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Abstract. There are many kinds of attacks that can be mounted on
block ciphers: differential attacks, impossible differential attacks, trun-
cated differential attacks, boomerang attacks. We consider generic differ-
ential attacks used as distinguishers for various types of Feistel ciphers:
they allow to distinguish a random permutation from a permutation gen-
erated by the cipher. These attacks are based on differences between the
expectations of random variables defined by relations on the inputs and
outputs of the ciphers. Sometimes, one has to use the value of the vari-
ance as well. In this paper, we will provide a tool that computes the exact
values of these expectations and variances. We first explain thoroughly
how these computations can be carried out by counting the number of
solutions of a linear systems with equalities and non-equalities. Then we
provide the first applications of this tool. For example, it enabled to dis-
cover a new geometry in 4-point attacks. It gave an explanation to some
phenomena that can appear in simulations when the inputs and outputs
have a small number of bits.

Key words: Generic attacks on Feistel type schemes, pseudo-random permuta-
tions, differential cryptanalysis

1 Introduction

Many symmetric block ciphers and hash functions are based on Feistel-type
constructions. Classical Feistel ciphers have been intensively studied since the
seminal work by Luby and Rackoff [21]. These ciphers allow to construct pseudo-
random permutations from 2n bits to 2n bits using random round functions from
n bits to n bits. This construction is used in DES [1, 2]. With generalized Feistel
schemes, it is possible to construct pseudo-random functions from kn bits to kn
bits using different kinds of round functions. When the round functions are from
(k − 1)n bits to n bits, we obtain an unbalanced Feistel scheme with contract-
ing functions. These contracting ciphers are studied in [23, 28]. When the round
functions are from n bits to (k − 1)n bits, we have unbalanced Feistel schemes



with expanding functions, see [16, 29, 31, 33]. MARS [10] has an expanding Feis-
tel structure. Alternating Feistel schemes alternate contracting and expanding
rounds. They are described in [4] and are used in the BEAR/LION block ci-
pher [4]. There are also type-1, type-2 and type-3 Feistel schemes, see also [14,
35]. Type-1 Feistel schemes are used in CAST-256 [3] and type-2 Feistel schemes
in RC-6 and CLEFIA [30, 32].

Many different kinds of attacks have been mounted on Feistel-type block
ciphers. Differential cryptanalysis [6] exploits the fact that characteristics or
differentials on the input will produce a given difference on the output more
frequently with a scheme than with a random permutation. Whereas ordinary
differential cryptanalysis analyzes the full difference between two texts, the trun-
cated variant [20] considers differences that are only partially determined. Im-
possible cryptanalysis [5, 19] uses impossible differentials:a given difference on
the input will imply that a particular difference will never happen on the output
whereas it can occur with a non negligible probability with a random permuta-
tion. Impossible differential attacks on generalized Feistel schemes are studied
in [9] when there is no condition on the round functions, and in [17, 18, 34] when
the round functions are permutations. Impossible boomerang attacks on gener-
alized Feistel ciphers, when the round functions are permutation, are described
in [11]. Also Meet-in-the-middle attacks on Type-2 and Type-3 Feistel ciphers
are described in [13].

Generic attacks on Feistel-type ciphers are (or make use of) distinguishers
that allow to determine the maximal numbers of rounds of the scheme needed to
distinguish a permutation computed by the scheme from a random permutation.
Depending on the number of rounds, it is possible to find some relations between
the input and output variables. These relations hold conditionally to equalities on
some internal variables due to the structure of the Feistel scheme. The attacks
consist of using m plaintext/ciphertexts pairs and in counting the number of
tuples of these pairs that satisfy the relations between the input and output
variables. Then, it is possible to compare N , the number of such tuples obtained
with a random permutation, with Ñ , the corresponding number for the studied
scheme. The attacks are successful, i.e. we are able to distinguish a permutation
generated by a Feistel-type scheme from a random permutation, in three cases.
The first case occurs when Ñ is significantly greater than N . For example,
attacks on unbalanced Feistel schemes with expanding functions used the fact
that Ñ is significantly greater than N [29, 27, 33]. The second case happens when
Ñ is significantly smaller than N (this is the case for impossible attacks). For
the third case, N and Ñ have the same order, but the difference |E(Ñ )−E(N )|
is larger than both standard deviations σ(N ) and σ(Ñ ), where E denotes the
expectation function. In that case, the attacks work thanks to the Chebychev
formula, which states that for any random variable X, and any α > 0, we
have P (|X − E(X)| ≥ ασ(x)) ≤ 1

α2 . Using this formula, it is then possible to

construct a prediction interval for Ñ for example, in which future computations
will fall, with a good probability. It is important to notice that for our attacks, it
is enough to compute E(N ), E(Ñ ) and σ(N ). Suppose that for a given number
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of rounds, |E(N ) − E(Ñ )| ≥ σ(N ). Then we have two cases. If σ(Ñ ) behaves
like σ(Ñ ) or is smaller than σ(N ), we will have |E(N )−E(Ñ )| ≥ max(σN , σÑ )

and the attack is successful. If σ(Ñ ) is greater than σ(N ), this will lead to an
attack by the variance for the same number of rounds. In order to compute
σ(N ), we need to take into account the fact that the structures obtained from
the m plaintext/ciphertext tuples are not independent. However, their mutual
dependence is very small. To compute σ(N ), we will use this well-known formula,
see [12], p.97, that we will call the “Covariance Formula”: if x1, . . . xn, are random
variables, then if V represents the variance, we have V (

∑n
i=1 xi) =

∑n
i=1 V (xi)+

2
∑n−1
i=1

∑n
j=i+1

[
E(xi xj)−E(xi)E(xj)

]
. The computation of standard deviation

and the use of the covariance formula usually allow to attacks more rounds than
other attacks. This technique has been used for classical Feistel schemes in [26]
for contracting Feistel schemes in [28] and for generalized Feistel schemes in [22].

Nevertheless, the computation of the expectation and the variance is very
tedious and in all the previously mentioned papers, the calculation has to be
done for each case. Moreover, most of the time, it is not possible to give all the
details and only estimations are provided. In order to get these estimates, some
hypothesis have to be done on the dependency of random variables. This does
not always fit exactly to simulations. Very often, the simulations confirm the
theoretical analysis, but for some cases, it is not exactly the case. Sometimes,
the simulations show that some attacks work better than expected. In a few
cases, it is the contrary. This is probably due to the fact that computations are
not complete since they are very laborious. Also, in previous computations, the
authors used a O function. For some small values of n, the exact value of this O
functions can bring important changes. For example,with small values of n, it is
possible to obtain attacks with a better complexity, or to attack more rounds, as
we will see in this paper. We emphasize that in this paper, we will provide exact
values, unlike in [7, 8] where the authors provide estimates for several kinds of
statistical attacks.

In this paper, we present a tool that allows to compute the exact values of
expectations and variances of the random variables defined by the attacks. We
consider Known Plaintext Attacks (KPA, but the tool can be adapted to Non
Adaptive Chosen Plaintext Attacks (NCPA) as well. We prove formulas for the
expectation and the variance. From the formulas, we show that the computations
of these expectations and variances are based on finding the number of solutions
of linear systems on equalities and non-equalities. Then a computer program
calculates this number of solutions.
The link to this computer program is:
http://www.voltee.com/SitePerso/publications.html
As we will see on examples of attacks, this program can also help to detect
new geometries for attacks. It is also adapted to most types of attacks since it
can count the number of solutions of any linear system of equalities and non-
equalities. In particular, this program can be used on differential attacks, and
impossible differential attacks. The paper is organized as follows. In section 2,
we introduce the notation and definition. In Sections 3 and 4, we prove how
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to do the computations by finding the number of solutions of linear systems of
equalities and non-equalities. In these sections, we provide formulas that give the
expectation and the standard deviation, once we know the number of solutions
of the systems related to the attack. The notation given here will be used in
the sequel. The algorithm used to compute the number of solutions is given
in Section 5. In Section 6, we present the exact values for the expectations and
variances that we have obtain for several example of attacks and use these results
to show that the attacks are successful. Section 7 contains the conclusion and
perspectives.

2 Notation

In our attacks, we want to distinguish a random permutation from kn bits to
kn bits from a permutation produced by a Feistel-type ciphers using random
functions from n bits to n bits. There are several possibilities. For example, with
a classical Feistel scheme, at each round, only one function from n bits to n bits
is used. For an expanding Feistel scheme, at each round, we need k − 1 round
functions from n bits to n bits. In our study, we will consider that we use only
one round function per round. For example, for one usual round of an expanding
Feistel scheme, we will introduce k − 1 rounds in our computations. We now
introduce the notation.

– k and n are integers greater or equal to 2.
– N = 2n.
– J = {0, 1}kn. J is ordered in a natural way. card(J) = |J | = Nk.
– For a and b, δab = 0 if a 6= b and δaa = 1 (Kronecker symbol).
– (a1, a2, . . . , ap) 6=∈ Ep means that the ai values are pairwise distinct elements

of E. We sometimes denote by a = (a1, . . . , ap) when there is no ambiguity.
– Bkn denotes the set of bijections from J to J . We have |Bkn| = 2kn! = (Nk)!
– Ψd is the set of the Feistel Schemes (for a certain type: balanced Feistel

scheme, unbalanced Feistel scheme with expanding functions, generalized
Feistel scheme of type 1, 2 or 3) with d turns, where each turn involves
exactly one function from n bits to n bits. For example, with a balanced
Feistel schemes, since at each round exactly one round function is used,
the number of turns is identical to the number of rounds. For an unbalanced
Feistel scheme with expanding functions defined from J to J , there are (k−1)
round functions from n bits to n bits at each round. In that case, if r is
the number of rounds, the number of turns is d = (k − 1)r, since in our
computations, we consider that we use only one round function at each
turn. We have |Ψd| = 2nd2

n

= NdN

– When a bijection f is given, a couple (I, S) ∈ J × J (input / output) where
S = f(I), is called a point. When we have ϕ points, they are denoted by
(I(1), S(1)), . . . , I(ϕ), S(ϕ)).

– I and S are divided in k parts of n bits. We have I = [I1, I2, . . . , Ik] and
S = [S1, S2, . . . , Sk].
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– The internal functions are denoted by f1, f2, . . . , fd (see figure 1). We always
take the image of the first part, it means I1 = I01 for the first turn, I11 for
the second turn and so on.

Fig. 1. Two different possibilities for the first Feistel round

I1 I2 I3 Ik

n bits

f1

I11

I1 I2 I3 Ik

n bits

f1

I11

– Let Jm be the set of all the subsets of J with a cardinal equal to m. If
M ∈ Jm, we have |M | = m. We say that M(i) is the i-th element of M (for
the same order as J). With M and a given bijection f , we can define a set
of points: Mf = {(I, f(I)) | I ∈M}.

– A ϕ-condition is an equality or a non-equality between xor of parts of
two (or more) points

(
I(1), S(1)

)
,
(
I(2), S(2)

)
, . . . ,

(
I(ϕ), S(ϕ)

)
. The general

form can be defined as follow:

⊕i∈Φ
(
⊕p∈C1

Ip(i)⊕q∈C2
Sq(i)

)=

6=
0

where Φ is a subset of {1, 2, . . . , ϕ}, C1 and C2 are subsets of {1, . . . , k}.
Most often C1 and C2 have zero or one element.

– A ϕ-attack (A) is a finite set of ϕ-conditions.
– For an ϕ-attack (A), we define the random variable N :

N =
∑

(i1,...,iϕ)

6=∈[1,m]ϕ

Ni1,i2,...,iϕ

whereNi1,i2,...,iϕ = 1 if the ϕ-attack works (all the conditions are realized) on
points

(
I(i1), S(i1)

)
,
(
I(i2), S(i2)

)
, . . . ,

(
I(iϕ), S(iϕ)

)
in Mf where M ∈R Jm

and f ∈R Bkn
– We write I = (I(1), . . . , I(ϕ)) ∈ Jϕ. The same notation applies for the

outputs.
– In the same way, we define Ñ by choosing again M ∈R Jm and f ∈R Ψd
– We say that a ϕ-attack works if |E(N ) − E(Ñ )| ≥ σN (as explained in

Section 1).

Example:
n = 2, k = 2, N = 16, ϕ = 4, m = 4, so |Jm| =

(
16
4

)
.
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We consider the following ϕ-attack A : I1(1)⊕ I1(2) = 0
I1(3)⊕ I1(4) = 0
I1(1)⊕ I1(3) 6= 0

Then, for M = {0000, 0001, 0100, 0101} ∈ Jm, we have exactly 8 solutions for
A :

(i1, i2, i3, i4) ∈ { (0, 1, 2, 3); (1, 0, 2, 3); (0, 1, 3, 2); (1, 0, 3, 2);
(2, 3, 0, 1); (3, 2, 0, 1); (2, 3, 1, 0); (3, 2, 1, 0)}

So, E(N ) = 8.

3 Computing E(N ) and E(Ñ )

3.1 Computation of E(N )

Let (A) be a ϕ-attack and N the random variable: N =
∑

(i1,...,iϕ)

6=∈[1,m]ϕ
Ni1,i2,...,iϕ .

Proposition 1. Let P (N) = card{I,S 6=∈ Jϕ satisfying (A)}.Then

E(N ) =

(
(Nk − ϕ)!

Nk!

)2
m!

(m− ϕ)!
P (N)

Remark 1. P (N) will be the value returned by our computer program that gives
the number of solutions of system (A).

Proof. We have:

E(N ) =

∑
f∈Bnk

∑
M∈Jm

∑
(i1,...,iϕ)

6=∈[1,m]ϕ

ni1,...,iϕ,f,M

|Bkn| × |Jm|

where ni1,...,iϕ,f,M is equal to 1 or 0 for the given f , M and i1, . . . , iϕ whether or
not the ϕ-attack is verified for the points

(
M(i1), f(M(i1))

)
, . . .

(
M(iϕ), f(M(iϕ))

)
.

When f ∈ Bkn is given, we have:

∑
M∈Jm

∑
(i1,...,iϕ)

6=∈[1,m]ϕ

ni1,...,iϕ,f,M =
∑
M∈Jm

∑
(i1,...,iϕ)

6=∈[1,m]ϕ

∑
I6=∈Jϕ

n′
ϕ∏
u=1

δI(u)M(iu)

=
∑

I6=∈Jϕ

n′
∑
M∈Jm

∑
(i1,...,iϕ)

6=∈[1,m]ϕ

ϕ∏
u=1

δI(u)M(iu)

where n′ = n′I(1),...,I(ϕ),f is equal to 1 or 0 for the given I and f . And,

∑
M∈Jm

∑
(i1,...,iϕ)

6=∈[1,m]ϕ

ϕ∏
u=1

δI(u)M(iu) = card{M ∈ Jm | {I(1), . . . , I(ϕ)} ⊂M}
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=

(
Nk−ϕ
m−ϕ

)
|Jm|

|Jm| =
(
Nk−ϕ
m−ϕ

)(
Nk

m

) |Jm|
=

(Nk − ϕ)!

(m− ϕ)!(Nk −m)!
× m!(Nk −m)!

Nk!
|Jm|

=
(Nk − ϕ)!

Nk!

m!

(m− ϕ)!
|Jm|

Thus,

E(N ) =
m!(Nk − ϕ)!

|Bnk|(m− ϕ)!Nk!

∑
f∈Bnk

∑
I6=∈Jϕ

n′I(1),...,I(ϕ),f

Furthermore:

n′ =
∑

S6=∈Jϕ

n′′I(1),...,I(ϕ),S(1),...,S(ϕ)

ϕ∏
u=1

δS(u)f(I(u))

where n′′I(1),...,I(ϕ),S(1),...,S(ϕ) equal 1 or 0 for the given I and S. So:

∑
f∈Bnk

∑
I6=∈Jϕ

S 6=∈Jϕ

n′′
ϕ∏
u=1

δS(u)f(I(u)) =
∑

I6=∈Jϕ

S 6=∈Jϕ

n′′
∑
f∈Bnk

ϕ∏
u=1

δS(u)f(I(u))

And,

∑
f∈Bkn

ϕ∏
u=1

δS(u)f(I(u)) = card{f ∈ Bnk | ∀u ∈ {1, . . . , ϕ}, f(I(u)) = S(u)}

= (Nk − ϕ)!

Finally,

E(N ) =

(
(Nk − ϕ)!

Nk!

)2
m!

(m− ϕ)!

∑
I 6=∈Jϕ

S6=∈Jϕ

n′′I,S

=

(
(Nk − ϕ)!

Nk!

)2
m!

(m− ϕ)!
card{I,S 6=∈ Jϕ satisfying (A)}

=

(
(Nk − ϕ)!

Nk!

)2
m!

(m− ϕ)!
P (N)

as claimed. ut

3.2 Computation of E(Ñ )

Because of the introduction of new notations, we will state the proposition at
the end of this subsection. As previously, we have 1 ≤ u ≤ ϕ.
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The same computation for E(Ñ ) gives:

E(Ñ ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

|Ψd|
∑

I6=∈Jϕ

S 6=∈Jϕ

n′′I,S × card{f ∈ Ψd | ∀u, f(I(u)) = S(u)}

If I(u) are distinct and f is a bijection with f(I(u)) = S(u) for all u, then we
have necessary S(u) distinct, so we do not need to add this condition, and:

E(Ñ ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

|Ψd|
∑

I6=∈Jϕ

S∈Jϕ

n′′I,S × card{f ∈ Ψd | ∀u, f(I(u)) = S(u)}

︸ ︷︷ ︸
Σ1

For the Feistel scheme used to go from I(u) to S(u), we only have to know
some information from the internal functions f1, ..., fd. For this, we need to
introduce new variables that are the outputs of the internal functions.

Definition 1. For all u ∈ {1, . . . , ϕ} and all turn r ∈ {1, . . . , d} Kr(u) =
fr(Ir−11 (u)), with the following rule: Ir1 (i) = Ir1 (j) ⇐⇒ Kr+1(i) = Kr+1(j).
We define K = Kr(u)1≤u≤ϕ, 1≤r≤d.

Taking into account account this rule, how many different cases do we have to
consider?
For each turn r we will consider the equalities between Ir−11 (1), . . . , Ir−11 (ϕ).
This corresponds to the number of partition of a set of ϕ elements. The number
of partition of a set of ϕ elements is the Bell number Bϕ, and the number of
partitions with p subsets is the second type number of Stirling S(ϕ, p). Moreover,
we have the formula:

Bϕ =

ϕ∑
p=1

S(ϕ, p)

When we want to compute S(ϕ, p), there exist several kinds of partitions. For
example, if ϕ = 5 and p = 3, we have

(
5
3

)
= 10 ways to have a group of 3 and

two groups of 1, and 5×3 = 15 ways to have two groups of 2 and one group of 1.
So S(5, 3) = 25. In that case, there are 2 kinds of partitions. Thus, in computing
S(ϕ, p), the number t will denote the chosen kind of partition. Thus we obtain:

Σ1 =

ϕ∑
p1=1

. . .

ϕ∑
pd=1

S(ϕ,p1)∑
t1=1

. . .

S(ϕ,pd)∑
td=1

card{I 6=∈ Jϕ, f ∈ Ψd satisfying (A)

and induced equalities and non-equalities from t1, . . . , td}

Let (A′) be the system derived from (A) where we have added the equalities
and non-equalities induced by the choice of p1, . . . , pd, and t1, . . . , td, and where
we have replaced the values of S in function of I and K. For this system, the
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variables are only Ii(u) and Kr(u) (in total kϕ+ dϕ variables).

Σ1 =
∑

(p1,...,pd)

∑
(t1,...,td)

|Ψd|
Np1+p2+...pd

card{I 6=∈ Jϕ,K satisfying (A′)}

=
|Ψd|
Nϕd

∑
p1,...,pd

∑
t1,...,td

card{I 6=∈ Jϕ,K,K ′1, . . . ,K
′
ϕd−p satisfying (A′)}

where K ′i are (artificial) other values taken by the round functions that enabled
us to simplify the computation (we just increase by one the number of variables
each time we have an equality between the variables Ir1 (u)). We can now state
the result:

Proposition 2. Let Q be the polynomial defined by:

Q(N) =
∑

(p1,...,pd)

∑
(t1,...,td)

card{I 6=∈ Jϕ,K,K ′1 . . .K
′
ϕd−p satisfying (A′)}.

Then: E(Ñ ) =
(Nk − ϕ)!

Nk!

m!
(m−ϕ)!

Nϕd
Q(N).

Remark 2. Q(N) will be returned by our computer program that gives the num-
ber of solutions of the systems.

4 Computing V (N )

Proposition 3. Let X =
∑n
i=1Xi be a random variable, where each Xi follow

a Bernoulli distribution. Then,

V (X) = −E(X)2 +
∑
i,j

E(XiXj)

Proof.

V (X) = E(X2)− E(X)2 = E

 n∑
i=1

X2
i +

∑
i6=j

XiXj

− E(X)2

= E(X)− E(X)2 +
∑
i6=j

E(XiXj) = −E(X)2 +
∑
i,j

E(XiXj)

ut

Since N =
∑

i6=∈{1,...,m}ϕ Ni, we have the corollary:

Corollary 1.

V (N ) = −E(N )2 +
∑
i,j

E(NiNj)

V (Ñ ) = −E(Ñ )2 +
∑
i,j

E(ÑiÑj)
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We now continue with the computation of
∑

i,j E(NiNj).

Proposition 4. Let P (N,m) be defined by:

P (N,m) =

ϕ∑
h=0

h∏
i=1

(Nk−2ϕ+ i)2
ϕ∏

i=h+1

(m−2ϕ+ i)
∑

I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′ (1)

Then

∑
i,j

E(NiNj) =

ϕ∏
i=1

(m− i+ 1)

2ϕ∏
i=1

(Nk − i+ 1)2

P (N,m) (2)

Remark 3. P (N,m) will be returned by the computer program.

Proof. We have: ∑
i,j

E(NiNj) = E(
∑
i,j

NiNj)

=

∑
f∈Bkn

∑
M∈Jm

∑
i,j

ni,f,Mnj,f,M

|Bkn| × |Jm|

∑
M∈Jm

∑
i,j

ni,f,Mnj,f,M =
∑
M∈Jm

∑
i,j

∑
I 6=∈Jϕ

∑
I′ 6=∈Jϕ

ni,f,Mnj,f,M

ϕ∏
u=1

δI(u)M(iu)δI′(u)M(ju)

=
∑
M∈Jm

∑
i,j

∑
I 6=∈Jϕ

∑
I′ 6=∈Jϕ

n′I,fn
′
I′,f

ϕ∏
u=1

δI(u)M(iu)δI′(u)M(ju)

=
∑
I 6=∈Jϕ

∑
I′ 6=∈Jϕ

n′I,fn
′
I′,f

∑
M∈Jm

∑
i,j

ϕ∏
u=1

δI(u)M(iu)δI′(u)M(ju)︸ ︷︷ ︸
1 iff I⊂M and I′⊂M,0 otherwise

=
∑
I 6=∈Jϕ

∑
I′ 6=∈Jϕ

n′I,fn
′
I′,fcard{M ∈ Jm | I ⊂M and I ′ ⊂M}

=

ϕ∑
h=0

∑
I,I′ 6=∈Jϕ

|I∩I′|=h

n′I,fn
′
I′,f

(
Nk − 2ϕ+ h

m− 2ϕ+ h

)
︸ ︷︷ ︸

Λ

=

ϕ∑
h=0

Λ
∑

I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′

ϕ∏
u=1

δS(u)f(I(u))δS′(u)f(I′(u))
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So,
∑
f∈Bkn

∑
M∈Jm

∑
i,j

ni,f,Mnj,f,M =

=

ϕ∑
h=0

Λ
∑

I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′card{f ∈ Bkn | f(I) = S, f(I ′) = S′}

=

ϕ∑
h=0

Λ
∑

I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′(N

k − 2ϕ+ h)!

=

ϕ∑
h=0

(Nk − 2ϕ+ h)!2

(Nk −m)!(m− 2ϕ+ h)!

∑
I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′

So,∑
i,j

E(NiNj) =
m!

(Nk!)2

ϕ∑
h=0

(Nk − 2ϕ+ h)!2

(m− 2ϕ+ h)!

∑
I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′

=

ϕ∏
i=1

(m− i+ 1)

2ϕ∏
i=1

(Nk − i+ 1)2

ϕ∑
h=0

h∏
i=1

(Nk − 2ϕ+ i)2
ϕ∏

i=h+1

(m− 2ϕ+ i)
∑

I,I′ 6=∈Jϕ

|I∩I′|=h

∑
S,S′ 6=∈Jϕ

S(i)=S′(i)
⇐⇒

I(i)=I′(i)

n′′I,Sn
′′
I′,S′

Thus

∑
i,j

E(NiNj) =

ϕ∏
i=1

(m− i+ 1)

2ϕ∏
i=1

(Nk − i+ 1)2

P (N,m)

as claimed ut

Corollary 2. We have: V (N ) = −E(N )2 +

ϕ∏
i=1

(m− i+ 1)

2ϕ∏
i=1

(Nk − i+ 1)2

P (N,m).

5 The general algorithm to compute a mirror system

As we have seen previously, the main task to obtain the values of expectations
and variances is to compute the number of solutions of systems of linear equal-
ities and linear non-equalities. According to [25], we call such systems “Mirror
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systems”. In this paper, we have counted the number of solutions of a mirror
system over (Z/2Z)n. This algorithm has some similarities with those used to
compute the chromatic polynomial of a graph.
We suppose that the mirror system has no specificities, i.e. the right parts of the
equalities and the non-equalities can be null or not, and the number of variables
in each equality or non-equality is not necessary even.

Notations and example. We will illustrate our algorithm with one major example.
We want to compute the number of solutions of the following mirror system with
8 variables A, B, C, D, E, G, H, I over the group (Z/2Z)n of cardinal N . We
write inside the system, and between parenthesis, the number of variables, and
we put the ] symbol in order to signify “number of solutions”.

P (N) = ]


(8)

A +B +C +E = 0
A +B +D = 0

C +D +E = 0
A +C +D 6= 0

B +C +E 6= 0
G +I 6= 0
G +H 6= 0

H +I 6= 0

Gaussian reduction. We transform the equalities to obtain a triangular system,
thanks to a Gaussian reduction. Then we use these equalities to get rid of some
the variables in the non-nequalities.
. Illustration:

P (N) = ]


(8)

A +B +C +E = 0
C +D +E = 0

0 = 0
B +D +E 6= 0
B +D 6= 0

G +I 6= 0
G +H 6= 0

H +I 6= 0

(we get rid of A and C)

Elimination of all equalities. Each first variable of the independent linear equal-
ities can only have one value when the other are fixed.
So we can eliminate all equalities and subtract to the number of variables, the
number of independent equalities.
. Illustration: we have only one choice for the both variables A and C, when
the others are fixed. So we can get rid of all the equalities, and the number of

12



variables becomes 8− 2 = 6. Now,

P (N) = ]

(6)

B +D +E 6= 0
B +D 6= 0

G +I 6= 0
G +H 6= 0

H +I 6= 0

Look for joint variables. Then we look for variables that appear always together
in the non-equalities.
. Illustration: here we notice that B and D satisfy this property. We define a
new variable, F = B+D. For every possibility for F , we will have N choices for
(B,D). So:

P (N) = ]

(6)

F +E 6= 0
F 6= 0

G +I 6= 0
G +H 6= 0

H +I 6= 0

Split into independent systems of non-equalities. We now try to split the system
into several independent systems. We attribute to each new system the number of
variables involved in it. Then we will multiply the different polynomials obtained
with theses new systems and we will end by multiplying with Nd where d are
the remaining variables.
. Illustration:

P (N) = ]

{
(2)

F +E 6= 0
F 6= 0

× ]

(3)
G +I 6= 0
G +H 6= 0

H +I 6= 0
×N6−2−3

Recursive final algorithm.

– If there is no inequality at all, in this case the number of solutions is Nv

where v is the number of remaining variables.
– When there are non-equalities without variable, the number of solution is 0.
– If a variable appears only in one non-equality, the number of solutions is
N − 1 multiplied by the number of solution of the system with one less
variable and without the concerned non-equality.

– In all other cases, we will use a fusion-like algorithm. We count the number
of solutions of 2 new systems. The first one without the last non-equality,
and the second one with the last non-equality transformed into an equality.
Then we subtract the two polynomials.

. Illustration:

Q(N) = ]

{
(2)

F +E 6= 0
F 6= 0

= (N − 1)]
{

(1)F 6= 0 = (N − 1)2

13



R(N) = ]

(3)
G +I 6= 0
G +H 6= 0

H +I 6= 0

= ]

{
(3)

G +I 6= 0
G +H 6= 0

− ]

(3)
G +I 6= 0
G +H 6= 0

H +I = 0

= N(N − 1)2 − ]
{

(2)
G +I 6= 0
G +I 6= 0

= N(N − 1)2 −N(N − 1) = N(N − 1)(N − 2)

Finally:
P (N) = Q(N)×R(N)×N = N2(N − 1)3(N − 2)

6 Application to several examples of attacks

6.1 Notation for Feistel-type schemes

With Feistel type schemes, according to the structure of the scheme, internal
variables are defined at each round. Conditions that are imposed on these inter-
nal variables will allow the differential path to propagate. Thus, once conditions
on the input variables are settled, the conditions on the output variables will ap-
pear either at random or due to conditions satisfied by some internal variables.
We consider two types of attacks: 2-point attacks, where we use plaintext/cipher-
text pairs and ϕ-point attacks, where we use ϕ-tuples of plaintext/ciphertexts.
These last attacks allow more possibilities of conditions on the inputs, the out-
puts and the internal variables. They were first introduced in [16] and then
generalized in [29, 33].

6.2 Examples of 2-point attacks

Differential notation for 2-point attacks We use plaintext/ciphertext pairs.
In KPA, on the input variables, the notation [0,0, ∆0

3, ∆
0
4, . . . ,∆

0
k] means that

the pair of messages (i, j) satisfies I1(i) = I1(j), I2(i) = I2(j), and Is(i)⊕Is(j) =
∆0
s, 3 ≤ s ≤ k. The differential of the outputs i and j after round r is denoted by

[∆r
1, ∆

r
2, . . . ,∆

r
k]. At each round, internal variables are defined by the structure

of the scheme. In our attacks, we determine conditions that have to be satisfied
by the outputs. When we have a scheme, these conditions are satisfied either
at random or because the internal variables verify some equalities. Thus, we
will impose conditions on the internal variables on some chosen rounds. When
we impose conditions on the internal variables in order to get a differential
characteristic, we use the notation 0 to mean that the corresponding internal
variables are equal in messages i and j. When we write 0 to specify that this
condition propagates.

14



Classic Feistel scheme Ψ5: “2-point attack” The first round of a classical
Feistel scheme is represented in Figure 2.

Fig. 2. One round of a classical Feistel scheme

L R

n bits

f

S T

The input is denoted by [I1, I2] and the output by [S1, S2]. For the message
i, the input and the output are denoted by [I1(i), I2(i)] and [S1(i), S2(i)]. We
have m messages and we want to compute the expectation of the number N of
2-tuples of points satisfying the following relations:

S2(i) 6= S2(j)
S1(i) = S1(j)
I2(i) = I2(j)
S2(i)⊕ S2(j) = I1(i)⊕ I1(j)( 6= 0)

Thanks to our tool, we obtain:

E(N ) =
1

N4(N2 − 1)2
m!

(m− 2)!
(−N4 +N5) =

m(m− 1)

(N + 1)2(N − 1)
∼ m2

N3

V (N ) = −E(N )2 +
m(m− 1)

N4(N2 − 1)2(N2 − 2)2(N2 − 3)2
P (N,m)

with

P (N,m) = 2N13 − 2N12 − 20N11 + (18−m+m2)N10 + (86− 2m− 2m2)N9

+ (−84 + 19m− 7m2)N8 + (−144− 28m+ 20m2)N7 + (168− 32m

+ 4m2)N6 + (24 + 112m− 44m2)N5 + (−48− 68m+ 28m2)N4

V (N ) =
2m(m− 1)

(N2 − 3)2(N2 − 2)2(N2 − 1)2(N + 1)2
×[

N11 +N10 − 11N9 − 12N8 + (51− 2m)N7 + (2m+ 53)N6 +

(2m2 + 4m− 113)N5 + (−16m− 102)N4 + (108− 8m2 + 10m)N3 +

(32m+ 84 + 2m2)N2 + (−36 + 6m2 − 12m)N − 24− 4m2 − 16m
]

∼ 2m2

N3
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With a classical Feistel scheme, the wanted equalities can happen at random or
due to conditions that are satisfied on internal variables and give a differential
path as shown in table 1. However, the program allows to calculate the exact

Table 1. Attack on Ψ5

round ∆0
1 0

1 0 ∆0
1

2 ∆0
1 0

3 0 ∆0
1

4 ∆0
1 0

5 0 ∆0
1

value for the expectation. In the computation of E(Ñ ), we have to count two
mirror systems (beware we have switched left and right part of the scheme) that
correspond to two differential paths:

I1(1) ⊕K2(1) ⊕K4(1) ⊕I1(2) ⊕K2(2) ⊕K4(2) =0
K1(1) ⊕K3(1) ⊕K5(1) ⊕K1(2) ⊕K3(2) ⊕K5(2)=0

K2(1) ⊕K4(1) ⊕K2(2) ⊕K4(2) =0
K3(1) ⊕K5(1) ⊕K3(2) ⊕K5(2)=0

K5(1) ⊕K5(2)=0
I2(1) ⊕I2(2) 6=0

K4(1) ⊕K4(2) 6=0

Number of solutions: N9 − 2N10 +N11
I1(1) ⊕K2(1) ⊕K4(1) ⊕I1(2) ⊕K2(2) ⊕K4(2) =0

K1(1) ⊕K3(1) ⊕K5(1) ⊕K1(2) ⊕K3(2) ⊕K5(2)=0
K2(1) ⊕K4(1) ⊕K2(2) ⊕K4(2) =0

K3(1) ⊕K5(1) ⊕K3(2) ⊕K5(2)=0
K4(1) ⊕K4(2) =0

K5(1) ⊕K5(2)=0
I2(1) ⊕I2(2) 6=0

Number of solutions: −N10 +N11

The total number of solutions is given by: N9 − 3N10 + 2N11

So :

E(Ñ ) =
m(m− 1)

N2(N2 − 1)
× N9 − 3N10 + 2N11

N10
=
m(m− 1)(2N + 1)

N3(N + 1)
∼ 2m2

N3

Thus the expectation for a classical Feistel scheme with 5 rounds is about
twice the expectation we had for a random permutation as expected. This attack
is taken from [24].

Also if m ∼ N3/2, then we can distinguish a permutation generated by
classical Feistel scheme with 5 rounds from a random permutation and the attack
is successful.

Remark 4. In this attack, the expectation is about the double for a Feistel cipher
than for a random permutation, thus there is no need to compute the standard
deviation. However, we can notice that here σ(N ) '

√
E(N ). In all 2-point

attacks that we have studied, this is always the case.

Type-2 Feistel schemes with k = 4 and r = 10: “2-point attack”
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Fig. 3. One round of a Type-2 Feistel scheme

I1 I2 I3 I4

n bits

F 1
1 F 1

2

Results for any n. In Figure 3, one round of a Type-2 is represented with k = 4.
The input and output are still denoted by [I1, I2, I3, I4] and [S1, S2, S3, S4].

For the message i, the input and the output are denoted by [I1(i), I2(i), I3(i), I4(i)]
and [S1(i), S2(i), S3(i), S4(i)]. We have m messages and we want to compute the
mean of value of the number N of pairs of points satisfying the following rela-
tions: {

I1(i) = I1(j)
S4(i)⊕ S4(j) = I2(i)⊕ I2(j)

For this attack, there are 10 mirror systems. Here is an example of one system,
whose number of solution is give, by N12 − 2N13 +N14.

I1(i)⊕I1(j) =0
I2(i)⊕I2(j) ⊕S4(i)⊕S4(j)=0

S4(i) ⊕S4(j) 6=0
S1(i)⊕S1(j) 6=0

Finally, the total number of solutions is N8 − N10 − N11 + N14 and the
expectation is given by:

E(N ) =
m(m− 1)

N8(N4 − 1)2
(N8 −N10 −N11 +N14)

E(N ) =
m(m− 1)(N6 −N3 −N2 + 1)

(N4 − 1)2
=
m2

N2
− m2

N5
+O(

1

N6
) ∼ m2

N2

For the variance, we have

V (N ) = −E(N )2 +
m(m− 1)

(N4(N4 − 1)(N4 − 2)(N4 − 3))2
P (N,m)

with

P (N,m) = −36N8m+ 36N8m2 − 180N9 + 150N9m− 30N9m2 + 246N10
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−121N10m− 19N10m2 − 1212N11 + 1058N11m− 244N11m2 + 2592N12

−2172N12m+ 408N12m2 − 1194N13 + 863N13m− 133N13m2 + 1116N14

−1094N14m+ 316N14m2 − 4308N15 + 3678N15m− 732N15m2 + 5082N16

−4128N16m+ 812N16m2 − 4308N17 + 3750N17m− 798N17m2 + 3418N18

−2842N18m+518N18m2−1244N19+947N19m−181N19m2−30N20−61N20m

+33N20m2−44N21−26N21m+24N21m2 +12N22 +43N22m−N22m2 +52N23

−20N23m+2N23m2+14N24+14N24m−10N24m2+12N25−2N25m−2N25m2

−22N26 − 2N27 − 2N28 −N28m+N28m2 + 2N30

This gives: V (N ) ∼ 2N28m2

N30 = 2m2

N2 , and the variance is about twice the
expectation.

We now compute the expectation for the scheme. Here the number of round
functions is 20. Thus the number of rounds is 10 but the number of turns is
20, as explained in section 2. We have for example the differential path given in
table 2.

Table 2. Attack on a Type-2 Feistel scheme with k = 4 and 10 rounds.

round 0 ∆0
2 ∆0

3 ∆0
4

1 ∆0
2 ∆0

3 ∆1
3 0

2 ∆2
1 ∆1

3 0 ∆0
2

3 ∆3
1 0 ∆0

2 ∆2
1

4 0 ∆0
2 ∆4

3 ∆3
1

5 ∆0
2 ∆4

3 ∆5
3 0

6 ∆6
1 ∆5

3 0 ∆0
2

7 ∆7
1 0 ∆0

2 ∆6
1

8 0 ∆0
2 ∆8

3 ∆7
1

9 ∆0
2 ∆8

3 ∆9
3 0

10 ∆10
1 ∆9

3 ∆
10
3 ∆0

2

For the scheme, with our program, we find 3 different systems when we
consider that the input must be different :
Mirror system 1 :

I1(1)⊕ I1(2) = 0

K1(1)⊕K6(1)⊕K9(1)⊕K14(1)⊕K17(1)

⊕K1(2)⊕K6(2)⊕K9(2)⊕K14(2)⊕K17(2) = 0

I2(1)⊕ I2(2) 6= 0
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Mirror system 2 :

I1(1)⊕ I1(2) = 0

I2(1)⊕ I2(2) = 0

K1(1)⊕K6(1)⊕K9(1)⊕K14(1)⊕K17(1)

⊕K1(2)⊕K6(2)⊕K9(2)⊕K14(2)⊕K17(2) = 0

I3(1)⊕ I3(2) 6= 0

Mirror system 3 :

I1(1)⊕ I1(2) = 0

I2(1)⊕ I2(2) = 0

I3(1)⊕ I3(2) = 0

K1(1)⊕K6(1)⊕K9(1)⊕K14(1)⊕K17(1)

⊕K1(2)⊕K6(2)⊕K9(2)⊕K14(2)⊕K17(2) = 0

I4(1)⊕ I4(2) 6= 0

Then, from the first system, we find that the most likely path is when I1(1) =
I1(2) and all the following steps are different values :

I1(1)⊕ I1(2) = 0

K1(1)⊕K6(1)⊕K9(1)⊕K14(1)⊕K17(1)

⊕K1(2)⊕K6(2)⊕K9(2)⊕K14(2)⊕K17(2) = 0

K6(1)⊕K9(1)⊕K14(1)⊕K17(1)⊕K6(2)⊕K9(2)⊕K14(2)⊕K17(2) = 0

I2(1)⊕ I2(2) 6= 0

I4(1)⊕K2(1)⊕K5(1)⊕K10(1)⊕K13(1)⊕K18(1)

⊕I4(2)⊕K2(2)⊕K5(2)⊕K10(2)⊕K13(2)⊕K18(2) 6= 0

I3(1)⊕ I3(2) 6= 0

I3(1)⊕K3(1)⊕K8(1)⊕K11(1)⊕K16(1)

⊕I3(2)⊕K3(2)⊕K8(2)⊕K11(2)⊕K16(2) 6= 0

I4(1)⊕K2(1)⊕ I4(2)⊕K2(2) 6= 0

K4(1)⊕K7(1)⊕K12(1)⊕K15(1)⊕K4(2)⊕K7(2)⊕K12(2)⊕K15(2) 6= 0

I3(1)⊕K3(1)⊕ I3(2)⊕K3(2) 6= 0

I2(1)⊕K17(1)⊕ I2(2)⊕K17(2) 6= 0

K4(1)⊕K4(2) 6= 0

I4(1)⊕K2(1)⊕K5(1)⊕K10(1)⊕K13(1)⊕ I4(2)

⊕K2(2)⊕K5(2)⊕K10(2)⊕K13(2) 6= 0

I4(1)⊕K2(1)⊕K5(1)⊕ I4(2)⊕K2(2)⊕K5(2) 6= 0
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K4(1)⊕K7(1)⊕K12(1)⊕K4(2)⊕K7(2)⊕K12(2) 6= 0

I2(1)⊕K9(1)⊕K14(1)⊕K17(1)⊕ I2(2)⊕K9(2)⊕K14(2)⊕K17(2) 6= 0

I3(1)⊕K3(1)⊕K8(1)⊕K11(1)⊕ I3(2)⊕K3(2)⊕K8(2)⊕K11(2) 6= 0

K4(1)⊕K7(1)⊕K4(2)⊕K7(2) 6= 0

I4(1)⊕K2(1)⊕K5(1)⊕K10(1)⊕ I4(2)⊕K2(2)⊕K5(2)⊕K10(2) 6= 0

I3(1)⊕K3(1)⊕K8(1)⊕ I3(2)⊕K3(2)⊕K8(2) 6= 0

I2(1)⊕K14(1)⊕K17(1)⊕ I2(2)⊕K14(2)⊕K17(2) 6= 0

We have N28 − 18N29 + 153N30 − 816N31 + 3060N32 − 8568N33 + 18564N34 −
31824N35+43758N36−48620N37+43758N38−31824N39+18564N40−8568N41+
3060N42 − 816N43 + 153N44 − 18N45 +N46 solutions.

If we take into account all the systems and the paths, the total number of
solutions is given by Q(N) = −N33+5N34−4N35−35N36+149N37−321N38+
464N39 − 482N40 + 352N41 − 161N42 + 33N43 +N46 and

E(Ñ ) =
m(m− 1)Q(N)

N4(N4 − 1)(N20)2
=
m2

N2
+

33m2

N5
+O(

1

N6
) ∼ m2

N2
.

The term 33m2

N5 is due to the constraints on the internal variables that satisfy
the differential paths plus the random path.

In this attack, both expectations are of the same order. In that case, the
computations of E(N ) and E(Ñ ) do not allow to conclude. Here we have that

|E(Ñ ) − E(N )| ∼ 34m2

N5 . In order to obtain a successful attack, it is enough to
have a number of messages such that this difference is greater than the standard

deviation. Here, V (N ) ∼ 2m
2N28

N30 = 2m2

N2 and σ(N ) ∼
√

2mN . This gives the con-

dition 34m
2

N5 ≥
√

2mN ⇔ m ≥
√
2

34 N
4. Thus if we use about N4, i.e. 24n messages,

we can distinguish a random permutation from a permutation generated by a
Type-2 Feistel scheme with 10 rounds and k = 4. As we can notice, we can
use less than N4 messages (the full code book). In [22], the theoretical analysis
provided an attack with the full code book.

Remark 5. As long as E(N ) is significantly smaller than or equal to E(Ñ ), we
do not need to compute the variance to conclude on the success of the attack.
This happens when the number of conditions on the internal variables do no
exceed the number of conditions on the outputs. When the two expectations
have the same behavior, it is necessary to compute σ(N ) and to compare with
the difference of the expectations. The difference of the expectations is related
to the number of conditions we have on the internal variables. This means that
we can add conditions as long |E(Ñ )− E(N )| ≥ σ(N ). Of course, when we add
conditions on the internal variables, we can attack more rounds.

Results for small values of n. Here we explain some phenomena that may appear
with small value of n. Let us consider again type 2 Feistel schemes with k = 4
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and r = 10. If we take n = 8 and m = 228, then we obtain the following value:

E(N ) ≈ 1 099 511 558 400

E(Ñ ) ≈ 1 099 513 745 758
V (N ) ≈ 2 197 953 438 347
σ(N ) ≈ 1 482 559

E(Ñ )− E(N ) ≈ 2 187 358

We can see that the difference of both expectations is greater than the standard
deviation. This shows that in that case we do not need to take the maximal
number of messages, i.e. 232, as seen previously.

We now study type 2 Feistel schemes with k = 4 and r = 12. The theoretical
study of [22] showed that it was not possible to attack more than 10 rounds.
However, for small values of n, we now show that it is still possible to mount
a KPA on 12 rounds. We consider the following conditions on the inputs and
outputs:

I1(i) = I1(j) and I2(i)⊕ I2(j) = S2(i)⊕ S2(j)

Then we obtain for P (N) and V (N ), the same values. But we have Q(N) =
N54−N51 +89N50−511N49 +1390N48−2401N47. If we choose n = 5 and m =
220 (i.e. the maximal number of messages), we obtain: E(Ñ ) − E(N ) ≈ 76 098
and σ(N )) ≈ 45 610. Again the difference of both expectations is greater then
the standard deviation. This shows that for small values of n, it is possible to
attack more rounds as expected.

6.3 Example of a 4-point Attack

Differential notation for ϕ-point attacks We recall that a point is a pair
(plaintext, ciphertex)=[I1, I2, . . . , Ik, S1, S2, . . . , Sk]. We impose some differential
equalities on ϕ-tuples of points and we count the number of ϕ-tuples satisfying
these equalities. This number of points will give the complexity of the attack.
∆ denotes the Xor on coordinates of points. After round p, intermediate output
of point α ∈ {1, . . . , ϕ} is [Mp

1 (α),Mp
2 (α), . . . ,Mp

k (α)] We now define different
kinds of equalitites:

1. “Horizontal equalities” on Mp
i : Mp

i (1) = Mp
i (3) = . . . = Mp

i (ϕ− 1)
2. “Vertical equalities” on Mp

i : Mp
i (1) = Mp

i (2), Mp
i (3) = Mp

i (4), ... , Mp
i (ϕ−

1) = Mp
i (ϕ).

3. “Differential equalities” on Mp
i : Mp

i (1) ⊕Mp
i (2) = Mp

i (3) ⊕Mp
i (4) = ... =

Mp
i (ϕ− 1)⊕Mp

i (ϕ).

Figure 4 shows why we choose the terms of “vertical” and “horizontal” equal-
ities.

To be more precise, when we write [0, .∆0
2, ∆

0
3, . . . ,∆

0
k], this means that, on

the input variables, a vertical conditions on the first coordinate and horizontal
conditions on the second coordinate. The same notation applies to the internal
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Fig. 4. Example of differential equalities for ϕ = 6

I(1) S(1)

I(2) S(2)

I(3) S(3)

I(4) S(4)

I(5) S(5)

I(6) S(6)

Vertical

conditions

Horizontal conditions

S3(1)=S3(2)
I2(1)=I2(2)

S3(3)=S3(4)
I2(3)=I2(4)

I1(1) = I1(3) I1(3) = I1(5)

S3(5)=S3(6)
I2(5)=I2(6)

variable and the output variables. The differential path is constructed such that
we always keep the differential equalities. In the differential path, when we im-
pose a vertical condition we will write 0 and when we impose an horizontal
condition, we will set •. We will write 0 and . when these conditions propagate.

Expanding Feistel schemes F 10
4 (k = 4 and r = 10): “4-point attack”

We provide in Figure 6, the first round of an unbalanced Feistel scheme with
expanding functions when k = 4.

Fig. 5. One round of an unbalanced Feistel scheme with expanding functions

I1 I2 I3 I4

4n bits

n 3n

X1 Y1 Z1 I1

The input is denoted by [I1, I2, I3, I4] and the output by [S1, S2, S3, S4]. For
the message i, the input and the output are denoted by [I1(i), I2(i), I3(i), I4(i)]
and
[S1(i), S2(i), S3(i), S4(i)]. We have m messages and we want to compute the ex-
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pectation of the number N of 4-tuples of points satisfying the following relations:

I1(i) = I1(j)
I1(`) = I1(p) 6= I1(i)
I2(i) = I2(j)
I2(`) = I2(p) 6= I2(i)
I3(i) = I3(j)
I3(`) = I3(p) 6= I3(i)
I4(i)⊕ I4(j) = I4(`)⊕ I4(p) 6= 0



S1(i)⊕ S1(j) = S1(`)⊕ S1(p) 6= 0
S2(i) = S2(`)
S2(j) = S2(p) 6= S2(i)
S3(i) = S3(`)
S3(j) = S3(p) 6= S3(i)
S4(i) = S4(`)
S4(j) = S4(p) 6= S4(i)

For this attack, there are many mirror systems. Here, we have 30 turns since,
for each round, we need 3 round internal functions from n bits to n bits. The
size of the systems do not allow to present examples. However, the systems are
available through the computer program.
The total number of solutions is P (N) = 4N8 − 8N9 + 4N10 − 4N12 + 8N13 −
4N14 +N16 − 2N17 +N18. So:

E(N ) = m(m− 1)(m− 2)(m− 3)×
4N8 − 8N9 + 4N10 − 4N12 + 8N13 − 4N14 +N16 − 2N17 +N18

(Nk(Nk − 1)(Nk − 2)(Nk − ϕ+ 1))2

= m(m− 1)(m− 2)(m− 3)×
4N8 − 8N9 + 4N10 − 4N12 + 8N13 − 4N14 +N16 − 2N17 +N18

N8(N4 − 1)2(N4 − 2)2(N4 − 3)2

∼ m4

N14

We now explain the computation of the expectation for the scheme.

Among all the differential different paths, only 36 are significant. A path is
not significant when the conditions on the internal variables are equivalent to
the conditions on the output variables. It is significant when the conditions on
the internal variables imply the conditions on the output variables.

We now give below the example of two differential paths:

As we mentioned before, in order to keep the differential equalities inside
the path, we need to impose conditions on the internal variables. We call them
“vertical conditions” and “horizontal conditions”. The study of the different
paths obtained by our computer program shows that there are also another kind
of conditions that we can call “diagonal conditions”. This definition is taken
according to Figure 4. For example, on the internal variable X1, this condition
is defined by: X1(i) = X1(p) and X1(j) = X1(`). To indicate that we set a
diagonal condition, we will write ? in the tables.

If we use these diagonal conditions, we can modify the previous paths in the
following way and obtain new paths. Here, we give some ways to modify the
differential paths using the diagonal conditions. There are many more possibil-
ities and it is possible to find all if them. However, our computer program will
provide the results as we will see below.
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Table 3. F 10
4 attack: example of two differential paths

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 •∆0
4 0 0 0

4 •∆4
1 ∆4

2 ∆4
3 .∆0

4

5 •∆5
1 ∆5

2 . ∆5
3 .∆

4
1

6 0 .∆6
2 .∆6

5 .∆5
1

7 •∆6
2 ∆6

3 ∆5
1 0

8 •∆8
1 ∆8

2 ∆8
3 .∆6

2

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 •∆0
4 0 0 0

4 •∆4
1 ∆4

2 ∆4
3 .∆0

4

5 0 ∆5
2 . ∆5

3 .∆
4
1

6 0 ∆5
3 ∆4

1 0
7 •∆5

3 ∆4
1 0 0

8 •∆8
1 ∆8

2 ∆8
3 .∆5

3

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

Table 4. F 10
4 attack: path 1 with one, two or 3 ? conditions

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 ?∆0
4 0 0 0

4 ?∆4
1 ∆4

2 ∆4
3 ?∆0

4

5 •∆5
1 ∆5

2 ?∆5
3 ?∆

4
1

6 0 ∆6
2 ∆6

5 .∆5
1

7 •∆6
2 ∆6

3 ∆5
1 0

8 •∆8
1 ∆8

2 ∆8
3 .∆6

2

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 •∆0
4 0 0 0

4 ?∆4
1 ∆4

2 ∆4
3 .∆0

4

5 •∆5
1 ∆5

2 ∆5
3 ?∆4

1

6 0 ∆6
2 ∆6

5 .∆5
1

7 •∆6
2 ∆6

3 ∆5
1 0

8 •∆8
1 ∆8

2 ∆8
3 .∆6

2

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 ?∆0
4 0 0 0

4 ?∆4
1 ∆4

2 ∆4
3 ?∆0

4

5 ?∆5
1 ∆5

2 ?∆5
3 ?∆

4
1

6 0 ?∆6
2 ?∆6

5 ?∆
5
1

7 •∆6
2 ∆6

3 ∆5
1 0

8 •∆8
1 ∆8

2 ∆8
3 .∆6

2

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

This shows that all these attacks will succeed with high probability since for
the same input and output conditions, we get much more paths than expected.

Moreover, these diagonal conditions can also be set on the input and output
variables. Thus for the same scheme, there are many attacks with the same
complexity. For the attack on F 10

4 , we obtain 35 differential path besides the
random one.

Remark 6. These “diagonal conditions” can also be used for the more general
rectangle attacks as studied in [33].

The computation shows that of the numbers of solutions of all systems is
given by:
Q(N) = 48N114 − 320N115 + 876N116 − 1252N117 + 992N118 − 468N119 +
208N120 − 120N121 + 36N122

E(Ñ ) =

m!
(m−4)!Q(N)

Nk(Nk − 1)(Nk − 2)(Nk − ϕ+ 1)Ndϕ

=

m!
(m−4)!Q(N)

N4(N4 − 1)(N4 − 2)(N4 − 3)N120
∼ 36m4

N14
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Table 5. F 10
4 attack: path 2 with one or two ? conditions

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 ?∆0
4 0 0 0

4 ?∆4
1 ∆4

2 ∆4
3 ?∆0

4

5 0 ∆5
2 ?∆5

3 ?∆
4
1

6 0 ∆5
3 ∆4

1 0
7 •∆5

3 ∆4
1 0 0

8 •∆8
1 ∆8

2 ∆8
3 .∆5

3

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 ?∆0
4 0 0 0

4 •∆4
1 ∆4

2 ∆4
3 ?∆0

4

5 0 ∆5
2 ∆5

3 .∆4
1

6 0 ∆5
3 ∆4

1 0
7 •∆5

3 ∆4
1 0 0

8 •∆8
1 ∆8

2 ∆8
3 .∆5

3

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

round 0 0 0 ∆0
4

1 0 0 ∆0
4 0

2 0 ∆0
4 0 0

3 •∆0
4 0 0 0

4 ?∆4
1 ∆4

2 ∆4
3 .∆0

4

5 0 ∆5
2 ∆5

3 ?∆4
1

6 0 ∆5
3 ∆4

1 0
7 •∆5

3 ∆4
1 0 0

8 •∆8
1 ∆8

2 ∆8
3 .∆5

3

9 •∆9
1 ∆9

2 .∆9
3 .∆8

1

10 ∆10
1 .∆10

2 .∆10
3 .∆9

1

Thus if m ∼ N7/2, i.e. m ∼ 27n/2, then we can distinguish a permutation
generated by F 10

4 from a random permutation and the attack is successful, since
in that case E(N ) is close to 1 and E(Ñ ) is close to 36.

Remark 7. In this attack, we do not need to compute the variance since with
the right number of messages, the expectation for a scheme is 36 times the
expectation for a random permutation.

Results for small values of n. The theoretical study of [33] shows that it is
possible to get KPA up to 3k − 1 rounds, with a 2k + 2-point attacks. This

attack needs 2(k−
1

2k+2 )n messages. When k = 4, the exact computation allows
to show that for small values of n, it is possible to have a 4-point attack for
11 rounds that has a better complexity than the 10-point attack, and also that
it is possible to attack 12 rounds instead of 11 rounds. Results for small n are
summarized in Table 6.

Table 6. Improvements on the attacks for Unbalanced Feistel schemes with expanding
functions.

round n m E(N ) E(Ñ ) σ(N ) |E(Ñ )− E(N )− σ(N )|
11 16 262 16776704.0039 16802558.3906 8191.8749 17662.5117

11 8 230 254.0039 353.4039 31.8750 67.5250

12 7 228 16129.0001 16414.2110 254.0001 31.2108

12 6 224 3969.0004 4243.8287 126.0004 148.8277

12 4 215 14.0616 27.8061 7.5015 6.24292
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7 Conclusion and perspectives

We summarize in this table the capacities of our program and the future im-
provements:

Scheme Random
permuta-
tion

Classical Feistel,
Expanding Feistel,
type 1 Feistel, type
2 Feistel, type 3
Feistel, Feistel with
one to one functions

Misty Contracting Feistel,
Alternating Feistel

Expectation
√ √

to do (*) to do
Standard
deviation

√
to do to do (*) to do

Taylor ex-
pansion for
expecta-
tion and
standard
deviation

√
to do (*) to do (*) to do (*)

(*) requires minor modifications in the computer program.

First applications:

– We have discover in section 6 new differential paths with diagonal conditions.
This could lead to the study of new geometries for differential attacks.

– For the type 2 Feistel scheme with k = 4, the exact computation of the ex-
pectation and the standard deviation gives us better attacks than in previous
papers or new attacks.

• For r = 10 and n = 8, we only need 228 messages instead of 232 [22].

• For r = 12 and n = 5 we attack the scheme with 220 messages (new
attack). In [22], it was possible to get a KPA up to 10 rounds.

– For unbalanced Feistel schemes with expanding functions with k = 4, the
computation of the exact values for the expectations and standard deviation
lead to the following improvements:

• For r = 11 and n ≤ 16, there exist 4-point attacks with a better com-
plexity than the 10-point attacks of [33].

• For r = 12 and n ≤ 7, we have obtained new attacks. In [33], no attacks
were provided for 12 rounds and k = 4.

We will also improve the efficiency of the program in order to make a complete
and exact description of all possible differential attacks on a specific scheme.
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