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Abstract. We describe a polynomial time algorithm to solve the Com-
putational Small Polynomial Ratio Problem in current parameter, which
is to find a short element of an ideal ⟨g⟩ ⊂ Z[X]/⟨Xn + 1⟩ when ∥g∥ is
smaller than some constant B ( in Q[X]/⟨Xn+1⟩) and a somewhat small
multiple of g−1 ( in Rq) is given.

In GGH scheme, which is the first candidate of a (approximate) multi-
linear map, the algorithm, using any encodings, can be directly applied
to obtain the any secret elements. Recently, the GGH scheme was known
to be insecure by so called zeroizing attack [HJ15], when an encoding of
zero is published. Hence, this work leads to showing that GGH scheme
without an encoding of zero is also insecure.

Keywords: Computational Small Polynomial Ratio(CSPR) problem,
multilinear maps.

1 Introduction

Multilinear Maps. After Boneh and Silverberg [BS02] investigated crypto-
graphic multilinear maps and their applications such as multipartite Diffie- Hell-
man and an efficient broadcast encryption in 2002, it has been a long lasting
open question to construct cryptographic multilinear maps. In 2013, after about
one decade, approximate cryptographic multilinear maps are first proposed by
Garg, Gentry, and Halevi (GGH) [GGH13a] . Not much later, second and third
cryptographic multilinear maps are suggested by Coron, Lepoint, and Tibouchi
(CLT) [CLT13], and Craig Gentry, Sergey Gorbunov, and Shai Halevi [GGH15],
respectively. However, none of them have a reduction to standard hardness prob-
lem such as subset sum problem. In fact, the first two schemes with low level
encodings of zero are known to be insecure [CHL+15,HJ15], so called zeroizing
attack. The last candidate is also broken [Cor15]. Although the fixed scheme of
[CLT13] is proposed by the same authors of [CLT15] to resist zeroizing attack
against the CLT scheme, it is also shown to be insecure [CLR15].

On the other hand, both [GGH13] scheme and [CLT13] scheme without any
encoding of zero, which are used as basic tools for constructing applications such
as indistinguishable obfuscations, have still not analyzed yet.
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Contribution. In current parameters, we propose an algorithm for solving the
Computational Small Polynomial Ratio Problem(or CSPR) whose decisional ver-
sion is originally proposed in [LATV12] for the security of their fully homomor-
phic encryption (FHE). This algorithm can be applied to attack for GGH-like
schemes without encodings of zero(or private GGH) such as asymmetric multi-
linear map suggested in [GGH+13b,BR13], for example.

Problem 1 (Computational Small Polynomial Ratio Problem)
Let ϕn(X) ∈ Z[X] be a polynomial of degree n, let q ∈ Z be an integer. The
Computational Small Polynomial Ratio Problem CSPRϕn,q,B is to find a, b ∈
R := Z[X]/⟨ϕn(X)⟩ with small Euclidean norm such that [b/a]q = f for given a
polynomial f = [h/g]q, where g and h are sampled from R and the size of these
is bounded by B (conditioned on g being invertible over Rq = R/qR).

Problem 2 (Decisional Small Polynomial Ratio Problem)
Let ϕn(x) ∈ Z[X] be a polynomial of degree n, let q ∈ Z be an integer. The De-
cisional Small Polynomial Ratio Problem DSPRϕn,q,B is to distinguish between
the following two distributions:

– a polynomial f = h/g, where g and h are sampled from R := Z[X]/⟨ϕn(X)⟩
and the size of these is bounded by B (conditioned on g being invertible over
Rq = R/qR), and

– a polynomial f sampled uniformly at random over Rq.

In this problem, the fact B is very small compared with q. That is why the name
of this problem is ‘Small Polynomial’ Ratio Problem.

The following theorem is the detailed result of our work, to solve the CSPRϕn,q,B ,
which will be proved later in Section 3.

Theorem 1 Let q and m ∈ Z be integers, and B a positive real number. Then,
for ϕn(X) = Xn + 1 with n a power of 2, we can reduce CSPRϕn,q,B into
CSPRϕn/2,q,B2

√
2n.

Repeating the theorem t times, we can reduce the CSPRϕn,q,B to CSPRϕn/2t ,q,Bt

for some constant Bt. If n/2
t is small to find a short vector, one can solve the

CSPRϕn/2t ,q,Bt and this solution can be used to solve the CSPRϕn,q,B .

Technical overview. We explain a naive approach to solve the CSPRϕn,q,B

with ϕn(X) = Xn +1 when n is a power of 2. For any polynomial f = [h/g]q =
n−1∑
i=0

fiX
i ∈ R, one can consider it as a vector (f0, · · · , fn−1)

T . We use f to

denote a polynomial or vector unless there is confusion. Then, the product

gf =
n−1∑
i=0

giX
if of two polynomials f and g in Z[X]/⟨ϕ(X)⟩ is contained in

a latticeMf generated by {f , Xf , · · · , Xn−1f}. To obtain a g̃ ∈ Zq[X]/⟨ϕ(X)⟩
satisfying ∥g̃∥ and ∥[g̃f ]q∥ are small, one can naturally contemplate the following
column lattice:

Λf =

(
I 0

Mf qI

)
,
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where I is the identity matrix of size n and Mf is a basis matrix ofMf juxta-
posed by {f , Xf , · · · , Xn−1f}. If we are given a lattice vector u = (u0, · · · , u2n−1)

T

satisfying |ui| < q/2 for n ≤ i ≤ 2n−1, then we have
n−1∑
i=0

un+iX
i =

[
n−1∑
i=0

uiX
if

]
q

.

Therefore, if one can find a small lattice point, it becomes a solution of CSPRϕ,q,χ.
The dimension 2n, however, is too large to find it. To overcome this obstacle, we
decompose f = [h/g]q as a sum of odd degree terms and even degree terms. Put
f = [h0/g]q + [h1/g]qX, where [hi/g]q ∈ Zq[X

2]/⟨Xn + 1⟩ for i = 0, 1. If h0

is dominated for some poly(n, ∥h∥) and one restrict the space Z[X]/⟨Xn +1⟩ to
only Z[X2]/⟨Xn + 1⟩ ≈ Z[Y ]/⟨Y n/2 + 1⟩, then F 0 = [h0/g]q can be considered
as another instance of CSPRΦ,q,B′ with Φ(Y ) = Y n/2 + 1 and the dimension
of ΛF 0 is half of that of Λf . By adapting same arguments to dimension 4, one
can find one of the smallest vector of lattice and it would be a solution of the
original CSPRϕ,q,B problem. In this study, we show that h0 is dominated, when
n is a power of two. Hence, we can solve the CSPRϕ,q,B using this technique.

Organization. In Section 2, we introduce some preliminaries related to ideal
theory and the GGH scheme. In Section 3, we state useful properties and their
proof used to solve the CSPR problem. In Section 4, we present our algorithm
to attack the GGH scheme using our theorem.

2 Preliminaries

Throughout this paper, we assume that an integer n is a power of 2. Then K :=
Q[X]/⟨Xn + 1⟩ is a number field with the ring of integers R := Z[X]/⟨Xn + 1⟩.
Especially, K is Galois extension of Q and we denote by Gal(K/Q) the Galois
group of K over Q.

For an integer q, we use the notations Zq := Z/(qZ) and Rq := Zq[X]/⟨Xn+
1⟩ = R/qR. We denote by x mod q or [x]q the number in Zq with range

(
− q

2 ,
q
2

]
,

which is congruent to x modulo q. For u ∈ Zn or R, [u]q and ∥u∥ denote the
reduction of u modulo q and the Euclidean norm of u, respectively. We iden-
tify [x]q ∈ Zq for 0 ≤ x < q with x ∈ Z. Formally, we define ι : Zq −→ Z by
[x]q ∈ Zq 7→ x ∈ Z for 0 ≤ x < q. We extend this map into Rq applying to
each coefficient. By abusion of notation, we omit this ι unless confused. When
we need an inverse of element a ∈ R, we usually consider the inverse in K with
notation a−1. If we want to consider it in Rq not in K, then we denote it by[
a−1

]
q
. We use bold letters to denote vectors or ring elements in Zn or R.

Ideal Lattice. An n-dimension full-rank lattice M ⊂ Rn is the set of all Z-
linear combinations of n linearly independent vectors. Let det(M) denote the
determinant of lattice M. For an element g ∈ R, we denote by ⟨g⟩ be the
principal ideal in R generated by g, whose basis consists of {g, Xg, . . . , Xn−1g}.
By identifying a polynomial g =

∑
giX

i ∈ R with a vector (gn−1, gn−2, . . . , g0)
T

in Zn, we can apply some lattice theory to the algebraic ring R and also use some
algebraic ring theory to analyze ⟨g⟩.
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For a polynomial u ∈ R and a basis B := {b1, b2, . . . , bn}, we denote by
u mod B the reduction of u modulo the fundamental region of lattice B, i.e, u
is the unique representation u mod B ∈ R such that u − (u mod B) ∈ B and

u mod B =
n−1∑
i=0

αibi for αi ∈ (−1/2, 1/2].

When given two elements a and b in the polynomial ring R, the following
lemma is useful for estimating the boundary of norm ∥ab∥.

Lemma 1 For any a, b ∈ R, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·
√
n.

Proof. The k-th coefficient of ab is of the form:
∑

i+j=k

aibj−
∑

i+j=n+k

aibj. By the

CauchySchwartz inequality, it is smaller than ∥a∥ · ∥b∥. Since each coefficient is
smaller than ∥a∥ · ∥b∥, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·

√
n. ⊓⊔

Gaussian distribution. Given σ > 0, the discrete Gaussian distribution over
the set L with zero mean, is defined as DL,σ(x) = ρσ(x)/ρσ(L) for any x ∈ L,
where ρσ(x) = exp(−π∥x∥2/σ2), ρσ(L) =

∑
x∈L

ρσ(x). We use a notation a ← D

to denote choosing an element a according to the distribution of D.

Norm and Trace of Field For a finite extension K of a field F , the trace
TrK/F (α) and norm NK/F (α) of α ∈ K over F is defined as the trace and
determinant of the linear transformation Mα which maps x ∈ K to αx ∈ K
respectively, i.e, TrK/F (α) =

∑
ai,i and NK/F (α) = det(ai,j) where ai,j is the

matrix for Mα with respect to any base of K over F . The map TrK/F and NK/F

satisfy the following properties:

(1) TrK/F (α) =
∑

σ∈Gal(K/F )

σ(α) if K is a Galois extension of F

NK/F (α) =
∏

σ∈Gal(K/F )

σ(α)

(2) TrK/F (α+ β) = TrK/F (α) + TrK/F (β), NK/F (αβ) = NK/F (α)NK/F (β)

(3) TrK/F (a · α) = a · TrK/F (α), NK/F (a · α) = a[K:F ] ·NK/F (α)

(4) TrK/F (a) = [K : F ] · a, NK/F (a) = a[K:F ]

for α, β ∈ K and a ∈ F .

3 Proof of Main Theorem

In this section we introduce how we can reduce CSPR with a given input
[h/g]q into CSPR with an input of which denominator has the half degree
of h. Throughout this section, let n be a power of 2, n = 2s, and denote
Q[X2t ]/⟨Xn + 1⟩ by Kt with 0 ≤ t ≤ s. Note that Ks := Q ⊂ Ks−1 ⊂ · · · ⊂
K0 = Q[X]/⟨Xn + 1⟩.

Since K0 is a Galois extension field of Kt with degree 2t, the set B =
{1, X, . . . ,X2t−1} forms a basis of K0 over Kt. It means that any f ∈ K0 =
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Q[X]/⟨Xn + 1⟩ can be uniquely represented as f =
2t−1∑
i=0

f iX
i with f i ∈ Kt =

Q[X2t ]/⟨Xn + 1⟩ which is a linear combination of B. First we state a useful
lemma.

Lemma 2 For any f =
2t−1∑
i=0

f iX
i ∈ Q[X]/⟨Xn + 1⟩ with 0 ≤ t ≤ s and

f i ∈ Q[X2t ]/⟨Xn + 1⟩, we have

TrK0/Kt
(f) = 2tf0.

Proof. First we note that TrK0/Kt
(Xi) = 0 for 1 ≤ i < 2t because the Kt-linear

transformation MXi , which maps a ∈ K0 to aXi ∈ K0, has a matrix representa-
tion whose diagonal entries are zero with respect to basis B = {1, X, . . . ,X2t−1}.
Since K0 is an extension field of Kt, we can compute

TrK0/Kt
(f) =

∑
σ∈Gal(K0/Kt)

σ(f) =
∑

σ∈Gal(K0/Kt)

σ

2t−1∑
i=0

f iX
i


=

∑
σ∈Gal(K0/Kt)

2t−1∑
i=0

σ(f i)σ(X
i) =

∑
σ∈Gal(K0/Kt)

2t−1∑
i=0

f i · σ(Xi)

=

2t−1∑
i=0

f i

∑
σ∈Gal(K0/Kt)

σ(Xi)

 = f02
t +

2t−1∑
i=1

f i · TrK0/Kt
(Xi)

= 2tf0.

⊓⊔

Using this lemma, we can get the following theorem which is the main theo-
rem in this paper.

Theorem 1. Let q and m ∈ Z be integers, and B a positive real number. Then,
for ϕn(X) = Xn + 1 with n a power of 2, we can reduce CSPRϕn,q,B into
CSPRϕn/2,q,B2

√
2n.

Proof. Suppose we are given [h/g]q where g and h are sampled from the set

{P ∈ R = Z[X]/⟨ϕ(X)⟩ : ∥P ∥ < B}. Note that
h

g
can be written over K =

Q[X]/⟨Xn + 1⟩ as
h

g
=

h0

g
+

h1

g
X

such that
hi

g
∈ R1 = Z[X2]/⟨Xn + 1⟩ for i = 0, 1.
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By Lemma 2, we get
2h0

g
= TrK0/K1

(
h

g

)
=

h

g
+ σ

(
h

g

)
where G =

Gal(K0/K1) = {id, σ}. Multiplying gσ(g), we have

2h0σ(g) = hσ(g) + σ(h)g

which is fixed byG and so lies in R1 = Z[X2]/⟨Xn+1⟩. Since it has n/2 terms, we
also have an inequality ∥2h0σ(g)∥ = ∥hσ(g)+σ(h)g∥ ≤ 2·

√
n/2·B·B = B2

√
2n.

On the other hand, one can notice that the norm of gσ(g) ∈ R1 is bounded
by B2

√
n/2 ≤ B2

√
2n since it is also fixed by G. Finally, substituting X ′ for X2,

we can consider

[
2h0

g

]
q

=

[
2h0σ(g)

gσ(g)

]
q

as a new instance for CSPRϕn/2,q,B2
√
2n.

Now, suppose that we can find a c ∈ R1 such that both ∥c∥ and ∥
[
c · 2h0σ(g)

gσ(g)

]
q

are small such that c is of the form c = g ·σ(g) ·d with small d ∈ R. If we define

b = [c]q ·
[
h

g

]
q

= [σ(g) · d ·h]q = σ(g) · d ·h, then we have

[
b

c

]
q

=

[
h

g

]
q

which

implies we solve the original CSPR problem. ⊓⊔

4 Application to GGH

In this section, we explain an attack algorithm to solve the GDDH problem of
GGH scheme without low level encodings of zero.

4.1 The GGH Scheme

First, we briefly recall the Garg et al. construction. We refer to the original
paper [GGH13a] for a complete description. The scheme relies on the following
parameters.

λ: the security parameter
κ: the multilinearity parameter
q: the modulus of a ciphertext
n: the dimension of base ring
σ: the basic Gaussian parameter for drawing the ideal generator g
σ′: the Gaussian parameter for sampling level-zero elements

Instance generation: (params,pzt)← InstGen(1λ, 1κ).
For given λ and κ, determine the parameter (σ, σ′, q, n) to satisfy the above

conditions and output (params, pzt).

Sample g ← DR,σ until ∥g−1∥ ≤ n2 and I = ⟨g⟩ is a prime ideal in R.

Sample z ← Rq.

Sample h← DR,
√
q and set a zero-testing parameter pzt =

[
h

g
zκ

]
q

.

Publish params = (n, q, κ) and pzt.
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Sampling level-zero encodings: a← samp(params).
Sample a← DI,σ′ .

Encodings at higher levels: ci ← enc(params, i, c).

Given a level-j encoding c for j < i, compute ci =
[ c

zi−j

]
q
.

Adding and multiplying encodings:
Given two encodings c1 and c2 of same level, the addition of c1 and c2 is com-
puted by Add(c1, c2)=[c1 + c2]q. Given two encodings c1 and c2, we multiply
c1 and c2 by Mul(c1, c2)=[c1 · c2]q.

Zero-testing: isZero(params, pzt, c)
?
= 0/1.

Given a level-κ encoding c, return 1 if ∥[pzt·c]q∥∞ < q3/4, and return 0 otherwise.

Extraction: sk ← ext(params, pzt, c).
Given a level-κ encoding c, compute MSBlog q/4−λ([pzt · c]q).

Next, we introduce a quantitative variant of [GGH13a, Lemma 3, 4] re-
quired in zero-testing procedure, which plays an important role to prove our
main theorem.

Lemma 3 Let g be an element of Z[X]/⟨Xn + 1⟩, and h ∈ Z[X]/⟨Xn + 1⟩ be
relative prime to g and ∥h∥ ≤M for some constant M < q. If c ∈ Z[X]/⟨Xn+1⟩
satisfies ∥c∥ < q/(2M

√
n) and ∥[c ·h ·g−1]q∥ < q/(2∥g∥

√
n), then c is contained

in the ideal ⟨g⟩.

Proof. Let w := [c ·h ·g−1]q. Then, [gw]q = [ch]q. Since ∥w∥ < q/(2∥g∥
√
n), we

have ∥gw∥ ≤ ∥g∥ · ∥w∥ ·
√
n ≤ q/2 and ∥ch∥ ≤ ∥c∥ · ∥h∥ ·

√
n ≤ q/2. Therefore,

gw = ch in Z[X]/⟨Xn + 1⟩. Because ch ∈ ⟨g⟩ and h is relative prime to g, we
can conclude c ∈ ⟨g⟩. ⊓⊔

Using Lemma 3, if one can find the c satisfying lemma 3, c is of the form
c = dg for some small d ∈ Z[X]/⟨Xn + 1⟩. Then multiplying it to [hg−1]q, one
can obtain, a small multiple of h, dh. Hence, dh and dg become a solution of
CSPR.

4.2 Attack to GGH

Considering GGH13, one can notice that the theorem in section 3 can be applied
to attack the GGH scheme. To explain the attack, we refer to parameters in
[ACLL14], which is proposed to implement asymmetric multilinear maps without
encodings of zero. Let u1 = [a1/z]q, u2 = [a2/z]q be valid level-1 encodings of
GGH scheme. Then, we have ∥ai∥ ≤ n3.5, 1 ≤ i ≤ 2. The ratio of u1 to u2 in

Rq are equivalent to

[
a1

a2

]
q

. Here we assume a1 and a2 are relative prime. From
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Lemma 3, if one can find a c ∈ Z[X]/⟨Xn+1⟩ such that ∥c∥ ≤ q/(2n3.5
√
n) and

[ca1/a2]q ≤ q/(2n3.5
√
n), then c is in ⟨a2⟩. To find a such vector, naturally, one

may consider the following lattice.

M =

(
I 0
Λ qI

)
,

where I is the identity matrix of the size n and Λ ∈ Zn×n is a matrix whose
i-th column is ι(Xi[a1/a2]q), for 0 ≤ i < n. The dimension of this lattice,
however, is too large to find a lattice point satisfying lemma 3 from lattice
reduction algorithms such as LLL and BKZ algorithm. Therefore, using the
above theorem, we deal with a lattice whose degree is lower than that of original
lattice. In reduced dimension, one can find the lattice point satisfying lemma 3
from lattice reduction algorithm.

By Theorem 1, for [a1/a2]q =
2t−1∑
i=0

[a1i/a2]qX
i with [a1i/a2]q ∈ Rt, [2

ta10/a2]q

is equivalent to [2ta10Gt/(a2Gt)]q, where Gt =
∏

δ∈Gal(K0/Kt)\id
δ(a2) satisfying

2ta10Gt, a2Gt ∈ Rt and the size of each representation is bounded by

n3.52(3t−1)/2(n4/(2
√
2))2

t−1 and n3.52(t−1)/2(n4/(2
√
2))2

t−1,

respectively. For convenience, we denote the first as Mt, the last as Bt = Mt/2
t,

and nt as n/2t . To apply lemma 3, both bound must be smaller than q. In
[ACLL14] parameter settings, t is to be smaller than 7. Now, we consider the
following column latticeMt:

Mt =

(
It 0
Λt qIt

)
,

where It is the identity matrix of size nt = n/2t and Λt ∈ Znt×nt is a matrix.

Each column of Λt is ι(X
i2t [2ta10Gt/a2Gt]q), for 0 ≤ i < n/2t.

Here, we use a lattice reduction algorithm such as LLL algorithm. By exper-
imental results, for m dimensional lattice L, the size of LLL algorithm’s output
is bounded by 1.0219m detL1/m. Using the lattice reduction algorithm, one can
obtain an element inMt

ut = (u0, · · · , unt
, unt+1, · · · , u2nt

)T

with ∥ut∥ ≤ 1.0219nt
√
q. Take c =

nt∑
i=0

uiX
2ti ∈ Z[X2t ]/⟨Xn + 1⟩. Then [c ·

2ta10Gt/a2Gt]q =
nt∑
i=0

unt+iX
2ti ∈ Z[X2t ]/⟨Xn + 1⟩. Moreover, if t satisfies

1.0219nt
√
q ≤ q

2Mt
√
nt

,
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then,

∥c∥ < ∥ut∥ ≤ 1.0219nt
√
q ≤ q

2Mt
√
nt

∥[c · 2ta10Gt/a2Gt]q∥ < ∥ut∥ ≤ 1.0219nt
√
q ≤ q

2Mt
√
nt
≤ q

2Bt
√
nt

.

In other words, c satisfies the conditions of lemma 3. Therefore, c is in ⟨a2Gt⟩.
Note that c is of the form c = da2Gt = d′a2 ∈ Rt since c lies in ⟨a2Gt⟩ ⊂ Rt.
Multiplying it to [a1/a2]q, one can obtain d′a1 ∈ R. Running time of these
procedures is dominated by that of LLL algorithm, which is polynomial time
algorithm in dimension of a lattice and log q. Hence, this attack is carried out
in polynomial time, if above t exists. Several parameter settings with such t are
proposed in Section 4.3. Finally, we have constructed an algorithm to find an
element d′a1 from [a1/a2]q. Using this algorithm to several [a1/ai]q, one can
recover d′

ia1 Applying averaging attacks and Gentry-Szydlo algorithm to {ci} ,
explained in [GGH13a, Section 7.2, 7.3], one can recover a2. It implies that one
can recover z and any secret elements in GGH scheme.

4.3 Application with practical parameter setting

To apply our attack, we computed appropriate t on some [ACLL14] parameter
settings for GGH. Table 1 provides some numerical values including log 1.0219nt

√
q

and log
q

2Mt
√
nt

meaning we can apply our attack with these settings.

Table 1: Numerical results

λ κ n log q t log 1.0219nt
√
q log

q

2Mt
√
nt

52 6 215 2117 4 1122.508244 1175
52 9 215 3086 4 1607.008244 2144
52 14 216 4966 5 2547.008244 2959
52 19 216 6675 5 3401.508244 4668
52 25 217 9196 6 4662.008244 4932
52 52 218 19898 7 10013.008244 10865

80 6 216 2289 3 1400.532977 1784
80 9 216 3314 4 1785.016488 2308
80 14 217 5288 5 2772.016488 3153
80 19 217 7089 5 3672.516488 4954
80 25 218 9721 6 4988.516488 5201
80 38 218 14649 6 7452.516488 10129

In Table 1, λ is the security parameter, κ is the multilinearity parameter.

5 Conclusion

After GGH scheme providing encoding of zero is known to be insecure, the CSPR
has received a lot of attention because of the security grounding of GGH scheme
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without encoding of zero. In this work, we described how to find a small solution
of the CSPR. By applying the method to GGH scheme, we could attack the
GGH scheme. Therefore, our results imply that security of the GGH scheme is
not guaranteed not depending on whether we are given a small encoding of zero
or not.

Our algorithm to solve the CSPR heavily relies on the fact that n is a power
of two. Hence it would be an interesting problem to find how to solve the CSPR
for general n.
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