
Improved Progressive BKZ Algorithms and their
Precise Cost Estimation by Sharp Simulator

Yoshinori Aono1?, Yuntao Wang2, Takuya Hayashi1, and Tsuyoshi Takagi3,4

1 National Institute of Information and Communications Technology, Tokyo, Japan.
2 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan.

3 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan,
4 CREST, Japan Science and Technology Agency

Abstract. In this paper, we investigate a variant of the BKZ algorithm,
called progressive BKZ, which performs BKZ reductions by starting with
a small blocksize and gradually switching to larger blocks as the process
continues. We discuss techniques to accelerate the speed of the progres-
sive BKZ algorithm by optimizing the following parameters: blocksize,
searching radius and probability for pruning of the local enumeration al-
gorithm, and the constant in the geometric series assumption (GSA). We
then propose a simulator for predicting the length of the Gram-Schmidt
basis obtained from the BKZ reduction. We also present a model for esti-
mating the computational cost of the proposed progressive BKZ by con-
sidering the efficient implementation of the local enumeration algorithm
and the LLL algorithm. Finally, we compare the cost of the proposed
progressive BKZ with that of other algorithms using instances from the
Darmstadt SVP Challenge. The proposed algorithm is approximately 50
times faster than BKZ 2.0 (proposed by Chen-Nguyen) for solving the
SVP Challenge up to 160 dimensions.

Keywords: Lattice basis reduction, progressive BKZ, Gram-Schmidt
orthogonal basis, geometric series assumption

1 Introduction

Lattices in cryptography have been actively used as the foundation for con-
structing efficient or high-functional cryptosystems such as public-key encryp-
tions [16,25,40], fully homomorphic encryptions [21,9], and multilinear maps [20].
The security of lattice-based cryptography is based on the hardness of solv-
ing the (approximate) shortest vector problems (SVP) in the underlying lattice
[14,31,34,35]. In order to put lattice-based cryptography into practical use, we
must precisely estimate the secure parameters in theory and practice by analyz-
ing the previously known efficient algorithms for solving the SVP.

Currently the most efficient algorithms for solving the SVP are perhaps a
series of BKZ algorithms [45,46,12,13]. Numerous efforts have been made to
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estimate the security of lattice-based cryptography by analyzing the BKZ al-
gorithms. Lindner and Peikert [31] gave an estimation of secure key sizes by
connecting the computational cost of BKZ algorithm with the root Hermite fac-
tor from their experiment using the NTL-BKZ [48]. Furthermore, van de Pol
and Smart [50] estimated the key sizes of fully homomorphic encryptions using
a simulator based on Chen-Nguyen’s BKZ 2.0 [12]. Lepoint and Naehrig [30] gave
a more precise estimation using the parameters of the full-version of BKZ 2.0 pa-
per [13]. On the other hand, Liu and Nguyen [32] estimated the secure key sizes
of some LWE-based cryptosystems by considering the BDD in the associated
q-ary lattice. Aono et al. [7] gave another security estimation for LWE-based
cryptosystems by considering the challenge data from the Darmstadt Lattice
Challenge [49]. Recently, Albrecht et al. presented a comprehensive survey on
the state-of-the-art of hardness estimation for the LWE problem [5].

The above analyzing algorithms are usually called “lattice-based attacks”,
which have a generic framework consisting of two parts:

(1)Lattice reduction: This step aims to decrease the norm of vectors in the
basis by performing a lattice reduction algorithm such as the LLL or BKZ algo-
rithm.

(2)Point search: This step finds a short vector in the lattice with the reduced
basis by performing the enumeration algorithm.

In order to obtain concrete and practical security parameters for lattice-
based cryptosystems, it is necessary to investigate the trade-offs between the
computational cost of a lattice reduction and that of a lattice point search.

For our total cost estimation, we further limit the lattice-based attack model
by (1) using our improved progressive BKZ algorithm for lattice reduction, and
(2) using the standard (sometimes randomized) lattice vector enumeration al-
gorithm with sound pruning [19]. To predict the computational cost under this
model, we propose a simulation method to generate the computing time of lat-
tice reduction and the lengths of the Gram-Schmidt vectors of the basis to be
computed.

BKZ Algorithms: Let B = (b1, . . . ,bn) be the basis of the lattice. The BKZ
algorithms perform the following local point search and update process from
index i = 1 to n − 1. The local point search algorithm, which is essentially the
same as the algorithm used in the second part of the lattice-based attacks, finds
a short vector in the local block Bi = πi(bi, . . . ,bi+β−1) of the fixed blocksize
β (the blocksize shrinks to n− i+ 1 for large i ≥ n− β + 1). Here, the lengths
of vectors are measured under the projection πi which is defined in Section 2.1.
Then, the update process applies lattice reduction for the degenerated basis
(b1, . . . ,bi−1,v, bi, . . . ,bn) after inserting vector v at i-th index.

The point search subroutine finds a short vector in some searching radius
α · GH(Bi) with some probability which is defined over random local blocks
of the fixed dimension. Here, GH(Bi) is an approximation of the length of the
shortest vector in the sublattice generated by Bi.

In the classical BKZ algorithms [46,45], the local point search calls a single
execution of a lattice vector enumeration algorithm with a reasonable pruning for
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Table 1. Technical comparison from BKZ 2.0

Technique BKZ 2.0 [12] Our algorithm
Enumeration setting

randomizing basis [19] yes no
optimal pruning [19] yes yes
blocksize β fixed iteratively increasing (Sec. 6.1)
search radius α ·GH(Bi)

√
1.1 ·GH(Bi)

}
optimized by GSA (Sec. 4)probability p optimized by simulator

Preprocessing local block optimal BKZ strategy progressive BKZ
Terminating BKZ strategy simulator based (fixed) FEC based (adaptive, Sec. 5)
Predicting ‖b∗i ‖ simulator based simulator based (Sec. 5.1)

searching tree. The BKZ 2.0 algorithm proposed by Chen and Nguyen [12] uses
the extreme pruning technique [19], which performs the lattice enumeration with
success probability p for b1/pe different bases G1, . . . , Gb1/pe obtained by ran-

domizing the local basis Bi. They use the fixed searching radius as
√

1.1·GH(Bi).
We stress that BKZ 2.0 is practically the fastest algorithm for solving the ap-
proximate SVP of large dimensions. Indeed, many top-records in the Darmstadt
Lattice Challenge [49] have been solved by BKZ 2.0.

Our Contributions: In this paper we revisit progressive BKZ algorithms, which
have been mentioned in several studies; these include [18,12,44,47,24]. The main
idea of progressive BKZ is that performing BKZ iteratively starting with a small
blocksize is practically faster than the direct execution of BKZ with a larger
blocksize. The method used to increase the blocksize β strongly affects the overall
computational cost of progressive BKZ. The research goal here is to find an
optimal method of increasing the blocksize β according to the other parameters
in the BKZ algorithms.

One major difference between BKZ 2.0 and our algorithm is the usage of
randomized enumeration in local blocks. To find a very short vector in each
local block efficiently, BKZ 2.0 uses the randomizing technique in [19]. Then, it
reduces each block to decrease the cost of lattice enumeration. Although it is
significantly faster than the enumeration without pruning, it introduces overhead
because the bases are not good in practice after they have been randomized. To
avoid this overhead, we adopted the algorithm with a single enumeration with a
low probability.

Moreover, BKZ of a large blocksize with large pruning (i.e., a low probability)
is generally better in both speed and quality of basis than that of a small blocksize
with few pruning (i.e., a high probability), as a rule of thumb. We pursue this
idea and add the freedom to choose the radius α ·GH(L) of the enumeration of
the local block; this value is fixed in BKZ 2.0 as

√
1.1 ·GH(L).

To optimize the algorithm, we first discuss techniques for optimizing the BKZ
parameters of enumeration subroutine, including the blocksize β, success prob-
ability p of enumeration, and α to set the searching radius of enumeration as
α ·GH(Bi). We then show the parameter relationship that minimizes the compu-
tational cost for enumeration of a BKZ-β-reduced basis. Next, we introduce the
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new usage of full enumeration cost (FEC), derived from Gama-Nguyen-Regev’s
cost estimation [19] with a Gaussian heuristic radius and without pruning, to
define the quality of the basis and to predict the cost after BKZ-β is performed.
Using this metric, we can determine the timing for increasing blocksize β that
provides an optimized strategy; in previous works, the timing was often heuristic.

Furthermore, we propose a new BKZ simulator to predict the Gram-Schmidt
lengths ‖b∗i ‖ after BKZ-β. Some previous works aimed to find a short vector
as fast as possible, and did not consider other quantities. However, additional
information is needed to analyze the security of lattice-based cryptosystems.
In literatures, a series of works on lattice basis reduction [43,18,12,13] have at-
tempted to predict the Gram-Schmidt lengths ‖b∗i ‖ after lattice reduction. In
particular, Schnorr’s GSA is the first simulator of Gram-Schmidt lengths and
the information it provides is used to analyze the random sampling algorithm.
We follow this idea, i.e., predicting Gram-Schmidt lengths to analyze other al-
gorithms.

Our simulator is based on the Gaussian heuristic with some modifications,
and is computable directly from the lattice dimension and the blocksize. On
the other hand, Chen-Nguyen’s simulator must compute the values sequentially;
it has an inherent problem of accumulative error, if we use the strategy that
changes blocksize many times. We also investigate the computational cost of our
implementation of the new progressive BKZ, and show our estimation for solving
challenge problems in the Darmstadt SVP Challenge and Ideal Lattice Challenge
[49]. Our cost estimation is derived by setting the computation model and by
curve fitting based on results from computer experiments. Using our improved
progressive BKZ, we solved Ideal Lattice Challenge of 600 and 652 dimensions in
the exact expected times of 220.7 and 224.0 seconds, respectively, on a standard
PC.

Finally, we compare our algorithm with several previous algorithms. In par-
ticular, compared with Chen-Nguyen’s BKZ 2.0 algorithm [12,13] and Schnorr’s
blocksize doubling strategy [47], our algorithm is significantly faster. For exam-
ple, to find a vector shorter than 1.05 · GH(L), which is required by the SVP
Challenge [49], our algorithm is approximately 50 times faster than BKZ 2.0 in
a simulator-based comparison up to 160 dimensions.

Roadmap: In Section 2 we introduce the basic facts on lattices. In Section 3
we give an overview of BKZ algorithms, including Chen-Nguyen’s BKZ 2.0 [12]
and its cost estimation; we also state some heuristic assumptions. In Section 4,
we propose the optimized BKZ parameters under the Schnorr’s geometric series
assumption (GSA). In Section 5, we explain the basic variant of the proposed
progressive BKZ algorithm and its simulator for the cost estimation. In Sec-
tion 6, we discuss the optimized block strategy that improved the speed of the
proposed progressive BKZ algorithm. In Section 7, we describe the details of
our implementation and the cost estimation for processing local blocks. We then
discuss an extended strategy using many random reduced bases [19] besides our
progressive BKZ in Section 8. Finally, Section 9 gives the results of our sim-
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Optimizing the total cost (Sec. 8)
}

BKZ-then-ENUM strategy

↑
Progressive BKZ with optimized blocksize (Sec. 6)

}
Strategy for increasing β

↑
Estimating the cost for  Strategy

for terminating BKZ
the proposed progressive BKZ (Sec. 7)

↑
Simulator Sim-GS-lengths(n, β)

for Gram-Schmidt Lengths (Sec. 5.1)
↑

Optimal (α, p) for blocksize β by GSA (Sec. 4)
}

Strategy in a tour

Fig. 1. Roadmap of this paper: optimizing parameters from local to global

ulation to solve the SVP Challenge problems and compares these results with
previous works.

2 Lattice and Shortest Vector

A lattice L is generated by a basis B which is a set of linearly independent vectors
b1, . . . ,bn in Rm. We will refer to it as L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z}.

Throughout this paper, we assume m = O(n) to analyze the computational cost,
though it is not essential. The length of v ∈ Rm is the standard Euclidean norm
‖v‖ :=

√
v · v, where the dot product of any two lattice vectors v = (v1, . . . , vm)

and w = (w1, . . . , wm) is defined as v · w =
∑m
i=1 viwi. For natural numbers i

and j with i < j, [i : j] is the set of integers {i, i+ 1, . . . , j}. Particularly, [1 : j]
is denoted by [j].

The gamma function Γ (s) is defined for s > 0 by Γ (s) =
∫∞
0
ts−1 · e−tdt.

The beta function is B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt. We denote by Balln(R)

the n-dimensional Euclidean ball of radius R, and then its volume Vn(R) =

Rn · πn/2

Γ (n/2+1) . Stirling’s approximation yields Γ (n/2 + 1) ≈
√
πn(n/2)n/2e−n/2

and Vn(1)−1/n ≈
√
n/(2πe) ≈

√
n/17.

2.1 Gram-Schmidt Basis and Projective Sublattice

For a given lattice basis B = (b1, . . . ,bn), we define its Gram-Schmidt orthog-

onal basis B∗ = (b∗1, . . . ,b
∗
n) by b∗i = bi −

∑i−1
j=1 µijb

∗
j for 1 ≤ j < i ≤ n,

where µij = (bi · b∗j )/‖b∗j‖2 are the Gram-Schmidt coefficients (abbreviated
as GS-coefficients). We sometimes refer to ‖b∗i ‖ as the Gram-Schmidt lengths
(abbreviated as GS-lengths). We also use the Gram-Schmidt variables (abbrevi-
ated as GS-variables) to denote the set of GS-coefficients µij and lengths ||b∗i ||.
The lattice determinant is defined as det(L) :=

∏n
i=1 ‖b∗i ‖ and it is equal to

the volume vol(L) of the fundamental parallelepiped. We denote the orthogonal
projection by πi : Rm 7→ span(b1, . . . , bi−1)⊥ for i ∈ {1, . . . , n}. In particular,
π1(·) is used as the identity map.
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We denote the local block by the projective sublattice

L[i:j] := L(πi(bi), πi(bi+1), . . . , πi(bj))

for j ∈ {i, i+ 1, . . . , n}. We sometimes use Bi to denote the lattice whose basis
is (πi(bi), . . . , πi(bj)) of projective sublattice L[i:j]. That is, we omit the change
of blocksize β = j − i+ 1 if it is clear by context.

2.2 Shortest Vector and Gaussian Heuristic

A non-zero vector in a lattice L that has the minimum norm is called the shortest
vector. We use λ1(L) to denote the norm of the shortest vector. The notion is
also defined for a projective sublattice as λ1(L[i:j]) (we occasionally refer to this
as λ1(Bi) in this paper).

The shortest vector problem (SVP) is the problem of finding a vector of length
λ1(L). For a function γ(n) of a lattice dimension n, the standard definition of
γ-approximate SVP is the problem of finding a vector shorter than γ(n) ·λ1(L).

An n-dimensional lattice L and a continuous (usually convex and symmetric)
set S ⊂ Rm are given. Then the Gaussian heuristic says that the number of
points in S ∩ L is approximately vol(S)/vol(L).

In particular, taking S as the origin-centered ball of radius R, the number of
lattice points is approximately Vn(R)/vol(L), which derives the length of shortest
vector λ1 by R so that the volume of the ball is equal to that of the lattice:

λ1(L) ≈ det(L)1/n/Vn(1)1/n =
(Γ (n/2 + 1) det(L))1/n√

π

This is usually called the Gaussian heuristic of a lattice, and we denote it by
GH(L) = det(L)1/n/Vn(1)1/n.

For our analysis, we use the following lemma on the randomly generated
points.

Lemma 1 Let x1, . . . , xK be K points uniformly sampled from the n-dimensional
unit ball. Then, the expected value of the shortest length of vectors from origin
to these points is

E
[

min
i∈[K]

||xi||
]

= K ·B
(
K,

n+ 1

n

)
:= K ·

∫ 1

0

t1/n(1− t)K−1dt.

In particular, letting K = 1, the expected value is n/(n+ 1).

Proof. Since the cumulative distribution function of each ‖xi‖ is Fi(r) = rn,
the cumulative function of the shortest length of the vectors is Fmin(r) = 1 −
(1−Fi(r))K = 1− (1− rn)K . Its probability density function is Pmin(r) = dF

dr =
Kn · rn−1(1 − rn)K−1. Therefore, the expected value of the shortest length of
the vectors is ∫ 1

0

rPmin(r)dr = K ·
∫ 1

0

t1/n(1− t)K−1dt.

2
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2.3 Enumeration Algorithm [27,45,19]

We explain the enumeration algorithm for finding a short vector in the lattice.
The pseudo code of the enumeration algorithm is given in [45,19]. For given
lattice basis (b1, . . . ,bn), and its Gram-Schmidt basis (b∗1, . . . ,b

∗
n), the enumer-

ation algorithm considers a search tree whose nodes are labeled by vectors. The
root of the search tree is the zero vector; for each node labeled by v ∈ L at depth
k ∈ [n], its children have labels v + an−k · bn−k (an−k ∈ Z) whose projective
length ‖πn−k(

∑n
i=n−k ai ·bi)‖ is smaller than a bounding value Rk+1 ∈ (0, ‖b1‖].

After searching all possible nodes, the enumeration algorithm finds a lattice vec-
tor shorter than Rn at a leaf of depth n, or its projective length is somehow
short at a node of depth k < n. It is clear that by taking Rk = ‖b1‖ for all
k ∈ [n], the enumeration algorithm always finds the shortest vector v1 in the
lattice, namely ‖v1‖ = λ1(L).

Because ‖b1‖ is often larger than λ1(L), we can set a better searching radius
Rn = GH(L) to decrease the computational cost. We call this the full enu-
meration algorithm and define the full enumeration cost FEC(B) as the cost of
the algorithm for this basis. With the same argument in [19], we can evaluate
FEC(B) using the following equation.

FEC(B) =

n∑
k=1

Vk(GH(L))∏n
i=n−k+1 ‖b∗i ‖

.

Because full enumeration is a cost-intensive algorithm, several improvements
have been proposed by considering the trade-offs between running time, search-
ing radius, and success probability [46,19]. Gama-Nguyen-Regev [19] proposed
a cost estimation model of the lattice enumeration algorithm to optimize the
bounding functions of R1, . . . , Rn, which were mentioned above. The success
probability p of finding a single vector within a radius c is given by

p = Pr
(x1,...,xn)←c·Sn

[∑̀
i=1

x2i < R2
` for ∀ ` ∈ [n]

]
,

where Sn is the surface of the n-dimensional unit ball. Then, the cost of the
enumeration algorithm can be estimated by the number of processed nodes, i.e.,

N =
1

2

n∑
k=1

vol{(x1, . . . , xk) ∈ Rk :
∑`
i=1 x

2
i < R2

` for ∀ ` ∈ [k]}∏n
i=n−k+1 ‖b∗i ‖

. (1)

Note that the factor 1/2 is based on the symmetry. Using the methodology in
[19], Chen-Nguyen proposed a method to find the optimal bounding functions
of R1, . . . , Rn that minimizes N subject to p.

In this paper, we use the lattice enumeration cost, abbreviated as ENUM
cost, to denote the number N in equation (1). For a lattice L defined by a basis
B and parameters α > 0 and p ∈ [0, 1], we use ENUMCost(B;α, p) to denote the
minimized cost N of lattice enumeration with radius c = α · GH(L) subject to
the success probability p. This notion is also defined for a projective sublattice.
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3 Lattice Reduction Algorithms

Lattice reduction algorithms transform a given lattice basis (b1, . . . ,bn) to an-
other basis whose Gram-Schmidt lengths are relatively shorter.

LLL algorithm [29]: The LLL algorithm transforms the basis (b1, . . . ,bn)
using the following two operations: size reduction bi ← bi−bµjiebj for j ∈ [i−1],
and neighborhood swaps between bi and bi+1 if ‖b∗i+1‖2 ≤ 1/2‖b∗i ‖2 until no
update occurs.

BKZ algorithms [45,46]. For a given lattice basis and a fixed blocksize β, the
BKZ algorithm processes the following operation in the local block Bi, i.e., the
projected sublattice L[i,i+β−1] of blocksize β, starting from the first index i = 1
to i = n− 1. Note that the blocksize β reluctantly shrinks to n− i+ 1 for large
i > n− β + 1, and thus we sometimes use β′ to denote the dimension of Bi, i.e.
β′ = min(β, n− i+ 1).

At index i, the standard implementation of the BKZ algorithm calls the
enumeration algorithm for the local block Bi. Let v be a shorter vector found
by the enumeration algorithm. Then the BKZ algorithm inserts v into bi−1 and
bi, and constructs the degenerated basis (b1, . . . ,bi−1,v,bi, . . . ,bmin(i+β−1,n)).
For this basis, we apply the LLL algorithm (or BKZ with a smaller blocksize) so
that the basis of shorter independent vectors can be obtained. One set of these
procedures from i = 1 to n − 1 is usually called a tour. The original version of
the BKZ algorithm stops when no update occurs during n− 1 iterations. In this
paper, we refer to the BKZ algorithm with blocksize β as the BKZ-β.

HKZ reduced basis: The lattice basis (b1, . . . ,bn) is called Hermite-Korkine-
Zolotarev (HKZ) reduced [37, Chapter 2] if it is size-reduced |µji| ≤ 1/2 for all
i and j, and πi(bi) is the shortest vector in the projective sublattice L[i:n] for
all i. We can estimate the Gram-Schmidt length of the HKZ-reduced basis by
using the Gaussian heuristic as ‖b∗i ‖ = GH(L[i:n]). Since the HKZ-reduced basis
is completely reduced in this sense, we will use this to discuss the lower bound
of computing time in Section 8.2.

3.1 Some Heuristic Assumptions in BKZ

Gaussian Heuristic in Small Dimensions: Chen and Nguyen observed that
the length λ1(Bi) of the shortest vector in the local block Bi is usually larger
than GH(Bi) in small dimensions i.e., small β′ [12]. They gave the averaged
values of ‖b∗i ‖/ det(L)1/n for the last indexes of highly reduced bases to modify
their BKZ simulator, see [12, Appendix C]. For their 50 simulated values for
‖b∗n−49‖, . . . , ‖b∗n‖, we define the modified Gaussian heuristic constant by

τi :=
λ1(πn−i+1(L))

GH(πn−i+1(L))
=

‖b∗n−i+1‖
Vi(1)−1/i ·

∏n
j=n−i+1 ‖b∗j‖1/i

. (2)

We show the graph of τi in Figure 2. We will use τi for i ≤ 50 to denote
these modifying constants; for i > 50 we define τi = 1 following Chen-Nguyen’s
simulator [12].
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Fig. 2. Modified Gaussian heuristic constant τi

Fig. 3. Semi-log graph of ‖b∗i ‖ of a 240-dimensional highly reduced basis

In the rest of this paper, we assume that the shortest vector lengths of β-
dimensional local blocks Bi of reduced bases satisfies

λ1(Bi) ≈
{
τβ ·GH(Bi) (β ≤ 50)
GH(Bi) (β > 50)

on average.
We note that there exists a mathematical theory to guarantee τi → 1 for

random lattices when the dimension goes to infinity [41]. Though it does not
give the theoretical guarantee τi = 1 for BKZ local blocks, they are very close
in our preliminary experiments.

Geometric Series Assumption (GSA): Schnorr [43] introduced geometric
series assumption (GSA), which says that the Gram-Schmidt lengths ‖b∗i ‖ in the
BKZ-reduced basis decay geometrically with quotient r for i = 1, . . . , n, namely,
‖b∗i ‖2/‖b1‖2 = ri−1, for some r ∈ [3/4, 1). Here r is called the GSA constant.
Figure 3 shows the Gram-Schmidt lengths of a 240-dimensional reduced basis
after processing BKZ-100 using our algorithm and parameters.

It is known that GSA does not hold exactly in the first and last indexes
[10]. Several previous works [3,10,43] aimed to modify the reduction algorithm
that outputs the reduced basis satisfying GSA. However, it seems difficult to
obtain such a reduced basis in practice. In this paper, we aim to modify the
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Input: A lattice basis B of n dimensions, blocksize β, and
some terminating condition.

Output: A reduced basis B.
1: B ← LLL(B);
2: for i = 1 to n− 1
3: Set probability p for local block Bi of fixed blocksize β′i = min(β, n− i+1)

and let M = b1/pe;
4: Generate randomized local blocks G1, . . . , GM from local block Bi,

and preprocess G1, . . . , GM (reduction by LLL and small blocksize BKZ);
5: Find a vector v using lattice enumeration with radius

c = min{||b∗i ||,
√

1.1 ·GH(Bi)} for G1, . . . , GM with probability p;
6: if v satisfies ‖v‖ < ‖b∗i ‖ then update basis B by v;
7: end-for
8: if terminating condition is satisfied then return B else goto Step 2;

Fig. 4. Outline of BKZ 2.0

parameters in the first and last indexes so that the proposed simulator performs
with optimal efficiency (See section 5.1).

3.2 Chen-Nguyen’s BKZ 2.0 Algorithm [12]

We recall Chen-Nguyen’s BKZ 2.0 Algorithm in this section. The outline of the
BKZ 2.0 algorithm is described in Figure 4.

Speed-up Techniques for BKZ 2.0: BKZ 2.0 employs four major speed-up
techniques that differentiate it from the original BKZ:

1. BKZ 2.0 employs the extreme pruning technique [19], which attempts to
find shorter vectors in the local blocks Bi with low probability p by randomizing
basis Bi to more blocks G1, . . . , GM where M = b1/pe.

2. For the search radius min{||b∗i ||, α ·GH(Bi)} in the enumeration algorithm
of the local block Bi, Chen and Nguyen set the value as α =

√
1.1 from their

experiments, while the previous works set the radius as ‖b∗i ‖.
3. In order to reduce the cost of the enumeration algorithm, BKZ 2.0 pre-

processes the local blocks by executing the sequence of BKZ algorithm, e.g., 3
tours of BKZ-50 and then 5 tours of BKZ-60, and so on. The parameters block-
size, number of rounds and number of randomized bases, are precomputed to
minimize the total enumeration cost.

4. BKZ 2.0 uses the terminating condition introduced in [22], which aborts
BKZ within small number of tours. It can find a short vector faster than the full
execution of BKZ.

Chen-Nguyen’s BKZ 2.0 Simulator: In order to predict the computational
cost and the quality of the output basis, they also propose the simulating pro-
cedure of the BKZ 2.0 algorithm. Let (`1, . . . , `n) be the simulated values of
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the GS-lengths ‖b∗i ‖ for i = 1, . . . , n. Then, the simulated values of the deter-
minant and the Gaussian heuristic are represented by

∏n
j=1 `j and GH(Bi) =

Vβ′(1)−1/β
′∏i+β′−1

j=i `i where β′ = min{β, n− i+ 1}, respectively.
They simulate a BKZ tour of blocksize β assuming that each enumeration

procedure finds a vector of projective length GH(Bi). Roughly speaking, their
simulator updates (`i, `i+1) to (`′i, `

′
i+1) for i = 1, . . . , n− 1, where `′i = GH(Bi)

and `′i+1 = `i+1 ·(`i/`′i). Here, the last 50 GS-lengths are modified using an HKZ
reduced basis. The details of their simulator are given in [12, Algorithm 3].

They also present the upper and lower bounds for the number of processed
nodes during the lattice enumeration of blocksize β. From [13, Table 4], we
extrapolate the costs as

log2(Costβ) = 0.000784314β2 + 0.366078β − 6.125 (3)

Then, the total enumeration cost of performing the BKZ 2.0 algorithm using
blocksize β and t tours is given by

t ·
n−1∑
i=1

Costmin{β,n−i+1}. (4)

To convert the number of nodes into single-threaded time in seconds, we use
the rational constant 4 ·109/200 = 2 ·107, because they assumed that processing
one node requires 200 clock cycles in a standard CPU, and we assume it can
work at 4.0GHz.

We note that there are several models to extrapolate log2(Costβ). Indeed,
Lepoint and Naehrig [30] consider two models by a quadratic interpolation and
a linear interpolation from the table. Albrecht et al. [5] showed another BKZ 2.0
cost estimation that uses an interpolation using the cost model log2(Costβ) =
O(n log n). It is a highly non-trivial task to find a proper interpolation that
estimates a precise cost of the BKZ 2.0 algorithm.

We further mention that the upper bound of the simulator is somewhat de-
batable, because they use the enumeration radius c = min{

√
1.1 ·GH(Bi), ‖b∗i ‖}

for i < n− 30 in their experiment whereas they assume c = GH(Bi) for the cost
estimation in their upper bound simulation. Thus, the actual cost of BKZ 2.0
could differ by a factor of 1.1O(β).

4 Optimizing Parameters in Plain BKZ

In this section we consider the plain BKZ algorithm described in Figure 5, and
roughly predict the GS-lengths of the output basis, which were computed by
the GSA constant r. Using this analysis, we can obtain the optimal settings for
parameters (α, p) in Step 4 of the plain BKZ algorithm of blocksize β.

4.1 Relationship of Parameters α, p, β, r

We fix the values of parameters (β, α) and assume that the lattice dimension n
is sufficiently large.
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Input: A lattice basis B of n dimensions, blocksize β
Output: A reduced basis B.
1: B ← LLL(B);
2: flag = 1 // set flag = 0 when the basis is updated.
3: for i = 1 to n− 1
4: Set (α, p) for local block Bi of fixed blocksize β′i = min(β, n− i+ 1);
5: Execute lattice enumeration with probability p and radius α ·GH(Bi);
6: if v satisfies ‖v‖ < α ·GH(Bi), then update basis B by v and flag = 0;
7: end-for
8: if flag = 1 then return B else goto Step 2;

Fig. 5. Plain BKZ algorithm

Suppose that we found a vector v of ‖v‖ < α ·GH(Bi) in the local block Bi.
We update the basis Bi by inserting v at i-th index, and perform LLL or small
blocksize BKZ on the updated basis.

When the lattice dimension is large, Rogers’ theorem [41] says that approxi-
mately αn/2 vector pairs (v,−v) exist within the ball of radius c = α ·GH(L).
Since the pruning probability is defined for a single vector pair, we expect the ac-
tual probability that the enumeration algorithm finds at least one vector shorter
than c is roughly

1− (1− p)α
n/2 ≈ p · α

n

2
. (5)

From relation (5), there may exist one lattice vector in the searching space by
setting parameter p as

p =
2

αβ
. (6)

Remark 1. The probability setting of equation (6) is an optimal choice under
our assumption. If p is smaller, the enumeration algorithm finds no short vector
with high probability and basis updating at i-th index does not occur, which
is a waste of time. On the other hand, if we take a larger p so that there exist
p · αβ/2 > 1 vector pairs, the computational time of the enumeration algorithm
increases more than p ·αβ/2 times [19]. Although it can find shorter vectors, this
is also a waste of time from the viewpoint of basis updating.

Assume that one vector is found using the enumeration, and also assume
that the distribution of it is the same as the random point in the β-dimensional
ball of radius α ·GH(Bi). Then, the expected value of ‖v‖ is β

β+1α ·GH(Bi) by

letting K = 1 in Lemma 1. Thus, we can expect that this is the value ‖b∗i ‖ after
update.

Therefore, after executing a sufficient number of BKZ tours, we can expect
that all the lengths ‖b∗i ‖ of the Gram-Schmidt basis satisfy

‖b∗i ‖ =
β

β + 1
α ·GH(Bi) (7)
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on average. Hence, under Schnorr’s GSA, we have the relation

‖b∗i ‖ =
αβ

β + 1
· Vβ(1)−1/β‖b∗i ‖

β∏
j=1

r(j−1)/2β , (8)

and the GSA constant is

r =

(
β + 1

αβ

) 4
β−1

· Vβ(1)
4

β(β−1) . (9)

Therefore, by fixing (α, β), we can set the probability p and obtain r as
a rough prediction of the quality of the output lattice basis. We will use the
relations (6) and (9) to set our parameters. Note that any two of β, α, p and r
are determined from the other two values.

Remark 2. Our estimation is somehow underestimate, i.e., in our experiments,
the found vectors during BKZ algorithm are often shorter than the estimation
in equation (7). This gap is mainly from the estimation in (5), which can be
explained as follows. Let (R1, . . . , Rβ) be a bounding function of probability p
for a vector of length ‖v‖. Then, the probability p′ for a vector of length ‖v′‖
of a shorter vector is the same as the scaled bounding function (R′1, . . . , R

′
β)

where R′i = min{1.0, Ri · ‖v‖/‖v′‖}. Here, p′ is clearly larger than p due to
R′i ≥ Ri for i ∈ [β]. Therefore, when the above parameters are used, the quality
of the output basis is better than that derived from equation (9) if we perform a
sufficient number of tours. Hence, within a few tours, our algorithm can output
a basis which has a good quality predicted by our estimation in this section.

4.2 Optimizing Parameters

Now for a fixed parameter pair (β, r), the cost ENUMCost(Bi;α, p) of the enu-
meration algorithm in local block Bi satisfying GSA is computable. Concretely,
we compute α using the relation (9), fix p by (6), and simulate the Gram-Schmidt
lengths of Bi using ‖b∗i ‖ = r(i−1)/2. Using the computation technique in [19], for
several GSA constants r, we search for the optimal blocksize β that minimizes
the enumeration cost ENUMCost(Bi;α, p). The small squares in Figure 6 show
the results. From these points, we find the functions f1(β) and f2(β), whose
graphs are also in the figure.

We explain how to find these functions f1(β) and f2(β). Suppose lattice di-
mension n is sufficiently large, and suppose the cost of the enumeration algorithm
is roughly dominated by the probability p times the factor at k = n/2 in the
summation (1). Then ENUMCost(Bi;α, p) is approximately

D = p ·
Vβ/2(α ·GH(Br))∏β

i=β/2+1 ‖b∗i ‖
= 2α−β/2

Vβ/2(1)Vβ(1)−1/2

rβ2/16
,
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Fig. 6. Relation between β and r that minimizes the computational cost

where from equation (9) we have obtained

D ≈ Const.× r(β
2−2β)/16 ·

(
β

eπ

)β/4
, and

∂ logD

∂β
≈ β − 1

8
log r+

1

4
+

1

4
log

β

eπ
.

In order to minimize D, we roughly need the above derivative to be zero;
thus, we use the following function of β for our cost estimation with constants
ci

log(r) = 2 · (log β + 1− log(eπ))/(β − 1) =
log c1β

c2β + c3
.

From this observation, we fix the fitting function model as f(β) = log(c1β+c2)
c3β+c4

.
By using the least squares method implemented in gnuplot, we find the

coefficients ci so that f(β) is a good approximation of the pairs (βi, log(ri)). In
our curve fitting, we separate the range of β into the interval [40, 100], and the
larger one. This is needed for converging to log(r) = 0 when β is sufficiently
large; however, our curve fitting using a single natural function did not achieve
it. Curves f1(β) and f2(β) in Figure 6 are the results of our curve fitting for the
range [40, 100] and the larger one, respectively.

For the range of β ∈ [40, 100], we have obtained

log(r) = f1(β) := −18.2139/(β + 318.978) (10)

and for the larger blocksize β > 100,

log(r) = f2(β) := (−1.06889/(β − 31.0345)) · log(0.417419β − 25.4889). (11)

Note that we will use the relation (10) when the blocksize is smaller than 40.
Moreover, we obtain pairs of β and minimize ENUMCost(Bi;α, p), in ac-

cordance with the above experiments. Using the curve fitting that minimizes



Improved Progressive BKZ Algorithms and Sharp Simulator 15∑
β |f(β)− log2 ENUMCost(Bi;α, p)|2 using gnuplot, we find the extrapolating

formula

log2 MINCost(β) :=

{
0.1375β + 7.153 (β ∈ [60, 105])
0.000898β2 + 0.270β − 16.97 (β > 105)

(12)

to log2 ENUMCost(Bi;α, p). We will use this as the standard of the enumeration
cost of blocksize β.

Remark 3. Our estimation from the real experiments is 0.25β·ENUMCost(Bi;α, p)
(See, Section 7.1), which crosses over the estimation of BKZ 2.0 simulator (3) at
β = 873. Thus, the performance of BKZ 2.0 might be better in some extremely
high block sizes, while our algorithm has a better performance in the realizable
block sizes < 200.

4.3 Parameter Settings in Step 4 in Figure 5

Using the above arguments, we can fix the optimized pair (α, p) for each blocksize
β. That is, to process a local block of blocksize β in Step 4 of the plain BKZ
algorithm in Figure 5, we compute the corresponding r by equations (10) and
(11), and additionally obtain the parameters α by equation (9) and p by equation
(6). These are our basic parameter settings.

Modifying blocksize at first indexes: We sometimes encounter the phe-
nomenon in which the actual ENUMCost(Bi;α, p) in small indexes is much
smaller than that in middle indexes. This is because ||b∗i || is smaller than GH(Bi)
in small indexes. In other words, bi is hard to update using the enumeration of
blocksize β. To speed up the lattice reduction, we use a heuristic method that
enlarges the blocksizes as follows.

From the discussion in the above subsection, we know the theoretical value
of the enumeration cost at blocksize β. On the other hand, in the actual comput-
ing of BKZ algorithms, the enumeration cost is increased because the sequence
(||b∗i ||, . . . , ||b∗i+β−1||), which mainly affects the computing cost, does not follow
the GSA of slope r exactly. In some experiments, we will verify that the enu-
meration cost is approximately β times the theoretical value (See, Figure 11 in
Section 7.1). Thus, we define the expected enumeration cost in blocksize β as
β ·MINCost(β). With this expectation, we reset the blocksize as the minimum
β satisfying ENUMCost(B[i:i+β−1];α, p) > β ·MINCost(β).

Modifying (α, p) at last indexes: For large indexes such as i > n − β, the
blocksize of a local block shrinks to β′ = min(β, n−i+1). In our implementation,
we increase the success probability to a new p′, while ENUMCost(Bi;α

′, p′) is
smaller than β ·MINCost(β). We also reset the radius as α′ = (2/p′)1/β from
equation (6).

5 Our Proposed Progressive BKZ: Basic Variant

In this section, we explain the basic variant of our proposed progressive BKZ
algorithm.
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Input: A lattice basis B of n dimensions, starting blocksize βstart,
and ending blocksize βend.

Output: A reduced basis B.
1: B ← LLL(B);
2: for β = βstart to βend do
3: while FEC(B) > Sim-FEC(n, β) do
4: for i = 1 to n− 1
5: Set (α, p) for local block Bi of blocksize β′ = min(β, n− i+ 1)

using the setting in Section 4.3;
6: Preprocess the basis by the progressive BKZ;
7: Execute lattice enumeration with probability p and radius α ·GH(Bi);
8: if v satisfies ‖v‖ < α ·GH(Bi) then update basis B by v;
9: end-for
10: end-while
11: end-for

Fig. 7. Our progressive BKZ algorithm (basic variant)

In general, if the blocksize of the BKZ algorithm increases, a shorter vector
b1 can be computed; however, the running cost will eventually increase. The pro-
gressive BKZ algorithm starts a BKZ algorithm with a relatively small blocksize
βstart and increases the blocksize to βend by some criteria. The idea of the pro-
gressive BKZ algorithm has been mentioned in several literatures, for example,
[12,44,47,24]. The research challenge in the progressive BKZ algorithm is to find
an effective criteria for increasing blocksizes that minimizes the total running
time.

In this paper we employ the full enumeration cost (FEC) in Section 2.3, in
order to evaluate the quality of the basis for finding the increasing criteria. Recall
that the FEC of basis B = (b1, . . . ,bn) of n-dimensional lattice L is defined by

FEC(B) =
∑n
k=1

Vk(GH(L))∏n
i=n−k+1 ‖b∗i ‖

, where ‖b∗i ‖ represents the GS-lengths. Note

that FEC(B) eventually decreases after performing several tours of the BKZ
algorithm using the fixed blocksize β.

Moreover, we construct a simulator that evaluates the GS-lengths by the op-
timized parameters α, p, β, r for the BKZ algorithm described in the local block
discussion in Section 4.3. The simulator for an n-dimensional lattice only de-
pends on the blocksize β of the local block; we denote by Sim-GS-lengths(n, β)
the simulated GS-lengths (`1, . . . , `n). The construction of simulator will be pre-
sented in Section 5.1.

For this purpose, we define some functions defined on the simulated GS-

lengths (`1, . . . , `n). Sim-GH(`1, . . . , `n) = Vn(1)−1/n
∏n
j=1 `

1/n
j is the simulated

Gaussian heuristic. The simulated value of full enumeration cost is

Sim-FEC(`1, . . . , `n) :=

n∑
k=1

Vk(Sim-GH(`1, . . . , `n))∏n
i=n−k+1 `i

.
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Further, for (`1, . . . , `n) = Sim-GS-lengths(n, β), we use the notation
Sim-FEC(n, β) := Sim-FEC(`1, . . . , `n) in particular. The simulated enumera-
tion cost Sim-ENUMCost(`1, . . . , `β ;α, p) is defined by ENUMCost(B;α, p) for
a lattice basis B that has GS-lengths ‖b∗i ‖ = `i for i ∈ [β].

The key point of our proposed progressive BKZ algorithm is to increase the
blocksize β if FEC(B) becomes smaller than Sim-FEC(n, β). In other words,
we perform the BKZ tours of blocksize β while FEC(B) > Sim-FEC(n, β). We
describe the proposed progressive BKZ in Figure 7.

Remark 4. In the basic variant of our progressive BKZ described in Section 6.1,
we increase the blocksize β in increments of one in Step 2. However, we will
present an optimal strategy for increasing the blocksize in Section 5.

5.1 Sim-GS-lengths(n, β): Predicting Gram-Schmidt Lengths

In the following, we construct a simulator for predicting the Gram-Schmidt
lengths ‖b∗i ‖ obtained from the plain BKZ algorithm of blocksize β.

Our simulator consists of two phases. First, we generate approximated GS-
lengths using Gaussian heuristics; we then modify it for the first and last indexes
of GSA in Section 3.1. We will explain how to compute (`1, . . . , `n) as the output
of Sim-GS-lengths(n, β).

First phase: Our simulator computes the initial value of (`1, . . . , `n).
We start from the last index by setting `n = 1, and compute `i backwards.

From equations (2) and (7) we are able to simulate the GS-lengths `i by solving
the following equation of `i:

`i = max

{
β′

β′ + 1
α, τβ′

}
·GH(`i, . . . , `i+β′−1), where β′ = min(β, n− i+ 1).

(13)
Here, α is the optimized radius parameter in Section 4.3 and τβ′ is the coefficient
of the modified Gaussian heuristic.

This simple simulation in the first phase is sufficient for smaller blocksizes
(β < 30). However, for simulating larger blocksizes, we must modify the GS-
lengths of the first and last indexes in Section 3.1.

Second phase: To modify the results of the simple simulation, we consider our
two modifying methods described in Section 4.3. We recall that MINCost(β) is
the standard value of the enumeration cost of blocksize β.

We first consider the modification for the last indexes i > n − β + 1, i.e., a
situation in which the blocksize is smaller than β. We select the modified prob-
ability pi at index i so that Sim-ENUMCost(`i, . . . , `n;αi, pi) = MINCost(β),
where `i, . . . , `n is the result of the first simulation, and we use αi = (2/pi)

n−i+1.
After all (αi, pi) for n − β + 1 ≤ i ≤ n are fixed, we modify the GS-lengths by
solving the following equation of `i again:

`i = max

{
β′

β′ + 1
αi, τβ′

}
·GH(`i, . . . , `n) where β′ = n− i+ 1.
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Fig. 8. Left figure: Semi-log graph of ‖b∗i ‖ of reduced random lattices from the SVP
Challenge problem generator: Simulation (bold lines) vs. Experiment (small squares).
Right figure: The root Hermite factor of reduced random 300-dimensional bases after
BKZ-β. Simulation (bold red lines) vs. Experiment (thin blue lines).

Next, using the modified (`1, . . . , `n), we again modify the first indexes as
follows. We determine the integer parameter b > 0 for the size of enlargement.
For b = 1, 2, . . ., we reset the blocksize at index i as βi := β + max{(b − i +
1)/2, b − 2(i − 1)} for i ∈ {1, . . . , b}. Using these blocksizes, we recompute
the GS-lengths by solving equation (13) from i = βi to 1. Then, we compute
Sim-ENUMCost(`1, . . . , `β+b;α, p). We select the maximum b such that this sim-
ulated enumeration cost is smaller than 2 ·MINCost(β).

Experimental result of our GS-lengths simulator: We performed some ex-
periments on the GS-lengths for some random lattices from the Darmstadt SVP
Challenge [49]. We computed the GS-lengths for 120, 150 and 200 dimensions
using the proposed progressive BKZ algorithm, with ending blocksizes of 40, 60,
and 100, respectively (Note that the starting blocksize is irrelevant to the quality
of the GS-lengths). The simulated result is shown in Figure 8. Almost all small
squares of the computed GS-lengths are plotted on the bold line obtained by our
above simulation. Our simulator can precisely predict the GS-lengths of these
lattices. The progress of the first vector, which uses 300-dimensional lattices, is
also shown in the figure.

5.2 Expected Number of BKZ Tours at Step 3

At Step 3 in the proposed algorithm (Figure 7) we iterate the BKZ tour with
blocksize β as long as the full enumeration cost FEC(B) is larger than the
simulated cost Sim-FEC(n, β). In the following we estimate the expected number
of BKZ tours (we denote it as ]tours) at blocksize β.

In order to estimate ]tours, we first compute (`1, . . . , `n) and the output of
Sim-GS-lengths(n, β − 1), and update it by using the modified Chen-Nguyen’s
BKZ 2.0 simulator described in Section 3.2, until Sim-FEC(`1, . . . , `n) is smaller
than Sim-FEC(n, β). We simulate a BKZ tour by updating the pair (`i, `i+1) to
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(`′i, `
′
i+1) for i = 1, . . . , n− 1 according to the following rule:

`′i = max
{

β
β+1α, τβ

}
·GH(`i, . . . , `min(n,i+β−1))

and `′i+1 = `i+1 · (`i/`′i).

At the simulation of t-th BKZ tour, write the input GS-lengths (`′1, . . . , `
′
n);

i.e., the output of the (t− 1)-th BKZ tour. We further denote the output of t-th
BKZ tour as (`1, . . . , `n). Suppose they satisfy

Sim-FEC(`′1, . . . , `
′
n) > Sim-FEC(n, β) > Sim-FEC(`1, . . . , `n).

Then, our estimation of ]tours is the interpolated value:

]tours = (t− 1) +
Sim-FEC(`′1, . . . , `

′
n)− Sim-FEC(n, β)

Sim-FEC(`′1, . . . , `
′
n)− Sim-FEC(`1, . . . , `n)

. (14)

Note that we can use this estimation for other BKZ strategies, although we
estimate the number of BKZ tours from BKZ-(β−1) basis to BKZ-β basis, using
BKZ-β algorithm. We will estimate the tours for other combinations of starting
and ending blocksizes, and use them in the algorithm.

6 Our Progressive BKZ: Optimizing Blocksize Strategy

We propose how to optimally increase the blocksize β in the proposed progressive
BKZ algorithm. Several heuristic strategies for increasing the blocksizes have
been proposed. The following sequences of blocksizes after LLL-reduction have
been used in the previous literatures:

20→ 21→ 22→ 23→ 24→ · · · Gama and Nguyen [18]
2 → 4 → 8 → 16→ 32→ · · · Schnorr and Shevchenko [47],
2 → 4 → 6 → 8 → 10→ · · · Haque, Rahman, and Pieprzyk [24],
50→ 60→ 70→ 80→ 90→ · · · Chen and Nguyen [12,13]

The timings for changing to the next blocksize were not explicitly given. They
sometimes continue the BKZ tour until no update occurs as the original BKZ.
In this section we try to find the sequence of the blocksizes that minimizes the
total cost of the progressive BKZ to find a BKZ-β reduced basis. To find this
strategy, we consider all the possible combinations of blocksizes used in our BKZ
algorithm and the timing to increase the blocksizes.

Notations on blocksize strategy: We say a lattice basis B of dimension n is
β-reduced when FEC(B) is smaller than Sim-FEC(n, β). For a tuple of blocksizes
(βalg, βstart, βgoal) satisfying 2 ≤ βstart < βgoal ≤ βalg, the notation

βstart
βalg→ βgoal

is the process of the BKZ following algorithm. The input is a βstart-reduced
basis B, and the algorithm updates B using the tours of BKZ-βalg algorithm
with parameters in Section 4.3. It stops when FEC(B) < Sim-FEC(n, βgoal).



20 Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi

Input: A lattice basis B of n dimensions,

Blocksize strategy {(βalgj , βgoalj )}j=1,...,D

Output: A βgoalD -reduced basis B.
1: B ← LLL(B);
2: for j = 1 to D do

3: while FEC(B) > Sim-FEC(n, βgoalj ) do

4-9: The same as Step 4-9 in Figure 7 with blocksize βalgj
10: end-while
11: end-for

Fig. 9. Our progressive BKZ algorithm with blocksize strategy

TimeBKZ(n, βstart
βalg→ βgoal) is the computing time in seconds of this algo-

rithm. We provide a concrete simulating procedure in this and the next sections.
We assume that TimeBKZ is a function of n, βalg, βstart and βgoal.

To obtain a BKZ-β reduced basis from an LLL reduced basis, many blocksize
strategies are considered as follows:

βgoal0 = LLL
β
alg
1→ βgoal1

β
alg
2→ βgoal2

β
alg
3→ · · ·

β
alg
D→ βgoalD (= β). (15)

We denote this sequence as {(βalgj , βgoalj )}j=1,...,D, and regard it as the progres-
sive BKZ given in Figure 9.

6.1 Optimizing Blocksize Strategies

Our goal in this section is to find the optimal sequence that minimizes the total
computing time

D∑
i=1

TimeBKZ(n, βgoali−1
β
alg
i→ βgoali ) (16)

of the progressive BKZ algorithm to find a BKZ-βgoalD basis.
Based on our experimental results, which are given in Section 7, we can

estimate the computing time of the BKZ algorithm:

TimeBKZ(n, βstart
βalg→ βgoal) [sec.]

=

]tours∑
t=1

[
1.5 · 10−10 · (βalg)2n3 + 1.5 · 10−8 · βalg

n−1∑
i=1

ENUMCost(Bi;α, p)
]
(17)

when dimension n is small (n < 400), and

TimeBKZ(n, βstart
βalg→ βgoal) [sec.]

=

]tours∑
t=1

[
2.5 · 10−4 · n− βalg

250− βalg
· n2.+ 3.0 · 10−8 · βalg

n−1∑
i=1

ENUMCost(Bi;α, p)
]

(18)
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when dimension n is large (n ≥ 400). The difference is caused by the difference
in the types to compute Gram-Schmidt variables in implementation. The former
and latter implementation employ quad float and RR (320 bits) respectively,
where RR is the arbitrary precision floating point type in the NTL library [48]. To
compute ]tours we use the procedure in Section 5.2. The input of the ENUMCost
function is from Sim-GS-lengths(n, βstart) at the first tour. From the second tour,
we use the updated GS-lengths by the Chen-Nguyen’s simulator with blocksize
βalg.

Using these computing time estimations, we discuss how to find the optimal
blocksize strategy (15) that minimizes the total computing time. In this optimiz-
ing procedure, the input consists of n and β, the lattice dimension and the goal
blocksize. We denote TimeBKZ(n, βgoal) to be the minimized time in seconds to
find a β-reduced basis from an LLL reduced basis, that is, the minimum of (16)
from among the possible blocksize strategies. By definition, we have

TimeBKZ(n, βgoal) = min
β′,βalg

{
TimeBKZ(n, β′) + TimeBKZ(n, β′

βalg→ βgoal)
}

where we take the minimum over the pair of blocksizes (β′, βalg) satisfying β′ <
βgoal ≤ βalg.

For the given (n, β), our optimizing algorithm computes TimeBKZ(n, β̄) from
small β̄ to the target β̄ = β. As the base case, we define that TimeBKZ(n, 20)
represents the time to compute a BKZ-20 reduced basis using a fixed blocksize,
starting from an LLL reduced basis:

TimeBKZ(n, 20) := min
βalg

{
TimeBKZ(n,LLL

βalg→ 20)
}
.

6.2 Simulating Time to Find Short Vectors in Random Lattices

In this section, we give our simulating result of finding short vectors for random
lattices. For the given lattice dimension n and the target length, we simulate the
necessary BKZ blocksize β so that `1 of Sim-GS-lengths(n, β) is smaller than
the target length. Then, we simulate TimeBKZ(n, β) by using the method in
Section 6.1.

As an example, in Table 2, we show the optimized blocksize strategy and
computing time to find a 102-reduced basis in n = 600 dimension. We estimate
blocksize 102 is necessary to find a vector shorter than n ·det(L)1/n, which is the
condition to enter the Hall of Fame in the Approximate Ideal Lattice Challenge
[49].

Table 3 shows the blocksize and predicted total computing time in seconds to
find a vector shorter than n ·GH(L) (this corresponds to the n-approximate SVP
from the learning with errors problem [40].), n · det(L)1/n (from the Approxi-
mate Ideal Lattice Challenge published in Darmstadt [49]), and

√
n ·GH(L). For

comparison, the simulating result of BKZ 2.0 is given to find n ·det(L)1/n. Recall
that their estimated cost in seconds is given by ]ENUM/2 · 107. From Table 3,
our algorithm is asymptotically faster than BKZ 2.0.
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Table 2. The optimized blocksize strategy and computational time in seconds in 600-
dimensional lattice.

βalg→ βgoal LLL
32→ 21

50→ 36
58→ 46

65→ 55
71→ 61

75→ 70
81→ 76

85→ 84

log2(Time [sec.]) 15.61 15.86 16.04 16.21 16.31 16.51 16.70 17.07

βalg→ βgoal
89→ 88

91→ 90
93→ 92

99→ 98
101→ 100

103→ 102

log2(Time [sec.]) 17.42 17.67 17.97 18.89 19.49 20.09

Table 3. Simulated log2(Time [sec.]) of our algorithm and BKZ 2.0 for large dimen-
sions to find short vectors. The time is after LLL-reduced basis. Because the estimate
for BKZ 2.0 is only the cost for enumeration, our algorithm appears to be slow in small
blocksizes.

Goal n ·GH(L) n · det(L)1/n
√
n ·GH(L)

n β log2(Ours) β log2(Ours) log2(BKZ 2.0) β log2(Ours)

600 35 15.8 102 20.1 16.0 145 38.4
650 45 16.6 114 24.3 21.9 157 51.0
700 59 17.3 124 28.3 28.2 169 60.4
800 100 20.8 144 38.6 41.3 193 82.1

6.3 Comparing with Other Heuristic Blocksize Strategies

In this section, we compare the blocksize strategy of our progressive BKZ in
Figure 9. Using a random 256-dimensional basis, we experimented and simulated
the progressive BKZ to find a BKZ-128 reduced basis with the three following
strategies:

2
4→ 4

8→ 8
16→ 16

32→ 32
64→ 64

128→ 128
(Schnorr-Shevchenko’s doubling strategy [47])

2
20→ 20

21→ 21
22→ 22

23→ 23
24→ 24

25→ · · · 128→ 128
(Simplest step-by-step in Figure 7)

2
30→ 20

35→ 25
39→ 29

43→ 33
47→ 37

48→ · · · 128→ 128
(Optimized blocksize strategy in Figure 9)

In experiment, our simple and optimized strategy takes about 27.1 minutes
and about 11.5 minutes respectively to achieve BKZ-64 basis after the LLL
reduction. On the other hand, Schnorr-Schevchenko’s doubling strategy takes
about 21 minutes.

After then, the doubling strategy switches to BKZ-128 and takes about 14
single-core days to process the first one index, while our strategies comfortably
continues the execution of progressive BKZ.

Our simulator predicts that it takes about 225.3, 225.1 and 237.3 seconds to
finish BKZ-128 by our simple, optimized, and Schnorr-Schevchenko’s doubling
strategy, respectively. Our strategy is about 5000 times faster than the doubling
strategy.

Interestingly, we find that the computing time of simple blocksize strategy
is close to that of optimized strategy in many simulations when the blocksize
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5-1: Compute the Gram-Schmidt lengths ||b∗i || and coefficients µij
corresponding to the local block Bi of blocksize β′ = min(β, n− i+ 1)

5-2: Set (α, p) for Bi using the setting in Section 4.3;
6-1: Set near optimized pruning coefficients (R1, . . . , Rβ) for (Bi, α, p);
6-2: Preprocess Bi by the simple version of progressive BKZ in Section 7.1;
6-3: if enumeration cost for Bi computed using (αp, R1, . . . , Rβ) is large

then optimize the bounding function;
7: {v1, . . . ,vh} ← (lattice enumeration for Bi using (αp, R1, . . . , Rβ));
8-1: Construct the degenerated basis

(b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1)
8-2: Apply the LLL algorithm to the basis

(b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1)
and erase the zero vectors

Fig. 10. One BKZ tour of our implementation to process the local block. These lines
correspond to Step 5-8 in Figure 7.

is larger than about 100. Hence, the simple blocksize strategy would be better
than the optimizing blocksize strategy in practice, because the latter needs a
heavy precomputing as in Section 6.1.

7 Our Implementation and Cost Estimation for
Processing Local Blocks

In this section we describe how to derive the estimation of the computing times
of equations (17) and (18) of Step 3-10 in Figure 7. The total computing time is
the sum of times to process local blocks (corresponds to Step 5-8 in Figure 7):

TimeBKZ(n, βstart
βalg→ βgoal) =

]tours∑
t=1

n−1∑
i=1

[
Time of processing local block Bi with parameters (α, p)

]
.

(19)

Because ]tours is already given in Section 5.2, we consider the factor of time
of processing local block Bi.

For the details of analysis, we introduce a pseudo-code of our implementation
in Figure 10. We decompose the running time over the internal summation as
follows.

n−1∑
i=1

(Time of processing local block Bi with parameters (α, p)) =

TimeGS + TimeOptimize + TimePreprocess + TimeEnum + TimeLLL +misc,
(20)
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where TimeGS is for Step 5-1, TimePreprocess is for Step 6-2, TimeOptimize is for
6-3, TimeEnum is for Step 7, and TimeLLL is the time for Step 8-2. Note that
the miscellaneous part is the time for all the other steps including the memory
allocation and vector insertion which are negligible.

In the rest of this section, we introduce our implementation and give a rough
estimating formula of computing times with some order notations. (Section 7.1
and 7.2.) Then, we fix the rational coefficients by using the experimental results.
Although some of implementing techniques are folklore or trivial, we give them
for the completeness of the paper.

How to construct the degenerated basis in Step 8-1: Suppose we have
a set of vectors v1, . . . ,vh found in Step 7. First, compute the projections
of vi onto b1, . . . ,bi−1 and let vi1 be the vector with shortest projection.
After choosing the g-th vector, vig , the next vector vig+1 is selected as fol-
lows. Compute the projections ||π′(vi)|| of vi onto b1, . . . ,bi−1,vi1 , . . . ,vig . If
there exists i such that 0 < ||π′(vi)|| < ||b∗i+g−1||, then vig+1

is vi that mini-
mizes ||π′(vi)||; otherwise, stop this process and output the degenerated basis
(b1, . . . ,bi−1,vi1 , . . . ,vig ,bi, . . . ,bi+β′−1).

7.1 Implementation and Time Estimation of Step 6 and 7:
T imePreprocess + T imeEnum + T imeOptimize

We give the details of our implementation from Step 6 to 7 in Figure 10. The
goal of this section is to justify

TimeOptimize + TimePreprocess + TimeEnum

= W · β ·
n−1∑
i=1

Sim-ENUMCost(`′i, . . . , `
′
i+β−1;α, p)

(21)

by using a constantW which we will determine in Section 7.4. Here, `′i, . . . , `
′
i+β−1

is a part of output of Sim-GS-lengths(n, β) or its updated values by the simulator
in Section 5.1.

Computing bounding coefficients: In Step 6-1, we use Aono’s precomputing
technique [6] to generate the bounding coefficients R1, . . . , Rβ for pruning in the
enumeration algorithm in Section 2.3. We fix this bounding function to predict
the enumeration cost in the preprocessing step 6-2 (see the next paragraph).
After preprocessing, in Step 6-3, we search better bounding coefficients if the
expected number of enumeration searching nodes is larger than 108, which cor-
responds to a few seconds in a single thread. The procedure for finding a better
bounding coefficients is the simple algorithm that considers random perturba-
tions of (R1, . . . , Rβ) as the strategy in [13].

TimeOptimize is the sum of the computing time in Step 6-1 and 6-3. It is
significantly smaller than the cost of lattice vector enumeration. In small block-
sizes, Step 6-1 can be done in about 100 milliseconds and Step 6-3 is skipped.
Thus, TimeOptimize ≈ 0. Moreover, since the precomputing technique outputs
R1, . . . , Rβ as a function of the dimension β, target probability and target GSA
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constant, we can reuse them in implementation. Thus, the computing times of
these steps are very small. Note that the target GSA constant is computed from
the line fitting by the least square method to the points (i, log2 ||b∗i ||) when the
GS-lengths (||b∗i ||, . . . , ||b∗i+β−1||) is given.

On the other hand, for large blocksizes (larger than about 80), the time for
lattice vector enumeration is much larger than that of optimization in Step 6-3.
Therefore, we can assume TimeOptimize � TimeEnum in the both situations.

Implementation of preprocess step: In Step 6-2, we use our progressive
BKZ algorithm proposed in this paper with small blocksizes. It starts with the
blocksize β̄ = 15 and increases β̄ one by one when FEC(Bi) < Sim-FEC(β, β̄).

At the end of each tour, we compute ENUMCost(Bi;α, p)/persec as the
estimation for the time of main enumeration. Here, ENUMCost(Bi;α, p) is esti-
mated by using near optimized coefficients generated in Step 6-1. persec is the
number of processed nodes in lattice vector enumeration in one second, which
can be determined from our preliminary benchmark. It is about 6.0 · 107 at the
maximum in a single threaded implementation. On the other hand, it slows down
to about ]threads × 3.0 · 107 when we use the multithreaded programming. In
our implementation, we use 12 threads which can process about 3.0 ·108 nodes in
one second. During the preprocessing, we obtain several lattice bases in the ends
of tours. We keep the basis that takes minimum ENUMCost(Bi;α, p) among
them and also keep its minimized cost. The preprocessing subroutine terminates
when the elapsed (wallclock) time exceeds the kept minimum cost in seconds
scaled by the benchmarking result. We use the minimum pair (B, cost) for the
preprocessing output.

Because our preprocessing subroutine works in a single thread, TimePreprocess
is proportional to the recorded minimum cost. While the actual time for the
enumeration decreases by the optimizing bounding coefficients, we does not con-
sider it and assume that TimePreprocess = APreprocess ·TimeEnum by a constant
APreprocess.

Implementation of enumeration step: In Step 7, we implement our modified
version of the lattice vector enumeration subroutine in the NTL library. In order
to speed up, we use double type to keep the Gram-Schmidt coefficients and
lengths during the enumeration while the original version uses quad float. In
addition, we use assembly codes optimized for a latest CPU.

In the lattice enumeration subroutine, we find many vectors whose projective
lengths are small, although their non-projective lengths are not small enough. In
our implementation, we store the first h = 16 vectors ordered in the lexicographic
order of the pair (β − k, ||πβ−k(v)||) satisfying ||πβ−k(v)|| ≤ Rk+1. After the
enumeration, the output is the stored vectors v1, . . . ,vh.

Our model and cost estimation of the enumeration step: To estimate
TimeEnum, we performed experiments to compare the numbers of processed
nodes and the simulated values.

Figure 11 shows the maximum and average of the number of processed nodes
during the first tour of our progressive BKZ of blocksize β using random lattices
of 300 dimensions. The symbol “+” indicates the actual number of nodes during
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Fig. 11. Maximum (left)/Average (right) of the number of nodes during the first tour
at blocksize β

the enumeration subroutine, while the bold curve is the maximum and average
of Sim-ENUMCost(`i, . . . , `i+β−1;α, p) for i = 1, . . . , n−β+1, where (`1, . . . , `n)
is the output of simulator Sim-GS-lengths(n, β − 1) in Section 5.1 and (α, p) is
from Section 4.3.

As we can see in Figure 11, the numbers of processed nodes in our experiment
are larger than the simulated numbers. This phenomenon is mainly caused by
the basis updating, i.e., the vector inserting process in Step 8 in Figure 10.
By inserting found vectors, the GS-lengths are changed and the corresponding
enumeration cost is increased.

From the above experiments, we find the maximum of actual number of nodes
is about 0.25β times the maximum of Sim-ENUMCost(`i, . . . , `i+β−1;α, p) (See
the left-hand side of Figure 11). A similar proportional relation is found in the
average number of nodes (the right-hand side of the figure). Therefore, we assume
the actual number of processed nodes during one BKZ tour for the basis whose
GS-lengths are (`1, . . . , `n) is

AEnum · β ·
n−1∑
i=1

Sim-ENUMCost(`i, . . . , `i+β′−1;α, p),

where AEnum is a rational constant. Thus, TimeEnum in seconds is this value
divided by persec (the number of processed nodes in one second in a single
thread).

Total computing time in seconds in Step 6 and 7: Summarizing the above
argument, we have

TimeOptimize + TimePreprocess + TimeEnum [sec.]

=
(APreprocess + 1) ·AEnum · β ·

∑n−1
i=1 Sim-ENUMCost(`′i, . . . , `

′
i+β′−1;α, p)

persec
.
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Hence, lettingW = (APreprocess+1)·AEnum·β/persec, we get the equation (21).
Note that we regard AOptimize = 0.

7.2 Estimating Time of Step 5-1 and 8-2: T imeGS + T imeLLL when
the lattice dimension is small

In this section, we introduce our implementation to compute the GS-variables
(i.e., the Gram-Schmidt lengths ||b∗i || and the coefficients µij) used from Step
5-2 to 6-3. Then we show how to update these values in Step 8-2. In our im-
plementation, we use the different precision types to treat GS-variables. If the
lattice dimension n is smaller than 400, we compute and keep the GS-variables
by using the quad float type variables. Otherwise, we compute and keep them
by using RR types which will be explained the detail in the next subsection.

In small dimensions n < 400, we keep GS-variables in the quad float type
and compute them directly. In short, Step 5-1 merely consists of copying the
necessary parts ||b∗i′ || and µi′j′ for i′ ∈ {i, . . . , i + β′ − 1} and j′ ∈ [i′] that
corresponds to the local block Bi.

In Step 8-2, we apply the LLL algorithm to the degenerated basis con-
sisting of the i + β′ − 1 + g vectors. Since we can assume that the first part
of basis (b1, . . . ,bi−1) is LLL reduced, the number of swaps can be approxi-
mated by that of the LLL algorithm for the basis consists of β′ + g vectors
(πi(vi1 , . . . ,vig ,bi, . . . ,bi+β′−1)).

Hence, from the standard analysis of LLL [36], the number of swaps is Θ((β′+
g)2) = Θ(β2), and each swap requires the procedure for updating the Gram-
Schmidt coefficients that takes Θ(n2) floating point operations when the basis
vectors are given by m = O(n) dimensional vectors 5.

Thus, the required number of floating point operations in Step 8-2 is Θ(β2n2),
and the total computational time in seconds in one BKZ tour is

TimeGS + TimeLLL =

n−1∑
i=1

Θ(n2 · β2) = A1 · β2n3[sec.] (22)

with a rational constant A1.

In this standard implementation using quad float type, i.e., LLL QP subrou-
tine in NTL, about 400 dimension is the limit of stable computing in practice and
the loss-of-precision error occurs in larger n. If we simply replace quad float

with another high precision type such as RR to avoid this error, the computing
time must increase significantly. Several implementing techniques to reduce the
cost of LLL have been proposed. One idea that we employ is to extract small
local block by using small precision variables as in the next subsection.

5 If we treat a larger dimension m� n, we need to consider an additional term O(mn)
of computational cost.
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7.3 Estimating Time of Step 5-1 and 8-2: T imeGS + T imeLLL when
the lattice dimension is large

To compute the LLL algorithm correctly, we need to compute the GS-variables
in a sufficient accuracy. A naive method using a high precision floating point
variables takes a large cost for large dimensional lattices, e.g., LLL RR function
in the NTL library. To decrease such costs, we introduce a heuristic algorithm
using two types of floating point numbers that is used after the vector insertion
in Step 8. Although it is a folklore among the programmers, we precisely define
it to analyze the computational cost.

We use the notations (mutypei,j ,ctypei ) to denote the variables µij and ||b∗i ||
using type ∈ {qf, RR} by which we can treat floating point numbers. Here, qf is
the shortened form of quad float.

In our implementation, we use (muRRi,j ,c
RR
i ) to store the all GS-variables, and

we also use (muqfi,j ,c
qf
i ) as a “temporary cache” that stores the GS-variables of

a projective sublattice to process local blocks as shown in Figure 10. Hence, a
significant amount of basis updating (Step 8-2 in Figure 9) can be done efficiently
within the cache variables with small precisions, and the update of (muRRi,j ,c

RR
i )

does not occur frequently.
We can assume the GS-variables (muRRi,j ,c

RR
i ) of the basis are computed at the

start point of Step 5-1, since they are computed in the LLL algorithm in Step 1
in Figure 7, or computed in the end of the previous loop.

Implementation: In our experiments, we use RR as the RR type with the 320
bit precision of the NTL library. The temporary cashe is stored as a H × H
matrix where we set H = 250.

Our implementation is described as follows. In the first step of our BKZ al-
gorithm (Step 1 in Figure 9), we compute the GS-variables of the LLL-reduced
basis and store them to (muRRi,j ,c

RR
i ). From these high precision variables, we com-

pute the cached values (mu
qf
i,j ,c

qf
i ) of size H starting from index I by constructing

a new basis defined by the following matrix

Bcache =


||b∗I ||

||b∗I+1|| · µI+1,I ||b∗I+1||
...

. . .

||b∗I+H−1|| · µI+H−1,I · · · · · · ||b∗I+H−1||

 .
Here, the corresponding GS-variables are merely the copies of (muRRi,j ,c

RR
i ). This

temporary cache contains the GS-variables of the index from I to I + H − 1.
We also keep the information on how the basis matrix is changed by processing
the local block (Step 6-2 to 8-2 in Figure 10). The information is a unimodular
matrix U that generates the basis Bcache2 after processing and the basis Bcache
before processing: Bcache2 = U · Bcache. (We can directly obtain U at Step 8-2,
before shifting to the next cache.)

In Step 5-1, we check whether the indexes [i : i + β − 1] of local block are
a subset of the cache indexes [I : I + H − 1]. Here we recall that the notation
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[I : J ] is the set of integers between I and J . If these are not contained, we
update the entire basis by multiplying the unimodular matrix U to the part of the
basis (bI , . . . ,bI+H−1), and then apply the LLL algorithm to (b1, . . . ,bn). After
applying the LLL algorithm, the updated (muRRi,j ,c

RR
i ) is computed. To process

the local block, we once again compute the cache (muqfi,j ,c
qf
i ) with the starting

index I = i and size H = min(250, n − I + 1). By this process, we can assume
[i : i + β − 1] ⊂ [I : I + H − 1] at Step 5-2 and the remaining part can be
computed by using the cached variables.

Computational time: We estimate the number of floating point operations
for quad float and RR variables. First, to estimate the cost of computation in
RR variables, we consider when the entire basis is updated. Since the index starts
at i = 1 in Figure 10, the index range of the cache at this time is [1 : H]. By the
fact that the blocksize is β, the updating process at Step 5-1 is occurred at the
index i = 2+H−β and the new cache is from the indexes [2+H−β : 2H−β+1].
By the same argument, the j-th updating is in the index j+ (H−β)(j−1), and
the corresponding indexes are [j+ (H − β)(j− 1) : min(jH − (j− 1)(β− 1), n)].
Hence, the number T of the entire updating in one BKZ tour is the minimum
integer T so that TH − (T − 1)(β − 1) > n and we have T ≈ (n− β)/(H − β).

In Step 5-1, we need to compute the multiplication by the unimodular ma-
trix U and the LLL reduction in the large precision. We assume that the com-
putational cost of the LLL is approximated by the time for computing the GS-
variables in the caches because the updated basis is nearly LLL reduced. It is
Θ(n2 ·H) because Θ(n2) floating point operations are required to compute one
b∗i . The number of multiplication operations by U is O(n ·H2). Thus, the cost
at Step 5-1 is Θ(n2 · H) + O(n · H2) = Θ(n2 · H), and in total Θ(T · n2 · H)
throughout one BKZ tour.

On the other hand, the cost to update the local temporary cache in quad float

variables is Θ(β2H2). We neglect this in our model for the large dimensions be-
cause the operations in RR are significantly heavier than that in quad float from
the preliminary experiments.

Therefore the total cost throughout one BKZ tour is as follows:

TimeGS + TimeLLL = Θ(T · n2 ·H) = A2 ·
n− β
H − β

· n2H [sec.]. (23)

The rational constant A2 will be fixed by the computer experiments.

7.4 Experimental Coefficient Fitting

Substituting equations (21), (22) and (23) to equation (20), we obtain our for-
mulas for estimating the computational time of the progressive BKZ algorithm.
For small dimensions (< 400) using only quad float type of computing the GS-
variables, the estimated computational time for finding a BKZ-βgoal reduced
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basis is as follows:

TimeSim-small(dim, β,A1,W1) =
βgoal∑
βstart

]tours∑
t=1

[
A1 · β2n3 +W1 · β

n−1∑
i=1

ENUMCost(Bi;α, p)
]
[sec.].

(24)

The computational time for the large dimensions is as follows:

TimeSim-large(dim, β,A2,W2) =
βgoal∑
βstart

]tours∑
t=1

[
A2 ·

n− β
H − β

·Hn2 +W2 · β
n−1∑
i=1

ENUMCost(Bi;α, p)
]
[sec.].

(25)

In this section, we conduct the computer experiments with the simple block-
size strategy:

2
20→ 20

21→ 21
22→ 22

23→ 23
24→ 24

25→ · · ·

and then we estimate the undefined variables W1, W2, A1 and A2 by the exper-
imental computing time after BKZ-55, i.e., βstart = 55.

Generating method of test lattice bases: The input bases are the Goldstein-
Mayer type random lattices generated by the SVP Challenge problem generator.
The instance of SVP Challenge problem has three parameters: lattice dimension
n, random seed s, and the bit-length parameter b. The determinant of the gen-
erated lattice is equal to a prime p ≈ 2bn, where the default value of b is 10
to generate the published challenge problems. However, if we use b = 10, then
||b∗i || = 1 holds for some last indexes i after the LLL and BKZ with a small
blolcksize. When the basis has basis vectors of ||b∗i || = 1 in last indexes, the
FEC of basis does not indicate the reduction level correctly and fails to increase
the blocksize in sharp timings. Indeed, this basis yields no sharp estimation from
our preliminary experiments.

To prevent this, we take b = max(10, dn/20e) for basis generation so that
||b∗n|| > 1 holds after the LLL reduction.

Finding the coefficients: The experiments are conducted using a server with
two Intel Xeon CPU E5-2697@2.70GHz processors. The small squares in Fig-
ure 12 indicate the single-core seconds of finishing the BKZ-β algorithm. We let
the CPU times of lattice reductions for computing a BKZ-β reduced basis of n
dimensional basis be TimeExp(n, β). In other words, we exclude the time of mem-
ory allocation, generating pruning coefficients, computing Sim-GS-lengths(n, β)
and corresponding FEC. We also exclude the computing time of LLL reduced
basis of an input lattice.

We find the suitable coefficients (A1,W1) by using the standard curve fitting
method in semi-log scale, which minimize∑

dim∈{200,300}

∑
β=55

∣∣∣log
(
T (dim, β,A1,W1)

)
− log

(
TimeExp(dim, β)

)∣∣∣2 ,
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Fig. 12. Result of our parameter fitting for cost estimation. Left Figure: implementa-
tion described in Section 7.2. Right Figure: implementation described in Section 7.3.
In both graphs, experimental results are plotted by small squares and the simulating
results are drawn in bold lines.

where T (dim, β,A1,W1) = TimeSim-large(dim, β,A1,W1) in the small dimen-
sional situation. For the large dimensional situation, we use the result of dim ∈
{600, 800} to fix A2 and W2.

We find suitable coefficients

A1 = 1.5 · 10−10 and W1 = 1.5 · 10−8

A2 = 10−6 and W2 = 3.0 · 10−8.
(26)

The fitting results are given in Figure 12. Using the equations (24) and (25)
with the above coefficients (26), we can estimate the computing times of our
progressive BKZ algorithm.

8 Pre/Post-Processing the Entire Basis

In this section, we consider an extended strategy that enhances the speed of our
progressive BKZ by pre/post-precessing the entire basis.

In pre-processing we first generate a number of randomized bases for input
basis. Each basis is then reduced by using the proposed progressive BKZ algo-
rithm. Finally we perform the enumeration algorithm for each reduced basis with
some low probability in the post-processing. This strategy is essentially the same
as the extreme pruning technique [19]. However, it is important to note that we
do not generate a randomized basis inside the progressive BKZ. Our simulator
for the proposed progressive BKZ is so precise that we can also estimate the
speedup by the pre/post-precessing using our simulator.

8.1 Algorithm for Finding Nearly Shortest Vectors

In the following, we construct an algorithm for finding a vector shorter than
γ ·GH(L) with a reasonable probability using the strategy above, and we analyze
the total computing time using our simulator for the BKZ algorithm.
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Table 4. The cost of solving SVP Challenge using our optimal blocksize strategy

dim. M log2(Time [sec.]) optimal blocksize strategy in Section 6
100 5 10.8 LLL

23→ 20
34→ 32

40→ 37
43→ 41

48→ 47
50→ 49

59→ 58
70→ 69

80→ 79

120 9 20.3 LLL
23→ 20

34→ 29
40→ 37

48→ 47
49→ 48

54→ 52
62→ 60

71→ 70
80→ 80

88→ 88
95→ 95

99→ 99
103→ 103

108→ 107

140 81 30.3 LLL
23→ 20

34→ 30
40→ 36

48→ 47
52→ 50

57→ 54
64→ 61

70→ 68
78→ 77

86→ 86
93→ 93

97→ 97
100→ 100

103→ 103
106→ 106

110→ 110
114→ 114

118→ 117
123→ 122

160 327 41.2 LLL
23→ 20

34→ 29
40→ 36

48→ 47
52→ 49

59→ 57
64→ 61

69→ 66
73→ 71

80→ 78
86→ 85

93→ 93
95→ 95

99→ 99
101→ 101

104→ 104
107→ 107

110→ 110
113→ 113

116→ 116
119→ 119

122→ 122
126→ 126

130→ 129
133→ 132

139→ 137

Concretely, for given lattice basis B of dimension n, the pre-processing part
generates M randomized bases Bi = UiB by multiplying unimodular matrices
Ui for i = 1, . . . ,M . Next, we apply our progressive BKZ for finding the BKZ-β
reduced basis. The cost to obtain the randomized reduced bases is estimated
by M · (TimeRandomize(n) + TimeBKZ(n, β)). Here, TimeRandomize includes
the cost of generating a random unimodular matrix and matrix multiplication,
which is negligibly smaller than TimeBKZ in general. Thus we assume the com-
putational cost for lattice reduction is M · TimeBKZ(n, β).

Finally, in the post-processing part, we execute the standard enumeration
algorithm with the searching radius parameter α = γ and probability parameter
p = 2 · γ−n/M . As with the similar argument in Section 4.1, there exist about
γn/2 short vector pairs in Balln(γ ·GH(L)). Therefore, the probability that one
enumeration finds the desired vector is about (γn/2) · (2 · γ−n/M) = 1/M and
the total probability of success is 1− (1− 1/M)M ≈ 0.632.

Consequently, the total computing cost in our model is

M ·
(

TimeBKZ(n, β) +
ENUMCost(B; γ, p = 2 · γ−n/M)

6 · 107

)
[sec.], (27)

where TimeBKZ(n, β) and ENUMCost(B; γ, p) are defined by Section 6.1 and
Section 2.3, respectively. We can optimize this total cost by finding the minimum
of formula (27) over parameter (β,M). Here, note that the constant 6 ·107 comes
from our best benchmarking record of lattice enumeration. In Table 4, we provide
the detailed simulating result with setting γ = 1.05 to analyze the hardness of the
Darmstadt SVP Challenge in several dimensions. A comparison with previous
works are given in Section 9 (See the line C in Figure 13).

8.2 Lower Bound of the Cost by an Idealized Algorithm

Here we discuss the lower bound of the total computing cost of the proposed
progressive BKZ algorithm (or other reduction algorithm) with the pre/post-
processing.

The total cost is estimated by the sum of the computational time for the
randomization, the progressive BKZ algorithm, and the enumeration algorithm
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by the following extremely idealized situations. Note that we believe that they
are beyond the most powerful cryptanalysis which we can achieve in the future,
and thus we say that this is the lower bound in our model.

(a)The cost for the randomization becomes negligibly small. The algorithm
for randomizing the basis would not only be the method of multiplying random
unimodular bases, and we could find an ideal randomization at a negligibly small
cost. Thus, TimeRandomize(n) = 0.

(b)The cost for the progressive BKZ algorithm does not become lower than
that of computing the Gram-Schmidt lengths. Even though the progressive BKZ
algorithm ideally improved, we always need the Gram-Schmidt basis computa-
tion used for the enumeration algorithm or the LLL algorithm. The computation
of the Gram-Schmidt basis (even though the computation is performed in an ap-
proximation using floating point operations with a sufficient precision) includes
Θ(n3) floating point arithmetic operations via the Cholesky factorization algo-
rithm (See, for example [37, Chapter 5]). A modern CPU can perform a floating
point operation in one clock cycle, and it can work at about 4.0GHz. Thus, we
assume that the lower bound of the time in seconds is (4.0 · 109)−1 · n3.

(c)The reduced basis obtained by the progressive BKZ (or other reduction
algorithm) becomes ideally reduced. We define the simulated γ-approximate HKZ
basis Bγ-HKZ by a basis satisfying

||b∗i || = τn−i+1GH(L[i:n]) for i = 2, . . . , n and ||b1|| = γ ·GH(L).

For any fixed γ and p, we assume this basis minimizes the cost for enumeration
over any basis satisfying ||b1|| ≥ γ ·GH(L).

Therefore, the lower bound of the total cost of the idealized algorithm in
seconds is given by

min
M∈N

M ·
(

(4.0 · 109)−1 · n3 +
ENUMCost(Bγ-HKZ ;α, p/M)

6 · 107

)
. (28)

Setting γ = 1.05, we analyze the lower bound cost to enter the SVP Chal-
lenge. (See the line D in Figure 13).

9 Simulation Results for SVP Challenge and Comparison

In this section, we give our simulation results using our proposed progressive
BKZ algorithm together with the pre/post-processing strategy in Section 8.1 for
solving the Darmstadt SVP Challenge [49], which tries to find a vector shorter
than 1.05 ·GH(L) in the random lattice L of dimension n.

We also simulate the cost estimation of Lindner and Peikert [31] and that of
Chen and Nguyen [12] in the same model. The summery of our simulation results
and the latest records published in the SVP Challenge are given in Figure 13.
The outlines of our estimations A to D in Figure 13 are given below.

From our simulation, the proposed progressive BKZ algorithm is about 50
times faster than BKZ 2.0 and about 100 times slower than the idealized algo-
rithm that achieves the lower bound in our model of Section 8.2.
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Fig. 13. Comparing cost in seconds. A: Lindner-Peikert estimation, B: Chen-Nguyen’s
BKZ 2.0 simulation, C: Simulating estimation of our randomized BKZ-then-ENUM
algorithm, D: Lower bound in the randomized BKZ-then-ENUM strategy. Records in
the SVP Challenge are indicated by the black circles “•”, and our experimental results
are indicated by the white circles “◦”.

A: Lindner-Peikert’s estimation [31]: From the experiments using the BKZ
implementation in the NTL library [48], they estimated that the BKZ algorithm
can find a short vector of length δn det(L)1/n in 21.8/ log2(δ)−110 [sec.] in the
n-dimensional lattice. The computing time of Lindner-Peikert’s model becomes

TimeLP = 21.8/ log2(δ)−110 with δ = 1.051/n · Vn(1)−1/n
2

,

because this δ attains 1.05 ·GH(L) = δn det(L)1/n.

B: Chen-Nguyen’s BKZ 2.0 [12,13]: We estimated the cost of BKZ 2.0 using
the simulator in Section 3.2. Following the original paper [12], we assume that
a blocksize is fixed and the estimation is the minimum of (4) over all possible
pairs of the blocksize β and the number t of tours. Again we convert the number
of nodes into the single-threaded time, we divide the number by 2 · 107.

C: Our estimation: We searched the minimum cost using the estimation (27)
over M and β with setting γ = 1.05.

D: Lower bound in our model: We searched the minimum cost using the
estimation (28) over M with setting γ = 1.05.

Records of SVP Challenge: From the hall of fame in the SVP Challenge
[49] and reporting paper [17], we listed up the records that contain the comput-
ing time with a single thread in Figure 13, as black circles “•”. Moreover we
performed experiments on our proposed progressive BKZ algorithm using the
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pre/post-processing strategy in Section 8.1 up to 123 dimensions which are also
indicated by the white circles “◦” in Figure 13.

10 Conclusions and Future Work

We proposed an improved progressive BKZ algorithm with optimized parameters
and block-increasing strategy. We also gave a simulator that can precisely predict
the Gram-Schmidt lengths computed using the proposed progressive BKZ. We
also presented the efficient implementation of the enumeration algorithm and
LLL algorithm, and the total cost of the proposed progressive BKZ algorithm
was precisely evaluated by the sharp simulator.

Moreover, we showed a comparison with other algorithms by simulating the
cost of solving the instances from the Darmstadt SVP Challenge. Our progres-
sive BKZ algorithm is about 50 times faster than the BKZ 2.0 proposed by Chen
and Nguyen for solving the SVP Challenges up to 160 dimensions. Finally, we
discussed a computational lower bound of the proposed progressive BKZ algo-
rithm under certain ideal assumptions. These simulation results contribute to
the estimation of the secure parameter sizes used in lattice based cryptography.

We outline some future works: (1) constructing a BKZ simulator without
using our ENUMCost, (2) adopting our simulator with other strategies such as
BKZ-then-Sieve strategy for computing a short vector more efficiently, and (3)
estimating the secure key length of lattice-based cryptosystems using the lower
bound of the proposed progressive BKZ.
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