Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts

Shahram Rasoolzadeh and Håvard Raddum
Simula Research Laboratory

Abstract

In this paper we focus on the PRINCE block cipher reduced to 6 rounds, with two known plaintext/ciphertext pairs. We develop two attacks on 6-round PRINCE based on accelerated exhaustive search, one with negligible memory usage and one having moderate memory requirements. The time complexities for the two attacks are $2^{96.78}$ and $2^{88.85}$, respectively. The memory consumption of the second attack is less than 200 MB and so is not a restricting factor in a real-world setting.

Keywords: lightweight cipher, PRINCE, exhaustive search

1 Introduction

PRINCE is a lightweight block cipher proposed by Borghoff et. al. at Asiacrypt 2012 [1] and is designed to be efficiently implemented in hardware, with minimal latency and small chip area. It is designed to be a reflection cipher, which means that decryption with one key is equal to encryption with another (related) key. For PRINCE the relation between encryption/decryption keys is chosen to be xor with a constant value α.

This novel design and the fact that there are prizes awarded for the best cryptanalysis on PRINCE has attracted quite a bit of attention from cryptanalysts. There is a Prince Challenge website [2] where the best attacks and their complexities are summarized.

In Table 1 we have listed previous published work on 6 -round PRINCE. In the known plaintext scenario there was only one result listed on the Prince

Table 1. Summary of cryptanalytic results on 6-round PRINCE

Mode	Time	Data	Memory	Technique	Ref.
KP	2^{101}	2^{6}	?	?*	2
	$2^{96.8}$	2	negl.	Acc. Exh. Search	3
	$2^{88.9}$	2	$2^{24.6}$	Acc. Exh. Search	4
CP	2^{64}	2^{16}	2^{16}	Integral	4]
	2^{41}	$2^{18.58}$	2^{16}	Integral	13
	$2^{32.9}$	$2^{14.9}$	$\ll 2^{27}$	Differential/Logic	12]
	$2^{33.7}$	2^{16}	$2^{31.9}$	MITM	12

* Attacks reported by Derbez, but not published yet.

Challenge site which, to our knowledge, is unpublished. This paper aims to cast some more light on cryptanalysis of 6 -round PRINCE in the known plaintext scenario.

In this work we present two attacks. The first attack is an accelerated exhaustive search attack, where we try to reject wrong guesses of the K_{1} key used in PRINCE $_{\text {core }}$ as quickly as possible, and to minimize the number of S-box look-ups needed. The main insight here is that assuming a known state in the middle of the cipher, only part of the unknown K_{1} needs to be guessed before it is possible to identify a guess as incorrect.

The second attack is similar to the first in the sense that parts of K_{1} are guessed. The difference is that we will create tables to store partial guesses, and use the tables during the attack to quickly identify wrong guesses. We denote this attack as accelerated exhaustive search with memory. However, it should be noted that the memory requirements are less than 200 MB , so the memory complexity is not a limiting factor in practice. This attack has the fastest time complexity, equivalent to $2^{88.85} 6$-round PRINCE encryptions.

The paper is organized as follows. Section 2 presents a brief description of PRINCE. In Sections 3 and 4 we outline the Accelerated Exhaustive Search attacks to 6 -round PRINCE with no memory and with memory, respectively. Section 5 concludes the paper.

2 PRINCE Block Cipher

PRINCE [1 is an FX-constructed lightweight block cipher with block size of 64 bits and two keys that both have length 64 bits. One of the keys $\left(K_{0}\right)$ are used for whitening and the other one $\left(K_{1}\right)$ is used as a round key for the core of the structure (see Figure 1). Following [1], we denote the plaintext/ciphertext pair of PRINCE by P / C, and the corresponding input/output of the PRINCE core function by P^{\prime} / C^{\prime}. These variables are related through the following equations.

$$
\begin{equation*}
P^{\prime}=P \oplus K_{0} \quad, \quad C^{\prime}=C \oplus K_{0}^{\prime} \tag{1}
\end{equation*}
$$

where K_{0}^{\prime} is the following linear mapping of K_{0}

$$
\begin{equation*}
K_{0}^{\prime}=L\left(K_{0}\right)=\left(K_{0} \ggg 1\right) \oplus\left(K_{0} \gg 63\right) . \tag{2}
\end{equation*}
$$

Fig. 1. PRINCE FX Construction

Fig. 2. PRINCE core

In the same way as in [14, we use one property of FX-constructed block ciphers in our Accelerated Exhaustive Search attacks. This property is summarized in the following lemma.

Lemma 1. 144 For a P / C pair and its corresponding P^{\prime} / C^{\prime} in an $F X$ block cipher which uses a linear mapping L between whitening keys, the following equation holds:

$$
\begin{equation*}
L\left(P^{\prime}\right) \oplus C^{\prime}=L(P) \oplus C \tag{3}
\end{equation*}
$$

The proof of this lemma can be found in [14.
The PRINCE core is an AES-like block cipher that employs an involutive 12 rounds structure. PRINCE $_{\text {core }}$ starts with two xors with the key and a round constant, followed by 5 forward rounds, a middle layer, 5 backward rounds and at the end, two more xors with a round constant and the key. Figure 2 shows the schematic view of PRINCE $_{\text {core }}$.

The state is defined as a 4×4 matrix similar to AES, but in PRINCE, instead of bytes the cells contain nibbles. Each round of PRINCE core $^{\text {consists }}$ of 5 operations: S-box, matrix multiplication, shift row, round constant addition and key addition. These are described as follows.

- S-box (SB): Every nibble in the state is replaced using a 4 -bit S-box.
- Matrix Multiplication ($M C$): The state is multiplied with an involutive 64×64 binary matrix. More precisely, this large matrix can be expressed as four 16×16 matrices where each of these mixes four nibbles in one column of the state.
- Shift Row (SR): Row i of the state is cyclically rotated by i positions to the left (same as shift row operation in the AES).
- Round Constant Addition ($R C$): A bit-wise xoring with a round constant $R C_{i}, i=0, \ldots, 11$.
- Key Addition (AK): A bit-wise xoring with the key K_{1}.

The middle two rounds contain only three layers, $S B, M C, S B^{-1}$ which makes it an involutive keyless transformation. This transformation can also be separated into four smaller transformations, one for each column in the state.

In the backward rounds, the operations come in the reverse order of the forward rounds, and $S B$ and $S R$ are replaced with $S B^{-1}$ and $S R^{-1}$. The round constants are also different, but related to the round constants in the forward rounds. The difference $R C_{i} \oplus R C_{11-i}, i=0, \ldots, 11$ is always equal to the constant value $\alpha=0 \times c 0 a c 29 b 7 c 97 c 50 d d$.

As a result of this involutive structure of PRINCE $_{\text {core }}$, in implementations decryption can use the same circuit as encryption. In decryption mode the key only needs to be xored with α, i.e.

$$
\begin{equation*}
C^{\prime}=\operatorname{PRINCE} E_{\text {core }}\left(P^{\prime}, K_{1}\right) \Longleftrightarrow P^{\prime}=\operatorname{PRINCE} E_{\text {core }}\left(C^{\prime}, K_{1} \oplus \alpha\right) \tag{4}
\end{equation*}
$$

This property is called α-reflection.

3 Accelerated Exhaustive Key Search

In this section we will present an accelerated exhaustive key search on 6 -round PRINCE. Our way of doing this is faster than a simple exhaustive key search that guesses a key, fully encrypts a known plaintext, and checks if it matches the given ciphertext.

In the attack, for a known plaintext/ciphertext pair we guess one state in the middle of the cipher and then by using (3) we find one candidate for K_{1}. Knowing K_{1} and one inner state for this pair of data allows us to find K_{0}. We can then check this candidate key of (K_{0}, K_{1}) on a second pair of known plaintext/ciphertext. If (K_{0}, K_{1}) matches both plaintext/ciphertext pairs it should be the correct key.

For simplifying our accelerated exhaustive search analysis, we define two equivalent keys for PRINCE core . These are

$$
\begin{gather*}
K_{1}^{\prime}=S R^{-1}\left(M C\left(K_{1}\right)\right), \tag{5}\\
K_{1}^{\prime \prime}=L\left(K_{1}\right) \oplus K_{1} .
\end{gather*}
$$

When we use K_{1}^{\prime}, we must position the $A K$ layer between the $S B$ and $M C$ layers of the round to get an equivalent description of PRINCE $_{\text {core }}$ (see Figure 3). Clearly, by recovering K_{1}^{\prime} we can recover K_{1}.

By using K_{1}^{\prime} instead of K_{1}, we can also expand the keyless middle rounds by two $S R$ and two $M C$ operations. As shown in Figure 3 we denote the states right before and after these keyless functions by X and X^{\prime}.

Like the accelerated exhaustive search attack in [14], for a given P and its C we will guess the value of X and calculate the value of the corresponding X^{\prime}. For each of the $2^{64} X / X^{\prime}$-values, we will guess some nibbles of K_{1}^{\prime} and then partially decrypt/encrypt the X / X^{\prime} to find some nibbles in $P^{\prime \prime}=P^{\prime} \oplus K_{1}$ and $C^{\prime \prime}=C^{\prime} \oplus K_{1}$. The position of the found nibbles will be equal in $P^{\prime \prime}$ and $C^{\prime \prime}$. Then we evaluate the value of the corresponding nibble in

$$
F\left(P^{\prime \prime}, C^{\prime \prime}, P, C\right)=L\left(P^{\prime \prime}\right) \oplus C^{\prime \prime} \oplus(L(P) \oplus C)
$$

Fig. 3. Accelerated Exhaustive Key Search for 6 round PRINCE
which gives us the value of the same nibble in $K_{1}^{\prime \prime}$, because

$$
\begin{align*}
& L\left(P^{\prime \prime}\right) \oplus C^{\prime \prime} \oplus(L(P) \oplus C) \\
= & \left(L\left(P^{\prime}\right) \oplus C^{\prime}\right) \oplus(L(P) \oplus C) \oplus L\left(K_{1}\right) \oplus K_{1} \tag{6}\\
= & K_{1}^{\prime \prime} .
\end{align*}
$$

As K_{1}^{\prime} and $K_{1}^{\prime \prime}$ has a linear relation, finding n bits of $K_{1}^{\prime \prime}$ gives us n linear equations in the K_{1}^{\prime} bits. All 64 linear relations between K_{1}^{\prime} and $K_{1}^{\prime \prime}$ are listed in Appendix A. Using the relation between K_{1}^{\prime} and $K_{1}^{\prime \prime}$ means we do not need to guess all bits of K_{1}^{\prime}; some of them can be deduced from already guessed K_{1}^{\prime}-bits and known $K_{1}^{\prime \prime}$ bits. In [14] all 64 bits of K_{1}^{\prime} must be guessed before it can be verified or rejected, but with only six rounds we can reject partial guesses as incorrect at an earlier stage and cut down on the search space.

There will be one value of K_{1}^{\prime} in average for each X / X^{\prime} that will produce P^{\prime} and C^{\prime} which will match the given right-hand side in (3). The value for P^{\prime} computed for this K_{1}^{\prime} and X / X^{\prime} is then used to deduce K_{0}. So for each X / X^{\prime} guess we can expect one $\left(K_{0}, K_{1}\right)$ candidate. This candidate for the full key can be tried on one other plaintext/ciphertext pair, and if it matches it should be the correct key.

In our analysis we try to minimise the number of S-box look-ups needed, and also try to find the most bits of $K_{1}^{\prime \prime}$ as quickly as possible. The results show that 6 -round PRINCE can be attacked with complexity equal to $2^{96.78}$ encryptions using only 2 known plaintexts. This is lower than the previous best attack on 6 -round PRINCE in the known plaintext mode [12].

3.1 Attack Procedure

The strategy of the attack is to minimize the number of total S-box look-ups needed when we guess values for the K_{1}^{\prime} nibbles, and to reject wrong guesses as soon as possible. Figure 3 shows the order for guessing the nibbles of K_{1}^{\prime} and in the following we explain what happens in Figure 3, focusing on the forward rounds. Because of the reflective property of PRINCE, the exact same computations done in these rounds can be done in the backward rounds.

Let Z be a binary matrix with 64 columns. Z is empty at first, but as we start to guess values for the K_{1}^{\prime} nibbles we will fill in the rows of Z to store the linear constraints we get. We thus build a system of linear equations

$$
Z K_{1}^{\prime}=V,
$$

where V is the value given by the current guess. Whenever we find bits of $K_{1}^{\prime \prime}$, we will add the linear relations between K_{1}^{\prime} and $K_{1}^{\prime \prime}$ as rows to Z as well.

The nibbles of K_{1}^{\prime} will be guessed in alphabetical order, starting with A. The letters in the other states of Figure 3 indicate which nibbles can be computed after which guess. After D has been guessed, we have enough known nibbles to go backwards through $S R$ and $M C$ in round 1 and find the input. As we have already guessed the A-value of K_{1}^{\prime}, we can add this to the top left nibble and compute the input to the top left S -box in round 1 . This is indicated with the state at the bottom with a single D in this position.

At this point we have computed the value of nibble D in both $P^{\prime \prime}$ and $C^{\prime \prime}$, so we can compute the part of $F\left(P^{\prime \prime}, C^{\prime \prime}, P, C\right)$ that affects this nibble only, and find a value for 3 bits of $K_{1}^{\prime \prime}=\left(k_{63}^{\prime \prime}, \ldots, k_{0}^{\prime \prime}\right)$. These are the 3 least significant bits in this nibble, i.e. $k_{62}^{\prime \prime}, k_{61}^{\prime \prime}$ and $k_{60}^{\prime \prime}$. These three $k^{\prime \prime}$ bits are linearly related to the k^{\prime} bits with

$$
\begin{aligned}
& k_{62}^{\prime \prime}=k_{62}^{\prime} \oplus k_{59}^{\prime} \oplus k_{55}^{\prime} \oplus k_{54}^{\prime} \oplus k_{51}^{\prime} \oplus k_{50}^{\prime}, \\
& k_{61}^{\prime \prime}=k_{62}^{\prime} \oplus k_{61}^{\prime} \oplus k_{57}^{\prime} \oplus k_{54}^{\prime} \oplus k_{50}^{\prime} \oplus k_{49}^{\prime}, \\
& k_{60}^{\prime \prime}=k_{61}^{\prime} \oplus k_{60}^{\prime} \oplus k_{57}^{\prime} \oplus k_{56}^{\prime} \oplus k_{52}^{\prime} \oplus k_{49}^{\prime} .
\end{aligned}
$$

So with the current guess of k^{\prime} bits the $F\left(P^{\prime \prime}, C^{\prime \prime}, P, C\right)$ function will give us three extra linear constraints in addition to the 16 guessed ones, for a total of 19 independent linear equations in the $64 K_{1}^{\prime}$ variables. All of these are added to Z, so after guessing 16 bits we have 19 linear constraints on K_{1}^{\prime}.

Next, we guess the four bits of E, which allows us to compute another 4 bits of $K_{1}^{\prime \prime}$. Eight new linear equations get added to Z. After guessing F we find another 4 bits of $K_{1}^{\prime \prime}$ and can add another 8 linear equations to Z. Now it's time to guess G, but three of the bits in G are actually determined by the system $Z K_{1}^{\prime}=V$ that we have built so far. Hence there is only one bit left to guess in G, but we still earn four new linear equations from the $K_{1}^{\prime \prime}$ bits that become known after fixing the value for G.

All of this is summarized in the first rows of Table 2, where we list the number of bits to guess in each nibble, the indices of $K_{1}^{\prime \prime}$-bits that become known and the rank of Z after each guess.

Table 2. Details of Attack Procedure

Nibble of K_{1}^{\prime}	Number of guessed bits	Number of SB	Index of found bits from $K_{1}^{\prime \prime}$	matching bits	p	$\operatorname{rank}(Z)$
A	4	1	-	-	1	4
B	4	1	-	-	1	8
C	4	1	-	-	1	12
D	4	2	$62,61,60$	-	1	19
E	4	2	$59,58,57,56$	-	1	27
F	4	2	$55,54,53,52$	-	1	35
G	1	2	$51,50,49,48$	-	1	40
H	4	1	-	-	1	44
I	4	1	-	-	1	48
J	4	2	$34,33,32$	$k_{34}^{\prime \prime}, k_{33}^{\prime \prime}, k_{32}^{\prime \prime}$	2^{-3}	52
		1	$47,46,45,44$	$k_{47}^{\prime \prime} \oplus k_{46}^{\prime \prime}$	2^{-1}	55
K	1	1	$43,42,41,40$	$k_{43}^{\prime \prime} \oplus k_{42}^{\prime \prime}$	2^{-1}	59
L	0	1	$39,38,37,36,35$	$k_{39}^{\prime \prime}, k_{38}^{\prime \prime} \oplus \ldots \oplus k_{35}^{\prime \prime}$	2^{-2}	62
		2			1	
M	1	1	-	-	1	63
N	1	2	$31,30,29,28$	$k_{31}^{\prime \prime}, k_{30}^{\prime \prime}, k_{29}^{\prime \prime}, k_{28}^{\prime \prime}$	2^{-4}	64
		1	$22,21,20$,	$k_{22}^{\prime \prime},,_{21}^{\prime \prime}, k_{20}^{\prime \prime}$	2^{-3}	64
		1	$19,18,17,16$	$k_{19}^{\prime \prime}, k_{18}^{\prime \prime}, k_{17}^{\prime \prime}, k_{16}^{\prime \prime}$	2^{-4}	64
O	0	1	$27,26,25,24,23$	$k_{27}^{\prime \prime}, k_{26}^{\prime \prime}, k_{25}^{\prime \prime}, k_{24}^{\prime \prime}, k_{23}^{\prime \prime}$	2^{-5}	64
		1			1	
P	0	2	$15,14,13,12$	$k_{15,}^{\prime \prime}, k_{14}^{\prime \prime}, k_{13}^{\prime \prime}, k_{12}^{\prime \prime}$	2^{-4}	64
		1	$11,10,9,8$	$k_{11}^{\prime \prime}, k_{10}^{\prime \prime}, k_{9}^{\prime \prime}, k_{8}^{\prime \prime}$	2^{-4}	64
		1	$7,6,5,4$	$k_{7}^{\prime}, k_{6}^{\prime \prime}, k_{5}^{\prime \prime}, k_{4}^{\prime \prime}$	2^{-4}	64
		1	$3,2,1,0,63$	$k_{3}^{\prime \prime}, k_{2}^{\prime \prime}, k_{1}^{\prime \prime}, k_{0}^{\prime \prime}, k_{63}^{\prime \prime}$	2^{-5}	64

We now need to guess all of H, I and J before being able to produce more $K_{1}^{\prime \prime}$ bits. After fixing J it turns out that some of the $K_{1}^{\prime \prime}$-bits that gives extra equations are linearly dependent with the equations currently in Z. The dependencies function as a filter, allowing us to reject the current guess as wrong if we get an inconsistent system when adding the equations to Z. The $k^{\prime \prime}$'s involved in the dependent linear equations are listed in the column labelled "matching bits" in Table 2, and the probability that the current guess is not rejected is listed in the column named p.

Table 2 shows the details of what happens when the remaining nibbles are guessed. Note that when the final undetermined bit in nibble N is guessed, Z gets full rank and all of K_{1}^{\prime} is determined. Remaining nibbles will only be used to verify/reject the current guess. If a guess gets to the end of Table 2 without being rejected, we will calculate P^{\prime} and C^{\prime} from X / X^{\prime} and this guess and check for a match in (3). Only a single K_{1} is expected to remain after this matching.

3.2 Complexity

Similarly to [14 and [15] we will focus on the number of S-box look-ups to estimate the complexity of the attack, where we equate $16 \times 6=2^{6.58}$ S-box look-ups with one 6 -round PRINCE encryption.

Let s_{Y} be the number of S-box look-ups we can do after guessing nibble Y. These numbers are listed in the third column of Table 2 for all nibbles A, \ldots, P. Note that after some of the nibbles we do not execute all possible S-box lookups right away. Using nibble J as an example, we can evaluate 3 S-boxes after guessing this nibble, but we only do two of them first. The reason for this is that after these two S-boxes are executed we get some $K_{1}^{\prime \prime}$ bits giving dependent equations to be used as a filter for the current guess. In most cases the last S-box look-up does not need to be done because the guess can already be rejected as wrong, hence we save in the complexity. For nibbles L, N, O and P we do the same, and only execute the minimal number needed to filter out wrong guesses.

Let p_{Y} be the probability that the current guess is not rejected after guessing nibble Y (second to last column in Table 2) and g_{Y} be the number of bits to guess in nibble Y (second column in Table 2). We will store the outputs of evaluated S-boxes during the attack, and only recompute them when a new guess is made that affects them. The expression for the total number of S-box look-ups (both forward and backward rounds) needed to do in the attack is then

$$
\begin{gather*}
2 \times 2^{g_{A}}\left(s_{A}+p_{A} 2^{g_{B}}\left(s_{B}+\ldots+p_{I} 2^{g_{J}}\left(s_{J_{1}}+p_{J_{1}}\left(s_{J_{2}}+p_{J_{2}}(\ldots\right.\right.\right.\right. \tag{7}\\
\left.\left.\left.\left.\left(s_{P_{3}}+p_{P_{3}}\left(s_{P_{4}}\right)\right) \ldots\right)\right)\right)\right) .
\end{gather*}
$$

Plugging in the values in Table 2 in the expression, it evaluates to $2^{39.36}$. This guessing needs to be done for each of the 2^{64} values for X / X^{\prime}. Trading $2^{6.58} \mathrm{~S}$-box look-ups for one encryption we get the final time complexity for the attack to be $2^{96.78}$.

4 Accelerated Exhaustive Key Search Using Memory

In this section we will present an attack similar to the one in the previous section. The attack in this section introduces a time/memory trade-off, and makes the attack faster by using tables of precomputed data. Our technique for this is to do 4 separate phases of key guessing for each X / X^{\prime}, and save the results in separate tables. The tables have partially overlapping information, and we match data from the tables to find unique candidates for K_{1}^{\prime}.

The 4 subsets of K_{1}^{\prime} and their corresponding found key bits from $K_{1}^{\prime \prime}$ are shown in Figure 4 . We denote them by $K_{C 1}, K_{C 2}, K_{C 3}$, and $K_{C 4}$.

Guessing the values of the K_{1}^{\prime} nibbles affecting the i-th column of $K_{1}^{\prime \prime}$ is similar to what we did in the previous section for guessing the A, \ldots, G nibbles and finding teh 15 corresponding bits of $K_{1}^{\prime \prime}$. The only difference is that when we guess E, F and G we only do one S-box look-up for the related nibbles in round 1. There are 28 bits of K_{1}^{\prime} in each $K_{C i}$, but remember that 3 of the bits in

Fig. 4. 4 subsets of K_{1}^{\prime} and their corresponding key bits from $K_{1}^{\prime \prime}$.
K_{1}^{\prime} can be determined by the other 25 and the bits we find in $K_{1}^{\prime \prime}$. So the time complexity for finding the $K_{1}^{\prime \prime}$ bits for all values of the 25 independent bits in the K_{1}^{\prime} subset in $K_{C i}$ is equal to

$$
\begin{equation*}
2 \times 2^{4}\left(1+2^{4}\left(1+2^{4}\left(1+2^{4}\left(2+2^{4}\left(1+2^{4}\left(1+2^{1}(1)\right)\right)\right)\right)\right)\right)=2^{26.62} \tag{8}
\end{equation*}
$$

S-box look-ups. It should be mentioned that in $K_{C 4}$, the 25 bits of K_{1}^{\prime} only gives 14 bits from $K_{1}^{\prime \prime}$ due to the $L($.) function used in the FX-construction of PRINCE.

The attack procedure is similar to the attack in previous section. The difference is the way we find K_{1}^{\prime} candidates related to a guessed value of X / X^{\prime}. Assuming known X / X^{\prime}, we will separately create 3 tables $\mathcal{T}_{2}, \mathcal{T}_{3}$ and \mathcal{T}_{4} where \mathcal{T}_{i} contains all information about 2^{25} values of $\left(K_{C i}^{\prime}, K_{C i}^{\prime \prime}\right)$ pairs in $K_{C i}$.

4.1 Constructing Tables

Every $K_{C i}$ has 28 bits from K_{1}^{\prime} and 15 bits from $K_{1}^{\prime \prime}\left(14\right.$ bits in $\left.K_{C 4}\right)$. However, 3 bits in the last guessed nibble from K_{1}^{\prime} get determined from the 11 first found bits of $K_{1}^{\prime \prime}$. It means that for every guessed value of 25 bits of K_{1}^{\prime}, we find 15 or 14 bits of $K_{1}^{\prime \prime}$ which gives a total of 40 or 39 independent linear equations in the K_{1}^{\prime} bits.

Both $K_{C 1}$ and $K_{C 3}$ has 40 information bits about K_{1}, but the rank of $K_{C 1} \cup$ $K_{C 3}$ is 60 . It means $K_{C 1}$ and $K_{C 3}$ have $40+40-60=20$ common information bits, which we denote by $I_{C_{1}, C_{3}}$ (8 of the common information bits are from overlapping guesses in K_{1}^{\prime}).

When we create \mathcal{T}_{3}, we will calculate $v_{1}=I_{C_{1}, C_{3}}$ for each of the ($K_{C 3}^{\prime}, K_{C 3}^{\prime \prime}$) pairs in $K_{C 3}$ and just put this pair in the index of v_{1}. So on average, each index of \mathcal{T}_{3} will have $2^{25-20}=32$ different values of $\left(K_{C 3}^{\prime}, K_{C 3}^{\prime \prime}\right)$ pairs. For reducing the amount of used memory, it is not necessary to save all of the 40 bits in $K_{C 3}$. We only need to save the other $40-20=20$ bits not in common with $K_{C 1}$. In this way, the amount of used memory for storing \mathcal{T}_{3} is 20×2^{25} bits.

The rank of $K_{C 1} \cup K_{C 3}$ is 60 , there are 40 bits in $K_{C 2}$ and $K_{C 1} \cup K_{C 2} \cup K_{C 3}$ has full rank (64). Then $K_{C 1} \cup K_{C 3}$ and $K_{C 2}$ have $60+40-64=36$ common information bits which we denote by $I_{\left(C_{1}, C 3\right), C 2}$.

For the second table \mathcal{T}_{2}, we will calculate $\left(v_{2}, v_{3}\right)=I_{\left(C_{1}, C 3\right), C 2}$ for each of the $\left(K_{C 2}^{\prime}, K_{C 2}^{\prime \prime}\right)$ pairs, where $\left|v_{2}\right|=25$ and $\left|v_{3}\right|=11$, and put this pair in the index of v_{2}. Again it is not necessary to save all of the 40 bits in $K_{C 2}$. We only need to save v_{3} and the other $40-36=4$ bits, v_{4}, not in common with $\left(K_{C 1}, K_{C 3}\right)$. So the amount of memory used for storing \mathcal{T}_{2} is 15×2^{25} bits.

Creating \mathcal{T}_{4} is easier. We will just save the 14 bits of $K_{C 4}^{\prime \prime}\left(v_{6}\right)$ in the index of the related $K_{C 4}^{\prime}\left(v_{5}\right)$. So the memory needed for storing \mathcal{T}_{4} is 14×2^{25} bits.

Using the three precomputed tables we will match values from the $K_{C i}$ for each of the $2^{25} K_{C 1}$-values. In the following we will explain how to use the tables and do the matching in detail. The procedure will be precisely summarized in Algorithm 1

4.2 Attack Procedure

After creating the three tables, for every guess of $K_{C 1}^{\prime}$ we will find its corresponding $K_{C 1}^{\prime \prime}$ and then compute the related 20 common information bits with $K_{C 3}, v_{1}^{\prime}=I_{C_{1}, C_{3}}$. By retrieving $\mathcal{T}_{3}\left[v_{1}^{\prime}\right]$, we will get 32 candidates for $K_{C 1}$ and $K_{C 3}$. For each of these candidates we will compute their 36 common information bits with $K_{C 2},\left(v_{2}^{\prime}, v_{3}^{\prime}\right)=I_{\left(C_{1}, C_{3}\right), C_{2}}$. Then we look up $\mathcal{T}_{2}\left[v_{2}^{\prime}\right]$ which has two elements, 11 bits of v_{3} and 4 bits of v_{4}. The v_{3}^{\prime} value must be equal to the v_{3} found in \mathcal{T}_{2}. If this matching happens, we will use v_{4} to learn all 64 bits of K_{1}.

Having a candidate for $\left(K_{C 1}, K_{C 3}, K_{C 2}\right)$, we will compute 25 bits $v_{5}^{\prime}=K_{C 4}^{\prime}$ and 14 bits $v_{6}^{\prime}=K_{C 4}^{\prime \prime}$ for this candidate. Finally we check if $\mathcal{T}_{4}\left[v_{5}^{\prime}\right]=v_{6}^{\prime}$. If the values do not match the candidate $\left(K_{C 1}, K_{C 3}, K_{C 2}\right)$ can not give the right K_{1}.

As there were 32 candidates after the \mathcal{T}_{3} look-up, 11 matching bits in the \mathcal{T}_{2} look-up and 14 matching bits for \mathcal{T}_{4}, there will remain only $2^{25} \times 2^{5} \times 2^{-11} \times$ $2^{-14}=2^{5}$ candidates for $K_{C 1}$ that will match the other key subsets $K_{C i}$. This gives 32 candidates for K_{1}. We will decrypt/encrypt X / X^{\prime} using each of these K_{1} candidates to reach P^{\prime} / C^{\prime}. Checking for equality of (3) will give one candidate for K_{1}. We can then find the corresponding K_{0} for this value of K_{1}, and by checking $\left(K_{0}, K_{1}\right)$ on another plaintext/ciphertext pair we will find the correct key.

4.3 Complexity

The memory complexity of this attack is saving $\mathcal{T}_{2}, \mathcal{T}_{3}$ and \mathcal{T}_{4} which needs

$$
\begin{equation*}
15 \times 2^{25}+5 \times 2^{27}+14 \times 2^{25}=49 \times 2^{25}=2^{30.61} \tag{9}
\end{equation*}
$$

bits which is equal to $2^{24.61}$ PRINCE blocks.
Regarding the time complexity, for each guess of X / X^{\prime} pair, we create 3 tables and also find $K_{C 1}^{\prime \prime}$ for each of the $2^{25} K_{C 1}^{\prime}$ candidates. These calculations needs $4 \times 2^{26.62}$ S-box look-ups $\left(t_{S B}\right)$. For each guess of $K_{C 1}^{\prime}$ we do a look-up in $\mathcal{T}_{3}\left(t_{T 3}\right)$, which gives us 2^{5} candidates. For each candidate we do a call for \mathcal{T}_{2} $\left(t_{T 2}\right)$. After matching in \mathcal{T}_{2}, the number of candidates gets reduced by fraction

```
Algorithm 1 Accelerated exhaustive search attack using memory
    for \(X \in \mathbb{F}_{2}^{64}\) do
        Calculate value of \(X^{\prime}\) related to \(X\);
        for \(K_{C 3}^{\prime} \in \mathbb{F}_{2}^{25}\) do
            Find the 15 bits \(K_{C 3}^{\prime \prime}\);
            Calculate the 20 information bits \(v_{1}\) of \(K_{C 3}\) shared by \(K_{C 1}\);
            Store the other 20 information bits of \(K_{C 3}\) in \(\mathcal{T}_{3}\left[v_{1}\right]\);
        end for
        for \(K_{C 2}^{\prime} \in \mathbb{F}_{2}^{25}\) do
            Find the 15 bits of \(K_{C 2}^{\prime \prime}\);
            Calculate the 36 information bits \(\left(v_{2}, v_{3}\right)\) of \(K_{C 2}\) shared by \(\left(K_{C 1}, K_{C 3}\right),\left|v_{2}\right|=\)
    \(25,\left|v_{3}\right|=11\);
            Let \(v_{4}\) be the 4 information bits of \(K_{C 2}\) not in common with ( \(K_{C 1}, K_{C 3}\) );
            Store ( \(v_{3}, v_{4}\) ) in \(\mathcal{T}_{2}\left[v_{2}\right]\);
        end for
        for \(K_{C 4}^{\prime} \in \mathbb{F}_{2}^{25}\) do
            Find the 14 bits of \(K_{C 4}^{\prime \prime}\);
            Store \(K_{C 4}^{\prime \prime}\) in \(\mathcal{T}_{4}\left[K_{C 4}^{\prime}\right]\);
        end for
        for \(K_{C 1}^{\prime} \in \mathbb{F}_{2}^{25}\) do
            Find \(K_{C 1}^{\prime \prime}\);
            Calculate \(v_{1}^{\prime}\), the 20 information bits of \(K_{C 1}\) shared with \(K_{C 3}\);
            Find matching candidates ( \(K_{C 1}, K_{C 3}\) ) from \(\mathcal{T}_{3}\left[v_{1}^{\prime}\right]\);
            for every candidate ( \(K_{C 1}, K_{C 3}\) ) do
                Calculate \(\left(v_{2}^{\prime}, v_{3}^{\prime}\right)\), the 36 information bits of ( \(K_{C 1}, K_{C 3}\) ) shared with \(K_{C 2}\);
                Find \(\mathcal{T}_{2}\left[v_{2}^{\prime}\right]=\left(v_{3}, v_{4}\right)\);
                if \(v_{3}^{\prime}=v_{3}\) then
                    Calculate \(v_{5}^{\prime}=K_{C 4}^{\prime}\) and \(v_{6}^{\prime}=K_{C 4}^{\prime \prime}\) from ( \(K_{C 1}, K_{C 2}, K_{C 3}\) );
                        Find \(\mathcal{T}_{4}\left[v_{5}^{\prime}\right]=v_{6}\);
                        if \(v_{6}^{\prime}=v_{6}\) then
                        Calculate value \(P^{\prime}\) and \(C^{\prime}\) using \(X / X^{\prime}\) and \(K_{1}\);
                            if (3) holds then
                            Calculate value of \(K_{0}\) from \(K_{1}\) and \(P^{\prime}\);
                            Check \(\left(K_{0}, K_{1}\right)\) on second \(P / C\) pair;
                            if ( \(K_{0}, K_{1}\) ) matches second \(P / C\) pair then
                            ( \(K_{0}, K_{1}\) ) is the secret key;
                        end if
                        end if
                    end if
            end if
            end for
        end for
    end for
```

of 2^{-11} which means time for the remaining part of the attack is negligible. So the total time complexity of attack is approximately

$$
\begin{equation*}
2^{64} \times\left(2^{28.62} t_{S B}+2^{25}\left(t_{T 3}+2^{5} t_{T 2}\right)\right) \tag{10}
\end{equation*}
$$

We have implemented the tables and measured the times to do look-ups in them as well as the time to do one S-box look-up. We have found that $t_{T 2} \approx 1.1626 \times t_{S B}$ and $t_{T 3} \approx 32 \times t_{T 2}$. Inserting this into 10 we get the total time complexity of our attack to be about $2^{95.44} \mathrm{~S}$-box look-ups which can be translated to $2^{88.85} 6$-round PRINCE encryptions.

5 Conclusions

In this paper we have analysed PRINCE in the limited setting of a 6 -round version using two known plaintext/ciphertext pairs. We have shown that in this scenario it is possible to reject a wrong guess of K_{1}^{\prime} after guessing 35 of the 64 unknown bits when we know the middle states X and X^{\prime}. A basic guess-anddetermine attack where we also try to minimize the number of S-box look-ups needed will then succeed with time complexity equivalent to $2^{96.78}$ encryptions.

Trading some of the time with memory, we have shown how to store all possible values for parts of K_{1}^{\prime} in tables that will speed up the identification of wrong guesses. Contrary to many other time/memory trade-off attacks, the memory needed is quite modest and not a limiting factor in practice. This attack has a time complexity of $2^{88.85}$ encryptions, and so improves on the previous attack that was done on 6 -round PRINCE in the known plaintext setting.

References

1. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knežević, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçın. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications, ASIACRYPT 2012, LNCS, vol. 7658, pp. 208 - 225, Springer 2012.
2. The PRINCE Team. PRINCE Challenge, https://www.emsec.rub.de/research/ research_startseite/prince-challenge/
3. F. Abed, E. List, and S. Lucks. On the Security of the Core of PRINCE Against Biclique and Differential Cryptanalysis, IACR Cryptology ePrint Archive, Report 2012/712, 2012.
4. J. Jean, I. Nikolić, T. Peyrin, L. Wang, and S. Wu. Security Analysis of PRINCE, Fast Software Encryption 2013, LNCS, vol. 8424, pp. 92 - 111, Springer 2013.
5. H. Soleimany, C. Blondeau, X. Yu, W. Wu, K. Nyberg, H. Zhang, L. Zhang, and Y. Wang. Refection Cryptanalysis of PRINCE-like Ciphers, Fast Software Encryption 2013, LNCS, vol. 8424, pp. 71 - 91, Springer 2013.
6. A. Canteaut, M. Naya-Plasencia, and B. Vayssiére. Sieve-in-the-Middle Improved MITM Attacks, CRYPTO 2013, LNCS, vol. 8042, pp. 222 - 240, Springer 2013.
7. L. Li, K. Jia, and X. Wang. Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE, IACR Cryptology ePrint Archive, Report 2013/573, 2013.
8. A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia1, and J.-R. Reinhard. Multiple Differential Cryptanalysis of Round-Reduced PRINCE, Fast Software Encryption 2014, LNCS, vol. 8540, pp. 591 - 610, Springer 2014.
9. P.-A. Fouque, A. Joux, and C. Mavromati. Multi-user collisions: Applications to Discrete Logarithm, Even-Mansour and PRINCE, ASIACRYPT 2014, LNCS, vol. 8873, pp. $420-438$, Springer 2014.
10. Itai Dinur Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with Applications to PRINCE and PRIDE, EUROCRYPT 2015, LNCS, vol. 9056, pp. 231 - 253, Springer 2015.
11. G. Zhao, B. Sun, C. Li, and J. Su. Truncated Differential Cryptanalysis of PRINCE, Security and Communication Networks, vol. 8, pp. 2875 - 2887, Wiley 2015.
12. P. Derbez, and L. Perrin. Meet-in-the-Middle Attacks and Structural Analysis of Round-Reduced PRINCE, Fast Software Encryption 2015, LNCS, vol. 9054, pp. 190 - 216, Springer 2015.
13. P. Morawiecki. Practical Attacks on the Round-reduced PRINCE, IACR Cryptology ePrint Archive, Report 2015/245, 2015.
14. Sh. Rasoolzadeh and H. Raddum. Cryptanalysis of PRINCE with Minimal Data, AfricaCrypt 2016, LNCS, vol. --, pp. - - -, Springer 2016.
15. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the Full AES, ASIACRYPT 2011, LNCS, vol. 7073, pp. 344 - 371, Springer 2011.

A Linear Relations Between $\boldsymbol{K}^{\prime \prime}$ and \boldsymbol{K}^{\prime}

$$
\begin{aligned}
& k_{63}^{\prime \prime}=k_{59}^{\prime} \oplus k_{55}^{\prime} \oplus k_{51}^{\prime} \oplus k_{28}^{\prime} \oplus k_{24}^{\prime} \oplus k_{20}^{\prime} \\
& k_{61}^{\prime \prime}=k_{62}^{\prime} \oplus k_{61}^{\prime} \oplus k_{57}^{\prime} \oplus k_{54}^{\prime} \oplus k_{50}^{\prime} \oplus k_{49}^{\prime} \\
& k_{59}^{\prime \prime}=k_{60}^{\prime} \oplus k_{56}^{\prime} \oplus k_{52}^{\prime} \oplus k_{47}^{\prime} \oplus k_{43}^{\prime} \oplus k_{35}^{\prime} \\
& k_{57}^{\prime \prime}=k_{46}^{\prime} \oplus k_{42}^{\prime} \oplus k_{41}^{\prime} \oplus k_{38}^{\prime} \oplus k_{37}^{\prime} \oplus k_{33}^{\prime} \\
& k_{55}^{\prime \prime}=k_{44}^{\prime} \oplus k_{36}^{\prime} \oplus k_{32}^{\prime} \oplus k_{31}^{\prime} \oplus k_{23}^{\prime} \oplus k_{19}^{\prime} \\
& k_{53}^{\prime \prime}=k_{33}^{\prime} \oplus k_{29}^{\prime} \oplus k_{26}^{\prime} \oplus k_{25}^{\prime} \oplus k_{21}^{\prime} \oplus k_{18}^{\prime} \\
& k_{51}^{\prime \prime}=k_{24}^{\prime} \oplus k_{20}^{\prime} \oplus k_{16}^{\prime} \oplus k_{15}^{\prime} \oplus k_{7}^{\prime} \oplus k_{3}^{\prime} \\
& k_{49}^{\prime \prime}=k_{14}^{\prime} \oplus k_{13}^{\prime} \oplus k_{10}^{\prime} \oplus k_{9}^{\prime} \oplus k_{5}^{\prime} \oplus k_{2}^{\prime} \\
& k_{47}^{\prime \prime}=k_{47}^{\prime} \oplus k_{43}^{\prime} \oplus k_{39}^{\prime} \oplus k_{8}^{\prime} \oplus k_{4}^{\prime} \oplus k_{0}^{\prime} \\
& k_{45}^{\prime \prime}=k_{44}^{\prime} \oplus k_{42}^{\prime} \oplus k_{38}^{\prime} \oplus k_{37}^{\prime} \oplus k_{34}^{\prime} \oplus k_{33}^{\prime} \\
& k_{43}^{\prime \prime}=k_{44}^{\prime} \oplus k_{40}^{\prime} \oplus k_{32}^{\prime} \oplus k_{31}^{\prime} \oplus k_{27}^{\prime} \oplus k_{19}^{\prime} \\
& k_{41}^{\prime \prime}=k_{30}^{\prime} \oplus k_{26}^{\prime} \oplus k_{25}^{\prime} \oplus k_{22}^{\prime} \oplus k_{21}^{\prime} \oplus k_{17}^{\prime} \\
& k_{39}^{\prime \prime}=k_{28}^{\prime} \oplus k_{20}^{\prime} \oplus k_{16}^{\prime} \oplus k_{15}^{\prime} \oplus k_{11}^{\prime} \oplus k_{3}^{\prime} \\
& k_{37}^{\prime \prime}=k_{14}^{\prime} \oplus k_{10}^{\prime} \oplus k_{9}^{\prime} \oplus k_{6}^{\prime} \oplus k_{5}^{\prime} \oplus k_{1}^{\prime} \\
& k_{35}^{\prime \prime}=k_{63}^{\prime} \oplus k_{55}^{\prime} \oplus k_{51}^{\prime} \oplus k_{12}^{\prime} \oplus k_{4}^{\prime} \oplus k_{0}^{\prime} \\
& k_{33}^{\prime \prime}=k_{62}^{\prime} \oplus k_{61}^{\prime} \oplus k_{58}^{\prime} \oplus k_{57}^{\prime} \oplus k_{53}^{\prime} \oplus k_{50}^{\prime} \\
& k_{31}^{\prime \prime}=k_{55}^{\prime} \oplus k_{52}^{\prime} \oplus k_{48}^{\prime} \oplus k_{31}^{\prime} \oplus k_{27}^{\prime} \oplus k_{23}^{\prime} \\
& k_{29}^{\prime \prime}=k_{29}^{\prime} \oplus k_{26}^{\prime} \oplus k_{22}^{\prime} \oplus k_{21}^{\prime} \oplus k_{18}^{\prime} \oplus k_{17}^{\prime} \\
& k_{27}^{\prime \prime}=k_{22}^{\prime} \oplus k_{24}^{\prime} \oplus k_{16}^{\prime} \oplus k_{15}^{\prime} \oplus k_{11}^{\prime} \oplus k_{7}^{\prime} \\
& k_{25}^{\prime \prime}=k_{13}^{\prime} \oplus k_{10}^{\prime} \oplus k_{6}^{\prime} \oplus k_{5}^{\prime} \oplus k_{2}^{\prime} \oplus k_{1}^{\prime} \\
& k_{23}^{\prime \prime}=k_{63}^{\prime} \oplus k_{59}^{\prime} \oplus k_{51}^{\prime} \oplus k_{12}^{\prime} \oplus k_{8}^{\prime} \oplus k_{0}^{\prime} \\
& k_{21}^{\prime \prime}=k_{62}^{\prime} \oplus k_{58}^{\prime} \oplus k_{57}^{\prime} \oplus k_{54}^{\prime} \oplus k_{53}^{\prime} \oplus k_{49}^{\prime} \\
& k_{19}^{\prime \prime}=k_{60}^{\prime} \oplus k_{52}^{\prime} \oplus k_{48}^{\prime} \oplus k_{43}^{\prime} \oplus k_{39}^{\prime} \oplus k_{35}^{\prime} \\
& k_{17}^{\prime \prime}=k_{46}^{\prime} \oplus k_{45}^{\prime} \oplus k_{41}^{\prime} \oplus k_{38}^{\prime} \oplus k_{34}^{\prime} \oplus k_{33}^{\prime} \\
& k_{15}^{\prime \prime}=k_{44}^{\prime} \oplus k_{40}^{\prime} \oplus k_{36}^{\prime} \oplus k_{11}^{\prime} \oplus k_{7}^{\prime} \oplus k_{3}^{\prime} \\
& k_{13}^{\prime \prime}=k_{14}^{\prime} \oplus k_{13}^{\prime} \oplus k_{9}^{\prime} \oplus k_{6}^{\prime} \oplus k_{2}^{\prime} \oplus k_{1}^{\prime} \\
& k_{11}^{\prime \prime}=k_{63}^{\prime} \oplus k_{59}^{\prime} \oplus k_{55}^{\prime} \oplus k_{12}^{\prime} \oplus k_{8}^{\prime} \oplus k_{4}^{\prime} \\
& k_{9}^{\prime \prime}=k_{61}^{\prime} \oplus k_{58}^{\prime} \oplus k_{54}^{\prime} \oplus k_{53}^{\prime} \oplus k_{50}^{\prime} \oplus k_{49}^{\prime} \\
& k_{7}^{\prime \prime}=k_{60}^{\prime} \oplus k_{56}^{\prime} \oplus k_{48}^{\prime} \oplus k_{47}^{\prime} \oplus k_{39}^{\prime} \oplus k_{35}^{\prime} \\
& k_{5}^{\prime \prime}=k_{44}^{\prime} \oplus k_{45}^{\prime} \oplus k_{42}^{\prime} \oplus k_{41}^{\prime} \oplus k_{37}^{\prime} \oplus k_{34}^{\prime} \\
& k_{3}^{\prime \prime}=k_{40}^{\prime} \oplus k_{36}^{\prime} \oplus k_{33}^{\prime} \oplus k_{27}^{\prime} \oplus k_{23}^{\prime} \oplus k_{19}^{\prime} \\
& k_{1}^{\prime \prime}=k_{30}^{\prime} \oplus k_{29}^{\prime} \oplus k_{25}^{\prime} \oplus k_{22}^{\prime} \oplus k_{18}^{\prime} \oplus k_{17}^{\prime}
\end{aligned}
$$

[^0]
[^0]: $k_{62}^{\prime \prime}=k_{62}^{\prime} \oplus k_{59}^{\prime} \oplus k_{55}^{\prime} \oplus k_{54}^{\prime} \oplus k_{51}^{\prime} \oplus k_{50}^{\prime}$
 $k_{60}^{\prime \prime}=k_{61}^{\prime} \oplus k_{60}^{\prime} \oplus k_{57}^{\prime} \oplus k_{56}^{\prime} \oplus k_{52}^{\prime} \oplus k_{49}^{\prime}$ $k_{58}^{\prime \prime}=k_{47}^{\prime} \oplus k_{46}^{\prime} \oplus k_{43}^{\prime} \oplus k_{42}^{\prime} \oplus k_{38}^{\prime} \oplus k_{35}^{\prime}$ $k_{56}^{\prime \prime}=k_{44}^{\prime} \oplus k_{41}^{\prime} \oplus k_{37}^{\prime} \oplus k_{36}^{\prime} \oplus k_{33}^{\prime} \oplus k_{32}^{\prime}$ $k_{54}^{\prime \prime}=k_{31}^{\prime} \oplus k_{30}^{\prime} \oplus k_{26}^{\prime} \oplus k_{23}^{\prime} \oplus k_{19}^{\prime} \oplus k_{18}^{\prime}$ $k_{52}^{\prime \prime}=k_{29}^{\prime} \oplus k_{25}^{\prime} \oplus k_{24}^{\prime} \oplus k_{21}^{\prime} \oplus k_{20}^{\prime} \oplus k_{16}^{\prime}$ $k_{50}^{\prime \prime}=k_{15}^{\prime} \oplus k_{14}^{\prime} \oplus k_{10}^{\prime} \oplus k_{7}^{\prime} \oplus k_{3}^{\prime} \oplus k_{2}^{\prime}$
 $k_{48}^{\prime \prime}=k_{13}^{\prime} \oplus k_{9}^{\prime} \oplus k_{8}^{\prime} \oplus k_{5}^{\prime} \oplus k_{4}^{\prime} \oplus k_{0}^{\prime}$
 $k_{46}^{\prime \prime}=k_{47}^{\prime} \oplus k_{43}^{\prime} \oplus k_{42}^{\prime} \oplus k_{39}^{\prime} \oplus k_{38}^{\prime} \oplus k_{34}^{\prime}$
 $k_{44}^{\prime \prime}=k_{45}^{\prime} \oplus k_{44}^{\prime} \oplus k_{40}^{\prime} \oplus k_{37}^{\prime} \oplus k_{33}^{\prime} \oplus k_{32}^{\prime}$
 $k_{42}^{\prime \prime}=k_{31}^{\prime} \oplus k_{30}^{\prime} \oplus k_{27}^{\prime} \oplus k_{26}^{\prime} \oplus k_{22}^{\prime} \oplus k_{19}^{\prime}$
 $k_{40}^{\prime \prime}=k_{28}^{\prime} \oplus k_{25}^{\prime} \oplus k_{21}^{\prime} \oplus k_{20}^{\prime} \oplus k_{17}^{\prime} \oplus k_{16}^{\prime}$
 $k_{38}^{\prime \prime}=k_{15}^{\prime} \oplus k_{14}^{\prime} \oplus k_{11}^{\prime} \oplus k_{10}^{\prime} \oplus k_{6}^{\prime} \oplus k_{3}^{\prime}$
 $k_{36}^{\prime \prime}=k_{12}^{\prime} \oplus k_{9}^{\prime} \oplus k_{5}^{\prime} \oplus k_{4}^{\prime} \oplus k_{1}^{\prime} \oplus k_{0}^{\prime}$
 $k_{34}^{\prime \prime}=k_{63}^{\prime} \oplus k_{62}^{\prime} \oplus k_{58}^{\prime} \oplus k_{55}^{\prime} \oplus k_{51}^{\prime} \oplus k_{50}^{\prime}$
 $k_{32}^{\prime \prime}=k_{61}^{\prime} \oplus k_{57}^{\prime} \oplus k_{56}^{\prime} \oplus k_{53}^{\prime} \oplus k_{52}^{\prime} \oplus k_{48}^{\prime}$
 $k_{30}^{\prime \prime}=k_{31}^{\prime} \oplus k_{27}^{\prime} \oplus k_{26}^{\prime} \oplus k_{23}^{\prime} \oplus k_{22}^{\prime} \oplus k_{18}^{\prime}$ $k_{28}^{\prime \prime}=k_{29}^{\prime} \oplus k_{28}^{\prime} \oplus k_{24}^{\prime} \oplus k_{21}^{\prime} \oplus k_{17}^{\prime} \oplus k_{16}^{\prime}$
 $k_{26}^{\prime \prime}=k_{15}^{\prime} \oplus k_{11}^{\prime} \oplus k_{10}^{\prime} \oplus k_{7}^{\prime} \oplus k_{6}^{\prime} \oplus k_{2}^{\prime}$
 $k_{24}^{\prime \prime}=k_{13}^{\prime} \oplus k_{12}^{\prime} \oplus k_{8}^{\prime} \oplus k_{5}^{\prime} \oplus k_{1}^{\prime} \oplus k_{0}^{\prime}$
 $k_{22}^{\prime \prime}=k_{63}^{\prime} \oplus k_{62}^{\prime} \oplus k_{59}^{\prime} \oplus k_{58}^{\prime} \oplus k_{54}^{\prime} \oplus k_{51}^{\prime}$
 $k_{20}^{\prime \prime}=k_{60}^{\prime} \oplus k_{57}^{\prime} \oplus k_{53}^{\prime} \oplus k_{52}^{\prime} \oplus k_{49}^{\prime} \oplus k_{48}^{\prime}$
 $k_{18}^{\prime \prime}=k_{46}^{\prime} \oplus k_{43}^{\prime} \oplus k_{39}^{\prime} \oplus k_{38}^{\prime} \oplus k_{35}^{\prime} \oplus k_{34}^{\prime}$
 $k_{16}^{\prime \prime}=k_{45}^{\prime} \oplus k_{44}^{\prime} \oplus k_{41}^{\prime} \oplus k_{40}^{\prime} \oplus k_{36}^{\prime} \oplus k_{33}^{\prime}$
 $k_{14}^{\prime \prime}=k_{14}^{\prime} \oplus k_{11}^{\prime} \oplus k_{7}^{\prime} \oplus k_{6}^{\prime} \oplus k_{3}^{\prime} \oplus k_{2}^{\prime}$
 $k_{12}^{\prime \prime}=k_{13}^{\prime} \oplus k_{12}^{\prime} \oplus k_{9}^{\prime} \oplus k_{8}^{\prime} \oplus k_{4}^{\prime} \oplus k_{1}^{\prime}$
 $k_{10}^{\prime \prime}=k_{63}^{\prime} \oplus k_{59}^{\prime} \oplus k_{58}^{\prime} \oplus k_{55}^{\prime} \oplus k_{54}^{\prime} \oplus k_{50}^{\prime}$
 $k_{8}^{\prime \prime}=k_{61}^{\prime} \oplus k_{60}^{\prime} \oplus k_{56}^{\prime} \oplus k_{53}^{\prime} \oplus k_{49}^{\prime} \oplus k_{48}^{\prime}$
 $k_{6}^{\prime \prime}=k_{47}^{\prime} \oplus k_{46}^{\prime} \oplus k_{42}^{\prime} \oplus k_{39}^{\prime} \oplus k_{35}^{\prime} \oplus k_{34}^{\prime}$
 $k_{4}^{\prime \prime}=k_{45}^{\prime} \oplus k_{41}^{\prime} \oplus k_{40}^{\prime} \oplus k_{37}^{\prime} \oplus k_{36}^{\prime} \oplus k_{32}^{\prime}$
 $k_{2}^{\prime \prime}=k_{30}^{\prime} \oplus k_{27}^{\prime} \oplus k_{23}^{\prime} \oplus k_{22}^{\prime} \oplus k_{19}^{\prime} \oplus k_{18}^{\prime}$
 $k_{0}^{\prime \prime}=k_{59}^{\prime} \oplus k_{55}^{\prime} \oplus k_{51}^{\prime} \oplus k_{29}^{\prime} \oplus k_{28}^{\prime} \oplus k_{25}^{\prime} \oplus k_{24}^{\prime} \oplus k_{20}^{\prime} \oplus k_{17}^{\prime}$

