e, so that we have qt ≥ 2|Q|/ε ≥ qt−1. Then it choose a random hash
function H∗h ∈ H`−1,t,n,q by selecting ` random integer vectors hi ∈ Ztq for i = 0, ..., ` − 1, and
passes it to the challenger. Recall that the hash function maps input x = (x1, ..., x`−1) ∈ Z`−1

q to:

H∗h(x) = Mt,q(h0)⊗ In/t +
∑

i∈[`−1]

xiMt,q(hi)⊗ In/t

We then describe how the challenger behaves in hybrid H1 as follows:

• Setup: The same as hybrid H0 except the challenger keeps the hash function H∗h passed from
the experiment.

• Secret key and ciphertext query: The challenger responds to identity queries and challenge
ciphertext query (with a random choice of b ∈ {0, 1}). We use set Q = {(1,xi)} to denote the
query set, and by definition challenge identity (1,x∗) ∩ Q = ∅. Recall that we pad 1 to every
ID.

• Guess: In the guess phase, the adversary outputs his guess b′ ∈ {0, 1} for b. The challenger
now does the abort check: H∗h(x∗) = 0 and H∗h(xi) 6= 0 for all (1,xi) ∈ Q. If the condition
does not hold, the challenger overwrites b′ with a freshly random bit in {0, 1}, and we say the
challenge aborts the game.

Note that the adversary never sees the random hash function, and has no idea if an abort event took
place. While it is convenient to describe the abort action at the end of the game, nothing would change
if the challenger aborted the game as soon as the abort condition becomes true.

Hybrid H2: In hybrid H2, we change the method of generating matrix B in master public key. Recall that
in hybrid H1, matrix B is chosen at random from Zn×mq . In hybrid H2, the challenger selects ` random
vectors hi ∈ Ztq for i ∈ {0, 1, . . . , `− 1}, and sets matrix

H = [V0|V1|V2| · · · |V`−1] ∈ Zn×n`q

where each matrix Vi = Mt,q(hi) ⊗ In/t ∈ Zn×nq encodes hi ∈ Ztq using the Matrix Embedding
function Mt,q(·) as described in Section 4. Then, the challenger sets

B = AR∗ + HGn`,`′,m

where R∗ ∈ {−1, 1}m×m is randomly chosen. Additionally, the challenger uses the matrix R∗ to
generate the challenge ciphertext (c∗0, c

∗
1) in the following way:

• Choose a uniformly random vector s ∈ Znq , an error vector e0 ← DZmq ,s and an error integer
e← DZq ,s.

• Set R∗
′

:= R∗X, and then define error vector eT1 := eT0 R
∗′ . Recall that the real scheme uses a

random R ∈ {−1, 1}m×m to generate the ciphertext.

18

• Set the challenge ciphertext (c∗0, c
∗
1) as

c∗0 := sT [A|Y] + (e0|e1)T , c∗1 := sTu+ e+
⌊q

2

⌋
µ

The rest of the hybrid is unchanged.

Hybrid H3: In hybrid H3, we change how matrix A in the master public key mpk is generated, and as well
the method of answering secret key queries. Recall that in hybrid H2, matrix A ∈ Zn×mq is sampled
with its trapdoor TA using algorithm TrapGen(q, n,m). To answer a a secret key query for an ID
(1,xi), the secret key is generated using algorithm SampleLeft associated with the trapdoor TA.

In hybrid H3, the challenger first samples a random matrix A ∈ Zn×mq (without any trapdoor), and
then sets matrix B in the same way as hybrid H1. The challenger responds to the secret key query of
ID (1,x(i)) = (1, x

(i)
1 , ..., x

(i)
`−1) ∈ Z`q by first computing whether H∗h(xi) = 0. If it is 0, then the

challenger aborts as the previous hybrid. Otherwise, the challenger uses the algorithm SampleRight
with the trapdoor TGn,2,m to reply as follows:

r ← SampleRight
(
A,B ·X, R∗X, TGn,2,m , u, s

)
,

where X is the encoding of the ID (1,x(i)). Note that by unfolding the public matrix B as a predicate
encoding, and the identity matrix X as an input encoding (cf. Definition 3.1), we have:

Y = B ·X
= (AR∗ + HGn`,`′,m) ·G−1

n`,`′,m

(
X′ ·Gn,2,m

)
= AR∗X +

(
H ·X′

)
·Gn,2,m

= AR∗X +

([V0|V1| · · · |V`−1]) ·

In

x
(i)
1 In

...
x

(i)
`−1In

 ·Gn,2,m

= AR∗X +

V0 +
`−1∑
j=1

x
(i)
j Vj

 ·Gn,2,m

= AR∗X +H∗h(x(i)) ·Gn,2,m

From the above computation, it is not hard to see that the challenger is able to answer the key query
using SampleRight as long as H∗h(x(i)) 6= 0. We remark that (1) X has a short norm by the change of
base argument, so R∗X also has a short norm. This is an important property for the SampleRight al-
gorithm (c.f. Lemma 2.7); and that (2) if the challenger does not abort, the relational invariant between
the secret key and public key is the same as the original experiment (real scheme), as guaranteed by
the SampleRight algorithm: [

A
∣∣∣B ·X] · r = u mod q.

Hybrid H4: Hybrid H4 is identical to hybrid H3 except that the challenge ciphertext (c∗0, c
∗
1) is chosen as a

random independent element in Z2m
q × Zq.

19

Analysis of Hybrids. The only difference between hybrids H0 and H1 is the abort event. We argue that the
adversary still has non-negligible advantage in H1 even though the abort event can happen. More formally,
we will use Lemma 28 in the full version of the work [ABB], which is described as follows.

Lemma 6.2. Let I be aQ+1- ID tuple (id∗, id1, . . . , id|Q|) denoted the challenge ID along with the queried
ID’s, and ε(I) define the probability that an abort does not happen in hybrid H1. For i = 0, 1, we set Ei be
the event that b = b′ at the end of hybrid Hi. Assuming ε(I) ∈ [εmin, εmax], then we have∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ εmin

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣− 1

2
(εmax − εmin)

The lemma was analyzed by Bellare and Ristenpart [BR09], and further elaborated in the work [ABB].
As our overall proof just uses this lemma in a “black-box” way, we do not include its proof for simplicity of
presentation. Next, we show indistinguishability between all the remaining consecutive hybrids.

Lemma 6.3. Hybrid H1 and H2 are statistically indistinguishable.

Proof. We show that hybrid H2 is statistically close to H1 using Lemma 2.4. Note that the only difference
between the two hybrids is how the matrix B and the error vector e1 in the challenge ciphertext were
generated. All the other matrices/vectors are generated identically. In H1, (B, e1) together with the public
matrix A look like (A,B, eT0 R

∗X), yet in H2, they look like (A, A ·R∗ + HGn`,`′,m, e
T
0 R
∗X). Since

the two hybrids only differ at the matrix/vector, it suffices to show:

(A,B, eT0 R
∗X) ≈ (A, A ·R∗ + HGn`,`′,m, e

T
0 R
∗X).

By Lemma 2.4, we know that the following two distributions are statistically close:

(A,B, eT0 R
∗) ≈ (A,A ·R∗, eT0 R∗)

where matrix B is sampled from uniform distribution over Zn×mq . Thus, we have

(A, B + HGn`,`′,m, e
T
0 R
∗X) ≈ (A, A ·R∗ + HGn`,`′,m, e

T
0 R
∗X).

As (A,B + HGn`,`′,m, e
T
0 R
∗X) is identically distributed as (A,B, eT0 R

∗X), we have

(A, B, eT0 R
∗X) ≈ (A, A ·R∗ + HGn`,`′,m, e

T
0 R
∗X).

This completes the proof of the claim.

Lemma 6.4. Hybrid H2 and H3 are statistically indistinguishable.

Proof. We show that hybrid H2 is statistically close to H3 using Lemmas 2.6 and 2.7. Note that in hybrid
H3, the public matrix A is sampled from TrapGen(q, n,m) along with a trapdoor, and secret key queries are
answered using algorithm SampleLeft; in hybrid H3, A is sampled directly from the uniform distribution
over Zn×mq , and these secret key queries are answered using algorithm SampleRight.

By Lemma 2.6, matrix A in hybrid H2 is distributed close to uniform distribution over Zn×mq as in
hybrid H3. For Gaussian parameter s set appropriately as in Section 5.3, SampleLeft and SampleRight are
distributed identically by Lemma 2.7. Therefore, hybrid H2 and H3 are statistically indistinguishable.

Lemma 6.5. Assuming the hardness of LWE assumption, hybrid H3 and H4 are computationally indistin-
guishable.

20

Proof. Suppose there exists an adversary who has non-negligible advantage in distinguishing hybrid H2 and
H3, then we can construct a reduction B that breaks the LWE assumption using the adversary A. Recall in
Definition 2.5, an LWE instance is provided as a sampling oracleO that can be either uniformly randomO$

or a pseudorandom Os for some secret random s ∈ Znq . The reduction B uses adversary A to distinguish
the two oracles as follows:

Invocation. Reduction B requests m+ 1 instances from oracle O, i.e. pair (ai, bi) for i = 0, ...,m.

Setup. Reduction B constructs master public key mpk as follows:

1. Set matrix A ∈ Zn×mq to be the first m vectors ai in pairs (ai, bi) for i = 0, ...,m− 1.

2. Assign the (m+ 1)-th LWE instance am+1 to be vector u ∈ Znq .

3. Construct the reminder of master public key, namely matrix B as in hybrid H2.

4. Send mpk = (A,B,u) to A.

Queries. ReductionB answers identity queries as in hybrid H3, including aborting the simulation if needed.

Challenge ciphertext. When adversaryA sends message (µ0, µ1) and identity (1,x∗) = (1, x∗1, ..., x
∗
`−1),

reduction B does the following:

1. Set v∗ ∈ Zmq the first m integers bi in LWE pairs (ai, bi), for i = 0, ...,m− 1.

2. Set challenge ciphertext (c∗0, c
∗
1) as

c∗0 = [v∗T |v∗TR∗′], c∗1 = bm+1 + µb∗
⌊q

2

⌋
where R∗

′
= R∗X∗, and matrix R∗ are chosen randomly from {−1, 1}m×m at setup phase.

3. Send challenge ciphertext (c∗0, c
∗
1) to adversary A.

Guess. After being allowed to make additional queries, A guesses if it is interacting with a hybrid H3 or
H4 challenger. Our simulator outputs the final guess as the answer to the LWE challenge it is trying
to solve.

We can see that whenO = Os, the adversary’s view is as in hybrid H3; whenO = O$, the adversary’s view
is as in hybrid H4. Hence, B’s advantage in solving LWE is the same as A’s advantage in distinguishing
hybrids H3 and H4.

Completing the Proof. Recall that |Q| is the upper bound of the number of the adversary’s key queries,
and ε is the advantage of the adversary in H0. By our setting of parameters in H1, we have |Q| ≤ 0.5εqt. By
setting δ := 0.5ε in Theorem 4.8, we know that

Pr
h←(Ztq)`+1

[
H∗h(x) = 0

∧
∀x′ ∈ Q : H∗h(x′) is full rank

]
∈
(

1− 0.5ε

qt
,

1

qt

)
.

Thus, we know that for any (Q+ 1)-tuple I denoting a challenge id along with ID queries, we have ε(I) ∈(
1−0.5ε
qt , 1

qt

)
. Then by setting [εmin, εmax] = [1−0.5ε

qt , 1
qt] in Lemma 6.2, we have∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ 1− 0.5ε

qt

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣− 0.5ε

2qt
=

(1.5− ε) · ε
2qt

≥ ε

4qt
. (1)

21

Note that
∣∣Pr[E0]− 1

2

∣∣ = ε is the advantage of A in H0, and the second inequality follows from the fact that
1.5− ε ≥ 0.5.

Next we show that the quantity ε
4qt is still non-negligible (even though qt might look large). Recall that

we set t = dlogq(2|Q|/ε)e, so that we have qt ≥ 2|Q|/ε ≥ qt−1. This implies 1
qt ≥

ε
2q|Q| , and further we

can derive: ε/4qt ≥ ε2

8q|Q| . This is non-negligible as long as ε is non-negligible, since q is polynomial for
our setting of parameters, and |Q| is polynomially bounded.

Then for i = 1, 2, 3, 4 we denote Ei as the event that the adversary successfully guesses the challenge
bit, i.e. b = b′, at the end of hybrids H1,H2,H3 and H4, respectively. From Lemmas 6.3 and 6.4, we know
that the adjacent hybrids are indistinguishable, and thus we have

Pr[E1] ≈ Pr[E2], Pr[E2] ≈ Pr[E3]. (2)

It is obvious that Pr[E4] = 1
2 , as in this hybrid the challenge bit is independent of the adversary’s view.

From Lemma 6.5, we know that

|Pr[E3]− Pr[E4]| =
∣∣∣∣Pr[E3]− 1

2

∣∣∣∣ ≤ AdvLWE
B (1λ). (3)

Suppose A has non-negligible advantage ε in H0. By the above computation, we know that

ε2

8q|Q|
≤
∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≈ ∣∣∣∣Pr[E2]− 1

2

∣∣∣∣ ≈ ∣∣∣∣Pr[E3]− 1

2

∣∣∣∣ ≤ AdvLWE
B (1λ),

which implies AdvLWE
B (1λ) ≥ ε2

8q|Q| − negl(λ). This means the reduction B defined in Lemma 6.5 breaks
the LWE assumption with non-negligible probability. This reaches a contradiction, which completes the
proof of Theorem 6.1.

Acknowledgments. We thank Jonathan Katz for insightful comments on an early draft that considerably
improved our presentation, and thank Chris Peikert for suggesting the IBE public-key size problem.

This work was performed under financial assistance award 70NANB15H328 from the U.S. Department of
Commerce, National Institute of Standards and Technology, a DARPA SafeWare grant, NSF grants CNS-
1314857, CNS-1453634, CNS-1518765, CNS-1514261, a Packard Fellowship, a Sloan Fellowship, two
Google Faculty Research Awards, and a VMWare Research Award.

References

[ABB] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model (full version). https://crypto.stanford.edu/˜dabo/pubs/papers/
latticebb.pdf. Incorporates material from [ABB10] and [Boy10].

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer,
Heidelberg, May 2010.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption
for inner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang,
editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40. Springer, Heidelberg, Decem-
ber 2011.

22

https://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf

[Alp15] Jacob Alperin-Sheriff. Short signatures with short public keys from homomorphic trapdoor
functions. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 236–255. Springer,
Heidelberg, March / April 2015.

[AP10] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of
Computing Systems, 48(3):535–553, 2010.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–
314. Springer, Heidelberg, August 2014.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001.

[BHJ+15] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks. Confined
guessing: New signatures from standard assumptions. Journal of Cryptology, 28(1):176–208,
January 2015.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based encryption from affine
message authentication. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 408–425. Springer, Heidelberg, August 2014.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 499–517. Springer, Heidelberg, May 2010.

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 407–424. Springer, Heidelberg, April 2009.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society
Press, October 2011.

[CD09] Ronald Cramer and Ivan Damgård. On the amortized complexity of zero-knowledge proto-
cols. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 177–191. Springer,
Heidelberg, August 2009.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–
552. Springer, Heidelberg, May 2010.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the standard model.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 335–352. Springer, Heidelberg, August 2014.

23

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg, May 2004.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidel-
berg, August 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM
STOC, pages 469–477. ACM Press, June 2015.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages and optimizing boot-
strapping in GSW-FHE. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
699–715. Springer, Heidelberg, March / April 2015.

[HK12] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. Journal
of Cryptology, 25(3):484–527, July 2012.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime
order setting. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 318–335. Springer, Heidelberg, April 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939,
2015. http://eprint.iacr.org/.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August
1984.

[VV85] Leslie G Valiant and Vijay V Vazirani. Np is as easy as detecting unique solutions. In Proceed-
ings of the seventeenth annual ACM symposium on Theory of computing, pages 458–463. ACM,
1985.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May
2005.

[Wee16] Hoeteck Wee. Déjà q: Encore! un petit ibe. Theory of Cryptography: 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, 2016.

24

http://eprint.iacr.org/

[Xag13] Keita Xagawa. Improved (hierarchical) inner-product encryption from lattices. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 235–252.
Springer, Heidelberg, February / March 2013.

25

A Simple, Compact Digital Signatures from SIS

We can apply the technique in our IBE scheme to optimize the fully secure signature scheme proposed by
Boyen in [Boy10], where we can obtain a fully secure signature scheme with constant size verification key.
We assume the message space isM = {1} × Z`−1

q ; that is, a 1-element is appended to the message. Our
fully secure signature scheme Σsig = (KeyGen,Sign,Verify) is as follows:

KeyGen(1λ) : On input the security parameter λ, the key generation algorithm does:

1. Set lattice parameters n = n(λ),m = m(λ), q = q(λ) and Gaussian parameter s = s(λ)
(according to the same constraints as our IBE Π; cf. Section 5.3).

2. Generate a matrix A ∈ Zn×mq associated with its trapdoor TA using algorithm TrapGen(q, n,m).

3. Sample a uniformly random matrix B ∈ Zn×mq .

4. Output verification key vk and signing key sk as:

vk = (A,B), sk = TA

Sign(sk,µ) : On input a signing key sk and a message µ = (1, µ1, ..., µ`−1) ∈ {1} × Z`−1
q , the signing

algorithm does:

1. Define the input-encoding matrices

X′ :=

In

µ1In
µ2In

...
µ`−1In

 ∈ Z`n×nq , and X := G−1
n`,`′,m

(
X′ ·Gn,2,m

)
∈ [`′]m×m.

2. Set the message matrix for µ to be

Y := B ·X ∈ Zn×mq .

3. Compute short vector r ∈ Z2m
q , using

r ← SampleLeft(A,TA,Y, 0, s)

such that [A|Y] · r = 0 mod q.

4. Output the signature σµ = r.

Verify(vk,µ, σµ) : On input a verification key vk, a message µ, and a signature σµ, the verification algo-
rithm does:

1. First check the message µ is well formed in {1} × Z`−1
q .

2. Then check the signature σµ = r is a small but non-zero vector, i.e. 0 6= |r| ≤
√

2ms.

3. Check whether the following equation holds:

[A|Y] · r = 0 mod q

where Y = B ·X, and matrix X is computed as in the signing algorithm.

26

4. If all the verification steps pass, then accept the signature; otherwise, reject.

We say a signature scheme is unforgeable if for any PPT adversary, he cannot forge a signature of a
new message, which passes the verification algorithm, even if he can obtain any polynomial number of
message/signature pairs of his choice. The correctness and security proofs (from Short Integer Solution) are
the same as in [Boy10], with the modified hash function computation and simulation of matrix B as shown
in the IBE Π’s security proof (cf. Section 6). In what follows, we sketch the proof of unforgeability of the
signature scheme Σsig as follows:

Theorem A.1. Assuming the hardness of the standard SIS assumption, our signature scheme Σsig is un-
forgeable.

Proof (sketch): Suppose there exists an adversary A that can break the unforgeability of the signature
scheme Σsig, then we can construct a reduction B that can simulate the the attack environment and use the
forgery of adversary A to solve the SIS problem.

Invocation. Reduction B receives a random SISq,n,m,β instance A ∈ Zn×mq , and is asked to output a
solution to Ar = 0 mod q, such that 0 6= ||r|| ≤ β.

Setup. Reduction B sets matrix B in vk as follows: Select ` random vectors hi ∈ Ztq for i ∈ {0, 1, . . . , `−
1} of hash function H∗h ∈ H`−1,t,n,q, and set matrix

H = [V0|V1|V2| · · · |V`−1] ∈ Zn×n`q

where each matrix Vi = Mt,q(hi) ⊗ In/t ∈ Zn×nq encodes hi ∈ Ztq using the Matrix Embedding
function Mt,q(·) as described in Section 4. Then, B sets

B = AR∗ + HGn`,`′,m

where R∗ ∈ {−1, 1}m×m is randomly chosen. Then B sends vk = (A,B) to adversary A.

Queries. Reduction B answers signature queries from A on message µ(i) = (µ
(i)
1 , ..., µ

(i)
`−1) as follows:

1. Abort the simulation if

H∗h(µ(i)) = Mt,q(h0)⊗ In/t +
∑

i∈[`−1]

µ
(i)
i Mt,q(hi)⊗ In/t = 0

2. Otherwise, compute
B ·X = AR∗X +H∗h(µ(i)) ·Gn,2,m

We omit the computation detail here, since the process is similar to computation in Hybrid H3

in the IBE security proof. Then sample a short vector ri, using

ri ← SampleRight
(
A,B ·X, R∗X, TGn,2,m , 0, s

)
,

3. Output the signature ri for message µ(i) to adversary A.

Forgery. Reduction B receives a forged signature r∗ = (r∗0, r
∗
1) on a new message µ∗, and does:

1. Abort the reduction if H∗h(µ∗) 6= 0.

2. Otherwise, we have

[A|AR∗] ·
(
r∗0
r∗1

)
= 0

3. Output r = r∗0 + R∗r∗1 as the SIS solution of matrix A.

27

Analysis of Proof. The reduction is valid if B can complete the simulation without aborting with a sub-
stantial probability that is independent of the view of adversary A and the queries it makes. It follows
from the bound of hash function in Theorem 4.8, that if an adversary successfully forges a signature with
probability ε, by setting δ := ε in Theorem 4.8, then reduction B solves SIS instance with probability

ε′ ≥ π (1− ε)
qt

≥ π (1− ε)ε
2|Q|

≥ (1− ε)ε
3|Q|

where π is the probability that r = r∗0+R∗r∗1 is a non-zero solution to SIS instance A given B does not abort
the simulation, and π ≥ 2/3. Recall that we set t = dlogq(2|Q|/ε)e, so that we have qt ≥ 2|Q|/ε ≥ qt−1,
which implies 1

qt ≥
ε

2q|Q| .
This concludes the proof sketch.

28

	Introduction
	Our Contributions
	Our Techniques

	Preliminaries
	Identity Based Encryption
	Lattice Background
	Randomness Extraction
	Learning With Errors
	Two-Sided Trapdoors and Sampling Algorithms

	Gadget Matrices for Lattices, and Gadget-Based Matrix Operations
	The Gadget Matrix G
	(Pseudo-Commutative) Matrix Operations with G via the Flattening Function G-1
	Non-Binary Gadgets Gn, b, m, and Batch Change-of-Base Gn', b', m'-1()
	Further Gadget-Based Matrix Multiplication Operations

	Hashing, Encoding, and Randomly Isolating Unique Solutions
	Isolations of Random Hash Functions
	An Intermediate Hash Function Family
	The Matrix Embedding M of Ft into Ftt
	Our Main Hash Function Family

	Compact Fully-Secure Identity-Based Encryption from LWE
	Our Construction
	Correctness
	Parameter Setting

	Security Proof
	Simple, Compact Digital Signatures from SIS

