ISOGENY-BASED QUANTUM-RESISTANT UNDENIABLE
BLIND SIGNATURE SCHEME

SRINATH M. S. AND V. CHANDRASEKARAN

ABSTRACT. In this paper, we propose an Undeniable Blind Signature
scheme (UBSS) based on isogenies between supersingular elliptic curves.
The proposed UBSS is an extension of the Jao-Soukharev undeniable
signature scheme [19]. We formalize the notion of a UBSS by giving
the formal definition. We then study its properties along with the pros
and cons. Based on this, we provide a couple of its applcations. We
then state the isogeny problems in a more general form and discuss
their computational hardnesses. Finally, we prove that the proposed
scheme is secure in the presence of a quantum adversary under certain
assumptions.

Mathmatics Subject classification: 94A60, 14H52, 14K02

1. INTRODUCTION

Blind signature scheme is a protocol in which the requester requests the
signer to sign a document without disclosing the contents of the document.
In 1982, Chaum [8] proposed the first blind signature scheme. It is based
on the RSA problem [27]. Since then a host of blind signature schemes and
their variations have been proposed based on different hardness assumptions
such as the Discrete Logarithm Problem (DLP), pairing-based problems and
lattice-based problems [7, 26], B37]. However, all the known blind signature
schemes suffer from a common drawback that they are not secure in the
presence of a quantum adversary. The blind signatures by Chaum [§], Ca-
menisch et al. [7] and Zhang and Kim [37] are not quantum secure due
to the polynomial time quantum algorithm by Shor [31] for solving inte-
ger factorization and discrete logarithms. The lattice-based blind signature
by Riickert [26] uses Fiat-Shamir paradigm [12] which is not secure in the
quantum random oracle model as shown in [10].

Blind signature provides both anonymity and authentication. Hence it is
used in the privacy-preserving protocols such as e-cash and e-voting. How-
ever, the signer has neither any control on the content of the document nor
on the way the signature is used. Therefore, there is a crucial need to give a
certain degree of control to the signer. One possible way is to let the signer
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and the requester agree on a part of the message (e.g., certain metadata
about the specific message). This can be achieved through the technique
introduced by Abe and Fujisaki [1].

Alternatively, one could let the signer decide who can verify the signature.
This will keep unauthorized verifiers at bay and provide a certain control on
the way the signature is used. The Undeniable Signature scheme introduced
by Chaum and van Antwerpen [9] precisely has the said requirement. In
an undeniable signature scheme the signer can decide who can verify the
signature.

So, it seems desirable to have a scheme that would provide anonymity
and controlled verification satisfying the properties of both blind signature
and undeniable signature. Such a scheme can be devised but not obvious.
In 1996, Sakurai and Yamane [29] have come up with an undeniable blind
signature scheme based on the DLP. Their technique is also applicable for
blinding the RSA based undeniable signature described in [9]. However,
their scheme is not quantum secure either.

In this paper, we propose a new undeniable blind signature scheme based
on the hardnesses of isogeny problems over supersingular elliptic curves. The
isogeny problems for supersingular curves (details in Section |5)) do not have
any subexponential quantum algorithm. Hence, our scheme is quantum
resistant.

Sun et al. [33] have used the hardness of isogeny problems for constructing
designated verifier signature scheme. Jao and Soukharev [19] have proposed
an isogeny-based undeniable signature. We extend Jao-Soukharev scheme
into an Undeniable Blind Signature scheme.

To sum up, the main contributions of this paper are:

(1) The concept of an UBSS seems to have been first mentioned in the
work of Sakurai and Yamane [29]. However, to the best of our knowl-
edge, it has never been formally defined in the literature till date.
In this paper, we make such an attempt and give a formal definition
of UBSS. We also study its properties including its strengths and
weaknesses.

(2) In [20], Jao and Venkatesan, speculate the use of hardness assump-
tions related to isogeny problems in constructing blind signature.
We confirm this speculation by constructing an undeniable blind
signature scheme.

(3) The existing isogeny-based schemes [I1], [19], including the current
work, use primes of special forms that depend on a given set of
small primes. Therefore, we state isogeny problems in their general
form. These definitions can be used for the construction of any
isogeny-based cryptographic scheme.

The rest of the paper is organized as follows. In Section a formal
definition of a UBSS is given and its properties as well as the possible attacks
are studied. In Section [3] a brief and relevant mathematical background
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about isogenies between supersingular elliptic curves is provided. Section
describes the proposed UBSS in detail. In Section [5] we state the isogeny
problems in their general form and discuss related hardness assumptions.
The security of the proposed scheme is proved in Section [} We conclude in
Section [7l

2. UNDENIABLE BLIND SIGNATURE: DEFINITION AND PROPERTIES

2.1. Formal Definition. One would expect that a UBSS combines the
properties of undeniable signature scheme and blind signature scheme. This
means that UBSS would offer anonymity of the message origination and con-
trolled verification of the signature. We have not found any definition that
would fulfill both the requirements. Taking inspiration from Rogaway [28],
ours is an attempt to provide a definition for UBSS.

Definition 2.1 (Undeniable Blind Signature Scheme). An interactive sig-
nature scheme given by the tuple

UBSS = (KeyGen, Blind, Sign, Unblind, Check, CON', DZS)
is said to be undeniable blind signature scheme if it satisfies the following:

(1) The randomized key generation algorithm KeyGen takes as input a
security parameter 1* and outputs a pair of keys (vk, sk) which are
called the werification key and the secret key respectively. This is
written as (vk, sk) < KeyGen(1?)

(2) The randomized blinding algorithm Blind takes as input a message
m and outputs a blinded message m’, denoted as m’ + ,Blind(m)
where 7 is the random choice made by the algorithm.

(3) The randomized or deterministic signing algorithm Sign takes as in-
put a secret key sk and a message m. It outputs a signature o,
denoted o «+ Signg.(m)

(4) The deterministic unblinding algorithm Unblind takes as input a
blinded signature ¢’ and a random choice r. It outputs an unblinded
signature o, to be denoted by o := Unblind,.(¢”)

(5) The deterministic checking algorithm Check takes as input a message
m, a signature o and the key pair (vk, sk). It outputs a bit b with
b = 1 meaning valid and b = 0 meaning ¢nvalid. This is written as
b := Check (yp, sk) (M, 0)

(6) The confirmation protocol, T.s, initiated by the signer, assures the
verifier that the signature is indeed valid.

(7) The disavowal protocol, mg;s also initiated by the signer, assures the
verifier that the signature is not valid.

It is required that, for every key pair (vk,sk) output by KeyGen(1*),
every m in the message space, and every random choice » made by Blind,
the following holds:

Check (yk, sk (12, Unblind,. (Sign (Blind(m)))) = 1
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Additionally, if the signature algorithm is deterministic, we may also as-
sume that the effect of blinding-signing-unblinding on a message is same as
directly signing the message. In the above notation, this means

Unblind, (Sign,, (»Blind(m))) = Sign,,(m)

2.2. Working of UBSS. We will now run through the protocol to illustrate
the role of the different algorithms in the definition. The illustration also
makes it clear when these algorithms are run and by whom.

At first the signer chooses a security parameter A and runs KeyGen(1*)
to obtain the key pair (vk, sk). The signing key sk is kept secret and the
verification key vk is published by the signer. Let m be the message which
the requester wishes to communicate anonymously. The requester first cre-
ates a blinded version m’ of m by running the algorithm Blind(m). Let r be
the random choice made by the algorithm Blind. The requester then sends
m/ along with his identity Idr. The signer verifies the requester’s identity
(see Remark and runs Signg on m’ to obtain the blinded signature
o’. After receiving ¢’ from the signer, the requester unblinds it by using
the algorithm Unblind and the same random choice » made by Blind. The
requester then sends the original message m and the unblinded signature o
to the concerned party.

Idg|lm/ CON/DIS

Idy [ (m,o)

Verifier

Requester

(m,o)

FIGURE 1. Illustration of the flow of information in an Un-
deniable Blind Signature Protocol

Any party who wishes to verify the signature sends the message-signature
pair (m,o) along with his identity Idy to the signer. The signer verifies
the identity of the verifier (see Remark . If Idy is not the identity
of an authorized verifier, then the signer simply ignores; otherwise, runs
the algorithm Check. If Check returns walid then the signer initiates the
confirmation protocol CON’; otherwise initiates the disavowal protocol DZS.
Figure [T] gives the flow of information in the UBSS.

Remark 2.2. We intentionally do not specify how the signer verifies the
identity of the requester and the verifier. It is the problem that can be best
dealt with mutual authentication which can be done in one of the many
ways [4, 5l 15], all of which are quantum secure.
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2.3. Properties. The UBSS is desired to have the following three security
properties viz., unforgeability, blindness and invisibility. The above proper-
ties are elaborated and their formal definitions are given below.

Unforgeability. As with any signature scheme, we require that the
UBSS is unforgeable. The strongest notion of unforgeability is obtained
when the adversary is allowed to corrupt both the requester and the veri-
fier. The strongest notion of unforgeability for a UBSS is given here. The
UBSS must be unforgeable against one-more forgery i.e., a requester who
has received signatures for ¢ messages (where t is polynomially bound by the
security parameter), should not be able to output ¢ + 1 distinct message-
signature pairs even after collaborating with the verifier. This notion of
unforgeability is formalized by the following security game:

(1) The challenger runs KeyGen(1*) to obtain the key pair (vk,pk) and
gives the verification key vk to A.

(2) Ais allowed to make polynomially many queries to the signing oracle
on chosen messages or any of their blinded versions adaptively and
arbitrarily interleaved.

(3) A is also allowed to submit message-signature pairs (m, o) to the
confirmation/disavowal oracle. If (m, o) is valid (resp. invalid), then
the oracle engages in confirmation (resp. disavowal) protocol with
the adversary.

(4) After making ¢t queries to the signing oracle, A outputs ¢’ distinct
pairs (m;, 0;) such that

Check yk, sy (Mi; 03) = 1

Definition 2.3 (Unforgeability). Let U4BSS be a given undeniable blind
signature scheme as in Definition 2.1 We say that the UBSS is unforgeable if
Pr[t’ > t] is negligible for any probabilistic polynomial-time (PPT) adversary
A in the above game.

Blindness. The blindness property is essential for preserving the anonymity
of the message content originator. The signer should not be able to relate
the message-signature pair and associated blinded versions. Although blind-
ness theoretically ensures anonymity, to what degree the requester remains
anonymous can vary in the real world as discussed in [2]. The strongest
notion of blindness is obtained when the adversary is allowed to corrupt
both the signer and verifier. Since the verification happens collaboratively
with the signer, we allow the signer to view the signature after unblinding it.
Incidentally, the existing definition of blindness for blind signature already
accounts for this. Excepting notation, we consider the following security
game as described by Schroder and Unruh in [30), Sec. 3 Defn. 4].

(1) The adversary A runs KeyGen(1*) and generates a key pair (vk, sk).
(2) A then chooses two messages mo and m; and gives them to the
challenger.
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(3) The challenger chooses a random bit b hidden from A and reorders
the messages as (myp, mp_1).

(4) The challenger then blinds the two messages; my, < ., Blind(m;,) and
my_q < r,Blind(my_1).

(5) A engages in signing the blinded versions mj and my_,. If sign-
ing requires multiple interactions, then .4 may engage parallely and
arbitrarily interleaved.

(6) The challenger receives the blinded signatures o and oj_; and un-
blinds them; oy := Unblind,, (0}) and o;_; := Unblind,, (c7_).

(7) The challenger then sends o, and 0,1 to A.

(8) At the end of the attack game, A outputs a guess bit b'.

Definition 2.4 (Blindness). We say that the UBSS has blindness property
if [Pr[b’ = b]—1/2] is negligible for any PPT adversary A in the above game.

Invisibility. A verifier should be able to accept (or reject) a signature
only with the signer’s cooperation via the confirmation (or disavowal) pro-
tocol and not otherwise. This notion is formalized by the following security
game between a challenger C and an adversary A. This definition is based
on the work of Kurosawa and Heng [24, Sec.3 Defn.5 p. 39].

(1) The challenger runs KeyGen(1*) to obtain the key pair (vk, pk) and
gives the verification key vk to A.

(2) Ais permitted to issue a series of signing queries for messages m; and
their blinded versions to the signing oracle adaptively and receives
signatures o;.

(3) A is also allowed to submit message-signature pairs (m, o) to the
confirmation/disavowal oracle. If (m, o) is valid (resp. invalid), then
the oracle engages in confirmation (resp. disavowal) protocol with
the adversary.

(4) At some point, A chooses a message m* and sends it to the chal-
lenger.

(5) C chooses a random bit b. If b = 1, C' runs o* < Signg,(m*),
otherwise, C' chooses a random value for o* from the signature space.
C returns o* to A.

(6) A performs some signing queries again (see Remark .

(7) A can also perform some queries to the confirmation/disavowal ora-
cle but not allowed to query the challenge (m*, o*).

(8) At the end of the attack game, A outputs a guess bit b'.

Definition 2.5 (Invisibility). We say that the UBSS is invisible against
full attack if |Pr[b’ = b] — 1/2] is negligible for any PPT adversary A in the
above game.

Remark 2.6. If the signing algorithm is deterministic, we do not allow the
adversary A to query m* or any of its blinded versions to the signing oracle.

2.4. Attacks: Blindness vs. Invisibility. A couple of attacks which ex-
ploit blindness property and invisibility property are demonstrated here. We
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show that all the existing schemes [17) 23] that combine these two require-
ments are vulnerable to the following attacks. At the end of the section,
some suggestions to choose the appropriate model and suitable application
are made in order that the system is secure.

The restriction in Remark is a standard practice. However it seems
rather forced. Suppose that the signing algorithm is deterministic and ad-
versary A queries for a signature on a blinded version of m*. If the UBSS
is blind, then it is impossible for the signer to distinguish m* from any
of the previously signed messages. Hence, A can easily guess b and the
signature is visible for the requester without actually engaging in the con-
firmation/disavowal protocol.

Suppose the signer does not conform to his inputs, say a different key
pair (vk*, sk*) is used instead of (vk, sk) for signing all the messages form
a particular requester. If the UBSS is invisible, it is impossible for the
requester to know that the signer has used a different key pair. During the
verification of a message-signature pair (m, o), if Check( o) (m, o) returns
invalid, and Check(vk*7sk*)(m, o) returns valid, then the signer can trace the
origin of the message m. Thus, compromising the anonymity of the content
originator. The signer seamlessly continues with the disavowal protocol.
This anomaly could be seen as an advantage. Suppose the requester becomes
aware that the signer has used a different key pair for signing. The requester
may choose to give up the anonymity of the message to expose the signer.
The signatures can be used as an evidence against the signer.

One way to circumvent the above attacks is to allow the requester to
be a valid verifier. This makes the signatures visible to the requester and
empowers the requester to check whether the signer has used the correct
input.

The definition of UBSS is decoupled from the actual security model and
the applications. While anonymity and invisibility appear to be conflicting
goals, by choosing an appropriate model (like semi-honest model [16]), UBSS
can be very useful in certain applications. For example, in the case of e-cash,
one may consider the bank as a semi-honest signer. For security reasons,
the bank could decide to verify signatures only for its customers. Then the
bank should use UBSS instead of blind signatures.

Another example where the UBSS becomes a natural choice is Anony-
mous Feedback System. Suppose the chief organizer of an event wishes to
take anonymous feedback from the participants. It should be done such
that (i) only the participants should be able to give the feedback anony-
mously and (ii) only the organizing committee should be able to verify the
authenticity of the feedback. The participants who give feedback request for
a blind signature from the chief organizer. After obtaining the signature,
the participants send the feedback along with the signature to the organiz-
ing committee. The committee members then verify the signature with the
chief organizer. E-voting can be considered as a special case of anonymous
feedback system.
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This completes our discussion on the definition of the UBSS. In the next
few sections, we give an example of a UBSS using the isogeny-based hardness
assumptions.

3. MATHEMATICAL BACKGROUND

This section briefly provides some necessary mathematical background.
For further details, the reader is referred to [32] for mathematical, [I3] for
cryptographic, [11] for algorithmic aspects and the citations thereof.

Let F, be the finite field (up to isomorphism) of characteristic p and
cardinality ¢. It is a well known fact that two elliptic curves are isomor-
phic over an algebraic closure of F, if and only if they have the same j-
invariant. Also, given two elliptic curves, the isomorphism between them
can be efficiently computed [14]. An elliptic curve E/F, is said to be super-
singular if #E(F,;) =1 mod p. For equivalent definitions kindly refer [I8,
Ch. 13 Sec. 3 p.259].

Isogenies. A homomorphism between two groups is a map that preserves
the group structure. The kernel of a homomorphism is the subset of elements
whose image is the identity. An isogeny is a group homomorphism between
two elliptic curves with a finite kernel. Let ¢ : EF1 — FE5 be an isogeny
between two elliptic curves Ej and Es. Thus ¢(Op,) = Op, and ¢ can be
written as

fl(x7y) fQ(xay)>
91(x,y) ga(z,y) )’

where f1, f2, g1, go are polynomials in two variables z, y with co-efficients in
F,. The degree of the isogeny ¢, deg¢ = max{deg fi,deg f2}. An isogeny
¢ is said to be separable if deg ¢ = # ker ¢. An isogeny of degree £ is often
referred to as an f-isogeny. For any f-isogeny ¢ : Fq4 — FEs, there exists an
l-isogeny ¢ : Ey — Ei, called the dual of ¢, such that ¢po ¢ = do ¢ = [/
where [¢] is a multiplication-by-¢ map. Two elliptic curves F; and E, are
said to be f-isogenous if there exists an f-isogeny ¢ between them. Tate’s
isogeny theorem [34] says that £y and E5 are isogenous over Fy if and only if
#E,(Fy) = #E>(F,). An isogeny is uniquely identified (up to isomorphism)
by its kernel. Any generator of the kernel will produce a unique isogeny up
to isomorphism via Vélu’s formulae [36]. In our work we will be considering
only supersingular elliptic curves and separable isogenies with cyclic kernels.

Isogeny Graph. An f-isogeny graph is a graph in which the nodes are
represented by isomorphism classes of elliptic curves. There is an edge from
E; to Es in the f-isogeny graph if there is an f-isogeny form E; to Fo. The
isogeny graph is undirected due to the existence of dual isogenies. The /-
isogeny graph of supersingular curves is connected [25]. Given two random
nodes in the isogeny graph finding a path of fixed length is hard. This
hardness is used for constructing isogeny-based cryptosystems, explained in
detail in Section [l

d(z,y) = (
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4. A NEw UNDENIABLE BLIND SIGNATURE SCHEME BASED ON
ISOGENIES

In this section, we describe a new undeniable blind signature scheme based
computing an isogeny between two supersingular elliptic curves over a finite
field F,. We borrow the notation as in the paper of Jao and Soukharev [19].

4.1. Public parameters. Choose a prime p of the form p = £5* 05} €5 055 -
f £ 1. Generate a random supersingular elliptic curve Ey defined over the
field 2. Such a curve can be efficiently found using the algorithm by Broker
et al. [0, Sec.4 Alg.4.1 p.106]. Choose base points {Pa, Qa}, {Pnr,Qnr},
{Pc,Qc} and {Pr, Qr} that generate Eo[(5'], Eo[¢3}'], Eoll] and Ey[¢4]
respectively. Choose a hash function H : {0,1}* — EENI}LIZ.

4.2. KeyGen. The signer generates two random numbers my,na € Z /{5 Z.
Computes the curve E4 = Ey/ (K4) where K4 = [ma]Pa + [na]Q4 is the
generator of the kernel of the isogeny ¢4 : Fg — E4. The signer also
computes ¢4(Pe) and 6.4(Qc).

Public Key: Ea,¢a(FPc),9a(Qc)

Private Key: ma,na, Ka

EOLEA

FicUrE 2. The isogeny ¢4 computed during the key gener-
ation phase.

4.3. Blind. Let M be the message for which the signature is required. Let
h = H(M). Compute the isogeny ¢p; and the curve

ke

(Py + [ Q)

The image points ¢ar(Pa), drm(Qa), drm(FPc), drm(Qc), ¢u(Pr) and oar(Qr)
are also computed. Now this message curve Ej; has to be blinded. Choose

a random r € % which is hidden from the signer. Compute the isogeny

Ey =

¢m,rMm and the curve
Eym
¢m(Pr) + [r]om(Qr))
Ery is the blinded curve on which the signer will sign. The blinding process
is illustrated in Figure [3]

Before sending the curve Erjs for signing, one has to compute the dual
isogeny ¢3M7 rM, so that unblinding is possible. To do that, first we need
to find a point K € Ej[¢7] of order ¢ such that K ¢ Kerdu,ru, say
K = ¢m(Qr). Compute the image point ¢rs gy (K) € Egayr. The isogeny
with kernel (¢n7 gar(K)) is the dual isogeny ¢arras-

Erpm = <



10 SRINATH M. S. AND V. CHANDRASEKARAN

oM

En

dM,RM

Erm

FIGURE 3. The isogenies ¢y and ¢n,ryv computed while
blinding the message. The dashed arrow is the isogeny un-
known to the requester.

Remark 4.1. Strictly speaking, this will not be the dual of ¢, ras because
this isogeny will lead to a curve which is isomorphic to Ejs. Since isomorphic
curves represent the same node in the isogeny graph, this isogeny maps back
to the same node. By the abuse of notation, we denote it as qE M,RM -

Now, choose basis {Pp, Qr} € Ernm that generate Erp[¢7]. Compute

m,mn € ZELR such that
R

o, r (K) = [m]Pr + [n]QR

This amounts to solving extended discrete logarithm problem on Erjs. Since
ERar is isogenous to Ey, by Tate’s theorem [34], we have

#Ery(Fp) = #Eo(F,2)

Hence Egps is a curve of smooth order. Therefore, m,n can be found ef-
ficiently using generalized Pohlig-Hellman algorithm given by Teske in [35,
Sec.4 Alg.4.1 p.529]. The masked curve Erjs along with the points

Pl = ¢ar,rv(dn(Pa))
Q4 = drrm (dm(Q4))
Pt = ¢npm(dm(Pe))

Qc = éum,rum (oM (Q0))
Pj, and Q'; (all belonging to Eras) is sent to the signer.
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4.4. Sign. The signer computes the curve

Earm = Ern
([(malP) + [na]Q})
The signer also computes the image points ¢ra,arnv (PL), drM,arM (QF),
drv,AarM (Pr) and ¢rar arm (@), and sends all the computed values to the
user.

DRM,ARM
Earm

FIGURE 4. The isogeny ¢ry,arm computed for signing the
blinded message. The dashed arrows are the isogenies un-
known to the signer.

4.5. Unblind. The requester computes the isogeny qg aMm,ArMm and the curve

Earm
(Im¢rm,arm (PR) + [n]¢rM,ARM(QR))

The requester also computes the points

Expm =

Ps = ans,arm(rararm (PL))

Qs = darars(drv,ARM(QF))
The signature o = {E4n, Ps, Qs }-

4.6. Check. At the end of Unblind algorithm, the signature curve generated
by our scheme is isomorphic to Jao-Soukharev signature curve. Hence the
signature verification can be done in the same way as in Jao-Soukharev
signature. When a message M and signature o is submitted for verification,
the signer first checks whether the square (Eo, Fa, Eay, Eyr) in Figure |§|
commutes. If it does, then the signer initiates the confirmation protocol
CON, initiates the disavowal protocol DZS. The confirmation and disavowal
protocols are same as in [19].
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EO *************** > EA
oM
En Eam
OM,RM éAM,ARM
PRM,ARM
Egy -7~ » EArm

F1GURE 5. The isogeny qAﬁ AMm,ArMm computed while unblind-
ing the signature. The dashed arrows are the isogenies un-
known to the requester.

Eo 7 SN Ea
oM DA,AM
M, AM

En Ean
FIGURE 6. The isogenies ¢nr, ¢ar.anm, ¢a,am are computed
to check whether the given signature F 4, is valid.

Remark 4.2. Strictly speaking, the effect of blinding-signing-unblinding is
not the same as directly signing the message. The action of an isogeny
followed by the action of its dual is equivalent to multiplication-by-degree
map [32] I11.6.2a p.83]. Hence, the points Py and Qg will have a factor of
05 multiplied to them when compared to the Jao-Soukharev signature. But
then, this factor is relatively prime to their order £;¢. It would not affect
the signature verification since both the pairs generate the same kernel.

The prime used in our work is different form the primes already used in the
literature [I1], [19] for constructing isogeny-based cryptographic primitives.
This motivates us to give generalized statements and hardness assumptions
for isogeny-problems. We review them in the next section.
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5. ISOGENY PROBLEMS REVISITED

The current work uses the prime p of the form p = (0 CF 08 - f£1
which has not been used so far in the literature. The security of the isogeny-
based schemes depend on the size of the corresponding torsion subgroup.
Hence, such a choice for the prime does not have any security implications
so long as the torsion groups are large enough.

Let p be a prime of the form p = f - Hi]\il 05 £ 1 where ¢; are distinct
small primes, e; are positive integers and f > 1 is a small cofactor. Let Fjy
be a supersingular elliptic curve defined over )2 and having order (p F 1)2.
For each 1 < ¢ < N, let {P;,Q;} be an arbitrarily chosen basis of Ey[(;].
The above informations form the global parameters.

Problem 5.1 (Decisional Supersingular Isogeny (DSSI) problem). Given
the global parameters and another curve E’ defined over F,2 such that
#Eo(F2) = #E'(Fj2), decide whether E’ is £;'-isogenous to Ey for a speci-
filed 1 <4< N.

For a fixed but arbitrary 1 <1i < N, let ¢; : Ey — FE; be an isogeny whose
kernel is ([m;|P; + [n;]Q;) where m;,n; € Z/{'7Z are chosen randomly and
not both divisible by ¢;.

Problem 5.2 (Computational Supersingular Isogeny (CSSI) problem). Given
the global parameters, the curve E; and the points ¢;(P;), $;(Q;) for all
j=1,2,--- /N, j#1i, find a generator of ([m;]P; + [n;]Q;).

5.1. DSSI and CSSI Assumptions. The DSSI and CSSI assumptions
are the assumptions that DSSI and CSSI problems are hard to solve for any
1 < ¢ < N. This notion is formalized in this section.

DSSI Assumption. The DSSI assumption says that the following two
probability distributions are computationally indistinguishable for all i:

e (E,E/(R)) where R € E is a random point of order £;".
e (E,E') where E'/F 2 is a random curve such that #E(F,2) = #E'(F2).
Let A be the security parameter. Let G be a (possibly randomized)
polynomial-time algorithm that, on input 1*, outputs the global parame-
ters described above. Let us denote the set of all the global parameters by

G.

Definition 5.3. We say that the DSSI problem is hard relative to G if
V1 <4< N and for all bounded quantum polynomial-time algorithms A,
the quantity

IPr[A(G,E,E/(R)) = 1] — Pr [A(G, E, E') = 1]|

is negligible and the probabilities in each case is taken over the experiment
in which G(1*) outputs G, R € E is a random point of order £’ and E’ is a
random curve such that #E(F,2) = #E'(F2).

CSSI Assumption. Consider the following experiment for a given parameter-
generating algorithm G, algorithm A, and parameter A:
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The computational supersingular isogeny experiment CSSlso 4 g(\):
(1) Run G(11) to obtain the global parameters G = (p, Eq, £;, ¢;, P;, Q).
(2) For a fixed 1 <14 < N, choose m,n < Z/{;" not both divisible by ¢;

and compute
’_ Ey
(Im]P; + [n]Q:)
(3) A is given G, i, E’ and outputs a point R € Ej.
(4) The output of the experiment is defined to be 1 if F = % and 0
otherwise.

Definition 5.4. We say that the CSSI problem is hard relative to G if
vV 1 < i< N and for all bounded quantum polynomial-time algorithms A
there exists a negligible function negl such that

Pr[CSSlso4.6(A) = 1] < negl()\)

5.2. Hardness of CSSI and DSSI Assumptions. Since the DSSI and
CSSI problems need to be hard for all values of 4, it is expected that the
parameter generating algorithm G outputs the prime p such that the values
(;' are roughly of the same size for all i. Hence, we assume /;' ~ {/p.
The generic attack for solving DSSI and CSSI problems that improve on
exhaustive search involve solving the claw problem for the domain size E:’i/ 2,
The optimal complexity for the above black-box claw attack using a quantum
computer is O(Efi/?’) = O( 3y/p). Suppose A = logp, then the complexity of
the attack is O(2"/3N) which is clearly exponential in A. Kohel et al. [22]
have given a probabilistic algorithm for solving the quaternion analog of
CSSI problem. However, translating it to CSSI problem is not known to be
efficient. The quantum algorithm by Biasse et al. [3] yields a subexponential
attack if the base curve is defined over I,,. There is no known subexponential
attack if the base curve is not defined over [Fp,.

5.3. Other Isogeny Problems. There have been several other variants
of DSSI and CSSI problems whose hardness have been assumed to build
the cryptographic primitives. We present only those that are relevant to
the current work. For a complete list, we refer the reader to [19, Sec.5].
Henceforth in the rest of the paper, for the sake of simplicity, we follow the
notation as in Section Ml

Problem 5.5 (Decisional Supersingular Product (DSSP) problem). Given
an isogeny ¢ : Ey — E3 of degree £;* and a tuple sampled with probability
1/2 from one of the following two distributions:

e (E1, FEy,¢') where the product E; x Es is chosen at random among
those E;j -isogenous (i # j) to Ep x E3, and where ¢ : F; — Ey is
an isogeny of degree £;’, and

e (E1, FEy,¢') where Ej is chosen at random among the curves having
the same cardinality as Eg, and ¢’ : By — FE5 is a random isogeny
of degree £;",
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determine from which distribution the tuple is sampled.

Problem 5.6 (Modified Supersingular Computational Diffie-Hellman (MSS-
CDH) problem). Given E4, Ej; and ker(¢yy), determine E .

Problem 5.7 (One-sided Modified Supersingular Computational Diffie-Hell-
man (¢-OMSSCDH) problem). For a fixed E4 and given oracle access of
at most ¢ times to MSSCDH for any set of inputs Ea, Eu;, ker(éas,),
(1 <i<gq). Solve MSSCDH for E4, Ey and ker(¢ps) where Ep # Eny, Vi.

Problem 5.8 (Modified Supersingular Decisional Diffie-Hellman (MSSDDH)
problem). Given E4, Ey;, Ec and ker(¢py), decide whether Ec = E .

Problem 5.9 (One-sided Modified Supersingular Decisional Diffie-Hellman
(¢-OMSSDDH) problem). For a fixed E 4 and given oracle access of at most
q times to MSSCDH oracle for any set of inputs Ea, Eu,, ker(én,), (1 <
i < gq). Solve MSSDDH for E4, En, Ec and ker(¢ys) where Eyp # Epy, Vi

Signing Oracle. Given any supersingular elliptic curve £/F 2 of order
(L5055 055 0572 and points P,Q € & both of order £5*, the signing oracle
outputs the curve £4 such that

£
[ma]P + [na]Q

where ma,na € Z/U5*7Z form the private key.

Ex=

Problem 5.10 (One-More Supersingular Computational Diffie-Hellman (1MSS-
CDH) problem). After making ¢ queries to the signing oracle, output at least

q + 1 distinct pairs of curves {Eyy,, Fan, b where Eyy, are Eilf—isogenous to

Eop and {E 4, Enr,, Ean, } ois a Diffie-Hellman tuple for each 1 <4 <.

6. SECURITY OF THE PROPOSED CONSTRUCTION

In this section, we prove that our UBSS has unforgeability, blindness and
invisibility.

6.1. Unforgeability. The challenger chooses a security parameter and gen-
erates the secret key m4,n4. The corresponding public key E 4, pa(Pc), pa(Qc)
is given to the adversary A. A then issues a series of at most ¢ signing queries

to the challenger for the messages m; (1 <i < q). Let Ej;, and E4ypy, be the
corresponding message curves and signatures respectively. A is allowed to
submit the message-signature pairs (m, F4p7) to the signer for verification.

If the signature is correct then the signer engages in confirmation protocol
otherwise initiates disavowal protocol. At some point adversary then out-
puts ¢’ message-signature pairs (m;, E AMj). The adversary wins the game

if ¢ > q.

Theorem 6.1 (Unforgeability). If the DSSP and 1MSSCDH assumptions
hold, then the proposed UBSS is unforgeable.
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Proof. Suppose there exists an adversary A that forges the proposed UBSS.
Without any loss of generality we may assume that A issued exactly ¢ sign-
ing queries and output exactly ¢ + 1 valid message-signature pairs. The
confirmation and disavowal protocols are shown to be zero-knowledge in
[19, Sec. 7] provided DSSP is hard to solve. Hence we may further assume
that A does not have access to the confirmation/disavowal oracle at all. But
then A in turn solves IMSSCDH problem. O

Remark 6.2. Since the signature for a message m obtained at the end of
the proposed UBSS protocol is the Jao-Soukharev signature for m, we also
need to assume that solving ¢-OMSSCDH problem is hard. This is omitted
in the statement of Theorem [6.1] as IMSSCDH assumption is stronger than
g-OMSSCDH assumption.

6.2. Blindness. To prove that the proposed signature scheme has blind-
ness property, the security game described in [21], Sec. 2 p. 156] is used. The
adversary A is given the security parameter. A generates the secret key
ma,n4 and the corresponding public key E4, ¢pA(Pc), d4(Qc). The adver-
sary outputs two messages {mg, m1}. The same two messages are ordered
as {mp, m1_p} according to a random bit b which is hidden from 4. Then
A engages in two parallel interactive protocols, possibly with two different
users. If the users output the corresponding signatures, then A is also given
Eanm, and Egpy, . A’s goal is to guess the value of the bit b and the blindness
property requires that such a guess is negligibly close to %

Theorem 6.3 (Blindness). If the DSSP is hard to solve, then the proposed
UBSS has the blindness property.

Proof. Given En,, Eny, Erm,, Ermvy s Ean,, Eam, the goal of the ad-
versary A is to figure out the value of the bit 6. Note that A also has
the knowledge of the isogenies ¢g, : Enyy, — Eang, ¢s, @ Evy — Ean,

/Sb : ERMb — EARMb and gblsl_b : ERleb — EARleb- To decide whether
b= 0orb=1is equivalent to deciding whether, Ern, X Earnm, is KER—
isogenous to Epg, X Eapg, or not. Further, this essentially amounts to solving
DSSP on the inputs (EMO, EAM07 (Z)s()) and (ERMb)EARMba gb’sb). O

6.3. Invisibility. The challenger chooses a security parameter and gener-
ates the secret key m 4,n 4. The corresponding public key E4, ¢pa(Pc), ¢a(Qc)
is given to the adversary A. A then issues a series of at most ¢ signing queries
to the challenger for the messages m;. Let Eys, and E4py, be the correspond-
ing message curves and signatures respectively. A is allowed to query Ejy,
and any of its blinded versions to the signing oracle. A is also allowed to sub-
mit the message-signature pairs (m;, Ean, to the confirmation/disavowal
protocols. At some point 4 outputs a message m*. The challenger chooses
a random bit b. If b = 0, the challenger replies with the correct signature
Ean+ otherwise chooses a random curve Er with #ER(F,2) = #Eo(F,2).
Let E4p be the signature for the message m. According to the definition
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of invisibility, the message curve Ej; and none of its blinded versions are
allowed to query the signing oracle.

Theorem 6.4 (Invisibility). If the DSSP and q-OMSSDDH assumptions
hold, then the proposed UBSS is invisible.

Proof. If the DSSP assumption holds, then the confirmation and disavowal
protocols are shown to be zero-knowledge [19, Sec.7] in the presence of a
quantum adversary. Hence we may assume that the adversary A does not
have access to confirmation/disavowal oracle. Instead, the access is given
to an oracle which on querying (m, E) outputs valid or invalid depending
on whether E' is a valid signature for m or not. Further, A is not allowed
to query the signing oracle for the curve E)s or any of its blinded versions.
Hence showing the invisibility of our signature scheme is equivalent to show-
ing that the Jao-Soukharev signature is invisible. The reader may refer [19,
Sec. 6] for the proof of invisibility. O

7. CONCLUSION

We give a formal definition of UBSS as well as modified definitions of
blindness, invisibility and unforgeability; concepts that are key in defining
UBSS. As we mentioned earlier, though the concept of UBSS is not new
and has been mentioned in Sakurai and Yamane [29], this is the first time a
formal definition has been given. We also show that blindness and invisibility
play against each other. This affects the specifics of how UBSS can be
used for the application at hand. We then described a new UBSS based
on the isogeny problem for supersingular elliptic curves. We also give the
generalized statements of isogeny problems. This makes it convenient for
constructions of isogeny-based cryptographic primitives. We finally prove
that our UBSS has the desired properties under the assumptions that DSSP,
OMSSDDH and 1MSSCDH are hard to solve.
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