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Abstract. Let h and g be polynomials of bounded Euclidean norm in
the ring Z[X]/⟨Xn+1⟩. Given polynomial [h/g]q ∈ Zq[X]/⟨Xn+1⟩, the
NTRU problem is to find a, b ∈ Z[X]/⟨Xn + 1⟩ with small Euclidean
norm such that [a/b]q = [h/g]q. We propose an algorithm to solve the

NTRU problem which runs in 2Õ(n/log2 q) time when ∥g∥, ∥h∥ and ∥g−1∥
are in some range. The main technique of our algorithm is to reduce a
problem on a field to one in a subfield.
Recently, the GGH scheme, the first candidate of a (approximate) multi-
linear map, was known to be insecure by the Hu-Jia attack using encod-
ings of zero, but no polynomial time attack was known without them.
Our algorithm can be directly applied to construct level-0 encodings of
zero and so utilized to attack the GGH scheme without encodings of zero
in polynomial time of its security parameter.

Keywords: NTRU, GGH Multilinear Maps, Ideal Lattice, Shortest Vec-
tor Problem

1 Introduction

The NTRU problem is to find a pair of small polynomial whose ratio matches up
to given a ratio of two small polynomials [HPS98]. After introduced for the secu-
rity of a public key encryption scheme NTRU, the assumption that this NTRU
problem is to be hard to solve, so-called NTRU assumption, has been used
for the security grounding of various cryptographic schemes such as signature
schemes [HHGP+03,DDLL13], fully homomorphic encryption [LATV12,BLLN13]
and candidates for cryptographic multi-linear maps [GGH13,LSS14,ACLL14].
Not broken until now, the NTRU assumption is getting more attention as one
of the candidates for the post-quantum public-key crypto system. A variant of
NTRU problem can be stated as follows:

Problem 1 (A variant of NTRU Problem)
Let ϕn(X) ∈ Z[X] be a polynomial of degree n, q ∈ Z be an integer, and let D,
N and B be real numbers. The NTRU Problem NTRUϕn,q,D,N,B is to find a,
b ∈R := Z[X]/⟨ϕn(X)⟩ with Euclidean norm smaller than B such that [b/a]q =
f for given a polynomial f = [h/g]q, where h and g are sampled from R and
have Euclidean norms bounded by D and N , respectively.
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In the original NTRU problem, h and g are sampled from the some distribution
of R. We consider the variant version to attack multilinear maps [GGH13].

In this paper, we propose a polynomial time reduction from NTRUϕn,q,D,N,B

into NTRUϕn/2,q,D1,N1,B1 where ϕn = Xn + 1, B = min{ q
2D

√
n
, q
2N

√
n
}, D1 =

D2
√
n/2, N1 = 2ND

√
n/2, and B1 = min{ q

2Dt
√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
} for

a power n of 2. Our algorithm is to reduce the problem defined over a ring
Z[X]/⟨Xn+1⟩ to one over a subring Z[X]/⟨Xn/2+1⟩. After applying repeatedly,
we then use lattice reduction algorithms to find a short element. Since the latter
has smaller dimension, lattice reduction algorithms require less running time to
produce a short element, which results in an algorithm on the NTRU problem.

It runs in 2Õ(n/log2 q) time when ∥g∥, ∥h∥ and ∥g−1∥ are in some range. For
example, when n = λ2 and log q = λ, the running time is of polynomial in λ.

As an application of our work, we propose an attack of the GGH multilinear
maps [GGH13] without any encodings of zero. The GGH maps were proposed by
Garg et al. and broken by so called a zeroizing attack by Hu and Jia [HJ15]. Since
their attack extensively utilizes encodings of zero, it does not work without them
and no polynomial time attack was known without them until recently (Refer
to the related work subsection for concurrent and independent works on this
problem). Our algorithm can be directly applied to construct level-0 encodings
of zero. We then can utilize them to attack the GGH scheme without encodings
of zero in polynomial time of its security parameter. Our GGH attack requires
one known plaintext/ciphertext pair as well as public parameters.

Technical overview. A natural approach for the NTRU problem is to convert
it to a Shortest Vector Problem (SVP) in an ideal lattice. Let ϕn(X) = Xn + 1

when n is a power of 2. For any polynomial f = [h/g]q =
n−1∑
i=0

fiX
i ∈ R :=

Z[X]/⟨Xn + 1⟩, one may consider it as a vector (f0, · · · , fn−1)
T . Then, the

product gf =
n−1∑
i=0

giX
if of two polynomials f and g in R is contained in a

lattice Mf generated by {f , Xf , · · · , Xn−1f}. We aim to obtain an element
g̃ ∈ Z[X]/⟨ϕ(X)⟩ satisfying ∥g̃∥ and ∥[g̃f ]q∥ are small. To obtain such a g̃ ∈
Z[X]/⟨ϕ(X)⟩, one can naturally contemplate the following column lattice:

Λf =

(
I 0

Mf qI

)
,

where I is the identity matrix of size n and Mf is a basis matrix ofMf juxta-
posed by {f , Xf , · · · , Xn−1f}.

Given a lattice vector u = (u0, · · · , u2n−1)
T of Λf satisfying |ui| < q/2

for n ≤ i ≤ 2n − 1, we take g′ =
n−1∑
i=0

uiX
i and h′ =

n−1∑
i=0

un+iX
i so that

h′ = [g′f ]q and f = [h′/g′]q. Therefore, if one can find a small lattice point u

such that

√
n−1∑
i=0

ui ≤
q

2∥h∥
√
n

and

√
2n−1∑
i=n

ui ≤
q

2∥g∥
√
n
, it becomes a solution
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of NTRUϕ,q,D,N,B . However, the dimension 2n of the lattice is too large for
most applications, where the hardness of the NTRU problem comes from.

To overcome this obstacle, we consider a subfieldKm ofK0 := Q[X]/⟨Xn+1⟩
with extension degree m, and the trace of f ∈ K0 over Km:

Tr(f) =

[
m∑
i=1

σi(f)

]
q

=

 m∑
i=1

(σi(h)
∏
j ̸=i

σj(g))/

m∏
i=1

σi(g)


q

.

Since the numerator and denominator are elements in Km bounded by m∥h∥·
∥g∥m−1nm and ∥g∥mnm, respectively, if they are smaller than q, we can draw
another instance of the NTRU problem on Km, where the dimension of ΛTr(f) is
that of Λf divided by m. Optimizing the m so that finding a small vector of the
reduced lattice is possible with BKZ algorithm, one can reach the our results.

Multilinear Maps. After Boneh and Silverberg [BS02] suggested a concept of
cryptographic multilinear maps and their applications such as multipartite Diffie-
Hellman and an efficient broadcast encryption in 2002, it has been a long lasting
open question to construct cryptographic multilinear maps. In 2013, after about
one decade, approximate cryptographic multilinear maps are first proposed by
Garg, Gentry, and Halevi (GGH) [GGH13] . Not much later, second and third
cryptographic multilinear maps are suggested by Coron, Lepoint, and Tibouchi
(CLT) [CLT13], and Craig Gentry, Sergey Gorbunov, and Shai Halevi [GGH15],
respectively. However, none of them have a reduction to standard hardness prob-
lem such as subset sum problem. In fact, the first two schemes with low level
encodings of zero are known to be insecure [CHL+15,HJ15], so called zeroizing
attack. The last candidate is also broken [Cor15]. Although the fixed scheme of
[CLT13] is proposed by the same authors of [CLT15] to resist zeroizing attack
against the CLT scheme, it is also shown to be insecure [CLR15].

On the other hand, both [GGH13] scheme and [CLT13] scheme without any
encodings of zero, which are used as basic tools for constructing applications
such as indistinguishable obfuscations, have still not been analyzed yet.

Related work. Recently for GGH multilinear maps without encodings of zero,
two more concurrent and independent cryptanalytic works have been announced
simultaneously: One by Albrecht, Bai, and Ducas [MA16] and the other by Miles,
Sahai, and Zhandry [MSZ16].

The first introduces a very similar reduction from NTRUϕn,q,D,N,B into
NTRUϕn/2,q,D1,N1,B1

. But they used the norm function instead of the trace
function in our algorithm and so happened to have larger N1 than ours, when
N > 2D. That results in quantum polynomial time or subexponential time at-
tack on GGH without encodings of zero. However, they provided rich analysis
for NTRU-like homomorphic encryptions LTV [LATV12] and YASHE [BLLN13],
and multilinear maps GGH with some implementations.

The second introduces a polynomial time attack algorithm against the GGH
multilinear maps, so called annihilation attacks. Using non-linear polynomials,
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it also leads to a polynomial time break of the GGH scheme without low level
encodings of zero.

Organization. In Section 2, we introduce some notations and preliminaries
related to ideal theory and Galois theory. In Section 3, we state useful properties
and their proof used to solve the NTRU problem. In Section 4, we explain the
GGH scheme briefly and present our algorithm to attack the GGH scheme using
our theorem.

2 Preliminaries

Notation. For an integer q, we use the notations Zq := Z/(qZ) and Rq :=
Zq[X]/⟨Xn + 1⟩ = R/qR. We denote by (x mod q) or [x]q the number in Zq

with range
(
− q

2 ,
q
2

]
, which is congruent to x modulo q. For u =

n−1∑
i=0

uiX
i ∈ R,

[u]q =
n−1∑
i=0

[ui]qX
i and ∥u∥ denote the Euclidean norm of u.

We define ι : Zq −→ Z by [x]q ∈ Zq 7→ x ∈ Z for − q
2 < x ≤ q

2 . We extend
this map into Rq applying to each coefficient. By abuse of notation, we omit this
ι unless confused to identify [x]q ∈ Zq with an integer x when − q

2 < x ≤ q
2 .

Throughout this paper, we assume that an integer n is a power of 2. Then
K := Q[X]/⟨Xn+1⟩ is a number field with the ring of integers R := Z[X]/⟨Xn+
1⟩. Especially, K is a Galois extension of Q and we denote by Gal(K/Q) the
Galois group of K over Q. As in technical overview, for any polynomial f =
n−1∑
i=0

fiX
i ∈ K, we consider it as a column vector (f0, · · · , fn−1)

T . When we need

an inverse of element a ∈ R, we usually consider the inverse in K with notation
a−1. If we want to consider it in Rq not in K, then we denote it by

[
a−1

]
q
. We

use bold letters to denote vectors or ring elements in Zn or R.

Ideal Lattice. An n-dimension full-rank lattice M ⊂ Rn is the set of all Z-
linear combinations of n linearly independent vectors. Let det(M) denote the
determinant of lattice M. For an element g ∈ R, we denote by ⟨g⟩ be the
principal ideal in R generated by g, whose basis consists of {g, Xg, . . . , Xn−1g}.
By identifying a polynomial g =

∑
giX

i ∈ R with a vector (gn−1, gn−2, . . . , g0)
T

in Zn, we can apply a lattice theory to the algebraic ring R and an algebraic
ring theory to the ideal lattice ⟨g⟩.

For a polynomial u ∈ R and a basis B := {b1, b2, . . . , bn}, we denote by
u mod B the reduction of u modulo the fundamental region of lattice B, i.e,
u mod B is the unique representation of u ∈ R such that u − (u mod B) ∈ B

and u mod B =
n−1∑
i=0

αibi for αi ∈ (−1/2, 1/2]. For a polynomial u,v ∈ R, we use

the notations u mod v as u mod V, where V is a basis {v, Xv, . . . , Xn−1v}. By
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definition of u mod v, it is of the form
n−1∑
i=0

αiX
iv for αi ∈ (−1/2, 1/2]. Hence

its Euclidean norm size is bounded by
n−1∑
i=0

∥Xiv∥/2 =
n−1∑
i=0

∥v∥/2 =
n

2
∥v∥.

Next, we introduce useful lemmas related to ideal lattices.

Lemma 1 For any a, b ∈ R, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·
√
n.

Proof. The k-th coefficient of ab is of the form:
∑

i+j=k

aibj−
∑

i+j=n+k

aibj. By the

Cauchy - Schwartz inequality, it is smaller than ∥a∥ · ∥b∥. Since each coefficient
is smaller than ∥a∥ · ∥b∥, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·

√
n.

Lemma 2 Let g be an element of Z[X]/⟨Xn + 1⟩, and h ∈ Z[X]/⟨Xn + 1⟩
be relative prime to g. If c ∈ Z[X]/⟨Xn + 1⟩ satisfies ∥c∥ < q/(2∥h∥

√
n) and

∥[c · h · g−1]q∥ < q/(2∥g∥
√
n), then c is contained in the ideal ⟨g⟩.

Proof. Let w := [c ·h ·g−1]q. Then, [gw]q = [ch]q. Since ∥w∥ < q/(2∥g∥
√
n), we

have ∥gw∥ ≤ ∥g∥ · ∥w∥ ·
√
n ≤ q/2 and ∥ch∥ ≤ ∥c∥ · ∥h∥ ·

√
n ≤ q/2. Therefore,

gw = ch in Z[X]/⟨Xn + 1⟩. Because ch ∈ ⟨g⟩ and h is relative prime to g, we
can conclude c ∈ ⟨g⟩.

Using Lemma 2, if one can find the c satisfying lemma 2, c is of the form
c = dg for some small d ∈ Z[X]/⟨Xn + 1⟩. Then multiplying it to [hg−1]q, one
can obtain, a small multiple of h, dh. Hence, dh and dg become a solution of
NTRU problem.

Gaussian distribution. Given σ > 0, the discrete Gaussian distribution over
the set L with zero mean is defined as DL,σ(x) = ρσ(x)/ρσ(L) for any x ∈ L,
where ρσ(x) = exp(−π∥x∥2/σ2), ρσ(L) =

∑
x∈L

ρσ(x). We use a notation a ← D

to denote choosing an element a according to the distribution of D.

Norm and Trace of Field For a finite extension K of a field F , the trace
TrK/F (α) and norm NK/F (α) of α ∈ K over F is defined as the trace and
determinant of the linear transformation Mα which maps x ∈ K to αx ∈ K
respectively, i.e, TrK/F (α) =

∑
ai,i and NK/F (α) = det(ai,j) where ai,j is the

matrix for Mα with respect to any base of K over F . The map TrK/F and NK/F

satisfy the following properties:

(1) TrK/F (α) =
∑

σ∈Gal(K/F )

σ(α), NK/F (α) =
∏

σ∈Gal(K/F )

σ(α)

if K is a Galois extension of F
(2) TrK/F (α+ β) = TrK/F (α) + TrK/F (β), NK/F (αβ) = NK/F (α)NK/F (β)

(3) TrK/F (a · α) = a · TrK/F (α), NK/F (a · α) = a[K:F ] ·NK/F (α)

(4) TrK/F (a) = [K : F ] · a, NK/F (a) = a[K:F ]

for α, β ∈ K and a ∈ F .
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3 Main Theorem

In this section we introduce how we can reduce NTRU problem with a given input
[h/g]q into NTRU problem with an input of which denominator and numerator
have the half degree of h and g. Throughout this section, let n = 2s, and denote
Q[X2t ]/⟨Xn+1⟩ and Z[X2t ]/⟨Xn+1⟩ byKt and Rt, respectively, with 0 ≤ t ≤ s.
Note that Ks := Q ≤ Ks−1 ≤ · · · ≤ K0 = Q[X]/⟨Xn+1⟩, where A ≤ B denotes
A is a subfield of B.

Since K0 is a Galois extension field of K1 with degree 2, Gal(K0/K1) is a
group of order 2. That is, Gal(K0/K1) = {id, σ} satisfying σ2 = id where id
is the identity map. For an element f , g ∈ R ⊂ K0, the following elements are
contained in R1 ⊂ K1:

f + σ(f)

f · σ(f)
fσ(g) + σ(f)g,

since these are fixed by the Gal(K0/K1). Using this property, we can get the
following theorem which is the main theorem in this paper.

Theorem 1 Let q, t and m ∈ Z be integers, and let D, N and B be positive
real numbers. Put B = min{ q

2D
√
n
, q
2N

√
n
}. Then, for ϕn(X) = Xn + 1 with n

a power of 2, we can reduce NTRUϕn,q,D,N,B into NTRUϕn/2,q,Dt,Nt,Bt where

Dt = D2
t−1

√
n/2t, Nt = 2tDtN

D , Bt = min{ q
2Dt

√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
} with

D0 = D, N0 = N and B0 = B.

Proof. If we prove this theorem with t = 1, one can easily generalize to obtain
the desired result. Suppose we are given [h/g]q where g and h are sampled from
the set {(g,h) ∈ R2 = (Z[X]/⟨ϕn(X)⟩)2 : ∥h∥ < N, ∥g∥ < D}. We consider an

useful element TrK0/K1

(
h

g

)
=

h

g
+ σ

(
h

g

)
=

hσ(g) + σ(h)g

gσ(g)
∈ K1 satisfying:

– its denominator and numerator lie in R1,

– ∥hσ(g) + σ(h)g∥ ≤
√
n/2 · ∥h∥∥σ(g)∥+

√
n/2∥σ(h)∥∥g∥ ≤ 2ND

√
n/2,

– ∥gσ(g)∥ ≤
√
n/2∥g∥∥σ(g)∥ ≤ N2

√
n/2.

Therefore, we can see

[
hσ(g) + σ(h)g

gσ(g)

]
q

as a new instance forNTRUϕn/2,q,D1,N1,B1

where N1 = 2ND
√
n/2, D1 = N2

√
n/2.

Now, suppose that a solution (a1, b1) ∈ R1 of NTRUϕn/2,q,D1,N1,B1 is known
such that [b1/a1]q = [h/g]q. Moreover, since g and h are relative prime with high
probability [ref], we assume the coprimality of g and h. Then, by Lemma 2 , a1 is
of the form a1 = dgσ(g). Computing [a1 · f ]q = [dgσ(g) · [h/g]q]q = [dhσ(g)]q,
put a = a1 and b = [dhσ(g)]q. Then, we can conclude that the pair (a, b) is a
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solution of NTRUϕn,q,D,N,B with following properties:

[b/a]q = [h/g]q

∥a∥ ≤ B = min

{
q

2D
√
n
,

q

2N
√
n

}
≤ q

2N
√
n/2

∥dhσ(g)∥ = ∥dgσ(g)g−1h∥ ≤ ∥a1∥∥g−1∥∥h∥ · n

≤ q

2nN2∥g−1∥
√
n
· ∥g−1∥ ·N · n

=
q

2N
√
n

The second inequality implies b = [dhσ(g)]q is actually b = dhσ(g) in R.
Thus, we get the desired result.

Theorem 2 Let q be an integer, n be a power of 2, and λ be a security pa-
rameter. Let [h/g]q be an instance of NTRUϕn,q,D,N,B problem with setting
n,N,D, log q = poly(λ), ϕn(X) = Xn + 1, and B = min{ q

2D
√
n
, q
2N

√
n
}. If

∥g−1∥ < poly(λ), the problem is solved in 2Õ(n/log2 q) time.

For example, when n = λ2 and log q = λ, one can solve the NTRUϕn,q,D,N,B in
polynomial time in λ. In case of n = λ3 and log q = λ, one can solve the problem

in 2Õ(λ) time.

Proof. Without loss of generality, we assume N is larger than D. More precisely,
we put N = λs, D = λk for s ≥ k. Then, by Theorem 1, one can obtain a
new instance TrK/Kt

([h/g]q) ∈ Rq ∩ Rt for NTRUϕn/2t ,q,Nt,Dt,Bt where Nt <

2tλs (nλt/2)
2t
, Dt <

(
nλk/2

)2t
, and Bt = min{ q

2Nt
√
nt
, q
2Dt

√
nt
, q
nλ2s∥g−1∥}. If

t > 1, we assume Bt =
q

2Nt
√
nt

since it is asymptotically smaller than the others

Now, we consider the following column latticeMt:

Mt =

(
Int 0
Λt qInt

)
,

where Int is the identity matrix of size nt = n/2t and Λt ∈ Znt×nt is a ma-

trix whose i-th column is ι(Xi2tTrK/Kt
([h/g]q)) for 0 ≤ i < n/2t. In other

words, for TrK/Kt
([h/g]q) =

nt−1∑
j=0

fjX
j2t , the i-th column of Λt is of the form

(−fnt−i, · · · ,−fnt−1, f0, · · · fnt−i−1)
T .

Using the BKZ algorithm with block size β, one can obtain an element in
Mt

ut = (u0, · · · , unt−1, unt , · · · , u2nt−1)
T

with ∥ut∥ ≤ 2β
nt−1

2(β−1)
+ 3

2 det(Mt) = 2β
nt−1

2(β−1)
+ 3

2
√
q [HPS11]. Take c =

nt−1∑
i=0

uiX
i2t

∈ Z[X2t ]/⟨Xn + 1⟩. Then we have [c · TrK/Kt
([h/g]q)]q =

nt−1∑
i=0

unt+iX
i2t ∈
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Z[X2t ]/⟨Xn + 1⟩. Moreover, if we choose t such that

2β
nt

2(β−1)
+ 3

2
√
q ≤ q

2Nt
√
nt

,

then ∥c∥ and ∥c · TrK/Kt
([h/g]q)]q∥ satisfy

∥c∥ < ∥ut∥ ≤ 2β
nt−1

2(β−1)
+ 3

2
√
q ≤ q

2Nt
√
nt

∥c · TrK/Kt
([h/g]q)]q∥ < ∥ut∥ ≤ 2β

nt−1
2(β−1)

+ 3
2
√
q ≤ q

2Nt
√
nt
≤ q

2Dt
√
nt

.

In other words, c satisfies the conditions of Lemma 2. Therefore, c is in ⟨NK/Kt
(g)⟩

⊂ ⟨g⟩. Note that c is of the form c = d ·NK/Kt
(g) = d′g ∈ Rt.

To check the above condition of t is satisfied, we have the equivalence equa-
tion:

2β
nt

2(β−1)
+ 3

2
√
q ≤ q

2Nt
√
nt

⇔
(

nt

2(β − 1)
+

3

2

)
log β + logNt +

log nt

2
+ 2 <

log q

2

To optimize the left hand side of inequality, we choose t such that

2t ≈

√
n log β

2(β − 1)(log nλk/2)
.

Then the left hand side is asymptotic to the following:(
nt

2(β − 1)
+

3

2

)
log β + logNt +

log nt

2
+ 2

≈ n

2t2(β − 1)
log β + 2t log(nλk/2) +O(κ log n)

≈ 2

√
n log β log(nλk/2)

2(β − 1)
+O(κ log n)

where the last approximation comes from the arithmetic-geometric mean. It

implies that if one choose β =
n

(log q)2−ϵ
, for arbitrary 0 < ϵ < 2, then the last

value is smaller than
log q

2
asymptotically.

Running time of this procedure is dominated by that of BKZ algorithm with
block size β, which is poly(n, log q) · CHKZ(β) times where CHKZ(β) = 2O(β) is
the cost of HKZ-reduction in dimension β [ADRSD14,HPS11] Finally, we have
constructed an algorithm to find an element dNK/Kt

(g) with the size of it smaller
than q

2Nt
√
nt

< q
2N

√
nt

from [h/g]q. By multiplying dNK/Kt
(g) to [h/g]q, one

can obtain an element dhNK/Kt
(g)g−1 and its Euclidean size is smaller than
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∥dNK/Kt
(g)∥·∥h∥·∥g−1∥n ≤ q

2Nt
√
nt
·N ·∥g−1∥n ≤ q

nN2∥g−1∥ ·N ·∥g
−1∥n ≤ q

2N
√
n
.

The second inequality comes fromBt = min{ q
2Nt

√
nt
, q
2Dt

√
nt
, q
nN2∥g−1∥} =

q
2Nt

√
nt

by assumption. Hence, a pair (dNK/Kt
(g), dhNK/Kt

(g)g−1) is a solution of
NTRUϕn,q,N,D,B .

4 Application to GGH

In this section, we explain an attack algorithm to solve the GDDH problem of
GGH scheme without low level encodings of zero.

4.1 The GGH Scheme

First, we briefly recall the Garg et al. construction. We refer to the original
paper [GGH13] for a complete description. The scheme relies on the following
parameters.

λ: the security parameter
κ: the multilinearity parameter
q: the modulus of a ciphertext
n: the dimension of base ring
m: the number of level-κ encodings of zero in public parameters
σ: the basic Gaussian parameter for drawing the ideal generator g
σ′: the Gaussian parameter for sampling level-zero elements

Instance generation: (params,pzt)← InstGen(1λ, 1κ).
For given λ and κ, determine the parameter (σ, σ′, q, n) to satisfy the above

conditions and output (params, pzt).

Sample g ← DR,σ until ∥g∥, ∥g−1∥ ≤ n2 and I = ⟨g⟩ is a prime ideal in R.

Sample z ← Rq.

Sample X = {big} ← DI,σ′ and set a level-κ encoding of 0, xi =

[
big

zκ

]
q

for each i ≤ m.

Sample h← DR,
√
q and set a zero-testing parameter pzt =

[
h

g
zκ

]
q

.

Publish params = (n, q, κ, {xi}) and pzt.

Sampling level-zero encodings: a← samp(params).
Sample a← DI,σ′ .

Encodings at higher levels: ci ← enc(params, i, c).

Given a level-j encoding c for j < i, compute ci =
[ c

zi−j

]
q
.
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Adding and multiplying encodings:
Given two encodings c1 and c2 of same level, the addition of c1 and c2 is com-
puted by Add(c1, c2)=[c1 + c2]q. Given two encodings c1 and c2, we multiply
c1 and c2 by Mul(c1, c2)=[c1 · c2]q.

Zero-testing: isZero(params, pzt, c)
?
= 0/1.

Given a level-κ encoding c, return 1 if ∥[pzt·c]q∥∞ < q3/4, and return 0 otherwise.

Extraction: sk ← ext(params, pzt, c).
Given a level-κ encoding c, compute MSBlog q/4−λ([pzt · c]q).

4.2 Hardness Assumptions

We recall the definition of the Graded Decisional Diffie-Hellman problem (GDDH)
and Graded Computational Diffie-Hellman problem (GCDH) on which the secu-
rity of GGH scheme relies [GGH13]. These do not seem to be reducible to more
classical assumptions in generic ways.

GDDH, ext-GCDH, GCDH.
For an adversary A and parameters λ, κ, we consider the following process in

the GGH scheme.
1. Choose (q, {xi}, pzt) ← InstGen(1λ, 1κ).
2. Sample aj ← samp(q, {xi}) for each 0 ≤ j ≤ κ.
3. Set uj ← enc(q, {xi}, 1, aj) for all 0 ≤ j ≤ κ.
4. Choose r ← DR,σ′ .
5. Sample ρj ← {0, 1} for 1 ≤ j ≤ m

6. Set û=

[
a0 ×

∏κ
i=1 ui +

∑
j

ρjxj

]
q

.

7. Set u=

[
r ×

∏κ
i=1 ui +

∑
j

ρjxj

]
q

.

The GCDH problem is to output a level-κ encoding of
κ∏

i=0

ai + I given inputs

{q, {xi},pzt,u0, . . . ,uκ}.

The ext-GCDH problem is to output a v ∈ Rq such that ∥[v − pzt · û]q∥ < q3/4

given inputs

{q, {xi},pzt,u0, . . . ,uκ}.

The GDDH problem is to distinguish between two distributions DDDH and DR

where

DDDH = {q, {xi},pzt,u0, . . . ,uκ, û} and DR = {q, {xi},pzt,u0, . . . ,uκ,u}.



11

4.3 Attack to GGH

Considering GGH13, one can notice that the theorem in section 3 can be applied
to solve the GCDH problem, which is the security problem of the GGH scheme.
More precisely, suppose we have

{q, {xi}, pzt, u0, · · · ,uκ}.

Additionally, we assume that we have a pair of level-0 encoding m̄ /∈ ⟨g⟩ and its

level-1 encoding b =

[
m̄+ ag

z

]
q

. Our attack algorithm consists of three steps:

– First, find a small element cg ∈ ⟨g⟩.
– Next, compute a small level-1 encoding of m̄−1 using the m̄, cg
– Last, recover a element m′

i in R = Z[X]/⟨Xn +1⟩ such that m′
i −mi ∈ ⟨g⟩

for any 0 ≤ i ≤ κ.

Finally, we can compute

[(
κ∏

i=0

m′
i · (m̄−1)κ mod cg

)
· bκ
]
q

and it becomes a

solution of GCDH problem.

4.3.1 Step 1: Finding a small element of ⟨g⟩
Note that ∥m̄ + αg∥, ∥big∥, ∥ai∥ ≤ n3.5 and ∥m̄∥ ≤ n3 with overwhelming
probability. Considering [uκ

1/x1]q = [aκ
1/b1g]q, the size of denominator and nu-

merator is bounded by n3.5κ
√
n
κ−1

< n4κ and n3.5, respectively. Using the
algorithm of Theorem 2 to several [ai1 · · ·aiκ/bjg]q, for i1, · · · , iκ ∈ {0, · · · , κ}
and j ∈ {1, · · · ,m}, one can recover several multiples of NK/Kt

(g) and basis
matrix of the ideal lattice of ⟨NK/Kt

(g)⟩ over Rt. Its determinant is equal to
NKt/Q(NK/Kt

(g)) = NK/Q(g) and it is bounded by n2n. Now, using β block-
BKZ algorithm [HPS11], one can obtain an element cg ∈ ⟨NK/Kt

(g)⟩ such that

∥cg∥ ≤ 2β
nt−1

2(β−1)
+ 3

2 · n2t+1

as we want.

4.3.2 Step 2: Recovering the level-1 encoding of 1

Using a pair

(
m̄, b =

[
m̄+ ag

z

]
q

)
, one can recover a level-1 encoding of 1 as

follows. If m̄ and cg ∈ ⟨NK/Kt
(g)⟩ are relative prime, one can compute e, e′ ∈ R

such that em̄+e′cg = 1. Then, (e mod cg) and (eκ mod cg) are the inverses of
m̄ and m̄κ in R/⟨NK/Kt

(g)⟩ and R/⟨g⟩, respectively. Moreover, these size are

smaller than ∥cg∥n/2 ≤ β
nt−1

2(β−1)
+ 3

2 · n2t+2

. Note that m̄ and cg ∈ ⟨NK/Kt
(g)⟩

are relative prime with high probability [MA16] and it is always true when g is
a prime in R.

4.3.3 Step 3: Computing the m′

We refer to Section 6.3.3 in [GGH13] to solve the GCDH problem with short
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vector c ∈ ⟨g⟩. We explain how to use cg in order to solve the GCDH problem
in the GGH scheme.

First, by using u0,u1, . . . ,uκ, cg, b, e
κ mod cg, and pzt, one can obtain the

following zero-testing values in Z[X]/⟨Xn + 1⟩:

f := ι
(
[(eκ mod cg) · bκ · pzt · cg]q

)
= (1 + Jg)hd

f i := ι
([

(uie
κ mod cg) · bκ−1 · pzt · cg

]
q

)
= (mi + J ′g)hd, (0 ≤ i ≤ κ).

Assuming that f has an inverse in R/⟨NK/Kt
(g)⟩, we can compute f i/f =

mi mod ⟨NK/Kt
(g)⟩. It implies that f i/f mod ⟨NK/Kt

(g)⟩ is also in mi + ⟨g⟩

for 0 ≤ i ≤ κ. Therefore we obtain F =
κ∏

i=0

f i/f mod ⟨NK/Kt
(g)⟩, which

is in
κ∏

i=0

mi + ⟨g⟩. Now compute F · eκ mod cg whose size is smaller than

∥cg∥n/2 ≤ β
nt−1

2(β−1)
+ 3

2 · n2t+2

. To compute the level-κ encoding of
κ∏

i=0

mi, we

compute [F ·eκ mod cg ·bκ ·pzt]q. We notice that it is of the form

 κ∏
i=0

mi+rg

g


q

,

the size of whose denominator is bounded by ∥Feκ mod cg · (m̄ + ag)κ · h∥
≤ β

nt−1
2(β−1)

+ 3
2 · n2t+2 · n4κ√q. When β = λ1−ϵ, it is asymptotically smaller than

q3/4 and we can solve the GCDH problem. In summary, we can get the following
corollary.

Corollary 3 Given {n, q, {xi}, m, b, pzt, u0, · · · ,uκ} of the GGH scheme
parameters, where n is Θ(λ2), log q = Θ(λ), xi is a level-κ encoding of zero, m
is a level-0 encoding, b is a level of 1 encoding of m and ui is a level-1 encoding

of ai, one can compute an encκ(
κ∏

i=0

ai) which is a solution of GCDH problem in

the GGH scheme in the 2O(λ1−ϵ) for some 0 < ϵ < 1.

5 Conclusion

After GGH scheme providing encoding of zero is known to be insecure, the
variant of NTRU has received a lot of attention because of the security grounding
of GGH scheme without encoding of zero. In this work, we described how to find a
small solution of the variant of NTRU using reduction technique. By applying the
method to GGH scheme, we could attack the GCDH problem in GGH scheme.
Therefore, our results imply that there is no guarantee for the security of the
GGH scheme not only when we are given a small encoding of zero but also when
we are not given.
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