
Cryptanalysis of 6-round PRINCE using 2
Known Plaintexts

Shahram Rasoolzadeh and H̊avard Raddum

Simula Research Laboratory

Abstract. In this paper we focus on the PRINCE block cipher reduced
to 6 rounds, with two known plaintext/ciphertext pairs. We develop two
attacks on 6-round PRINCE based on accelerated exhaustive search,
one with negligible memory usage and one having moderate memory
requirements. The time complexities for the two attacks are 296.78 and
288.85, respectively. The memory consumption of the second attack is less
than 200MB and so is not a restricting factor in a real-world setting.

Keywords: lightweight cipher, PRINCE, exhaustive search

1 Introduction

PRINCE is a lightweight block cipher proposed by Borghoff et. al. at Asiacrypt
2012 [1] and is designed to be efficiently implemented in hardware, with minimal
latency and small chip area. It is designed to be a reflection cipher, which means
that decryption with one key is equal to encryption with another (related) key.
For PRINCE the relation between encryption/decryption keys is chosen to be
xor with a constant value α.

This novel design and the fact that there are prizes awarded for the best
cryptanalysis on PRINCE has attracted quite a bit of attention from cryptana-
lysts. There is a Prince Challenge website [2] where the best attacks and their
complexities are summarized.

In Table 1 we have listed previous published work on 6-round PRINCE.
In the known plaintext scenario there was only one result listed on the Prince

Table 1. Summary of cryptanalytic results on 6-round PRINCE

Mode Time Data Memory Technique Ref.

KP
2101 26 ? ?* [2]
296.8 2 negl. Acc. Exh. Search 3
288.9 2 224.6 Acc. Exh. Search 4

CP

264 216 216 Integral [4]
241 218.58 216 Integral [13]

232.9 214.9 � 227 Differential/Logic [12]
233.7 216 231.9 MITM [12]

* Attacks reported by Derbez, but not published yet.

2 Sh. Rasoolzadeh, H. Raddum

Challenge site which, to our knowledge, is unpublished. This paper aims to cast
some more light on cryptanalysis of 6-round PRINCE in the known plaintext
scenario.

In this work we present two attacks. The first attack is an accelerated ex-
haustive search attack, where we try to reject wrong guesses of the K1 key used
in PRINCEcore as quickly as possible, and to minimize the number of S-box
look-ups needed. The main insight here is that assuming a known state in the
middle of the cipher, only part of the unknown K1 needs to be guessed before
it is possible to identify a guess as incorrect.

The second attack is similar to the first in the sense that parts of K1 are
guessed. The difference is that we will create tables to store partial guesses, and
use the tables during the attack to quickly identify wrong guesses. We denote
this attack as accelerated exhaustive search with memory. However, it should
be noted that the memory requirements are less than 200MB, so the memory
complexity is not a limiting factor in practice. This attack has the fastest time
complexity, equivalent to 288.85 6-round PRINCE encryptions.

The paper is organized as follows. Section 2 presents a brief description of
PRINCE. In Sections 3 and 4 we outline the Accelerated Exhaustive Search
attacks to 6-round PRINCE with no memory and with memory, respectively.
Section 5 concludes the paper.

2 PRINCE Block Cipher

PRINCE [1] is an FX-constructed lightweight block cipher with block size of 64
bits and two keys that both have length 64 bits. One of the keys (K0) are used
for whitening and the other one (K1) is used as a round key for the core of the
structure (see Figure 1). Following [1], we denote the plaintext/ciphertext pair
of PRINCE by P/C, and the corresponding input/output of the PRINCEcore

function by P ′/C ′. These variables are related through the following equations.

P ′ = P ⊕K0 , C ′ = C ⊕K ′0, (1)

where K ′0 is the following linear mapping of K0

K ′0 = L(K0) = (K0 ≫ 1)⊕ (K0 � 63). (2)

P'
PRINCEcore

C'
P C

K1

K0 K0'

Fig. 1. PRINCE FX Construction

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 3

P'

K1

RC1

SB MC SB-1

K1

RC11

C'

K1

RC0

R1

K1

RC2

R2

K1

RC3

R3

K1

RC4

R4

K1

RC5

R5

K1

RC6

R6
-1

K1

RC7

K1

RC8

K1

RC9

K1

RC10

R7
-1 R8

-1 R9
-1 R10

-1

SB MC SR

K1RCi

SR-1 MC SB-1

K1 RCi

Ri
-1Ri

Fig. 2. PRINCE core

In the same way as in [14], we use one property of FX-constructed block
ciphers in our Accelerated Exhaustive Search attacks. This property is summa-
rized in the following lemma.

Lemma 1. [14] For a P/C pair and its corresponding P ′/C ′ in an FX block ci-
pher which uses a linear mapping L between whitening keys, the following equa-
tion holds:

L(P ′)⊕ C ′ = L(P)⊕ C (3)

The proof of this lemma can be found in [14].
The PRINCEcore is an AES-like block cipher that employs an involutive 12

rounds structure. PRINCEcore starts with two xors with the key and a round
constant, followed by 5 forward rounds, a middle layer, 5 backward rounds and
at the end, two more xors with a round constant and the key. Figure 2 shows
the schematic view of PRINCEcore.

The state is defined as a 4 × 4 matrix similar to AES, but in PRINCE,
instead of bytes the cells contain nibbles. Each round of PRINCEcore consists
of 5 operations: S-box, matrix multiplication, shift row, round constant addition
and key addition. These are described as follows.

– S-box (SB): Every nibble in the state is replaced using a 4-bit S-box.
– Matrix Multiplication (MC): The state is multiplied with an involutive

64× 64 binary matrix. More precisely, this large matrix can be expressed as
four 16× 16 matrices where each of these mixes four nibbles in one column
of the state.

– Shift Row (SR): Row i of the state is cyclically rotated by i positions to
the left (same as shift row operation in the AES).

– Round Constant Addition (RC): A bit-wise xor ing with a round constant
RCi , i = 0, ..., 11.

– Key Addition (AK): A bit-wise xor ing with the key K1.

The middle two rounds contain only three layers, SB, MC, SB−1 which
makes it an involutive keyless transformation. This transformation can also be
separated into four smaller transformations, one for each column in the state.

4 Sh. Rasoolzadeh, H. Raddum

In the backward rounds, the operations come in the reverse order of the
forward rounds, and SB and SR are replaced with SB−1 and SR−1. The round
constants are also different, but related to the round constants in the forward
rounds. The difference RCi⊕RC11−i, i = 0, ..., 11 is always equal to the constant
value α = 0xc0ac29b7c97c50dd.

As a result of this involutive structure of PRINCEcore, in implementations
decryption can use the same circuit as encryption. In decryption mode the key
only needs to be xored with α, i.e.

C ′ = PRINCEcore(P
′,K1)⇐⇒ P ′ = PRINCEcore(C

′,K1 ⊕ α). (4)

This property is called α-reflection.

3 Accelerated Exhaustive Key Search

In this section we will present an accelerated exhaustive key search on 6-round
PRINCE. Our way of doing this is faster than a simple exhaustive key search
that guesses a key, fully encrypts a known plaintext, and checks if it matches
the given ciphertext.

In the attack, for a known plaintext/ciphertext pair we guess one state in
the middle of the cipher and then by using (3) we find one candidate for K1.
Knowing K1 and one inner state for this pair of data allows us to find K0. We
can then check this candidate key of (K0,K1) on a second pair of known plain-
text/ciphertext. If (K0,K1) matches both plaintext/ciphertext pairs it should
be the correct key.

For simplifying our accelerated exhaustive search analysis, we define two
equivalent keys for PRINCEcore. These are

K ′1 = SR−1(MC(K1)),
K ′′1 = L(K1)⊕K1.

(5)

When we use K ′1, we must position the AK layer between the SB and MC
layers of the round to get an equivalent description of PRINCEcore (see Figure
3). Clearly, by recovering K ′1 we can recover K1.

By using K ′1 instead of K1, we can also expand the keyless middle rounds
by two SR and two MC operations. As shown in Figure 3, we denote the states
right before and after these keyless functions by X and X ′.

Like the accelerated exhaustive search attack in [14], for a given P and its
C we will guess the value of X and calculate the value of the corresponding X ′.
For each of the 264 X/X ′-values, we will guess some nibbles of K ′1 and then
partially decrypt/encrypt the X/X ′ to find some nibbles in P ′′ = P ′ ⊕K1 and
C ′′ = C ′ ⊕K1. The position of the found nibbles will be equal in P ′′ and C ′′.
Then we evaluate the value of the corresponding nibble in

F (P ′′, C ′′, P, C) = L(P ′′)⊕ C ′′ ⊕ (L(P)⊕ C)

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 5

SB MC SB-1

A H M P

E K O B

F L C I

G D J N

X X’

MC SR

K1'

MCSR-1

SB SB-1

MC

SR

MC

SR-1

SB SB-1

A H M P

E K O B

F L C I

G D J N

A H M P

E K O B

F L C I

G D J N

D J N P

D J N P

D J N P

D J N P

D J N P

D J N P

D J N P

D J N P

L

D J N P

E K O P

F L N P

G J N P

D J N P

E K O P

F L N P

G J N P

K1"

L(P) + C

Fig. 3. Accelerated Exhaustive Key Search for 6 round PRINCE

which gives us the value of the same nibble in K ′′1 , because

L(P ′′)⊕ C ′′ ⊕ (L(P)⊕ C)

= (L(P ′)⊕ C ′)⊕ (L(P)⊕ C)⊕ L(K1)⊕K1

= K ′′1 .

(6)

As K ′1 and K ′′1 has a linear relation, finding n bits of K ′′1 gives us n linear
equations in the K ′1 bits. All 64 linear relations between K ′1 and K ′′1 are listed in
Appendix A. Using the relation between K ′1 and K ′′1 means we do not need to
guess all bits of K ′1; some of them can be deduced from already guessed K ′1-bits
and known K ′′1 bits. In [14] all 64 bits of K ′1 must be guessed before it can be
verified or rejected, but with only six rounds we can reject partial guesses as
incorrect at an earlier stage and cut down on the search space.

There will be one value of K ′1 in average for each X/X ′ that will produce
P ′ and C ′ which will match the given right-hand side in (3). The value for P ′

computed for this K ′1 and X/X ′ is then used to deduce K0. So for each X/X ′

guess we can expect one (K0,K1) candidate. This candidate for the full key can
be tried on one other plaintext/ciphertext pair, and if it matches it should be
the correct key.

In our analysis we try to minimise the number of S-box look-ups needed, and
also try to find the most bits of K ′′1 as quickly as possible. The results show that
6-round PRINCE can be attacked with complexity equal to 296.78 encryptions
using only 2 known plaintexts. This is lower than the previous best attack on
6-round PRINCE in the known plaintext mode [12].

6 Sh. Rasoolzadeh, H. Raddum

3.1 Attack Procedure

The strategy of the attack is to minimize the number of total S-box look-ups
needed when we guess values for the K ′1 nibbles, and to reject wrong guesses as
soon as possible. Figure 3 shows the order for guessing the nibbles of K ′1 and
in the following we explain what happens in Figure 3, focusing on the forward
rounds. Because of the reflective property of PRINCE, the exact same compu-
tations done in these rounds can be done in the backward rounds.

Let Z be a binary matrix with 64 columns. Z is empty at first, but as we
start to guess values for the K ′1 nibbles we will fill in the rows of Z to store the
linear constraints we get. We thus build a system of linear equations

ZK ′1 = V,

where V is the value given by the current guess. Whenever we find bits of K ′′1 ,
we will add the linear relations between K ′1 and K ′′1 as rows to Z as well.

The nibbles of K ′1 will be guessed in alphabetical order, starting with A. The
letters in the other states of Figure 3 indicate which nibbles can be computed
after which guess. After D has been guessed, we have enough known nibbles to
go backwards through SR and MC in round 1 and find the input. As we have
already guessed the A-value of K ′1, we can add this to the top left nibble and
compute the input to the top left S-box in round 1. This is indicated with the
state at the bottom with a single D in this position.

At this point we have computed the value of nibble D in both P ′′ and C ′′,
so we can compute the part of F (P ′′, C ′′, P, C) that affects this nibble only, and
find a value for 3 bits of K ′′1 = (k′′63, . . . , k

′′
0). These are the 3 least significant

bits in this nibble, i.e. k′′62, k
′′
61 and k′′60. These three k′′ bits are linearly related

to the k′ bits with

k′′62 = k′62 ⊕ k′59 ⊕ k′55 ⊕ k′54 ⊕ k′51 ⊕ k′50,
k′′61 = k′62 ⊕ k′61 ⊕ k′57 ⊕ k′54 ⊕ k′50 ⊕ k′49,
k′′60 = k′61 ⊕ k′60 ⊕ k′57 ⊕ k′56 ⊕ k′52 ⊕ k′49.

So with the current guess of k′ bits the F (P ′′, C ′′, P, C) function will give us
three extra linear constraints in addition to the 16 guessed ones, for a total of
19 independent linear equations in the 64 K ′1 variables. All of these are added
to Z, so after guessing 16 bits we have 19 linear constraints on K ′1.

Next, we guess the four bits of E, which allows us to compute another 4 bits
of K ′′1 . Eight new linear equations get added to Z. After guessing F we find
another 4 bits of K ′′1 and can add another 8 linear equations to Z. Now it’s time
to guess G, but three of the bits in G are actually determined by the system
ZK ′1 = V that we have built so far. Hence there is only one bit left to guess
in G, but we still earn four new linear equations from the K ′′1 bits that become
known after fixing the value for G.

All of this is summarized in the first rows of Table 2, where we list the number
of bits to guess in each nibble, the indices of K ′′1 -bits that become known and
the rank of Z after each guess.

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 7

Table 2. Details of Attack Procedure

Nibble Number of Number Index of found matching p rank(Z)
of K′1 guessed bits of SB bits from K′′1 bits

A 4 1 – – 1 4

B 4 1 – – 1 8

C 4 1 – – 1 12

D 4 2 62, 61 ,60 – 1 19

E 4 2 59, 58, 57, 56 – 1 27

F 4 2 55, 54, 53, 52 – 1 35

G 1 2 51, 50, 49, 48 – 1 40

H 4 1 – – 1 44

I 4 1 – – 1 48

J 4 2 34, 33, 32 k′′34, k
′′
33, k

′′
32 2−3 52

1 47, 46, 45, 44 k′′47 ⊕ k′′46 2−1 55

K 1 1 43, 42, 41, 40 k′′43 ⊕ k′′42 2−1 59

L 0 1 39, 38, 37, 36, 35 k′′39, k
′′
38 ⊕ . . .⊕ k′′35 2−2 62

2 1

M 1 1 – – 1 63

N 1 2 31, 30, 29, 28 k′′31, k
′′
30, k

′′
29, k

′′
28 2−4 64

1 22, 21, 20, k′′22, k
′′
21, k

′′
20 2−3 64

1 19, 18, 17, 16 k′′19, k
′′
18, k

′′
17, k

′′
16 2−4 64

O 0 1 27, 26, 25, 24, 23 k′′27, k
′′
26, k

′′
25, k

′′
24, k

′′
23 2−5 64

1 1

P 0 2 15, 14, 13, 12 k′′15, k
′′
14, k

′′
13, k

′′
12 2−4 64

1 11, 10, 9, 8 k′′11, k
′′
10, k

′′
9 , k
′′
8 2−4 64

1 7, 6, 5, 4 k′′7 , k
′′
6 , k
′′
5 , k
′′
4 2−4 64

1 3, 2, 1, 0, 63 k′′3 , k
′′
2 , k
′′
1 , k
′′
0 , k
′′
63 2−5 64

We now need to guess all of H, I and J before being able to produce more
K ′′1 bits. After fixing J it turns out that some of the K ′′1 -bits that gives extra
equations are linearly dependent with the equations currently in Z. The depen-
dencies function as a filter, allowing us to reject the current guess as wrong if we
get an inconsistent system when adding the equations to Z. The k′′’s involved in
the dependent linear equations are listed in the column labelled ”matching bits”
in Table 2, and the probability that the current guess is not rejected is listed in
the column named p.

Table 2 shows the details of what happens when the remaining nibbles are
guessed. Note that when the final undetermined bit in nibble N is guessed, Z
gets full rank and all of K ′1 is determined. Remaining nibbles will only be used
to verify/reject the current guess. If a guess gets to the end of Table 2 without
being rejected, we will calculate P ′ and C ′ from X/X ′ and this guess and check
for a match in (3). Only a single K1 is expected to remain after this matching.

8 Sh. Rasoolzadeh, H. Raddum

3.2 Complexity

Similarly to [14] and [15] we will focus on the number of S-box look-ups to
estimate the complexity of the attack, where we equate 16 × 6 = 26.58 S-box
look-ups with one 6-round PRINCE encryption.

Let sY be the number of S-box look-ups we can do after guessing nibble Y .
These numbers are listed in the third column of Table 2 for all nibbles A, . . . , P .
Note that after some of the nibbles we do not execute all possible S-box look-
ups right away. Using nibble J as an example, we can evaluate 3 S-boxes after
guessing this nibble, but we only do two of them first. The reason for this is
that after these two S-boxes are executed we get some K ′′1 bits giving dependent
equations to be used as a filter for the current guess. In most cases the last S-box
look-up does not need to be done because the guess can already be rejected as
wrong, hence we save in the complexity. For nibbles L,N,O and P we do the
same, and only execute the minimal number needed to filter out wrong guesses.

Let pY be the probability that the current guess is not rejected after guessing
nibble Y (second to last column in Table 2) and gY be the number of bits to guess
in nibble Y (second column in Table 2). We will store the outputs of evaluated
S-boxes during the attack, and only recompute them when a new guess is made
that affects them. The expression for the total number of S-box look-ups (both
forward and backward rounds) needed to do in the attack is then

2× 2gA(sA + pA2gB (sB+ . . .+ pI2gJ (sJ1
+ pJ1

(sJ2
+ pJ2

(. . .

(sP3
+ pP3

(sP4
)) . . .))))).

(7)

Plugging in the values in Table 2 in the expression, it evaluates to 239.36.
This guessing needs to be done for each of the 264 values for X/X ′. Trading
26.58 S-box look-ups for one encryption we get the final time complexity for the
attack to be 296.78.

4 Accelerated Exhaustive Key Search Using Memory

In this section we will present an attack similar to the one in the previous section.
The attack in this section introduces a time/memory trade-off, and makes the
attack faster by using tables of precomputed data. Our technique for this is to do
4 separate phases of key guessing for each X/X ′, and save the results in separate
tables. The tables have partially overlapping information, and we match data
from the tables to find unique candidates for K ′1.

The 4 subsets of K ′1 and their corresponding found key bits from K ′′1 are
shown in Figure 4. We denote them by KC1, KC2, KC3, and KC4.

Guessing the values of the K ′1 nibbles affecting the i-th column of K ′′1 is
similar to what we did in the previous section for guessing the A, . . . , G nibbles
and finding teh 15 corresponding bits of K ′′1 . The only difference is that when
we guess E,F and G we only do one S-box look-up for the related nibbles in
round 1. There are 28 bits of K ′1 in each KCi, but remember that 3 of the bits in

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 9

K1'

KC1

K1"

KC2 KC3 KC4

Fig. 4. 4 subsets of K′1 and their corresponding key bits from K′′1 .

K ′1 can be determined by the other 25 and the bits we find in K ′′1 . So the time
complexity for finding the K ′′1 bits for all values of the 25 independent bits in
the K ′1 subset in KCi is equal to

2× 24(1 + 24(1 + 24(1 + 24(2 + 24(1 + 24(1 + 21(1))))))) = 226.62 (8)

S-box look-ups. It should be mentioned that in KC4, the 25 bits of K ′1 only
gives 14 bits from K ′′1 due to the L(.) function used in the FX-construction of
PRINCE.

The attack procedure is similar to the attack in previous section. The dif-
ference is the way we find K ′1 candidates related to a guessed value of X/X ′.
Assuming known X/X ′, we will separately create 3 tables T2, T3 and T4 where
Ti contains all information about 225 values of (K ′Ci,K

′′
Ci) pairs in KCi.

4.1 Constructing Tables

Every KCi has 28 bits from K ′1 and 15 bits from K ′′1 (14 bits in KC4). However,
3 bits in the last guessed nibble from K ′1 get determined from the 11 first found
bits of K ′′1 . It means that for every guessed value of 25 bits of K ′1, we find 15 or
14 bits of K ′′1 which gives a total of 40 or 39 independent linear equations in the
K ′1 bits.

Both KC1 and KC3 has 40 information bits about K1, but the rank of KC1∪
KC3 is 60. It means KC1 and KC3 have 40 + 40− 60 = 20 common information
bits, which we denote by IC1,C3

(8 of the common information bits are from
overlapping guesses in K ′1).

When we create T3, we will calculate v1 = IC1,C3 for each of the (K ′C3,K
′′
C3)

pairs in KC3 and just put this pair in the index of v1. So on average, each index
of T3 will have 225−20 = 32 different values of (K ′C3,K

′′
C3) pairs. For reducing

the amount of used memory, it is not necessary to save all of the 40 bits in KC3.
We only need to save the other 40− 20 = 20 bits not in common with KC1. In
this way, the amount of used memory for storing T3 is 20× 225 bits.

The rank of KC1∪KC3 is 60, there are 40 bits in KC2 and KC1∪KC2∪KC3

has full rank (64). Then KC1 ∪KC3 and KC2 have 60 + 40 − 64 = 36 common
information bits which we denote by I(C1,C3),C2.

10 Sh. Rasoolzadeh, H. Raddum

For the second table T2, we will calculate (v2, v3) = I(C1,C3),C2 for each of the
(K ′C2,K

′′
C2) pairs, where |v2| = 25 and |v3| = 11, and put this pair in the index

of v2. Again it is not necessary to save all of the 40 bits in KC2. We only need
to save v3 and the other 40− 36 = 4 bits, v4, not in common with (KC1,KC3).
So the amount of memory used for storing T2 is 15× 225 bits.

Creating T4 is easier. We will just save the 14 bits of K ′′C4 (v6) in the index
of the related K ′C4 (v5). So the memory needed for storing T4 is 14× 225 bits.

Using the three precomputed tables we will match values from the KCis for
each of the 225 KC1-values. In the following we will explain how to use the tables
and do the matching in detail. The procedure will be precisely summarized in
Algorithm 1.

4.2 Attack Procedure

After creating the three tables, for every guess of K ′C1 we will find its corre-
sponding K ′′C1 and then compute the related 20 common information bits with
KC3, v′1 = IC1,C3

. By retrieving T3[v′1], we will get 32 candidates for KC1 and
KC3. For each of these candidates we will compute their 36 common informa-
tion bits with KC2, (v′2, v

′
3) = I(C1,C3),C2

. Then we look up T2[v′2] which has two
elements, 11 bits of v3 and 4 bits of v4. The v′3 value must be equal to the v3
found in T2. If this matching happens, we will use v4 to learn all 64 bits of K1.

Having a candidate for (KC1,KC3,KC2), we will compute 25 bits v′5 = K ′C4

and 14 bits v′6 = K ′′C4 for this candidate. Finally we check if T4[v′5] = v′6. If the
values do not match the candidate (KC1,KC3,KC2) can not give the right K1.

As there were 32 candidates after the T3 look-up, 11 matching bits in the T2
look-up and 14 matching bits for T4, there will remain only 225 × 25 × 2−11 ×
2−14 = 25 candidates for KC1 that will match the other key subsets KCi. This
gives 32 candidates for K1. We will decrypt/encrypt X/X ′ using each of these K1

candidates to reach P ′/C ′. Checking for equality of (3) will give one candidate
for K1. We can then find the corresponding K0 for this value of K1, and by
checking (K0,K1) on another plaintext/ciphertext pair we will find the correct
key.

4.3 Complexity

The memory complexity of this attack is saving T2, T3 and T4 which needs

15× 225 + 5× 227 + 14× 225 = 49× 225 = 230.61 (9)

bits which is equal to 224.61 PRINCE blocks.
Regarding the time complexity, for each guess of X/X ′ pair, we create 3

tables and also find K ′′C1 for each of the 225 K ′C1 candidates. These calculations
needs 4 × 226.62 S-box look-ups (tSB). For each guess of K ′C1 we do a look-up
in T3 (tT3), which gives us 25 candidates. For each candidate we do a call for T2
(tT2). After matching in T2, the number of candidates gets reduced by fraction

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 11

Algorithm 1 Accelerated exhaustive search attack using memory

for X ∈ F64
2 do

Calculate value of X ′ related to X;
for K′C3 ∈ F25

2 do
Find the 15 bits K′′C3;
Calculate the 20 information bits v1 of KC3 shared by KC1;
Store the other 20 information bits of KC3 in T3[v1];

end for
for K′C2 ∈ F25

2 do
Find the 15 bits of K′′C2;
Calculate the 36 information bits (v2, v3) of KC2 shared by (KC1,KC3), |v2| =

25, |v3| = 11;
Let v4 be the 4 information bits of KC2 not in common with (KC1,KC3);
Store (v3, v4) in T2[v2];

end for
for K′C4 ∈ F25

2 do
Find the 14 bits of K′′C4;
Store K′′C4 in T4[K′C4];

end for
for K′C1 ∈ F25

2 do
Find K′′C1;
Calculate v′1, the 20 information bits of KC1 shared with KC3;
Find matching candidates (KC1,KC3) from T3[v′1];
for every candidate (KC1,KC3) do

Calculate (v′2, v
′
3), the 36 information bits of (KC1,KC3) shared with KC2;

Find T2[v′2] = (v3, v4);
if v′3 = v3 then

Calculate v′5 = K′C4 and v′6 = K′′C4 from (KC1,KC2,KC3);
Find T4[v′5] = v6;
if v′6 = v6 then

Calculate value P ′ and C′ using X/X ′ and K1;
if (3) holds then

Calculate value of K0 from K1 and P ′;
Check (K0,K1) on second P/C pair;
if (K0,K1) matches second P/C pair then

(K0,K1) is the secret key;
end if

end if
end if

end if
end for

end for
end for

of 2−11 which means time for the remaining part of the attack is negligible. So
the total time complexity of attack is approximately

264 × (228.62tSB + 225(tT3 + 25tT2)). (10)

12 Sh. Rasoolzadeh, H. Raddum

We have implemented the tables and measured the times to do look-ups
in them as well as the time to do one S-box look-up. We have found that
tT2 ≈ 1.1626 × tSB and tT3 ≈ 32 × tT2. Inserting this into (10) we get the
total time complexity of our attack to be about 295.44 S-box look-ups which can
be translated to 288.85 6-round PRINCE encryptions.

5 Conclusions

In this paper we have analysed PRINCE in the limited setting of a 6-round
version using two known plaintext/ciphertext pairs. We have shown that in this
scenario it is possible to reject a wrong guess of K ′1 after guessing 35 of the 64
unknown bits when we know the middle states X and X ′. A basic guess-and-
determine attack where we also try to minimize the number of S-box look-ups
needed will then succeed with time complexity equivalent to 296.78 encryptions.

Trading some of the time with memory, we have shown how to store all
possible values for parts of K ′1 in tables that will speed up the identification
of wrong guesses. Contrary to many other time/memory trade-off attacks, the
memory needed is quite modest and not a limiting factor in practice. This attack
has a time complexity of 288.85 encryptions, and so improves on the previous
attack that was done on 6-round PRINCE in the known plaintext setting.

References

1. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knežević, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen,
and T. Yalçın. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications, ASIACRYPT 2012, LNCS, vol. 7658, pp. 208 – 225, Springer 2012.

2. The PRINCE Team. PRINCE Challenge, https://www.emsec.rub.de/research/
research_startseite/prince-challenge/.

3. F. Abed, E. List, and S. Lucks. On the Security of the Core of PRINCE Against
Biclique and Differential Cryptanalysis, IACR Cryptology ePrint Archive, Report
2012/712, 2012.

4. J. Jean, I. Nikolić, T. Peyrin, L. Wang, and S. Wu. Security Analysis of PRINCE,
Fast Software Encryption 2013, LNCS, vol. 8424, pp. 92 – 111, Springer 2013.

5. H. Soleimany, C. Blondeau, X. Yu, W. Wu, K. Nyberg, H. Zhang, L. Zhang, and Y.
Wang. Refection Cryptanalysis of PRINCE-like Ciphers, Fast Software Encryption
2013, LNCS, vol. 8424, pp. 71 – 91, Springer 2013.

6. A. Canteaut, M. Naya-Plasencia, and B. Vayssiére. Sieve-in-the-Middle Improved
MITM Attacks, CRYPTO 2013, LNCS, vol. 8042, pp. 222 – 240, Springer 2013.

7. L. Li, K. Jia, and X. Wang. Improved Meet-in-the-Middle Attacks on AES-192 and
PRINCE, IACR Cryptology ePrint Archive, Report 2013/573, 2013.

8. A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia1, and J.-R. Reinhard. Multi-
ple Differential Cryptanalysis of Round-Reduced PRINCE, Fast Software Encryp-
tion 2014, LNCS, vol. 8540, pp. 591 – 610, Springer 2014.

9. P.-A. Fouque, A. Joux, and C. Mavromati. Multi-user collisions: Applications to
Discrete Logarithm, Even-Mansour and PRINCE, ASIACRYPT 2014, LNCS, vol.
8873, pp. 420 – 438, Springer 2014.

https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/

Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts 13

10. Itai Dinur Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with
Applications to PRINCE and PRIDE, EUROCRYPT 2015, LNCS, vol. 9056, pp.
231 – 253, Springer 2015.

11. G. Zhao, B. Sun, C. Li, and J. Su. Truncated Differential Cryptanalysis of PRINCE,
Security and Communication Networks, vol. 8, pp. 2875 – 2887, Wiley 2015.

12. P. Derbez, and L. Perrin. Meet-in-the-Middle Attacks and Structural Analysis of
Round-Reduced PRINCE, Fast Software Encryption 2015, LNCS, vol. 9054, pp.
190 – 216, Springer 2015.

13. P. Morawiecki. Practical Attacks on the Round-reduced PRINCE, IACR Cryptology
ePrint Archive, Report 2015/245, 2015.

14. Sh. Rasoolzadeh and H. Raddum. Cryptanalysis of PRINCE with Minimal Data,
AfricaCrypt 2016, LNCS, vol. —-, pp. – – –, Springer 2016.

15. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the
Full AES, ASIACRYPT 2011, LNCS, vol. 7073, pp. 344 – 371, Springer 2011.

A Linear Relations Between K′′ and K′

k′′63 = k′59 ⊕ k′55 ⊕ k′51 ⊕ k′28 ⊕ k′24 ⊕ k′20 k′′62 = k′62 ⊕ k′59 ⊕ k′55 ⊕ k′54 ⊕ k′51 ⊕ k′50
k′′61 = k′62 ⊕ k′61 ⊕ k′57 ⊕ k′54 ⊕ k′50 ⊕ k′49 k′′60 = k′61 ⊕ k′60 ⊕ k′57 ⊕ k′56 ⊕ k′52 ⊕ k′49
k′′59 = k′60 ⊕ k′56 ⊕ k′52 ⊕ k′47 ⊕ k′43 ⊕ k′35 k′′58 = k′47 ⊕ k′46 ⊕ k′43 ⊕ k′42 ⊕ k′38 ⊕ k′35
k′′57 = k′46 ⊕ k′42 ⊕ k′41 ⊕ k′38 ⊕ k′37 ⊕ k′33 k′′56 = k′44 ⊕ k′41 ⊕ k′37 ⊕ k′36 ⊕ k′33 ⊕ k′32
k′′55 = k′44 ⊕ k′36 ⊕ k′32 ⊕ k′31 ⊕ k′23 ⊕ k′19 k′′54 = k′31 ⊕ k′30 ⊕ k′26 ⊕ k′23 ⊕ k′19 ⊕ k′18
k′′53 = k′30 ⊕ k′29 ⊕ k′26 ⊕ k′25 ⊕ k′21 ⊕ k′18 k′′52 = k′29 ⊕ k′25 ⊕ k′24 ⊕ k′21 ⊕ k′20 ⊕ k′16
k′′51 = k′24 ⊕ k′20 ⊕ k′16 ⊕ k′15 ⊕ k′7 ⊕ k′3 k′′50 = k′15 ⊕ k′14 ⊕ k′10 ⊕ k′7 ⊕ k′3 ⊕ k′2
k′′49 = k′14 ⊕ k′13 ⊕ k′10 ⊕ k′9 ⊕ k′5 ⊕ k′2 k′′48 = k′13 ⊕ k′9 ⊕ k′8 ⊕ k′5 ⊕ k′4 ⊕ k′0
k′′47 = k′47 ⊕ k′43 ⊕ k′39 ⊕ k′8 ⊕ k′4 ⊕ k′0 k′′46 = k′47 ⊕ k′43 ⊕ k′42 ⊕ k′39 ⊕ k′38 ⊕ k′34
k′′45 = k′45 ⊕ k′42 ⊕ k′38 ⊕ k′37 ⊕ k′34 ⊕ k′33 k′′44 = k′45 ⊕ k′44 ⊕ k′40 ⊕ k′37 ⊕ k′33 ⊕ k′32
k′′43 = k′44 ⊕ k′40 ⊕ k′32 ⊕ k′31 ⊕ k′27 ⊕ k′19 k′′42 = k′31 ⊕ k′30 ⊕ k′27 ⊕ k′26 ⊕ k′22 ⊕ k′19
k′′41 = k′30 ⊕ k′26 ⊕ k′25 ⊕ k′22 ⊕ k′21 ⊕ k′17 k′′40 = k′28 ⊕ k′25 ⊕ k′21 ⊕ k′20 ⊕ k′17 ⊕ k′16
k′′39 = k′28 ⊕ k′20 ⊕ k′16 ⊕ k′15 ⊕ k′11 ⊕ k′3 k′′38 = k′15 ⊕ k′14 ⊕ k′11 ⊕ k′10 ⊕ k′6 ⊕ k′3
k′′37 = k′14 ⊕ k′10 ⊕ k′9 ⊕ k′6 ⊕ k′5 ⊕ k′1 k′′36 = k′12 ⊕ k′9 ⊕ k′5 ⊕ k′4 ⊕ k′1 ⊕ k′0
k′′35 = k′63 ⊕ k′55 ⊕ k′51 ⊕ k′12 ⊕ k′4 ⊕ k′0 k′′34 = k′63 ⊕ k′62 ⊕ k′58 ⊕ k′55 ⊕ k′51 ⊕ k′50
k′′33 = k′62 ⊕ k′61 ⊕ k′58 ⊕ k′57 ⊕ k′53 ⊕ k′50 k′′32 = k′61 ⊕ k′57 ⊕ k′56 ⊕ k′53 ⊕ k′52 ⊕ k′48
k′′31 = k′56 ⊕ k′52 ⊕ k′48 ⊕ k′31 ⊕ k′27 ⊕ k′23 k′′30 = k′31 ⊕ k′27 ⊕ k′26 ⊕ k′23 ⊕ k′22 ⊕ k′18
k′′29 = k′29 ⊕ k′26 ⊕ k′22 ⊕ k′21 ⊕ k′18 ⊕ k′17 k′′28 = k′29 ⊕ k′28 ⊕ k′24 ⊕ k′21 ⊕ k′17 ⊕ k′16
k′′27 = k′28 ⊕ k′24 ⊕ k′16 ⊕ k′15 ⊕ k′11 ⊕ k′7 k′′26 = k′15 ⊕ k′11 ⊕ k′10 ⊕ k′7 ⊕ k′6 ⊕ k′2
k′′25 = k′13 ⊕ k′10 ⊕ k′6 ⊕ k′5 ⊕ k′2 ⊕ k′1 k′′24 = k′13 ⊕ k′12 ⊕ k′8 ⊕ k′5 ⊕ k′1 ⊕ k′0
k′′23 = k′63 ⊕ k′59 ⊕ k′51 ⊕ k′12 ⊕ k′8 ⊕ k′0 k′′22 = k′63 ⊕ k′62 ⊕ k′59 ⊕ k′58 ⊕ k′54 ⊕ k′51
k′′21 = k′62 ⊕ k′58 ⊕ k′57 ⊕ k′54 ⊕ k′53 ⊕ k′49 k′′20 = k′60 ⊕ k′57 ⊕ k′53 ⊕ k′52 ⊕ k′49 ⊕ k′48
k′′19 = k′60 ⊕ k′52 ⊕ k′48 ⊕ k′43 ⊕ k′39 ⊕ k′35 k′′18 = k′46 ⊕ k′43 ⊕ k′39 ⊕ k′38 ⊕ k′35 ⊕ k′34
k′′17 = k′46 ⊕ k′45 ⊕ k′41 ⊕ k′38 ⊕ k′34 ⊕ k′33 k′′16 = k′45 ⊕ k′44 ⊕ k′41 ⊕ k′40 ⊕ k′36 ⊕ k′33
k′′15 = k′44 ⊕ k′40 ⊕ k′36 ⊕ k′11 ⊕ k′7 ⊕ k′3 k′′14 = k′14 ⊕ k′11 ⊕ k′7 ⊕ k′6 ⊕ k′3 ⊕ k′2
k′′13 = k′14 ⊕ k′13 ⊕ k′9 ⊕ k′6 ⊕ k′2 ⊕ k′1 k′′12 = k′13 ⊕ k′12 ⊕ k′9 ⊕ k′8 ⊕ k′4 ⊕ k′1
k′′11 = k′63 ⊕ k′59 ⊕ k′55 ⊕ k′12 ⊕ k′8 ⊕ k′4 k′′10 = k′63 ⊕ k′59 ⊕ k′58 ⊕ k′55 ⊕ k′54 ⊕ k′50
k′′9 = k′61 ⊕ k′58 ⊕ k′54 ⊕ k′53 ⊕ k′50 ⊕ k′49 k′′8 = k′61 ⊕ k′60 ⊕ k′56 ⊕ k′53 ⊕ k′49 ⊕ k′48
k′′7 = k′60 ⊕ k′56 ⊕ k′48 ⊕ k′47 ⊕ k′39 ⊕ k′35 k′′6 = k′47 ⊕ k′46 ⊕ k′42 ⊕ k′39 ⊕ k′35 ⊕ k′34
k′′5 = k′46 ⊕ k′45 ⊕ k′42 ⊕ k′41 ⊕ k′37 ⊕ k′34 k′′4 = k′45 ⊕ k′41 ⊕ k′40 ⊕ k′37 ⊕ k′36 ⊕ k′32
k′′3 = k′40 ⊕ k′36 ⊕ k′32 ⊕ k′27 ⊕ k′23 ⊕ k′19 k′′2 = k′30 ⊕ k′27 ⊕ k′23 ⊕ k′22 ⊕ k′19 ⊕ k′18
k′′1 = k′30 ⊕ k′29 ⊕ k′25 ⊕ k′22 ⊕ k′18 ⊕ k′17 k′′0 = k′59 ⊕ k′55 ⊕ k′51 ⊕ k′29 ⊕ k′28 ⊕ k′25 ⊕ k′24 ⊕ k′20 ⊕ k′17

	Cryptanalysis of 6-round PRINCE using 2 Known Plaintexts
	Introduction
	PRINCE Block Cipher
	Accelerated Exhaustive Key Search
	Attack Procedure
	Complexity

	Accelerated Exhaustive Key Search Using Memory
	Constructing Tables
	Attack Procedure
	Complexity

	Conclusions
	Linear Relations Between K'' and K'

