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Abstract. Committing integers and proving relations between them is an essential ingredient in many
cryptographic protocols. Among them, range proofs have shown to be fundamental. They consist of
proving that a committed integer lies in a public interval. By the way, it can also be seen as a particular
case of the more general Diophantine relations: for the committed vector of integers x, there exists a
vector of integers w such that P (x,w) = 0, where P is a polynomial.
In this paper, we revisit the security strength of the statistically hiding commitment scheme over the
integers due to Damgård-Fujisaki, and the zero-knowledge proofs of knowledge of openings. Our first
main contribution shows how to remove the Strong RSA assumption and replace it by the standard RSA
assumption in the security proofs. This improvement naturally extends to generalized commitments and
more complex proofs without modifying the original protocols.
Thereafter, we show that this commitment scheme over the integers is compatible with a commitment
scheme modulo a prime p, which allows for more efficient proofs of relations between the committed
values, still under the RSA assumption. Our second contribution is thus a more efficient and more secure
interactive technique to prove Diophantine relations. We illustrate it with the most efficient range proofs.
In addition, the security is proven under the sole RSA assumption.

Keywords. Public-key cryptography, Commitment schemes, Interactive arguments of knowledge, Zero-
Knowledge proofs, RSA assumption.

1 Introduction

Commitment Schemes. The notion of commitment is one of the most fundamental and widely
used in cryptography. A commitment scheme allows a committer C holding a secret value s to send a
commitment c of s to a verifier V , and later on to open this commitment to reveal the value s. Such
a commitment should hide the committed value s to the verifier, but still guaranteeing one opening
only (which is the binding property). A famous example of commitment scheme, that perfectly hides
its input, is the Pedersen commitment scheme [Ped92], whose binding property relies on the discrete
logarithm assumption: let G be a group of prime order p with two generators (g, h). To commit to
m ∈ Zp, C picks at random r ∈ Zp and sends c = gmhr.

Okamoto and Fujisaki [FO97] introduced the first integer commitment scheme, which was later
generalized in [DF02]. Unlike classical commitment schemes, an integer commitment scheme allows
C to commit to any m ∈ Z. Intuitively, this is done by committing to m in a group G of unknown
order.

Interactive Proofs of Knowledge. An interactive proof of knowledge is a two-party protocol
in which a prover P wants to convince a verifier V of his knowledge of some values satisfying a
public statement. It should be knowledge-extractable, which means that an extractor can get values
satisfying the statement when interacting with a successful prover, and zero-knowledge, which means
that no information about these values leaks to the verifier (except that they satisfy the statement).
Such proofs of knowledge are useful in many cryptographic constructions. Commitment schemes
are a core component of zero-knowledge proofs of knowledge. In particular, integer commitment
schemes have been extensively used in various interactive protocols involving zero-knowledge proofs
of knowledge.
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Assumptions for Proofs on Integer Commitments. A commonly mentioned downside of proofs
on integer commitments schemes is the assumption on which they rely. Indeed, the binding property
of the Damgård-Fujisaki commitment scheme relies on the intractability of factoring composite
integers. However, the knowledge-extractability of the proofs on these commitments is guaranteed
under the Strong-RSA assumption [BP97, FO97]. The latter says that, given a composite integer
n and a random element u ∈ Z∗n, it is hard to find a pair (v, e) such that u = ve mod n. Unlike
the RSA assumption [RSA78], where the exponent e > 1 is imposed, there are exponentially many
solutions to a given instance of the Strong-RSA problem, the problem is thus easier to solve, hence
the “stronger” assumption.

Range Proof. The most widespread reason to work over the integers is to prove that a committed
value x lies in a public integer range Ja ; bK. Indeed, working over the integers allows to show that
x− a and b− x are positive by decomposing them as sum of four squares, following the well-known
Lagrange’s result. Lipmaa [Lip03] was the first to propose such a method by relying on a com-
mitment over the integers. As a consequence, the knowledge extractability requires the Strong-RSA
assumption.

1.1 Our Contribution

Our contributions in this paper are twofold. First, we revisit the Damgård-Fujisaki integer com-
mitment scheme and show that the security of arguments of knowledge of openings can be based
on the standard RSA assumption, instead of the Strong-RSA assumption. Our result extends to
any protocols involving arguments or relations between committed integers. This implies that the
security of numerous protocols, such as two-party computation [JS07, CPP15], e-cash [CHL05], e-
voting [Gro05], secure generation of RSA keys [JG02, DM10, HMRT12], zero-knowledge primality
tests [CM99a], password-protected secret sharing [JKK14], and range proofs [Lip03], among many
others, can be proven under the RSA assumption instead of the Strong-RSA assumption. In addition,
we believe that the ideas on which our proof relies could be used in several other constructions whose
security was proven under the Strong-RSA assumption, and might allow to replace the Strong-RSA
assumption by the standard RSA assumption in such constructions.

Second, we revisit a commitment scheme which was formally introduced in [Gen04]: c = gmRπ mod
n, for a message m ∈ Zπ and R ∈ Z∗n. It is perfectly hiding, and the binding property relies on the
RSA assumption with exponent π in Z∗n. We prove, as for the Damgård-Fujisaki commitment scheme,
that the security of an argument of knowledge of an opening can also be based on the classical RSA
assumption. In addition, we identify an interesting property that is satisfied by this commitment,
which corresponds informally to the possibility to see this commitment scheme either as an integer
commitment scheme (i.e., c = gmhr mod n), or, after some secret has been revealed, as a commit-
ment scheme over Zπ for some prime π (i.e., c = gmRπ mod n). Note that in both situations, the
security of the commitment scheme and the argument of knowledge relies on the RSA assumption
only. We show how one can take advantage of this feature to improve the efficiency of zero-knowledge
arguments over the integers. Our method allows to save communication and greatly reduces the work
of the verifier, compared with a classical zero-knowledge argument for the same statement. We illus-
trate our method on range proofs [Lip03], a zero-knowledge argument of knowledge of an input to a
commitment such that the input belongs to some public interval. Taken together, our contributions
allow us to enhance both the security (by removing the Strong-RSA assumption) and the efficiency
of numerous cryptographic protocols relying on integer commitment schemes.
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1.2 Related Works

The Damgård-Fujisaki commitment scheme [FO97,DF02] is the only known compact statistically-
hiding integer commitment scheme (bit-commitment schemes obviously allow to commit to arbi-
trary integers bit-by-bit). Arguments of knowledge over the integers were studied in [Lip03,KTY04,
CCT07].

Range proofs were introduced in [BCDv88]. They are a core component in numerous cryp-
tographic protocols, including e-cash [CHL05], e-voting [Gro05], private auctions [LAN01], group
signatures [CM99b], and anonymous credentials [CL01], among many others. There are two classical
methods for performing a range proof:

– Writing the number in binary notation [BCDv88,Gro11] or u-ary notation [CCs08], committing
to its decomposition and performing a specific proof for each of these commitments For example,
membership to J0 ; 2`K is proven in communication O(`/(log ` − log log `)) in the protocol of
[CCs08], and in communication O(`1/3) in the protocol of [Gro11].

– Using an integer commitment scheme [Bou00,Lip03,Gro05].

Note that protocols such as [CFT98] do also allow to prove that a committed integer x lies in a given
interval J0 ; aK, but not exactly : the proof shows only membership to J0 ; (1 + δ)aK for some accuracy
parameter δ.

Eventually, several papers have proposed signatures based on the standard RSA assumption [HW09,
HJK11,BHJ+13] as alternatives to classical signature schemes based on the Strong-RSA assumption.
Our work is in the same vein than these papers, replacing the Strong-RSA assumption by the RSA
assumption in arguments over the integers. However, note that we do not actually propose a new
argument system to get rid of the Strong-RSA assumption, but rather show that the security of the
classical argument system is implied by the RSA assumption. As a consequence, the schemes using
arguments over the integers do not need to be modified to benefit from our security analysis.

1.3 Organization.

Section 2 introduces the necessary background for what follows, and namely some useful facts on
the RSA groups. Section 3 recalls the Damgård-Fujisaki commitment scheme, its properties, and
the argument of knowledge of [DF02]. A new security proof of the latter, under the standard RSA
assumption, is given in details Section 4. Section 5 illustrates some extensions of our result. First, we
show how one can commit to vectors at once with generalized commitments. And then, we show how
one can make range proofs under the standard RSA assumption. Section 6 revisits the commitment
scheme of [Gen04] and shows how, by switching from the previous commitment to this one, we
can get a new method for performing zero-knowledge arguments over the integers, that is much
more efficient. Eventually, Section 7 illustrates our method on range proofs, with concrete efficiency
comparisons.

For the sake of completeness, in the Appendix A we exhibit a flaw in the optimized version of
Lipmaa’s range proof [Lip03, Annex B]. We then propose a fix and prove it.

2 Backgrounds

Throughout this paper, κ denotes the security parameter. An algorithm is efficient when it runs in
polynomial time in the (implicit) security parameter κ. A positive function f is negligible if for any
polynomial p there exists a bound B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An
event depending on κ occurs with overwhelming probability when its probability is at least 1− ε(κ)
for a negligible function ε.
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2.1 Notations

Given a finite set S, the notation x←R S means a uniformly random affectation of an element of S
to the variable x, then for any s ∈ S we have PrS [x = s] = 1/|S| where |S| denotes the cardinality
of S. When an element s is represented by an integer, |s| is the bit-length of the integer, and ||s||
denotes its absolute value (or norm). Bold variables denote vectors. For a vector x = (x1, · · · , x`),
gx denotes (gx1 , · · · , gx`).

The integer range Ja ; bK stands for {x ∈ Z | a ≤ x ≤ b}, and Ja ; bKc stands for {x ∈ Z |
a ≤ x ≤ b ∧ gcd(x, c) = 1}. For any integers a ≤ b, the statistical distance between two uniform
distributions, over Ua = J1 ; aK and Ub = J1 ; bK respectively, is given by

∑b
i=1 |PrUa [x = i]−PrUb [x =

i]| =
∑a

i=1(1/a− 1/b) +
∑b

i=a+1 1/b = 2(b− a)/b.

2.2 Commitment Scheme

We first recall the basic definition of a commitment scheme on the message space M . This is an
essential primitive in cryptography, that is used to lock a value in a box, so that the sender cannot
change at the opening time (the binding property) but still the receiver has no information about
the value before the opening (the hiding property). A non-interactive commitment scheme is defined
by three algorithms (Setup,Commit,Verify):

– Setup(1κ), generates the public parameters pp, which also specifies the message space M , the
commitment space C , the opening space D , and the random source R;

– Commit(pp,m; r), given the message m ∈ M and some random coins r ∈ R, outputs a
commitment-opening pair (c, d). When there is no ambiguity, we will abuse the notation (c, d)←R

Commit(m), for pp and r ←R R;
– Verify(pp, c, d,m), outputs a bit whose value depends on the validity of the opening (m, d) with

respect to the commitment c.

A commitment scheme must be

Correct. For any public parameters pp←R Setup(1κ), any message m ∈M , and any random coin
r ∈ R, if (c, d)← Commit(pp,m; r), then we necessarily have Verify(pp, c, d,m) = 1.

Hiding. No probabilistic polynomial-time adversary A , that is first given pp ←R Setup(1κ), can
distinguish commitments on two messages (m0,m1) of its choice. The commitment scheme is
said statistically hiding if the indistinguishability holds even for unbounded adversaries.

Binding. No probabilistic polynomial-time adversary A can open a commitment c on two different
messages m0 6= m1. The commitment scheme is said statistically binding if this is impossible
even for unbounded adversaries.

A commitment scheme can also be homomorphic, if for a law ⊕ on the message space M , from
(c0, d0)← Commit(pp,m0; r0) and (c1, d1)← Commit(pp,m1; r1), one can generate c from c0 and c1

(and pp) as well as d from d0 and d1 (and pp) so that Verify(pp, c, d,m0 ⊕m1) = 1.

2.3 Interactive Proof Systems

We now recall the second tool we will use in this paper, the zero-knowledge proofs of knowledge,
and their variants.
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Zero-Knowledge Proofs and Arguments. Let R be an NP-relation over a set X defining an
NP-language L = {x ∈ X | ∃w,R(x,w) = 1}, where a w such that R(x,w) = 1 is called a witness
for the statement x ∈ L .

A zero-knowledge proof of knowledge (ZKPoK) for a relation R and a word x ∈ X is an interactive
protocol 〈P(w),V 〉(x ∈ L ) between a prover P holding a witness w for the statement x ∈ L , and a
verifier V , both modeled as interactive probabilistic polynomial-time Turing machines. The purpose
of a ZKPoK is for P to convince V of its knowledge of some witness w of the statement x ∈ L ,
without revealing any information about this witness. More formally, let ViewV [〈P(w),V 〉(x ∈ L )]
be the view of V during the execution of the interactive protocol (i.e., all the messages it received
when interacting with P). A ZKPoK must be:

Correct. For every x ∈ L , if P knows a witness w, and both P and V behave honestly,
〈P(w),V 〉(x ∈ L ) is accepted with overwhelming probability by V .

Knowledge Extractable. For any prover P’ which succeeds in convincing V of x ∈ L with non-
negligible probability, there exists a simulator SimKE, running in expected polynomial time,
which extracts a witness w for x ∈ L from P’.

Zero-Knowledge: For any verifier V ’, there exists a simulator SimZK such that for every x ∈ L ,
SimZK(x) and ViewV ′ [〈P(w),V ′〉(x ∈ L )], where w is a witness for x ∈ L , are indistinguish-
able.

If the knowledge-extractability holds only for a computationally-bounded P ′, the protocol is a
zero-knowledge argument of knowledge (ZKAoK). If the verifier is restricted to being honest in the
zero-knowledge property, the proof is an honest-verifier zero-knowledge proof.

Zero-Knowledge Arguments from Diophantine Relations. A Diophantine set S ⊆ Zk is a
set of vectors over Zk defined by a representing polynomial PS(X,W ) with X = (X1, · · · , Xk) and
W = (Y1, · · · , Y`), i.e. a set of the form S = {x ∈ Zk | ∃w ∈ Z`, PS(x,w) = 0} for some polynomial
PS . It was shown in [DPR61] that any recursively enumerable set is Diophantine. An interesting
class for cryptographic applications is the class D of Diophantine sets S such that each x ∈ S has
at least one witness w satisfying ||w||1 ≤ (||x||1)O(1). It is widely conjectured that D = NP, as D
contains several NP-complete problems, and it was shown in [Pol03] that if co-NLOGTIME ⊆ D,
then D = NP. The class D was introduced in [AM76] and its cryptographic relevance was pointed
out in [Lip03]. For example, the set Z+ of positive integers is in D, as by a well-known result of
Lagrange, it can be defined as Z+ = {x ∈ Z | ∃(w1, w2, w3, w4) ∈ Z4, x− (w2

1 +w2
2 +w2

3 +w2
4) = 0}.

In addition, each wi is of bounded size ||wi|| ≤ ||x||.
Lipmaa [Lip03] has shown that zero-knowledge arguments of membership to a set S ∈ D, with

representing polynomial P over k-vector inputs and `-vector witnesses, can be constructed using an
integer commitment scheme, such as [DF02]. The size of the argument (the communication between
P and V ) depends on k, `, and deg(P ), the degree of P . As noted in [Lip03], intervals, unions of
intervals, exponential relations (i.e., set of tuples (x, y, z) such that z = xy) and gcd relation (i.e.,
set of tuples (x, y, z) such that z = gcd(x, y)) are all in D, with parameters (k, ` and deg(P )) small
enough for cryptographic applications.

2.4 RSA Group Structure

In this paper we focus on Z∗n for a strong RSA modulus n = pq where p, q are distinct safe primes.
That means that p = 2p′ + 1 and q = 2q′ + 1 for two other primes so that p, p′, q, q′ are all distinct,
and ϕ(n) = 4p′q′. We write a = b mod n to specify that a = b in Zn and we write a← [b mod n] to
affect the smallest positive integer to a so that a = b mod n.
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By GenMod(1κ), we denote a probabilistic efficient algorithm that, given the security parameter
κ, generates a strong RSA modulus n and secret parameters (p, q) of at least κ bits each with the
specification that n = pq. In the following, we write (n, (p, q))←R GenMod(1κ). We will sometimes
abuse the notation n ←R GenMod(1κ) to say that the modulus n has been generated according to
this distribution.

Computational Assumptions. In such RSA groups, there are some famous computational as-
sumptions, such that the intractability of the factorization, but also the so-called RSA and Strong-RSA
assumptions. In our construction, we will have some restriction on the exponent e, for which the
RSA assumption holds.

Integer Factorization Assumption. It states that finding a non-trivial factor of n←R GenMod(1κ)
is hard for any probabilistic polynomial-time algorithm.

RSA Assumption [RSA78]. It states that, for n ←R GenMod(1κ) and any exponent e, prime to
ϕ(n), this is hard to find the e-th root modulo n, for a random y ←R Z∗n, for any probabilistic
polynomial-time algorithm.

Strong-RSA Assumption [BP97,FO97]. It lets the choice of e to the algorithm: It states that,
for n←R GenMod(1κ), this is hard to find the e-th root modulo n, for a random y ←R Z∗n, for
any probabilistic polynomial-time algorithm, for an exponent e > 1 of its choice.

It is well-known that breaking the integer factorization assumptions allows to break the two others.
From the definition, it is clear that the Strong-RSA assumption gives more degree of freedom to the
adversary, so it is way stronger. This is the reason why one always tries to avoid it.

In this paper, we will rely on the RSA assumption, in the sense that the exponent is not chosen
by the adversary, but it will be assumed to be randomly chosen in some set, hence our so-called
Random-RSA assumption, for a set S, in which e is randomly drawn (in addition to be prime to
ϕ(n)), in the same vein as in [HW09]. But, as they say, this is just a way to specify the choice of
the exponent in the standard RSA assumption.

Properties of Strong RSA Groups. One can note that in such groups, p and q are Blum primes:
p = q = 3 mod 4. If we denote QRn the subgroup of the squares, QRn = {a ∈ Z∗n | ∃b ∈ Z∗n, a =
b2 mod n}, this is a cyclic subgroup of Z∗n of order ϕ(n)/4 = p′q′.

Proposition 1. The following facts hold:

1. −1 6∈ QRn;
2. any square a ∈ QRn has four square roots, with exactly one QRn;
3. for a random element h ∈ QRn, finding a square root of h is equivalent to factor the modulus n;
4. for random elements g, h ∈ QRn, finding non-zero integers a, b such that ga = hb mod n is

equivalent to factoring the modulus n;
5. for an RSA instance (n, e, y), finding x ∈ Z∗n and e′ prime to e such that xe = ye

′
mod n is

equivalent to finding an e-th root of y modulus n.

Proof. Let us briefly explain why these facts hold, using the Jacobi symbol function Jn(x) = Jp(x)×
Jq(x) in Z∗n, as the extension of the Legendre symbol on Z∗p for prime p, Jp(x) = (x)(p−1)/2, which
determines whether x is a square or not in Z∗p. Since p and q are Blum primes, Jp(−1) = Jq(−1) = −1,
and so Jn(−1) = 1, but −1 is not in QRn, hence the fact 1. The four square roots of 1, in Z∗n are
1 and −1, both with Jacobi symbol +1, but respectively (+1,+1) and (−1,−1) for the Legendre
symbols in Z∗p and Z∗q , and α, and −α, both with Jacobi symbol -1, but respectively (+1,−1) and
(−1,+1) for the Legendre symbols in Z∗p and Z∗q . As a consequence, given a square h ∈ QRn, and a



7

square root u, the four square roots are u,−u, and αu,−αu, one of which being in QRn, since the
four kinds of Legendre symbols. This leads to the fact 2.

For fact 3, if one chooses a random u ∈ Z∗n and sets h = u2 mod n, Jn(u) is completely hidden.
Another square root v has probability one-half to have Jn(v) = −Jn(u). This means that u2 =
v2 mod n, but u 6= ±v mod n. Then, gcd(u− v, n) gives a non-trivial factor of n.

For fact 4, if one chooses a random u ∈ Z∗n and a large random scalar α and sets h = u2 mod n
and g = hα mod n, h is likely a generator of QRn, and then ga = hb mod n means that m = b− aα
is a multiple of p′q′, the order of the subgroup of the squares. Let us note m = 2v · t, for an odd
t, then p′q′ divides t: let us choose a random element u ∈ Z∗n, with probability close to one-half,
Jn(u) = −1, and so Jn(ut) = −1 while ut is a square root of 1. As in the proof of the previous fact 3,
we can obtain a non-trivial factor of n.

Eventually, for fact 5, using Bézout relation ue + ve′ = 1, then xve = yve
′

= y1−ue mod n. So
y = (xvyu)e mod n.

3 Commitment of Integers Revisited

In [FO97], Okamoto and Fujisaki proposed a statistically-hiding commitment scheme allowing com-
mitment to arbitrary-size integers. Their commitment was later generalized in [DF02]. It relies on the
fact that when the factorization is unknown, it is infeasible to know the order of the sub-group QRn
of the squares in Z∗n, where n is a strong RSA modulus. Hence, the only way for a computationally-
bounded committer to open a commitment is to do it over the integers.

In addition, [FO97] gave an argument of knowledge of an opening of a commitment and proved
that the knowledge extractability of the argument is implied by the Strong-RSA assumption. A
flaw in the original proof was later identified and corrected in [DF02]. We will revisit the argument
of knowledge of an opening due to Damgård-Fujisaki [DF02] and provide an extended proof for
its knowledge extractability, in order to remove the requirement of the Strong-RSA assumption.
Our proof requires the standard RSA assumption only, with an exponent randomly chosen in a
polynomially-bounded set.

3.1 Commitments over the Integers
Description. Let us recall the commitment of one integer m:

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks two random generators g, h of QRn. It
returns pp = (n, g, h);

– Commit(pp,m; r), for pp = (n, g, h), a message m ∈ Z, and some random coins r ←R J0 ;nK,
computes c = gmhr mod n, and returns (c, d) with d = r;

– Verify(pp, c, d,m) parses pp as pp = (n, g, h) and outputs 1 if c = ±gmhd mod n and 0 otherwise.

One should note that an honest user will always open such that c = gmhd mod n. But the binding
property cannot exclude the change of sign. In this description, we provide a trusted setup algorithm.
But as we see below, the guarantees for the prover (the hiding property of the commitment) just
rely on the existence of α such that g = hα mod n. For the verifier to be convinced, one can just let
him generate the parameters (n, g, h), and prove the existence of such an α to the prover.

Security Analysis. The above commitment scheme is obviously correct. The hiding property relies
on the existence of α such that g = hα mod n (they are both generators of the same subgroup QRn),
and so

c = Commit(pp,m; r) = gmhr = hr+αm = h(r+α(m−m′))+αm′

= gm
′
hr+α(m−m′) = Commit(pp,m′; r′),
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for any m′ ∈ Z, with r′ ← [r + α(m −m′) mod p′q′], that is smaller than n. The binding property
relies on the Integer Factorization assumption: indeed, from two different openings m0, d0,m1, d1

for a commitment c, with d1 > d0, the validity checks show that gm0hd0 = ±gm1hd1 mod n, and so
gm0−m1 = ±hd1−d0 mod n. Since g and h are squares, and −1 is not a square, necessarily gm0−m1 =
hd1−d0 mod n. The Fact 4 from Proposition 1 leads to a non-trivial factor of n.

3.2 Zero-Knowledge Argument of Opening

Let us now study the argument of knowledge of a valid opening for such a commitment. The common
inputs are the public parameters pp and the commitment c = gxhr mod n, together with the bit-
length kx of the message x, that is then assumed to be in J−2kx ; 2kxK, while r ∈ J0 ;nK and x are
the private inputs, i.e. the witness of the prover. We stress that kx is chosen by the prover, since
this reveals some information about the integer x, while r is always in the same set, whatever the
committed element x is.

Description of the Protocol. The protocol works as follows:

Initialize: P and V decide to run the protocol on input (pp, κ, c, kx);
Commit: P computes d = gyhs mod n, for randomly chosen y ←R J0 ; 2kx+2κK and s←R J0 ; 2|n|+2κK,

and sends d to the V ;
Challenge: V outputs e←R J0 ; 2κK;
Response: P computes and outputs the integers z = ex+ y and t = er + s;
Verify: V accepts the proof and outputs 1 if ced = gzht mod n. Otherwise, V rejects the proof and

outputs 0.

In the rest of this section, we prove this protocol is indeed a zero-knowledge argument of knowledge
of an opening. Which means it is correct, zero-knowledge, and knowledge-extractable.

Correctness. First, the correctness is quite obvious: if c = gxhr mod n, with z = ex + y and
t = er + s, we have gzht = (gxhr)e · gyhs = ced mod n.

Zero-Knowledge. For the zero-knowledge property, in the honest-verifier setting, the simulator
Sim (that is SimZK in this case) can simply do as follows:

1. Sim chooses a random challenge e←R J0 ; 2κK;
2. Sim chooses random responses z ←R J0 ; 2kx+2κK and t←R J0 ; 2|n|+2κK;
3. Sim sets d = gzhtc−e mod n.

The simulated transcript is the tuple (d, e, (z, t)).
Actually, the real distribution of the transcript is for tuples that follow:

D0 :

{
y ←R J0 ; 2kx+2κK, s←R J0 ; 2|n|+2κK,
e←R J0 ; 2κK, z = xe+ y, t = re+ y, d = gyhs mod n

}
.

This is exactly the same as

D1 :

{
z ←R Jxe ; 2kx+2κ + xeK, t←R Jre ; 2|n|+2κ + reK,
e←R J0 ; 2κK, d = gz−xeht−re mod n

}
which can be rewritten as

D2 :

{
z ←R Jxe ; 2kx+2κ + xeK, t←R Jre ; 2|n|+2κ + reK,
e←R J0 ; 2κK, d = gzhtc−r mod n

}
,
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while the distribution generated by the simulator Sim is

D3 :

{
z ←R J0 ; 2kx+2κK, t←R J0 ; 2|n|+2κK,
e←R J0 ; 2κK, d = gzhtc−r mod n

}
.

As just said, this is clear that D0 = D1 = D2, while the distance between D2 and D3 is the sum
of the distances between the distributions of z and t, respectively in Z2 = Jxe ; 2kx+2κ + xeK and
Z3 = J0 ; 2kx+2κK, and T2 = Jre ; 2|n|+2κ + reK and T3 = J0 ; 2|n|+2κK:

∆z =

2kx+2κ+xe∑
Z=0

|Pr[z ←R Z2 : z = Z]− Pr[z ←R Z3 : z = Z]|

=
xe−1∑
Z=0

2−kx−2κ +
2kx+2κ+xe∑
Z=2kx+2κ+1

2−kx−2κ = 2 · xe · 2−kx−2κ ≤ 2 · 2kx+κ · 2−kx−2κ

that is bounded by 2 · 2−κ. Similarly, ∆t ≤ 2 · 2−κ. Hence the statistical zero-knowledge property,
since the real distribution D0 and the simulated distribution D3 have a negligible distance bounded
by 2−κ+2.

Knowledge-Extractability. The last property is the most intricate, and this is the one that
required the Strong-RSA assumption in the original proof of Damgård and Fujisaki [DF02]. We first
give an intuition of how we can get rid of it, and then present the proof in details in the next section,
since this is the main contribution of the paper.

Damgård and Fujisaki consider a classical simulator that rewinds the prover to get two related
transcripts (d, e0, (z0, t0)) and (d, e1, (z1, t1)). In the “good” event the simulator can immediately
extract a valid opening of the commitment. Then in the “bad” event two cases can appear: case 1
corresponds to an event which can be reduced to a Strong-RSA solver and we will discuss that
case below. Case 2 is shown to happen with probability at most 1/2 using an information theoretic
argument, but independently from the view of the adversary. Hence, when the “good” event does
not happen, there is a probability at least 1/2 for the case 2 not to happen either. Damgård and
Fujisaki are thus left with the case 1. In this case, they explain how one can extract a pair (h̃, w)
such that h̃w = h mod n, where h← y comes from the Strong-RSA-challenge1.

Our starting point is the observation that this case 1 can be refined if one considers further
rewindings to rely on the standard RSA assumption instead of the Strong-RSA assumption. Roughly
speaking, we divide this case 1 into two subcases, depending on whether the exponent w such
that h = h̃w mod n remains unchanged when rewinding further, or changes. If the adversary does
not consistently use the same w, then we show how to extract non-trivial values (a, b) such that
ga = hb mod n, which leads to a non-trivial factor of n (see Fact 4 from Proposition 1). If, however,
the adversary keeps using the same w, which corresponds to (a, b) = (0, 0), then we observe that this
w must divide all the challenge-differences for which the adversary answered with a valid proof2.
But as we know that the adversary succeeds in the proof with some non-negligible probability ε,
we have an upper-bound B on the size of w: if w is too big, the probability that it divides a bunch
of random independent values would become lower than ε. This upper-bound implies that if the
simulator is given some RSA challenge e picked as a uniformly random integer in J2 ;BKϕ(n), then

1 Actually, they extract (µ, h̃, w) such that h = µh̃w mod n for some µ in a very small subgroup, but this is shown
to be sufficient to break the Strong-RSA assumption.

2 More precisely, w must divide all the e′i where e′i = e0− ei, e0 being the very first challenge for which the adversary
produced a valid transcript, and ei being any other challenge for which the adversary returned a valid proof.
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either w is even or w = e with non-negligible probability (since we will show that B ≤ 4/ε). When
w is even, we can compute a square root of h and recover the factorization of n, from which we can
solve any RSA challenge. When w = e, we have solved our RSA challenge (n, e, y) if h← y2 mod n.

As a consequence, unless one can break the RSA assumption, our extractor is likely in the “good”
event, and gets a valid opening. More precisely, we prove the following theorem.

Theorem 2. Given a prover P’ able to convince a verifier V of its knowledge of an opening of c
for random system parameters pp = (n, g, h) with probability greater than ε within time t, one either
breaks the RSA assumption with expected time upper-bounded by 64t/ε3, or outputs a valid opening
with expected time upper-bounded by 16t/ε2.

4 Proof of Theorem 2

Since this proof is the main technical contribution of the paper, with many practical applications,
we provide it in details. We start with some preliminaries, and then discuss various cases.

4.1 Preliminaries

The proof will make use of the splitting lemma [PS96,PS00], that we recall below:

Lemma 3. Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For any ε′ < ε, if one defines B ={
(x, y) ∈ X × Y | Pry′∈Y [(x, y′) ∈ A] ≥ ε− ε′

}
, then it holds that:

(i) Pr[B] ≥ ε′ (ii) ∀(x, y) ∈ B, Pr
y′∈Y

[(x, y′) ∈ A] ≥ ε− ε′ (iii) Pr[B | A] ≥ ε′/ε.

4.2 Detailed Proof

Let us suppose the extractor Sim (that is SimKE in this case) is given a 4/ε-RSA challenge (n, e, u).
It sets h ← u2 mod n and g ← hα mod n for a random exponent α ←R Zn2 . It sets pp = (n, g, h).
Note that as u is random, (g, h) are indeed distributed as in the real protocol. We consider an
adversary A that provides a convincing proof of knowledge of an opening of c with probability ε,
with the parameters (pp = (n, g, h), κ, c, kx).

Note that the distribution probability of a protocol execution is D = (R, e), where R is the
adversary’s random tape that determines d, and the random challenge from e the verifier. Since this
is a “good” adversary”, we assume that on a random pair (R, e), its probability to output a valid
transcript (d, e, z, t) is greater than ε. We apply the splitting lemma with ε′ = ε/2 for the distribution
D = {R}×{e}: after one execution, with probability greater than ε, we obtain a successful transcrit
(d, e0, z0, t0). In such a case, with probability greater than 1/2, R is a good random tape, which
means that another execution with the same R but a random challenge ei will lead to another
successful transcript (d, ei, zi, ti) with probability ε′ = ε/2. Note that since R is kept unchanged, d
is the same. Globally, with probability greater than ε2/4, after 2 executions of the protocol, one gets
two related successful transcripts: (d, e0, z0, t0) and (d, e1, z1, t1).

Without loss of generality, we may assume e0 ≥ e1. Writing e′1 ← e0 − e1, z′1 ← z0 − z1, and
t′1 ← t0 − t1, the two valid tuples lead to the relation ce′1 = gz

′
1ht
′
1 mod n.

Case 1: e′1 divides both z′1 and t′1. Sim simply outputs the pair of integers (x1, r1) ←
(z′1/e

′
1, t
′
1/e
′
1). If e′1 is odd, and thus prime to ϕ(n), we have c = gx1hr1 mod n. However, if e′1 = 2vρ

for an odd ρ and v ≥ 1, (c−1gx1hr1)2v = 1 mod n: from the Fact 2 from Proposition 1, (c−1gx1hr1)2 =
1 mod n:
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– either c−1gx1hr1 = ±1 mod n, and so c = ±gx1hr1 mod n (valid opening);
– or we have a non-trivial square root of 1, which leads to the factorization of n (see Proposition 1).

We denote p1 the probability of case 1 happening when one got two successful transcripts. Recall
that the two successful transcripts are obtained with probability greater than ε2/4. Then, either
p1 ≥ ε2/8, and in this case Sim extracts an opening of c with probability ε2/8 (under the Integer
Factorization assumption), or ε2/4 − p1 ≥ ε2/8. Let us now assume case 1 does not happen often
enough.

Case 2: e′1 divides αz′1 + t′1 (but does not divide both z′1 and t′1). Let us argue that this
happens with probability at most 1/2 given that case 1 does not occur, and that this probability is
completely independent of the actions of A . Note that this is exactly the case 2 from [DF02]. The
intuition behind the proof is that the only information that A can get about α is from g = hα mod n.
However, this leaks only α mod p′q′, while α was taken at random in Zn2 : all the information on its
most significant bits is perfectly hidden. We recall below the proof given by Damgård and Fujisaki,
for completeness.

Let Q be a prime factor of e′1 and j be an integer such that Qj divides e′1 but Qj+1 does not
divide e′1, and at least one of z′1 or t′1 is non-zero modulo Qj . As we are not in case 1, e′1 does not
divide both z′1 and t′1, so such a prime Q does necessarily exist. If Qj divides z′1, as it divides e′1,
it must also divide αz′1 + t′1 and therefore t′1, which again cannot happen as we are not in case 1.
Therefore, z′1 6= 0 mod Qj . Then, it holds that α = [α mod p′q′] + λp′q′ for some λ. Let us write
µ = [α mod p′q′]. The tuple (n, g, h) uniquely determines µ, whereas λ is perfectly unknown to the
prover. As Qj divides αz′1 + t′1, it holds that

αz′1 + t′1 = λz′1p
′q′ + µz′1 + t′1 = 0 mod Qj .

Note that p′q′ 6= 0 mod Q. And from the view of the adversary, λ is chosen uniformly at random
among at least n values, and must satisfy the above equation for case 2 to occur. But since this
equation has at most gcd(z′1p

′q′, Qj) solutions, which is a power of Q (and at most Qj−1), and since
n is larger than Qj by a factor (way) bigger than 2κ, the distribution of λ mod Qj is statistically
close to uniform in ZQj , and the probability that λ satisfies the above equation is bounded by
1/Q− 2−κ ≤ 1/2, independently of the actions of A . Hence, under the condition that we are not in
case 1, with probability at least 1/2, the case 2 does not occur either: with probability greater than
ε2/16, the following case 3 happens.

Case 3: e′1 does not divide αz′1+ t
′
1. We will now prove that when case 3 occurs, Sim can solve

an RSA instance, which is the difference with the original proof. Let β1 = gcd(e′1, αz
′
1 + t′1) < e′1.

Let Γ1 ← e′1/β1 and F1 ← (αz′1 + t′1)/β1: F1/Γ1 is the irreducible fraction form of (αz′1 + t′1)/e′1 and
Γ1 > 1.

Let Sim rewind the protocol once more and get a third valid transcript (d, e2, z2, t2) (recall that
this happens with probability ε/2), it can compute Γ2 in the same way it computed Γ1. We consider
the following two situations :

– Subcase 3.a. Γ2 = Γ1, with probability pa ≥ ε/4;
– Subcase 3.b. Γ2 6= Γ1, with probability pb ≥ ε/4.

Subcase 3.a. If pa ≥ ε/4, this means that with probability greater than ε/4, Γ2 = Γ1 is a constant
value Γ . This Γ divides e′2 for any new successful transcript that would lead to subcase 3.a. Since
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e2 ←R J0 ; 2κK, independently of Γ , the probability that Γ divides e′2 = e0 − e2 for a uniformly
random e2 is at most 1/Γ :

ε/4 ≤ pa = Pr
e2

[Succes in subcase 3.2] ≤ Pr
e2

[Γ divides (e0 − e2)] ≤ 1/Γ.

Hence, it must hold that Γ ≤ 4/ε. In addition, since β1 < e′1, we can assume Γ ∈ J2 ; 4/εK. In
order to simplify the notations, after one rewind, we get (e′, z′, t′) so that ce′ = gz

′
ht
′

mod n and
β = gcd(e′, αz′ + t′) with 1 < Γ = e′/β ≤ 4/ε, with global probability greater ε2/32.

We note e′ = βΓ and αz′ + t′ = βk for relatively prime integers Γ, k. Since h = u2 mod n and
ce
′

= hαz
′+t′ mod n, we have ce′ = u2(αz′+t′) mod n, which reduces to cΓ = ce

′/β = ±u2(αz′+t′)/β =
±u2k mod n, where Γ and k are relatively prime, and Γ > 1:

– if Γ = 2a with a ≥ 1, we thus have an odd k such that c2a = u2k mod n: c2a−1 and uk are two
square roots of the same value. Since no information leaks about the actual square roots {u,−u}
known for h, nor for hk mod n, so c2a−1 6= ±uk mod n with probability 1/2, which leads to the
factorization of n (see Proposition 1);

– if Γ = 2av with an odd v > 1, we thus have Cv = u2k mod n, for C = ±c2a and gcd(v, 2k) = 1,
since v|Γ and v is odd. Using the Fact 5 from Proposition 1, one gets the v-th root of u modulo
n, for v ∈ J3 ; 4/εK.

As a consequence, if pa ≥ 4/ε, after just one rewind, and thus with probability greater than ε2/32,
Sim extracts a v-th root of u modulo n, for 2 ≤ v ≤ 4/ε. Since our simulation that uses the RSA
challenge (n, u, e) does not leak any information about e, v = e with probability greater than ε/4,
if the exponent e is randomly chosen in J2 ; 4/εK.

Subcase 3.b. We now assume that pb ≥ ε/4: after two rewindings, we have two relations ce′1 =
gz
′
1ht
′
1 mod n and ce′2 = gz

′
2ht
′
2 mod n, and so ce′1e′2 = ge

′
2z
′
1he

′
2t
′
1 = ge

′
1z
′
2he

′
1t
′
2 mod n. This leads, for

∆z = e′2z
′
1 − e′1z′2 and ∆t = e′2t

′
1 − e′1t′2, to

g∆z = ge
′
2z
′
1−e′1z′2 = he

′
1t
′
2−e′2t′1 = h−∆t mod n.

If ∆z = ∆t = 0, then it holds that z′2/e′2 = z′1/e
′
1 and t′2/e′2 = t′1/e

′
1:

F2

Γ2
=
αz′2 + t′2

e′2
= α · z

′
2

e′2
+
t′2
e′2

= α · z
′
1

e′1
+
t′1
e′1

=
αz′1 + t′1

e′1
=
F1

Γ1
.

Since they are both the irreducible notation of the same fraction, we necessarily have Γ1 = Γ2 and
F1 = F2, whereas we excluded this case. Hence, when subcase 3.b happens, the pair (∆z, ∆t) is
non-trivial and and leads to the factorization of n, from the Fact 4 from Proposition 1.

As a consequence, under the RSA assumption (which implies the Integer Factorization assump-
tion), our extractor falls in case 1 with probability greater than ε2/8 and outputs an opening of
c.

5 Classical Extensions and Applications

We revisit the natural implications of the commitment scheme of Section 3 and its argument of
knowledge. More precisely, we generalize the results of previous sections while we commit to vectors of
integers. Then, we also show the security of Lipmaa’s range proofs [Lip03] under the RSA assumption
to illustrate how the result of Section 4 extends to more general arguments over the integers.
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5.1 Generalized Commitment of Integers

The following commitment scheme allows committing to a vector of integers (m1, . . . ,m`) with a
single element of the form c = gm1

1 · · · gm`` hr mod n:

– Setup(1κ, `) runs (n, (p, q)) ←R GenMod(1κ), and picks ` + 1 random generators (g1, . . . , g`, h)
of QRn. It returns pp = (n, g1, . . . , g`, h);

– Commit(pp,m; r), for pp = (n, g1, . . . , g`, h), a vectorm = (m1, . . . ,m`) ∈ Z`, and some random
coins r ←R J0 ;nK, computes c = gm1

1 · · · gm`` hr mod n, and returns (c, d) with d = r;
– Verify(pp, c, d,m) parses pp as pp = (n, g1, . . . , g`, h) and outputs 1 if c = gm1

1 · · · gm`` hd mod n
and 0 otherwise.

Again, the above commitment scheme is obviously correct. The hiding property relies on the existence
of αi such that gi = hαi mod n for i = 1, . . . , `, and so

c = Commit(pp,m; r) = gm1
1 · · · gm`` hr = hr+

∑
αimi

= h(r+
∑
αi(mi−m′i))+

∑
αim

′
i = g

m′1
1 · · · gm

′
`

` hr+
∑
αi(mi−m′i)

= Commit(pp,m′; r′),

for any m′ = (m′1, . . . ,m
′
`) ∈ Z, with r′ ← [r +

∑
αi(mi −m′i) mod p′q′], that is smaller than n.

The binding property relies on the Integer Factorization assumption: indeed, from two differ-
ent openings (m, d) and (m′, d′) for a commitment c, with d′ > d, the validity checks show that
gm1

1 · · · gm`` hd = g
m′1
1 · · · gm

′
`

` hd
′

mod n, and so, if one has chosen βi such that gi = gβi mod n, for a
random square g, then one knows g

∑
βi(mi−m′i) = hd

′−d mod n. The Fact 4 from Proposition 1 leads
to the conclusion.

To avoid a trusted setup, one can note that the guarantees for the prover (the hiding property)
just rely on the existence of αi such that gi = hαi mod n for i = 1, . . . , `. The well-formedness of the
RSA modulus is for the verifier guarantees. It is important for him that the prover cannot break the
RSA assumption. So the setup can be run by the verifier, with an additional proof of existence of αi
such that gi = hαi mod n for i = 1, . . . , ` to the prover.

5.2 Zero-Knowledge Argument of Opening

An argument of knowledge of an opening of a commitment c = gx11 · · · g
x`
` h

r mod n in the general case
can be easily adapted from the normal case leading to a transcript of the form (d, e, (z1, . . . , z`, t))
with d = gy11 · · · g

y`
` h

s, and ced = gz11 · · · g
z`
` h

t mod n.
As above, the knowledge-extractor rewinds the execution for the same d, but two different chal-

lenges e0 6= e1. Doing the quotient of the two relations, d cancels out: ce′ = g
z′1
1 · · · g

z′`
` h

t′ mod n.
Let us assume that one would have set gi = gaihbi mod n, we would have

ce
′

= g
∑
aiz
′
ih

∑
biz
′
i+t
′

mod n.

Under the RSA assumption, we are in the above case 1: e′ divides both
∑
aiz
′
1 and

∑
biz
′
i + t′

with non-negligible probability. Since the coefficients ai’s and bi’s are random, this means that
e′ divides all the z′i’s and t′. Hence, one can set µi = z′i/e

′, for i = 1, . . . , ` and τ = t′/e′, and
c = gµ11 · · · g

µ`
` h

τ mod n is a valid opening of c.

5.3 Equally Efficient Range Proofs from RSA

We show that Lipmaa’s range proof [Lip03] also benefits from our technique as the Strong-RSA
assumption can also be avoided in the security analysis.
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Range Proof from Integer Commitment Scheme. Let c = gxhr mod n be a commitment of
a value x and Ja ; bK be a public interval. As the commitment is homomorphic, one can efficiently
compute a commitment ca of x− a and a commitment cb of b− x from c. To prove that x ∈ Ja ; bK,
this is enough to show that ca and cb commit to positive values. Let us focus on the proof that
ca = gx−ahr mod n commits to a positive value, since the same method applies for cb. To do so,
the prover computes (x1, x2, x3, x4) such that x− a =

∑4
i=1 x

2
i . By a famous result from Lagrange,

such a decomposition exists if and only if x− a ≥ 0. Moreover, this decomposition can be efficiently
computed by the Rabin-Shallit algorithm [RS86], for which Lipmaa [Lip03] also suggested some
optimizations. The prover commits to (x1, x2, x3, x4) in (c1, c2, c3, c4), where ci = gxihri mod n for
each i = 1 to 4. Now, the prover proves his knowledge of openings x − a, x1, x2, x3, x4 (along with
random coins r, r1, r2, r3, r4) of ca, c1, c2, c3, c4 satisfying

∑4
i=1 x

2
i = x− a over the integers.

The reason allowing to solely relies on the RSA assumption in the range proof comes from the fact
that the first part of the argument reduces to an argument of knowledge of openings x1, x2, x3, x4 of
c1, c2, c3, c4 while the remaining part simply ensures the relation

∑4
i=1 x

2
i = x−a to hold. Indeed, once

the witnesses are extracted, this is implied by the representation ca =
∏4
i=1 c

xi
i h

r−
∑
xiri mod n which

can be seen as generalized commitment scheme with basis (c1, c2, c3, c4, h) from which the opening
cannot change. Therefore, the argument can be seen as five parallel arguments of knowledge, the
fifth one being an argument of knowledge for a generalized commitment, where the opening for the
last argument is the vector of the openings for the other arguments. A formal proof of an optimized
version of this protocol under the intractability of the RSA assumption is presented in Appendix A.

Extension. Since most of the arguments of knowledge of a solution to a system of equations over
the integers [CCT07] can be split into parallel arguments of knowledge of affectations to the variables
and a proof of membership (in the language composed of all the solutions of the system), which is
expressed as representations corresponding to generalized commitments, our analysis extends to all
“discrete-logarithm relation set” (see [KTY04]): the description of the protocol is unchanged but the
security only relies on the standard RSA assumption.

6 Commitment with Knowledge-Delayed Order

Arguments of knowledge of openings for the Dåmgard-Fujisaki commitment scheme can rely on
the RSA assumption rather than the Strong-RSA assumption. In this section, we show that this
scheme enjoys in addition a very particular feature, which corresponds informally to the possibility
to convert a commitment of an integer into a commitment of an element of Zπ, for some prime
π. We propose to perform zero-knowledge arguments over the integers which exploit this feature.
Our method improves upon the classical method for zero-knowledge arguments over the integers on
several aspects. We then illustrate our technique on the famous example of range proofs.

6.1 RSA-based Commitments with Known Order

We revisit a commitment scheme which, as far as we know, was proposed by Gennaro [Gen04] as a
commitment for a message m ∈ Zπ. The order of the commitment is a known prime π > 2κ.

Description of the Generalized Commitment Scheme. Let us describe the commitment of
vectors of integers (m1, . . . ,m`):

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks ` random generators g1, . . . , g` of QRn.
Then, it picks a random prime π ∈ J2κ+1 ; 2κ+2K, and returns pp = (n, g1, . . . , g`, π);
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– Commit(pp,m; r), for pp = (n, g1, . . . , g`, π), a vectorm = (m1, . . . ,m`) ∈ Z`π, and some random
coins r ←R Zn, computes c = gm1

1 · · · gm`` rπ mod n, and returns (c, d) with d = r;
– Verify(pp, c, d,m) parses pp as pp = (n, g1, . . . , g`, π) and outputs 1 if c = gm1

1 · · · gm`` rπ mod n,
and 0 otherwise.

The above commitment scheme is obviously correct. The hiding property relies on the bijectivity
of the π-th power modulo n (as π is prime): for any message m′ = (m′1, . . . ,m

′
`) ∈ Z`π, we have

c = g
m′1
1 · · · gm

′
`

` ×g
m1−m′i
1 · · · gm`−m

′
i

` ×rπ mod n. By noting s the π-th root of gm1−m′i
1 · · · gm`−m

′
i

` , c =
Commit(pp,m′; rs). The binding property uses an extension of the Fact 5 from Proposition 1: if one
has chosen βi such that gi = u2βi , for a challenge RSA u ∈ Z∗n, two distinct openings (m, r) 6= (m′, s)

satisfy gm1
1 · · · gm`` rπ = g

m′1
1 · · · gm

′
`

` sπ mod n, and so (s/r)π = u2a mod n, where a =
∑
βi(mi−m′i) =

a1π+ a0, with 0 ≤ a0 < π. Let us note α and β the integers such that απ+β2a0 = gcd(π, 2a0) = 1,
and output u0 := uα−2a1β · (s/r)β mod n, then

uπ0 = uαπ−2a1βπ · (s/r)βπ = u1−2(a0+a1π)β · u2aπ = u mod n.

This breaks the RSA assumption with exponent π.

Homomorphic-Opening. In addition, this commitment scheme is homomorphic in Zπ: given
c = gm1

1 · · · gm`` rπ mod n and d = g
m′1
1 · · · gm

′
`

` sπ mod n with known openings, we can efficiently open
the commitment c · d mod n to m̄ = (m̄1, . . . , m̄`), with m̄i = mi + m′i mod π for 1 ≤ i ≤ `, and
a random coin rs

∏
g

(mi+m
′
i)÷π

i mod n, where a ÷ b is the quotient of the Euclidean division. We
emphasize this property to be essential not to work with integers in the arguments of knowledge of
an opening: the prover can “reduce” its openings since π is known.

Argument of Opening. Given pp = (n, g1, . . . , g`, π) and c = gx11 · · · g
x`
` r

π mod n, with witness
(x1, . . . , x`, r), we can describe a standard argument of knowledge of an opening:

Initialize: P and V decide to run the protocol on input (pp, κ, c);
Commit: P computes d = gy11 · · · g

y′`
` s

π, for yi ←R Zπ, and s←R Z∗n, and sends d to V ;
Challenge: V outputs e←R J0 ; 2κK;
Response: P computes ki, zi, t such that exi + yi = kiπ + zi, with 0 ≤ zi < π, and t = gk11 · · · g

k`
` ·

res mod n. P outputs (z = (zi)i, t);
Verify: V accepts the proof and outputs 1 if, for each i, 0 ≤ zi < π, and ced = gz11 · · · g

z`
` t

π mod n.
Otherwise, V rejects the proof and outputs 0.

Completeness and zero-knowledge are straightforwards. Then, let us focus on the knowledge-extractability :
From two related valid transcripts, for the same d, we get as usual ce−e′ = g

z1−z′1
1 · · · gz`−z

′
`

` ·
(t/t′)π mod n. Since the prime π > 2κ ≥ ||e − e′||, the simulator can compute α(e − e′) + βπ = 1
and we have

c1−βπ = cα(e−e′) = g
α(z1−z′1)
1 · · · gα(z`−z′`)

` · (t/t′)απ mod n.

Then, for α(zi − z′i) = liπ + x′i with 0 ≤ x′i < π, and t′ = cβ · gl11 · · · g
l`
` · (t/t

′)α mod n, we have a
valid opening (x′1, . . . , x

′
`, t
′) of c.

Size-Independent. The size of our committed values is independent to the order of the commitment
itself: even if we take a quite large π, the commitment remains in Zn. As far as we know, no Pedersen-
like commitments of known prime order enjoyed this feature: the cardinality of the cyclic groups
always bounded the order of the commitment.
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6.2 Commitment with Knowledge-Delayed Order

Now, we show how we can hide the above commitment scheme with known prime order π into a
commitment scheme of Section 3 with hidden order.

Description of the Commitment Scheme. As explained earlier, the setup could have been run
by the verifier, with an additional proof of existence of α, such that g = hα mod n, to guarantee the
hiding property. In this protocol, the verifier runs the setup:

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks h0 ←R QRn and a random prime π ∈
J2κ+1 ; 2κ+2K. Then, it picks ρ←R J0 ;n2Kπ and sets g ← hρ0 mod n and h← hπ0 mod n. Finally,
it returns pp = (n, g, h) and keeps sk = (π, h0). Actually, we have hρ = gπ mod n. So, if one sets
α = ρ · π−1 mod ϕ(n), one has g = hα mod n, and proves it;

– Commit(pp,m; r) parses pp as above and commits to m ∈ Z by picking r ←R Zn and computing
c = gmhr mod n. It returns (c, r);

– Verify(pp, c,m, r) parses pp = (n, g, h) and outputs 1 if c = ±gmhr mod n and 0 otherwise;
– Reveal(pp, sk) returns sk = (π, h0);
– Adapt(pp, sk, c,m, r) first parses sk = (π, h0) and checks whether h = hπ0 mod n. Then, it adapts

the opening by computing m = kπ + m̄ for 0 ≤ m̄ < π and t = gkhr0 mod n. It outputs (m̄, t);
– Verify′(pp, π, c, m̄, t) outputs 1 if c = gm̄tπ mod n, and 0 otherwise.

This construction easily extends to commitments of vectors. Note that from gm̄tπ = c = gm̄
′
t′π mod

n, with m̄ 6= m̄′ mod π, setting h0 = y2 from an RSA challenge (n, y) of exponent π > 2κ, we obtain
y2ρ(m̄−m̄′) = (t′/t)π mod n, with 2ρ(m̄ − m̄′) 6= 0 mod π, which leads to the π-th root of y modulo
n (using Fact 5 from Proposition 1).

Switching between Commitments. Our goal is to use the more efficient commitment scheme
given in Section 6.1, that we denote comπ, and also the associated proofs of relations in Zπ: in the case
of a single integer m ∈ Zπ, comπ(m; r) = gmrπ mod n, for r ←R Z∗n. But let V run the setup from
Section 6.2, which outputs pp = (n, g, h) (while keeping sk = (π, h0)), as in Section 3: this reveals no
information about π. Now, P can use (n, g, h) for the Damgård-Fujisaki integer commitment scheme
that we denote com: for an integer m ∈ Z and r ←R Zn, c = com(m; r) = gmhr mod n. After some
time, V reveals (π, h0), which allows P to open c as a commitment over Zπ of rπ(m) = m mod π:

com(m; r) = comπ(rπ(m); gqπ(m)hr0), (1)

where qπ(m) and rπ(m) indeed denote the quotient and remainder of the euclidean division of m by
π. This then allows to use efficient proofs on comπ, but still with good properties on the integers,
since the prover did not know π at the commit time.

6.3 Improving Zero-Knowledge Arguments over the Integers

In this section, we thus introduce our new technique to build zero-knowledge arguments for state-
ments over the integers, while using comπ. We restrict our attention to statements that can be
expressed as membership to a set S ∈ D. Our technique allows us to provide more efficient mem-
bership arguments, with a lower communication and a smaller verifier work (applying the technique
delegates some of the work of the verifier to the prover). The core component of our technique is
the commitment com that we can later switch to comπ, in which the order of the message space is
revealed after the prover has committed to values. We call such commitment a commitment with
knowledge-delayed order.
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Membership Argument for D. Let us consider a set S ∈ D with representing polynomial PS
with k-vector input and `-vector witness. We assume that P and V have agreed on a bound t such
that each x ∈ S has a witness w of size ||w||1 ≤ (||x||1)t (S ∈ D, so there is always such a t. As
shown in [Lip03], t < 2 is sufficient for most cryptographic applications).

Let x be a secret vector held by P, and w be a witness for x ∈ S (i.e., a vector satisfying
PS(x,w) = 0). It is known that zero-knowledge arguments can be constructed for polynomial rela-
tions over committed inputs (see e.g. [BS02]). Intuitively, this is done by committing to intermediate
values, and proving additive and multiplicative relationships between those values and the inputs.
To prove a multiplicative relationship z = xy between values (x, y, z) committed in (cx, cy, cz), P
proves his knowledge of inputs (x, y, z) and random coins (rx, ry, rz) such that cx = gxrπx mod n,
cy = gyrπy mod n, and cz = cyxrπz . Let us now consider the following situation, where commitments
are applied component-wise:

1. P picks random coins (rx, rw) and commits to (x,w) with (rx, rw) as (cx, cw)← (comπ(x; rx),
comπ(w; rw));

2. P performs a zero-knowledge argument with V to prove his knowledge of four vectors (x,w, rx, rw)
such that (cx, cw) = (comπ(x; rx), comπ(w; rw)) and PS(x,w) = 0 mod π.

As comπ is a commitment scheme over Zπ, this protocol is an argument of knowledge of (x,w) such
that PS(x,w) = 0 mod π. But it does, by no mean, prove the knowledge of integers belonging to
the Diophantine set S. However, our main observation is that comπ can also be seen as an integer
commitment scheme (the commitment scheme we denoted com).

Argument of knowledge of the inputs and witnesses.

1. V runs the setup from the Section 6.2, which generates pp = (n, g, h) and sk = (π, h0): this
defines com : (x; r) 7→ gxhr mod n. It additionally proves the existence of α such that g =
hα mod n;

2. P picks random coins (rx, rw) and commits to (x,w) with (rx, rw) as (cx, cw)← (com(x; rx),
com(w; rw));

3. P performs a ZKAoK{(x,w, rx, rw) | cx = gxhrx ∧ cw = gwhrw}, we thereafter refer to ZK1,
with V . If the argument fails, V aborts the protocol.

Argument of knowledge of (x′,w′) such that PS(x′,w′) = 0 mod π.

1. V reveals (π, h0) to P who checks whether h = hπ0 mod n or not, to switch to comπ. Let
(x′,w′) = (rπ(x), rπ(w)) = (x,w) mod π.

2. P performs a ZKAoK{(x′,w′,Rx,Rw)}, we thereafter refer to ZK2, such that (cx, cw) =
(comπ(x;Rx), comπ(w;Rw)) and PS(x,w) = 0 mod π. Note that (cx, cw) are now seen as
commitments over Zπ, using the fact that com(x; rx) = comπ(rπ(x);Rx) and com(w; rw) =
comπ(rπ(w);Rw), with appropriate (Rx,Rw). If the argument succeeds, V returns accept.

Theorem 4. Under the RSA assumption, the above protocol is a statistical zero-knowledge argument
of knowledge of openings of (cx, cw) to vectors of integers (x,w) such that PS(x,w) = 0: which
proves that x ∈ S.

Proof. The intuition behind Theorem 4 is that ZK1 proves that P knows (x,w) in (cx, cw), and ZK2

proves that PS(x,w) = 0 mod π for a κ-bit prime π which was revealed after (x,w) were committed.
Hence, P knew vectors of integer (x,w) such that PS(x,w) = 0 mod π for a random κ-bit prime
π. This has a negligible probability to happen unless PS(x,w) = 0 holds over the integers, since
PS is a polynomial. The full proof consists of the three properties: correctness, zero-knowledge, and
knowledge-extractability.
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Correctness. It easily follows from the correctness of ZK1 and ZK2: if P knows (x,w, rx, rw)
such that (cx, cw) = (com(x; rx), com(w; rw)) and PS(x,w) = 0, then the argument of knowledge
of (x, rx) such that cx = com(x; rx) will succeed, and it holds that (cx, cw) = (comπ(x mod
π; vqπ(x)h̃rx), comπ(w mod π; vqπ(x)h̃rx)). Moreover, as PS is a polynomial, the modular reduction
applies, and leads to PS(x mod π,w mod π) = PS(x,w) = 0 mod π.

Zero-Knowledge. It also follows from the zero-knowledge of ZK1 and ZK2, and the hiding property of
the commitments. Let SimZK be the following simulator: one first generates dummy commitments
(cx, cw), which does not make any difference under the hiding perperty, and runs the simulator of
ZK1. Once (π, h0) is revealed, SimZK runs the simulator of ZK2.

Since the commitment is statistically hiding, ZK1 is our statistically zero-knowledge argument
of knowledge of opening from Section 3 and ZK2 is an argument of relations on commitments with
known order π (since h = hπ0 mod n) that is possible in statistical zero-knowledge, the full protocol
is statistically zero-knowledge.

Knowledge Extractability. Consider a P’ which succeeds in providing a convincing argument with
probability ε, which means that the two protocols ZK1 and ZK2 succeed with probability greater
than ε.

We first use the extractor of ZK1 to extract the inputs-witnesses and random coins (x,w, rx, rw)
such that cx = gxhrx and cw = gwhrw . This extraction is successful under the RSA assumption.

Then, (π, h0) is revealed and we use the extractor of ZK2 to extract the inputs-witnesses and ran-
dom coins (x′,w′,Rx,Rw) such that both relations (cx, cw) = (comπ(x′;Rx), comπ(w′;Rw)) and
PS(x′,w′) = 0 mod π are satisfied. Again, this extraction is successful under the RSA assumption.

Now, let us consider two situations:

– If x′ = x mod π and w′ = w mod π, then the value committed over the integers, before π was
revealed, satisfy PS(x,w) = 0 mod π, for a random π ∈ J2κ+1 ; 2κ+2K. We stress that the view
of (n, g, h) does not reveal any information on the prime π.
Since there are approximately 2κ+1/κ primes in this set, and this extraction works with proba-
bility greater than ε2, PS(x,w) = 0 mod Q, for Q ≥ 22κ/ε2 , which is much larger than the values
that can be taken in the integers, since the inputs and the witnesses have a size polynomial in
κ, and the polynomial PS has a bounded degree.

– If x′ 6= x mod π or w′ 6= w mod π, wlog, we can assume that x′ 6= x mod π: one knows
• (x, rx) such that (1) cx = ±gxhrx = grπ(x)(±gqπ(x)hrx0 )π mod n;
• and (x′,Rx) such that (2) cx = gx

′
Rx

π mod n.
Hence, grπ(x)(±gqπ(x)hrx0 )π = gx

′
Rx

π mod n, and so grπ(x)−x′ = Sπ mod n, for S = Rx/(±gqπ(x)hrx0 ) mod
n. If one would have set h0 = y2 from an RSA challenge (n, y, π) of exponent π > 2κ, and thus
g = y2ρ, using Fact 5 from Proposition 1, one gets the π-th root of y modulo n.

This concludes the proof of the knowledge-extractability of the protocol, under the RSA assumption
over Zn.

On the Efficiency of the Method. The advantages of this method compared to the classical
method are twofold. First, most of the work in the protocol comes from the computation of expo-
nentiations; with our technique, most of the work is transfered from V to P. This comes from the
fact that verifying an equation such as c = com(x; r) involves exponentiations by integers of size
O(log n + κ) while verifying the equation c = comπ(x mod π;R) involves only two exponentiations
by κ-bit values, so the work of V is reduced. However, P will have to compute exponentiations by
integers of size O(log n+ κ) to construct the random coin R associated to the commitment mod π
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(using the identity 1 in Section 6.2). V will still need to perform exponentiations by integers during
ZK1, but his work during this step can be made essentially independent of the number N of inputs
and witnesses (up to a small logN additive term) and completely independent of the degree of the
representing polynomial.

Second, our method separates the argument of knowledge of inputs to a Diophantine equation
from the argument that they do indeed satisfy the equation. The arguments of knowledge of an
opening of a commitment can be very efficiently batched: if P commits to (x1, · · · , xN ) with ran-
dom coins (r1, · · · , rN ) as (c1, · · · , cN ), the verifier can simply send a random seed λ ←R {0, 1}κ
from which both players compute (λ1, · · · , λN ) using a pseudo-random generator3. Then, P per-
forms a single argument of knowledge of an opening (

∑
i λixi;

∑
i λiri) of the commitment

∏
i c
λi
i

(see [BGR98a,BGR98b] for more details). Therefore, when performing multiple membership argu-
ments, P and V will have to perform a single argument for ZK1 (of size essentially independent of
the number of committed values).

In general, the higher the degree of the representing polynomial, the better our method will
perform (in terms of communication). Still, we show in the following section that even for the case
of range proofs, which can be seen as membership proofs to a Diophantine set whose representing
polynomial is of degree 2, our method provides efficiency improvements.

Further Improvements. V can set h to h
∏
i πi

0 for several primes πi instead of hπ. For some integer
i, let pi ←

∏
j 6=i πj . Doing so allows V to reveal (hpi0 , πi) instead of (h0, π) in our method. Hence, in

addition to allowing arbitrary parrallel arguments with a single prime π, a single setting is sufficient
to perform a polynomial number of sequential arguments (fixed in advance) with different primes
πi. In addition, we explained that commitments with knowledge-delayed order allow splitting the
arguments of knowledge of the witnesses, denoted ZK1, and the argument that they indeed belong
to a Diophantine set, denoted ZK2. The arguments ZK1 can be batched as described above but,
for efficiency reason, we should not generate (λ1, λ2 . . . , λN ) as (λ, λ2, . . . , λN ). Indeed, |λj | growth
linearly with j over the integers. However, for the argument ZK2, the order of the commitment has
been revealed. Hence, we can now do use batch technique with such λj = λj since the prover is
able to reduce the exponents modulo π at this stage. That means that our technique consisting of
efficiently revealing the order of the commitment between ZK1 and ZK2 allows to use any tricks
that were only available for discrete-log based proofs of statement over (pairing-free) known-order
groups. For instance, we can get a sub-linear size argument to show that a committed matrix is the
Hadamard products over the integers of two other committed matrices. Indeed, we can commit the
rows of the matrices using a generalized commitment and make a batch proof for ZK1, which remain
sub-linear in the number of entrees, and then we can import the results of [Gro09,BG12] to ZK2,
preserving its sub-linearity.

Full-Fledge Zero-Knowledge. With an honest verifier, there is no need to prove the existence
of α such that g = hα. In the malicious setting, this proof guarantees the hiding property of the
commitments to the prover, who additionally checks h = hπ0 mod n when they are revealed. Then we
can use classical techniques to make the HVZK protocol to ZK, such as an equivocable commitment
of the challenge by the verifier, before the commitments from the prover.
3 The classical trick that consists of using λi = λi is not efficient here since we are in the integers, and so no reduction
can be applied.
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7 Application to Range Proofs

7.1 Lipmaa’s Compact Argument for Positivity

As explained before, Lipmaa [Lip03] proposed an efficient argument for positivity, using generalized
Damgåard-Fujisaki commitments, and the proof that an integer is positive if and only if it can
be written as the sum of four squares. However, it appears that the explicit construction given
in [Lip03, annex B] is flawed — although the high-level description is correct: any prover can provide
a convincing argument for positivity, regardless of the sign of the committed integer, and so without
holding valid witnesses.

This might raise some concerns as the protocol of Lipmaa is the “textbook” range proof based
on hidden order groups. Hence the protocol is suggested in several papers, and was implemented in
e.g. [AMAR05]. In Appendix A, we recall the argument of [Lip03], identify its flaw, and provide a
correct optimized version together with a full proof of security.

In the following, we describe a range proof in the same vein as the positivity argument of Lipmaa:
an integer x belongs to an interval Ja ; bK if and only if (x− a)(b− x) ≥ 0. In addition, we take into
account the following improvement suggested by Groth [Gro05]: x is positive if and only if 4x+1 can
be written as the sum of three squares, and such a decomposition can be computed in polynomial
time by the prover. We view this range proof as an optimized version of the textbook range proof
with integer commitments, to which we will compare our new method with knowledge-delayed order
commitments.

7.2 Three-Square Range Proof

To prove that x ∈ Ja ; bK, for x committed with an integer commitment scheme, we prove that
4(x−a)(b−x) + 1 can be written as the sum of three squares. Let (n, g, h) be the public parameters
of the Damgård-Fujisaki commitment scheme, generated by the verifier. The three-square range
proof (3SRP) is described in full details on Figure 1. Basically, both P and V know that ca contains
4(x − a) and c0 contains (b − x). The latter, with c1, c2, c3 containing respectively x1, x2, x3, is
proven in a classical way, and the last part of the proof shows that cx0a g, which implicitly contains
4(x− a)(b− x) + 1 also contains x2

1 + x2
2 + x2

3.
We then illustrate the technique introduced in Section 6.3 on this 3SRP protocol. The full con-

verted protocol, denoted 3SRP-KDO, is described on Figure 2. We also combine in parallel the two
arguments: in the integers with a random combination using (λi)i and in Zπ.

7.3 Results

Let B = log(b−a). Note that for all i ∈ {0, 1, 2, 3}, x2
i ≤ (b−a)2 hence log xi ≤ B. An exponentiation

by a t-bit value takes 1.5t multiplications using a square-and-multiply algorithm; we do not take
into account possible optimizations from multi-exponentiation algorithms. Table 1 sums up the
communication complexity and the computational complexity of both the 3SRP and the 3SRP-KDO
arguments for the execution of N parallel range proofs on the same interval Ja ; bK, as classical batch
techniques [BGR98a,BGR98b] allow to batch arguments of knowledge.

Note that we omit constant terms. The communication is given in bits, while the work is given
as a number of multiplications of elements of QRn. When comparing the work of the prover, we also
omit the cost of the decomposition in sum of squares, as it is the same in both protocols. Similarly,
we omit the cost of the initial proof of g = hα mod n by the verifier to the prover.
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For pp = (n, g, h) generated by V , P has sent c, for which he knows (x, r) such that c = gxhr mod n and
x ∈ Ja ; bK. Let H : Z5

n 7→ {0, 1}2κ be a collision-resistant hash function. V compute ca = (cg−a)4 mod n and
c0 = c−1gb mod n; P computes ca.

1. P computes (xi)1≤i≤3 such that 4(b− x)(x− a) + 1 =
∑3
i=1 x

2
i . P commits to (xi)1≤i≤3 with random coins

(ri)1≤i≤3 ←R J0 ;nK3 as (ci = gxihri mod n)1≤i≤3. Let x0 ← (b− x) and r0 ← r.
2. P picks (m0, · · · ,m3) ←R J0 ; 2B+2κK4, (s0, · · · , s3) ←R J0 ; 22κnK4, σ ←R J0 ; 2B+2κnK, and sends ∆ =

H((gmihsi mod n)0≤i≤3, h
σcm0
a

∏3
i=1 c

−mi
i mod n).

3. V picks a challenge e←R J0 ; 2κK and sends it to V .
4. P computes and sends zi = exi +mi and ti = eri + si for i ∈ {0, 1, 2, 3}, and τ = σ + e(x0r0 −

∑3
i=1 xiri).

5. V accepts the argument if

∆ = H

(
(gzihtic−ei mod n)0≤i≤3, h

τgecz0a (

3∏
i=1

c−zii ) mod n

)
.

Fig. 1: Three-Square Range Proof (3SRP)

For pp = (n, g, h) and sk = (π, h0) generated by V , P has sent c, for which he knows (x, r) such that c =
gxhr mod n and x ∈ Ja ; bK. Let H : Z6

n 7→ {0, 1}2κ be a collision-resistant hash function. V compute ca =
(cg−a)4 mod n and c0 = c−1gb mod n; P computes ca.

1. P computes (xi)1≤i≤3 such that 4(b− x)(x− a) + 1 =
∑3
i=1 x

2
i . P commits to (xi)1≤i≤3 with random coins

(ri)1≤i≤3 ←R J0 ;nK3 as (ci = gxihri mod n)1≤i≤3. Let x0 ← (b− x) and r0 ← r.
2. P picks m ←R J0 ; 2B+3κK, (m0, · · · ,m3) ←R J0 ; 2κK4, s ←R J0 ; 23κnK, (s0, · · · , s3) ←R J0 ;nK4, σ ←R

J0 ; 2B+2κnK, and sends ∆ = H(gmhs mod n, (gmihsi mod n)0≤i≤3, h
σcm0
a

∏3
i=1 c

−mi
i mod n).

3. V picks a challenge e′ ←R J0 ; 2κK and sends (e′, π, h0) to P.
4. P extends the challenge e′ into (e, (λi)0≤i≤3) ∈ J0 ; 2κK5, computes and sends z = e

∑
λixi + m and t =

e
∑
λiri + s, as well as zi = rπ(exi + mi) and Ti = heri+si0 gqπ(exi+mi) mod n for i ∈ {0, 1, 2, 3}, and T =

h
σ+e(x0r0−

∑3
i=1 xiri)

0 c
qπ(ex0+m0)
a

∏3
i=1 c

−qπ(exi+mi)
i mod n.

5. V accepts the argument if

∆ = H

(
gzht(

3∏
i=0

cλii )−e mod n, (gziTπi c
−e
i mod n)3i=0, T

πgecz0a (

3∏
i=1

c−zii ) mod n

)

Fig. 2: Three-Square Range Proof with Knowledge-Delayed Order (3SRP-KDO)
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3SRP 3SRP-KDO

Communication N(8 logn+ 18κ+ 5B) + 3κ N(8 logn+ 4κ) + 10κ+ 2 logn+B + logN

Prover’s work 1.5N(8 logn+ 12B + 26κ+ log a)
1.5(N(13 logn + 13B + 18κ + log a) + logn +
B + 6κ+ logN)

Verifier’s work 1.5(N(5 logn + 9B + 30κ + log a +
log b) + κ)

1.5(N(12κ+ log a+ log b) + log n+ B + 10κ+
logN)

Table 1: Complexities of 3SRP and 3SRP-KDO

Efficiency Analysis. We now provide a detailed comparison between the 3SRP and the 3SRP-KDO
protocols. We set the order of the modulus n to 2048 bits and the security parameter κ to 128. As
the communication of the protocols does also depend on the bound 2B on the size of the interval,
we consider various bounds in our estimation. For the sake of simplicity, we assume B = log b.

Small Intervals and Large Intervals. As pointed out in [CCs08], several practical applications of
range proofs, such as e-voting [Gro05] and e-cash [CHL05], involve quite small intervals (say, of
size at most 230, and so B ≤ 30). However, in numerous cryptographic schemes, range proofs on
very large intervals are involved. Examples include anonymous credentials [CL01], mutual private
set intersection protocols [KLC12], secure generation of RSA keys [JG02, DM10, HMRT12], zero-
knowledge primality tests [CM99a], and some protocols for performing non-arithmetic operations
on Paillier ciphertexts [GMS10,CPP15]. In such protocols, B typically range from 1024 to 8000. We
note that such intervals are exactly the ones for which range proofs based on groups of hidden order
are likely to be used, since for for small intervals, protocols based on some u-ary decomposition of
the input [CCs08,Gro11] will in general have better performances (essentially because they avoid
the need of the Rabin-Shallit algorithm, which is computationally involved).

Comparisons. Table 2 gives a summary of our results. As already noted, the overhead of the work
of the prover in 3SRP-KDO is measured by comparing the works without considering the cost of
the Rabin-Shallit algorithm; the latter one, however, is by far the dominant cost when B is large
(as it runs in expected O(B2 logB ·M(logB)) time, where M(logB) is the time taken to perform
a multiplication of (logB)-bit integers). Therefore, for a large B, the overhead of the work of the
prover in 3SRP-KDO is very small, whereas there is a huge gain for the verifier. As expected, the
3SRP-KDO protocol provides interesting performances in settings where:

– The verifier is computationally weak (e.g. in secure Cloud computing), and/or
– Multiples range proofs are likely to be used in parallel, and/or
– The intervals are large.

communication
overhead

prover’s work overhead verifier’s work
overhead

B = 30, N = 1 +16% +60.2% −66%
B = 1024, N = 1 −3.7% +44% −71.7%
B = 2048, N = 1 −17% +36.4% −74.1%
B = 30, N = 10 −7.6% +47.5% −86.8%
B = 1024, N = 10 −26.5% +33.2% −87.7%
B = 2048, N = 10 −39.1% +26.5% −88%

This is for various interval sizes (2B) and numbers N of parallel executions
Percentages indicate 100 × (cost(3SRP-KDO) − cost(3SRP))/cost(3SRP), where prover’s cost does not consider the
3-square decomposition.

Table 2: Comparison between the 3SRP and the 3SRP-KDO
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A A Correction on Lipmaa’s Argument for Positivity

A.1 Initial Protocol

Lipmaa [Lip03, Annex B] proposed an efficient zero-knowledge argument of positivity. Since the
exact protocol was not fully detailled, we describe on Figure 3 our understanding from reading its
proof of correctness. Unfortunately, it is not sound, and the flaw comes from the fact that the original
protocol is described as using a generalized Damgård-Fujisaki commitment scheme. However, the
same basis is used to commit to masks m1,m2,m3,m4, which implies that the prover will only be
(computationally) binded to

∑
i xi in the argument.

Actually, it does not seem possible to rely on generalized commitments to get a more efficient
protocol. Concretely, let us consider a prover P∗ holding (x, r) such that c = gxhr and x = −1.
P∗ commits x1 = 0, x2 = 1, x3 = 0 and x4 = 0, and computes d1, d2 honestly. After receiving a
challenge, however, P∗ sets x̄1 = 2, x̄2 = −1, x̄1 = 0, x̄1 = 0, and sends z̄i = ex̄i +mi for i = 1 to 4

http://eprint.iacr.org/2001/095
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instead of the correct zi, and t̄2 = e(r −
∑

i x̄iri) + s2 instead of the correct t2. The values x̄i were
chosen so that

∑
i x̄i =

∑
i xi, hence

∑
i z̄i = e(

∑
i x̄i) +

∑
imi = e(

∑
i xi) +

∑
imi =

∑
i zi, and

so the check that (c1c2c3c4)e · d1 = gz̄1+z̄2+z̄3+z̄4ht1 succeeds. The second verification is equivalent
to checking that

∑
i xi · x̄i = x, which is the case here (−1 = 0× 2 + 1× (−1) + 0× 0 + 0× 0): V

accepts the argument even though the value x known by P∗ is strictly negative.
A natural way to fix this flaw without increasing the communication would be to require the

verifier to send a seed λ between step 1 and step 2, from which pseudo-random values λ1, λ2, λ3, λ4

are stretched, to send d1 =
∑

i λimi, t1 = e
∑

i λiri + s1 and to adapt the verification equation
accordingly. However, an attack quite similar to the one we’ve just described succeeds with good
probability in this case (it is sufficient that the gcd of λi and λj is small, for some i 6= j, for the
attack to succeed). The interesting point is that we cannot batch the arguments of knowledge and
the proof of membership at the same time.

A.2 Corrected Protocol

In this section, we propose a variant of Lipmaa’s protocol [Lip03] proving that a committed x is a
sum of four squares. There are two correct ways to construct an optimized argument of positivity. A
first possibility is to rely on a collision-resistant hash function to strongly reduce the length of the
flow sent by P in step 2 (note that we only require the hash function to be collision-resistant, hence
the protocol is in the standard model). An alternative would be to let P send all individual values
(di)i and d in step 2 instead of a single hash, and to stretch pseudo-random values from e in step 4
to batch all the ti into a single value. We describe the former solution, on Figure 4, as it is slightly
more efficient than the latter in terms of communication and enjoys a better security reduction.

A.3 Proof of Security

Correctness immediately follows from a careful inspection of the protocol.

Zero-Knowledge Property. We now argue that the protocol is honest-verifier zero-knowledge:
given c and a challenge e, the simulator SimZK sends random group elements c1, c2, c3, c4, and picks
random (zi, ti) ←R J0 ; 2B/2+2κK × J0 ; 22κnK for i = 1 to 4, and a random t ←R J0 ; 2B/2+2κnK. In
step 2, SimZK sends ∆ = H

(
(gzihtic−ei mod n)4

i=1,
∏4
i=1 c

zi
i h

tc−e mod n
)
. The commitments (ci)i

are perfectly indistinguishable from valid commitments, and ((zi)i, (ti)i, t) are statistically indistin-
guishable from honestly computed integers, with a similar analysis as in Section 3.

Knowledge Extractability. Let us now prove the knowledge extractability of the protocol under
the RSA assumption. A prover P ′ which succeeds in providing a convincing proof with probability
ε is rewinded, to provide two valid proofs for the same initial commitments c1, c2, c3, c4, ∆. Under
the collision-resistance of the hash function: gzihtic−ei = gz

′
iht
′
ic−e

′

i mod n, for i = 1 to 4, and∏
czii h

tc−e =
∏
c
z′i
i h

t′c−e
′

mod n.
Hence, we have, for i = 1 to 4, ce

′−e
i = gzi−z

′
ihti−t

′
i mod n, and ce

′−e =
∏
c
zi−z′i
i ht−t

′
mod n.

Using a similar argument as in the proof of Theorem 2, unless one can break the RSA assumption,
e′−e likely divides all the other differences and so, with ρi = (zi−z′i)/(e′−e) and wi = (ti−t′i)/(e′−e)
for i = 1 to 4, and w = (t− t′)/(e′ − e), we have ci = gρihwi , and c =

∏4
i=1 c

ρi
i h

w.
Altogether, this implies that c =

∏4
i=1 g

ρ2i hwiρihw = g
∑
ρ2i hw+

∑
wiρi mod n. The commitment c

thus contains x =
∑
ρ2
i , that is necessarily positive.
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P knows (x, r) such that c = gxhr mod n and x ≥ 0. V knows c.

1. P computes (xi)i≤4 such that x =
∑4
i=1 x

2
i . P commits the xi’s with fresh random coins ri ←R J0 ;nK as

ci = gxihri mod n. P sends c1, c2, c3, c4 to V .
2. P picks (mi)

4
i=1 ←R J0 ; 2B/2+2κK4, s1 ←R J0 ; 22κ+|n|K, and s2 ←R J0 ; 2B/2+|n|+2κK. Then, P sends d1 =

gm1+m2+m3+m4 · hs1 mod n and d2 = cm1
1 cm2

2 cm3
3 cm4

4 · hs2 mod n.
3. V picks a challenge e←R J0 ; 2κK and sends it to P.
4. P computes and sends zi = exi + yi, for i = 1 to 4, t1 = e

∑
i ri + s1 and t2 = e(r −

∑
i xiri) + s2.

5. V accepts the argument if both

(c1c2c3c4)
e · d1 = gz1+z2+z3+z4ht1 and ce · d2 = cz11 c

z2
2 c

z3
3 c

z4
4 · h

t2 .

Fig. 3: Lipmaa’s Compact Argument for Positivity

P knows (x, r) such that c = gxhr and x ≥ 0. V knows c. Let H : Z5
n 7→ {0, 1}2κ be a collision-resistant hash

function.

1. P computes (xi)i≤4 such that x =
∑4
i=1 x

2
i . P commits the xi’s with fresh random coins ri ←R J0 ;nK as

ci = gxihri mod n. P sends c1, c2, c3, c4 to V .
2. P picks (mi)

4
i=1 ←R J0 ; 2B/2+2κK4, (si)4i=1 ←R J0 ; 22κnK4, s ←R J0 ; 2B/2+2κnK, computes (di = gmihsi mod

n)4i=1, d =
∏4
i=1 c

mi
i hs, and sends the commitment ∆ = H(d1, d2, d3, d4, d) to V .

3. V picks a challenge e←R J0 ; 2κK and sends it to P.
4. P computes and sends zi = exi +mi and ti = eri + si for i = 1 to 4, and t = e(r −

∑
xiri) + s.

5. V accepts the argument if ∆ = H
(
(gzihtic−ei mod n)4i=1,

∏4
i=1 c

zi
i h

tc−e mod n
)
.

Fig. 4: Variant of Lipmaa’s Compact Argument for Positivity
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