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Abstract. Group signatures are an important privacy-enhancing tool which allow mem-
bers of a group to anonymously produce signatures on behalf of the group. Ideally, group
signatures are dynamic and thus allow to dynamically enroll new members to a group. For
such schemes Bellare et al. (CT-RSA’05) proposed a strong security model (BSZ model)
that preserves anonymity of a group signature even if an adversary can see arbitrary
key exposures or arbitrary openings of other group signatures. All previous construc-
tions achieving this strong security notion follow the so called sign-encrypt-prove (SEP)
paradigm. In contrast, all known constructions which avoid this paradigm and follow the
alternative “without encryption” paradigm introduced by Bichsel et al. (SCN’10), only
provide a weaker notion of anonymity (which can be problematic in practice). Until now,
it was not clear if constructions following this paradigm, while also being secure in the
strong BSZ model, even exist. In this paper we positively answer this question by provid-
ing a novel approach to dynamic group signature schemes following this paradigm, which
is a composition of structure preserving signatures on equivalence classes (Asiacrypt’14)
and other standard primitives. Our results are interesting for various reasons: We can
prove our construction following this “without encryption” paradigm secure in the strong
BSZ model without requiring random oracles. Moreover, when opting for an instantia-
tion in the ROM, the so obtained scheme is extremely efficient. It outperforms existing
constructions following the SEP paradigm and being secure in the BSZ model regarding
computational efficiency by some orders of magnitude and even yields shorter signatures.
Regarding constructions providing a weaker anonymity notion than BSZ, we surprisingly
outperform the popular short BBS group signature scheme (Crypto’04) and even obtain
shorter signatures.

1 Introduction

Group signatures, initially introduced by Chaum and van Heyst [CvH91], allow a group manager
to set up a group so that every member of this group can later anonymously sign messages on
behalf of the group. Thereby, a dedicated authority (called opening authority) can open a
given group signature to determine the identity of the actual signer. Group signatures were first
rigorously formalized for static groups by Bellare et al. in [BMW03]. In this setting, all members
are determined at setup and are also given their honestly generated keys at setup. This model
was later extended to the dynamic case by Bellare et al. in [BSZ05] (henceforth denoted as
BSZ model), where new group members can be dynamically enrolled to the group. Further,
it separates the role of the issuer and the opener such that they can operate independently.
Moreover, the BSZ model requires a strong anonymity notion, where anonymity of a group
signature is preserved even if the adversary can see arbitrary key exposures and arbitrary
openings of other group signatures.
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A widely used paradigm to construct group signatures is the sign-encrypt-proof (SEP)
paradigm [CS97]. Here, a signature is essentially an encrypted membership certificate together
with a signature of knowledge, where the signer demonstrates knowledge of some signed value
in the ciphertext [ACJT00, BBS04, NS04, BSZ05, DP06, BW07, BW06, Gro07, LPY15]. As an
alternative to this paradigm, Bichsel et al. in [BCN+10] proposed an elegant design paradigm
for group signatures which does not require encryption to produce signatures. Essentially, they
use a signature scheme which supports (1) randomization of signatures so that multiple ran-
domized versions of the same signature are unlinkable, and (2) efficiently proving knowledge
of a signed value. In their construction, on joining the group, the issuer uses a such signature
scheme to sign a commitment to the user’s secret key. The user can then produce a group
signature for a message by randomizing the signature and computing a signature of knowledge
for the message, which demonstrates knowledge of the signed secret key. Bichsel et al. proposed
an instantation based on the randomizable pairing-based Camensich-Lysyanskaya (CL) signa-
ture scheme [CL04] (whose EUF-CMA security is based on the interactive LRSW assumption).
Recently, Pointcheval and Sanders [PS16] proposed another randomizable signature scheme
(whose EUF-CMA security is proven in the generic group model), which allows to instantiate
the approach due to Bichsel et al. more efficiently. For completeness, we also mention a very
recent construction of group signatures from lattice assumptions by Libert et al. [LLM+16]
following this paradigm.

However, a drawback of existing constructions following the “without encryption” paradigm
is that they rely on a security model that is weaker than the BSZ model [BSZ05]. In particular,
anonymity only holds for users whose keys do not leak, which essentially means that once a user
key leaks, all previous signatures of this user can potentially be attributed to this user. Further-
more, the model in [BCN+10] assumes that the opening authority and the issuing authority are
one entity, meaning that the issuer can identify all signers when seeing group signatures. This
can be highly problematic in practical applications of group signatures. Finally, we also want
to mention the model which is used to prove the security (and in particular anonymity) of the
popular BBS group signature scheme due to Boneh et al. [BBS04]. This model is a relaxation
of the BSZ model, and in particular weakens anonymity so that the adversary can not request
openings for signatures. Henceforth, we refer to this anonymity notion as CPA-full anonymity,
whereas we use CCA2-full anonymity to refer to anonymity in the sense of BSZ.

Contribution. In this paper we propose a novel approach to construct group signatures fol-
lowing the paradigm of Bichsel et al., i.e., without including a ciphertext in the group signature.
In particular, our approach is a composition of structure preserving signatures on equivalence
classes (SPS-EQ) [HS14], EUF-CMA secure digital signatures, IND-CCA2 secure encryption, non-
interactive zero-knowledge proofs of knowledge, and signatures of knowledge. Although these
tools may sound quite heavy, we obtain surprisingly efficient group signatures, which can be
proven secure in the strongest model for dynamic group signatures, i.e., the BSZ model. In
doing so, we obtain the first construction following the “without encryption” paradigm which
achieves this strong security notion (i.e., CCA2-full anonymity). Thus, we can positively answers
the question whether such constructions are possible at all. When opting for an instantiation
of our construction in the random oracle model, and comparing it with existing constructions
having security proofs in the strong BSZ model, we outperform them in terms of computational
efficiency by some orders of magnitude. As an additional bonus, our scheme even yields shorter
signatures when compared to existing constructions. Moreover, when compared to the popular
BBS group signature scheme [BBS04] (which only achieves CPA-full anonymity), we surprisingly
obtain significantly better computational efficiency and even shorter signatures. Finally, when
compared to existing instantiations in the vein of Bichsel et al. (who provide a substantially
weaker anonymity notion and do not separate the issuer and the opener), we obtain compara-
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ble computational efficiency, while the stronger anonymity comes at the cost of slightly larger
signatures.

2 Preliminaries

In this section, we provide some preliminaries and recall the required primitives.

Notation. Let x←R X denote the operation that picks an element x uniformly at random from
a finite set X. A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote such a negligible
function. We write y ← A(x) to denote that the output of algorithm A on input x is assigned
to y and write y ← A(x; r) to make the random coins r of A explicit.

Let G1 = 〈P 〉, G2 = 〈P̂ 〉, and GT be groups of prime order p. A bilinear map e : G1×G2 →
GT is a map, where it holds for all (P, Q̂, a, b) ∈ G1 ×G2 × Z2

p that e(aP, bQ̂) = e(P, Q̂)ab, and

e(P, P̂ ) 6= 1, and e is efficiently computable. We assume the Type-3 setting, where G1 6= G2

and no efficiently computable isomorphism ψ : G2 → G1 is known.

Definition 1 (Bilinear Group Generator). Let BGGen be an algorithm which takes a se-
curity parameter κ and generates a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ) in the Type-3
setting, where the common group order p of the groups G1,G2 and GT is a prime of bitlength
κ, e is a pairing and P and P̂ are generators of G1 and G2, respectively.

Based on this, we provide the required cryptographic hardness assumptions.

Discrete Logarithm Assumption (DL). Let G = 〈P 〉 be a group of prime order p, such
that log2 p = κ. Then, for all PPT adversaries A there exists a negligible function ε(·) such
that:

Pr
[
a←R Zp, c← A(P, aP ) : a = c)

]
≤ 1/2 + ε(κ).

Decisional Diffie-Hellman Assumption (DDH). Let G = 〈P 〉 be a group of prime order
p, such that log2 p = κ. Then, for all PPT adversaries A there exists a negligible function
ε(·) such that:

Pr

[
b←R {0, 1}, r, s, t←R Zp,
b∗ ← A(P, rP, sP, b · (rs) + (1− b) · tP )

: b = b∗)

]
≤ 1/2 + ε(κ).

Symmetric External Diffie-Hellman Assumption (SXDH). Let BG be a bilinear group
generated by BGGen. Then, the SXDH assumption states that the DDH assumption holds
in G1 and G2.

Additionally, we introduce a plausible assumption in the Type-3 bilinear group setting.

Computational co-Diffie-Hellman Inversion Assumption (co-CDHI): Let BG ← BG-
Gen(1κ). The co-CDHI assumption states that for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr
[
a←R Zp, C ← A(BG, aP, 1/aP̂ ) : C = 1/aP

]
≤ ε(κ).

Digital Signature Schemes. Subsequently, we recall a definition of digital signature schemes.

Definition 2 (Digital Signatures). A digital signature scheme DSS is a triple (KeyGen,
Sign,Verify) of PPT algorithms, which are defined as follows:
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KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a secret (signing)
key sk and a public (verification) key pk with associated message space M (we may omit to
mention the message space M).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as input and outputs
a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a signature σ as
input and outputs a bit b ∈ {0, 1}.

Besides correctness we require existential unforgeability under adaptively chosen message at-
tacks (EUF-CMA) [GMR88]. Subsequently, we recall formal definitions of these properties.

Definition 3 (Correctness). A DSS is correct, if for all κ, all (sk, pk)← KeyGen(1κ) and all
m ∈M it holds that Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1.

Definition 4 (EUF-CMA). A DSS is EUF-CMA secure, if for all PPT adversaries A there is a
negligible function ε(·) such that[

(sk, pk)← KeyGen(1κ), (m∗, σ∗)← AOSign(sk,·)
(pk) :

Verify(pk,m∗, σ∗) = 1 ∧
m∗ /∈ QSign

]
≤ ε(κ) ,

where A has access to an oracle OSign that allows to execute the Sign algorithm and the envi-
ronment keeps track of all message queried to OSign via QSign.

Public Key Encryption. We also require public key encryption, which we recall below.

Definition 5. A public key encryption scheme PKE is a triple (KeyGen,Enc,Dec) of PPT al-
gorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a keypair
(sk, pk). We assume that the message space M is implicitly defined by pk.

Enc(pk,m) : This algorithm takes a public key pk and a message m ∈M as input and outputs
a ciphertext c or ⊥.

Dec(sk, c) : This algorithm takes a secret key sk and a ciphertext c as input and outputs a
message m ∈M or ⊥.

We require a PKE to be correct and IND-CCA2 secure, which are formally defined as follows.

Definition 6 (Correctness). A PKE scheme is correct if it holds for all κ, for all (sk, pk)←
KeyGen(1κ), and for all messages m ∈M that Pr[Dec(sk,Enc(pk,m)) = m] = 1.

Definition 7 (IND-CCA2 Security). A PKE scheme is IND-CCA2 secure, if for all PPT ad-
versaries A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ), (m0,m1, st)← AO

Dec(sk,·)(pk),

b←R {0, 1}, c← Enc(pk,mb), b
∗ ← AODec(sk,·)(c, st)

:
b = b∗ ∧
c /∈ QDec

]
≤ 1/2 + ε(κ),

where QDec denotes the list of queries to the decryption oracle.
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Non-Interactive Zero-Knowledge Proof Systems. Now, we recall a standard definition
of non-interactive zero-knowledge proof systems (NIZK). Therefore, let LR be an NP-language
with witness relation R : LR = {x | ∃ w : R(x,w) = 1}.

Definition 8 (Non-Interactive Zero-Knowledge Proof System). A NIZK is a tuple of
algorithms (Setup, Proof, Verify), which are defined as follows:

Setup(1κ) : This PPT algorithm takes a security parameter κ as input, and outputs a common
reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement x, and a
witness w as input, and outputs a proof π.

Verify(crs, x, π) : This PPT algorithm takes a common reference string crs, a statement x, and
a proof π as input, and outputs a bit b ∈ {0, 1}.

If, in addition, Proof runs in polynomial time we talk about a non-interactive argument system.
A NIZK is required to be complete, sound, and adaptively zero-knowledge. Subsequently, we
recall formal definition of those properties (adapted from [BGI14]).

Definition 9 (Completeness). A NIZK is complete, if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x,w)← A(crs),
π ← Proof(crs, x, w)

:
Verify(crs, x, π) = 1

∧ (x,w) ∈ R

]
= 1.

Definition 10 (Soundness). A NIZK is sound, if for every PPT adversary A there is a
negligible function ε(·) such that

Pr
[
crs← Setup(1κ), (x, π)← A(crs) : Verify(crs, x, π) = 1 ∧ x /∈ LR

]
≤ ε(κ).

A NIZK is called perfectly sound, if ε = 0.

Definition 11 (Adaptive Zero-Knowledge). A NIZK is adaptively zero-knowledge, if there
exists a PPT simulator S = (S1, S2) such that for every PPT adversary A there is a negligible
function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R or π ← Proof(
crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

A NIZK is called is perfect adaptively zero-knowledge, if ε = 0. Furthermore, we require our
NIZK to be a proofs of knowledge, which are defined as follows (adapted from [BGI14]):

Definition 12 (Proof of Knowledge). A NIZK is called a proof of knowledge if there exists
a PPT extractor E = (E1, E2) such that for every adversary A there is a negligible function
ε1(·) such that

|Pr [crs← Setup(1κ) : 1← A(crs)] − Pr [(crs, τ)← E1(1κ) : 1← A(crs)] | ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

[
(crs, τ)← E1(1κ), (x, π)← A(crs),
w ← E2(crs, τ, x, π)

:
Verify(crs, x, π) = 1 ∧

(x,w) /∈ R

]
≤ ε2(κ).
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Signatures of Knowledge. Signatures of knowledge (SoKs) as formalized in [CL06] are re-
called below, where LR is as above. A signature of knowledge (SoK) for LR is defined as follows.

Definition 13. A SoK is a tuple of PPT algorithms (Setup,Sign,Verify), which are defined as
follows:

Setup(1κ) : This algorithm takes a security parameter κ as input and outputs a common refer-
ence string crs. We assume that the message space M is implicitly defined by crs.

Sign(crs, x, w,m) : This algorithm takes a common reference string crs, a word x, a witness w,
and a message m as input and outputs a signature σ.

Verify(crs, x,m, σ) : This algorithm takes a common reference string crs, a word x, a message
m, and a signature σ as input and outputs a bit b ∈ {0, 1}.

Definition 14 (Correctness). A SoK with respect to LR is correct, if there exists a negligible
function ε(·) such that for all x ∈ LR, for all w such that (x,w) ∈ R, and for all m ∈ M it
holds that

Pr [crs← Setup(1κ), σ ← Sign(crs, x, w,m) : Verify(crs, x,m, σ) = 1] ≥ 1− ε(κ).

Definition 15 (Simulatability). A SoK with respect to LR is simulatable, if there exists a
simulator S = (SimSetup,SimSign) such that for all PPT adversaries A there exists a negligible
function ε(·) such that for all polynomials f , for all κ, for all auxiliary inputs aux ∈ {0, 1}f(k)
it holds that∣∣∣∣∣Pr

[
(crs)← Setup(1κ), b← ASign(crs,·,·,·)(crs, aux) : b = 1

]
−

Pr
[
(crs, τ)← SimSetup(1κ), b← ASim(crs,τ,·,·,·)(crs, aux) : b = 1

] ∣∣∣∣∣ ≤ ε(κ),

where Sim(crs, τ, x, w,m) := SimSign(crs, τ, x,m) and Sim only responds if (x,w) ∈ R.

Definition 16 (Extraction). A SoK with respect to LR is extractable, if in addition to S
there exists an extractor Extract, such that for all PPT adversaries A there exists a negligible
function ε(·) such that for all polynomials f , for all κ, for all auxiliary inputs aux ∈ {0, 1}f(k)
it holds that

Pr

 (crs, τ)← SimSetup(1κ),
(x,m, σ)← ASim(crs,τ,·,·,·)(crs, aux),
w ← Extract(crs, τ, x,m, σ)

:
Verify(crs, x,m, σ) = 0 ∨

(x,m,w) ∈ QSim ∨
(x,w) ∈ R

 ≥ 1− ε(κ),

where QSim denotes the queries to the Sim oracle (defined as in Definition 15).

Structure Preserving Signatures on Equivalence Classes. Subsequently, we briefly recall
structure-preserving signatures on equivalence classes (SPS-EQ) as presented in [HS14,FHS14].
Therefore, let p be a prime and ` > 1; then Zlp is a vector space and one can define a projective

equivalence relation on it, which propagates to Gli and partitions Gli into equivalence classes. Let
∼R be this relation, i.e., for M,N ∈ Gli : M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN . An SPS-EQ scheme

now signs an equivalence class [M ]R for M ∈ (G∗i )` by signing a representative M of [M ]R. Let
us recall the formal definition of an SPS-EQ scheme subsequently.

Definition 17. An SPS-EQ on G∗i (for i ∈ {1, 2}) consists of the following PPT algorithms:

BGGenR(1κ): A bilinear-group generation algorithm, which on input of a security parameter κ
outputs an asymmetric bilinear group BG.
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KeyGenR(BG, `): An algorithm, which on input of an asymmetric bilinear group BG and a vector
length ` > 1 outputs a key pair (sk, pk).

SignR(M, sk): An algorithm, which given a representative M ∈ (G∗i )` and a secret key sk outputs
a signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, ρ, pk): An algorithm, which on input of a representative M ∈ (G∗i )` of class
[M ]R, a signature σ for M , a scalar ρ and a public key pk returns an updated message-
signature pair (M ′, σ′), where M ′ = ρ ·M is the new representative and σ′ its updated
signature.

VerifyR(M,σ, pk): An algorithm, which on input of a representative M ∈ (G∗i )`, a signature σ
and a public key pk outputs a bit b ∈ {0, 1}.

VKeyR(sk, pk) is an algorithm, which given a secret key sk and a public key pk outputs a bit
b ∈ {0, 1}.

For security, we require the following properties.

Definition 18 (Correctness). An SPS-EQ scheme on (G∗i )` is called correct if for all se-
curity parameters κ ∈ N, ` > 1, BG ← BGGenR(1κ), (sk, pk) ← KeyGenR(BG, `), M ∈
(G∗i )` and ρ ∈ Z∗p: VKeyR(sk, pk) = 1 and Pr

[
VerifyR(M, SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = 1

]
= 1.

For EUF-CMA security, outputting a valid message-signature pair, corresponding to an un-
queried equivalence class, is considered to be a forgery.

Definition 19 (EUF-CMA). An SPS-EQ over (G∗i )` is existentially unforgeable under adap-
tively chosen-message attacks, if for all PPT adversaries A with access to a signing oracle O,
there is a negligible function ε(·) such that:

Pr

BG← BGGenR(1κ),
(sk, pk)← KeyGenR(BG, `),
(M∗, σ∗)← AO(·,sk)(pk)

:
[M∗]R 6= [M ]R ∀M ∈ Q ∧

VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ),

where Q is the set of queries that A has issued to the signing oracle O.

Besides EUF-CMA security, an additional security property for SPS-EQ was introduced in
[FHS15].

Definition 20 (Perfect Adaption of Signatures). An SPS-EQ scheme (BGGenR,KeyGenR,
SignR,ChgRepR,VerifyR,VKeyR) on (G∗i )` perfectly adapts signatures if for all tuples (sk, pk,M,
σ, ρ) where it holds that VKeyR(sk, pk) = 1, VerifyR(M,σ, pk) = 1, M ∈ (G∗i )`, and ρ ∈ Z∗p, the
distributions (ρM, SignR(ρM, sk)) and ChgRepR(M,σ, ρ, pk) are identical.

An instantiation providing all above security properties is provided in [FHS14,FHS15].

3 Dynamic Group Signatures

Subsequently, we recall the established model for dynamic group signatures by Bellare et al.
[BSZ05] (BSZ model), where we slightly adapt the notation to ours. We assume that each
algorithm outputs a special symbol ⊥ on error.

GKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a triple
(gpk, ik, ok) containing the group public key gpk, the issuing key ik as well as the open-
ing key ok.
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UKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a user key
pair (uski, upki).

Join(gpk, uski, upki) : This algorithm takes the group public key gpk and the user’s key pair
(uski, upki) as input. It interacts with the Issue algorithm and outputs the group signing
key gski of user i on success.

Issue(gpk, ik, i, upki, reg) : This algorithm takes the group public key gpk, the issuing key ik, the
index i of a user, user i’s public key upki, and the registration table reg as input. It interacts
with the Join algorithm and adds an entry for user i in reg on success. In the end, it returns
reg.

Sign(gpk, gski,m) : This algorithm takes the group public key gpk, a user’s group signing key
gski, and a message m as input and outputs a group signature σ.

Verify(gpk,m, σ) : This algorithm takes the group public key gpk, a message m and a signature
σ as input and outputs a bit b ∈ {0, 1}.

Open(gpk, ok, reg,m, σ) : This algorithm takes the group public key gpk, the opening key ok,
the registration table reg, a message m, and a valid signature σ on m under gpk as input.
It extracts the identity of the signer and returns a pair (i, τ), where τ is a proof.

Judge(gpk,m, σ, i, upki, τ) : This algorithm takes the group public key gpk, a message m, a valid
signature σ on m under gpk, an index i, user i’s public key upki, and a proof τ . It returns
a bit b ∈ {0, 1}.

3.1 Oracles

In the following we recall the definitions of the oracles required by the security model. We
assume that the keys (gpk, ik, ok) created in the experiments are implicitly available to the
oracles. Furthermore, the environment maintains the sets HU, CU of honest and corrupted users,
the set GS of message-signature tuples returned by the challenge oracle, the lists upk, usk, gsk of
user public keys, user private keys, and group signing keys. The list upk is publicly readable and
the environment also maintains the registration table reg. Finally, SI represents a variable that
ensures the consistency of subsequent calls to CrptU and SndToI. All sets are initially empty and
all list entries are initially set to ⊥. In the context of lists, we use upki, uski, etc. as shorthand
for upk[i], usk[i], etc.

AddU(i) : This oracle takes an index i as input. If i ∈ CU ∪ HU it returns ⊥. Otherwise it runs
(uski, upki)← UKeyGen(1κ) and

(reg, gski)← (Issue(gpk, ik, i, upki, reg)↔ Join(gpk, uski, upki)).

Finally, it sets HU← HU ∪ {i} and returns upki.
CrptU(i, upkj) : This oracle takes an index i and user public key upkj as input. If i ∈ CU∪ HU it

returns ⊥. Otherwise it sets CU← CU ∪ {i}, SI← i and upki ← upkj .
SndToI(i) : This oracle takes an index i as input. If i 6= SI it returns ⊥. Otherwise, it plays the

role of an honest issuer when interacting with the corrupted user i. More precisely, it runs

reg← Issue(gpk, ik, i, upki, reg),

thereby interacting with the dishonest user who aims to join the group but does not neces-
sarily follow the Join protocol.

SndToU(i) : This oracle takes an index i as input. If i /∈ HU it sets HU ← HU ∪ {i}, runs
(uski, upki) ← UKeyGen(1κ). Then it plays the role of the honest user i when interacting
with a corrupted issuer. More precisely, it runs

gski ← Join(gpk, uski, upki),
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thereby interacting with the dishonest issuer who does not necessarily follow the Issue
protocol.

USK(i) : This oracle takes an index i as input and returns (gski, uski).
RReg(i) : This oracle takes an index i as input and returns regi.
WReg(i, ρ) : This oracle takes an index i and a registration table entry ρ as input and sets the

entry for i in reg to ρ.
GSig(i,m) : This oracle takes an index i and a message m as input. If i /∈ HU or gski = ⊥ it

returns ⊥ and σ ← Sign(gpk, gski,m) otherwise.
Ch(b, i0, i1,m) : This algorithm takes a bit b, two indexes i0 and i1, and a message m as input.

If {i0, i1} 6⊆ HU ∨ gski0 = ⊥ ∨ gski1 = ⊥ it returns ⊥. Otherwise, it computes σ ←
Sign(gpk, gskib ,m), sets GS← GS ∪ {(m,σ)} and returns σ.

Open(m,σ) : This oracle takes a message m and a signature σ as input. If (m,σ) ∈ GS or
Verify(gpk,m, σ) = 0 it returns ⊥. Otherwise, it returns (i, τ)← Open(gpk, ok, reg,m, σ).

3.2 Security Notions

For security, dynamic group signatures are required to be correct, anonymous, traceable, and
non-frameable. We recall the formal definitions below.

Definition 21 (Correctness). A GSS is correct, if for all adversaries A it holds that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {AddU(·),RReg(·)},
(i,m)← AO(gpk),
σ ← Sign(gpk, gski,m),
(j, τ)← Open(gpk, ok, reg,m, σ)

:
Verify(gpk,m, σ) = 1 ∧

i ∈ HU ∧ gski 6= ⊥ ∧ i = j ∧
Judge(gpk,m, σ, i, upki, τ) = 1

 = 1.

Definition 22 (Anonymity). A GSS is anonymous, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ), b←R {0, 1},
O ← {Ch(b, ·, ·, ·), Open(·, ·), SndToU(·),
WReg(·, ·), USK(·), CrptU(·, ·)},
b∗ ← AO(gpk, ik)

: b = b∗

 ≤ 1/2 + ε(κ).

Definition 23 (Traceability). A GSS is traceable, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {SndToI(·), AddU(·),
RReg(·), USK(·), CrptU(·)},
(m,σ)← AO(gpk, ok),
(i, τ)← Open(gpk, ok, reg,m, σ)

:
Verify(gpk,m, σ) = 1 ∧

(i = ⊥ ∨
Judge(gpk,m, σ, i, upki, τ) = 0)

 ≤ ε(κ).

Definition 24 (Non-Frameability). A GSS is non-frameable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {SndToU(·), WReg(·, ·),
GSig(·), USK(·), CrptU(·)},
(m,σ, i, τ)← AO(gpk, ok, ik)

:

Verify(gpk,m, σ) = 1 ∧
i ∈ HU ∧ gski 6= ⊥ ∧

i /∈ USK ∧ (i,m) /∈ SIG ∧
Judge(gpk,m, σ, i, upki, τ) = 1

 ≤ ε(κ),

where USK and SIG denote the queries to the oracles USK and Sign, respectively.

9



4 Construction

Before we present our construction in Scheme 1, we briefly revisit our basic idea. In our scheme,
each group member chooses a secret key, which consists of a vector (R,P ) ∈ (G∗1)2. When joining
the group, a blinded version q · (R,P ) with q←R Z∗p of this key is signed by the group manager
using an SPS-EQ, and, by the re-randomization property of SPS-EQ, the user thus obtains a
signature on the unblinded key (using ChgRepR with q−1). Using this key, each group member
can sign a message on behalf of a group by randomizing it’s secret key and the corresponding
SPS-EQ signature and computing a signature of knowledge of the used randomizer. Very roughly,
a signer then remains anonymous since it is infeasible to distinguish two randomized user secret
keys under DDH in G1. The unforgeability of SPS-EQ ensures that each valid signature can be
opened. Furthermore, it is hard to forge signatures of honest group members since it is hard
to unblind a user secret key under co-CDHI and the signature of knowledge essentially ensures
that we can extract such an unblinded user secret key from a successful adversary. To provide
a means to open signatures, a user has to provide an encryption of a value R̂ ∈ G2 such that
e(R, P̂ ) = e(P, R̂) on joining.

GKeyGen(1κ) : Run BG ← BGGen(1κ), (skR, pkR) ← KeyGenR(BG, 2), (skO, pkO) ← PKE.KeyGen(1κ),
crsJ ← NIZK.Setup(1κ), crsO ← NIZK.Setup(1κ), crsS ← SoK.Setup(1κ), choose T ←R G1, set gpk←
(pkR, pkO, crsJ, crsO, crsS, T ), ik← skR, ok← skO and return (gpk, ik, ok)

UKeyGen(1κ) : Return (uski, upki)← DSS.KeyGen(1κ).

Join(1)(gpk, uski, upki) : Choose q, r←R Z∗p, set (Ui, Q)← (r ·qP, qP ), and compute ĈJi ← PKE.Enc(pkO,

rP̂ ; ω), σJi ← DSS.Sign(uski, ĈJi), πJi ← NIZK.Proof(crsJ, (Ui, Q, ĈJi), pkO), (r, q, ω,⊥)), where πJi

attests membership of (Ui, Q, ĈJi , pkO) in the NP relation RJ:

((Ui, Q, ĈJi , pkO), (r, q, ω, t)) ∈ RJ ⇐⇒(
ĈJi = PKE.Enc(pkO, rP̂ ; ω) ∧ Ui = r ·Q ∧ Q = q · P

)
∨ T = t · P .

Finally, output MJ ← ((Ui, Q), ĈJi , σJi , πJi) and st← (gpk, uski, upki, q, Ui, Q).
Issue(gpk, ik, i, upki, reg) : Receive MJ = ((Ui, Q), ĈJi , σJi , πJi), check whether NIZK.Verify(crsJ, (Ui, Q,

ĈJi , pkO), πJi) = 0 or DSS.Verify(upki, ĈJi , σJi) = 0 and return ⊥ if so. Otherwise compute σ′ ←
SignR((Ui, Q), skR) and set reg← reg ∪ {(i, ĈJi , σJi)}, output reg and send σ′ to user i.

Join(2)(st, σ′) : Check whether VerifyR((Ui, Q), σ′, pkR) = 0 and return ⊥ if so. Otherwise, compute
gski = ((rP, P ), σ)← ChgRepR((Ui, Q), σ′, q−1, pkR) and output gski.

Sign(gpk, gski,m) : Choose ρ←R Z∗p, compute σ1 ← ChgRepR(gski, ρ, pkR), σ2 ← SoK.Sign(crsS, σ1[1][2],
ρ,m) and return σ ← (σ1, σ2). Here SoK is with respect to the language associated to the NP
relation RS: (σ1[1][2], ρ) ∈ RS ⇐⇒ σ1[1][2] = ρ · P .

Verify(gpk,m, σ) : Return VerifyR(σ1, pkR) ∧ SoK.Verify(crsS, σ1[1][2],m, σ2).

Open(gpk, ok, reg,m, σ) : Obtain (i, ĈJi , σJi) and rP̂ ← PKE.Dec(skO, ĈJi) from reg such that e(σ1[1][1],
P̂ ) = e(σ1[1][2], rP̂ ). Compute πO ← NIZK.Proof(crsO, (ĈJi , σJi , pkO, upki), (skO, rP̂ ,⊥)), where πO

attests membership in the NP relation RO:

((ĈJi , σJi , pkO, upki), (skO, rP̂ , t)) ∈ RO ⇐⇒
(
rP̂ = PKE.Dec(skO, ĈJi) ∧ pkO ≡ skO ∧

DSS.Verify(upki, ĈJi , σJi) = 1 ∧ e(σ1[1][1], P̂ ) = e(σ1[1][2], rP̂ )
)
∨ T = t · P .

Return τ ← (πO, ĈJi , σJi) and ⊥ if no such upki exists.
Judge(gpk,m, σ, i, upki, τ) : Given τ = (πO, ĈJi , σJi), return whatever NIZK.Verify(crsO, (ĈJi , σJi , pkO,

upki), πO) returns.

Scheme 1: Fully Secure Dynamic Group Signature Scheme
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Correctness of Scheme 1 is straight forward and can be verified by inspection. The remaining
properties are proven subsequently.

Theorem 1. If NIZK is adaptively zero knowledge, SoK is simulatable and extractable, PKE is
IND-CCA2 secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds in G1,
then Scheme 1 is anonymous.

Proof (Anonymity). We prove anonymity by showing that the output distributions of the Ch
oracle are (computationally) independent of the bit b. To do so, we assume that the adversary
makes qCh ≤ poly(κ) queries to Ch, qO ≤ poly(κ) queries to Open, and qSndToU ≤ poly(κ) queries
to SndToU.

Game 0: The original anonymity game.
Game 1: As Game 0, but we run (crsJ, τJ) ← NIZK.S1(1κ) instead of crsJ ← NIZK.Setup(1κ)

upon running GKeyGen and store the trapdoor τJ. Then, we simulate all calls to NIZK.Proof
executed in Join using the simulator, i.e., without a witness.

Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1 is an adversary
against adaptive zero knowledge of NIZK, and, therefore, the probability to distinguish Game
0 and Game 1 is negligible, i.e., |Pr[S1]− Pr[S0]| ≤ εZKJ

(κ).
Game 2: As Game 1, but we run (crsO, τO)← NIZK.S1(1κ) instead of crsO ← NIZK.Setup(1κ)

upon running GKeyGen and store the trapdoor τO. Then, we simulate all calls to NIZK.Proof
in Open using the simulator, i.e., without a witness.

Transition - Game 1 → Game 2: A distinguisher between Game 0 and Game 1 is an adversary
against adaptive zero knowledge of NIZK, and, therefore, the probability to distinguish Game
1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKO

(κ).
Game 3: As Game 2, but we run (crsS, τS)← SoK.SimSetup(1κ) instead of crsS ← SoK.Setup(1κ)

upon running GKeyGen and store the trapdoor τS. Then, we simulate all calls to SoK.Sign
using the simulator, i.e., without a witness.

Transition - Game 2 → Game 3: A distinguisher between Game 2 and Game 3 is an adversary
against simulatability of SoK. Therefore, the distinguishing probability is negligible, i.e.,
|Pr[S3]− Pr[S2]| ≤ εSIM(κ).

Game 4: As Game 3, but instead of computing (skO, pkO)← PKE.KeyGen(1κ) in GKeyGen, we
obtain pkO from an IND-CCA2 challenger and set skO ← ∅. The environment additionally
maintains a secret list GSK and upon each call to the SndToU oracle it sets GSK[i] ← gski.
Furthermore, we simulate the open algorithm as follows.
Open(gpk, ok, reg,m, σ) : Obtain ρ← Extract(crsS, τS, σ1[1][2],m, σ2), gsk∗i ← ChgRepR(σ1,

ρ−1, pkR), and index i such that GSK[i] = gsk∗i . If i 6= ⊥ and the entry for i in the
registration table was not overwritten by the adversary, compute a (simulated) proof
τ and return (i, τ). Otherwise we submit ĈJi to the decryption oracle provided by the
IND-CCA2 challenger and return whatever the original open oracle would return.

If the extractor fails at some point, we choose b←R {0, 1} and return b.
Transition - Game 3 → Game 4: By the extractability of the SoK, one can extract a witness

ρ in every call to Open with overwhelming probability (1− εEXT(κ))qO . Thus, we have that
Pr[S4] = 1/2 + (Pr[S3]− 1/2) · (1− εEXT(κ))qO .

Game 5: As Game 4, but we compute the ciphertext ĈJi in the Join algorithm (executed
within the SndToU oracle) as ĈJi ← PKE.Enc(pk, P̂ ), i.e., with a constant message that is
independent of the user.

Transition - Game 4 → Game 5: A distinguisher between Game 4 and Game 5 is a distin-
guisher for the IND-CCA2 game of the PKE, i.e., |Pr[S5]− Pr[S4]| ≤ qSndToU · εCCA2(κ).1

1 For compactness, we collapsed the qSndToU game changes into a single game change and note that one
can straight forwardly unroll this to qSndToU game changes where a single ciphertext is exchanged in
each game.
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Game 6: As Game 5, but the environment obtains and stores a DDH instance (aP, bP, cP )
in G1. Additionally, we further modify the Join algorithm (executed within SndToU) as
follows. Instead of choosing r←R Zp, we use the random self reducibility of DDH to obtain

an independent DDH instance (uP, vP,wP )
RSR← (aP, bP, cP ), choose q←R Z∗p, compute

(Ui, Qi) ← (q · uP, q · P ). Furthermore, the environment maintains a secret list DDH and
upon each Issue it sets DDH[i]← (uP, vP,wP ).

Transition - Game 5 → Game 6: The output distributions in Game 5 and Game 6 are identical,
i.e., Pr[S6] = Pr[S5].

Game 7: As Game 6, but all calls ChgRepR(M,ρ, pkR) are replaced by SignR(ρ ·M, skR).
Transition - Game 6 → Game 7: Under perfect adaption of signatures, the output distribu-

tions in Game 6 and Game 7 are identical, i.e., Pr[S7] = Pr[S6].
Game 8j (1 ≤ j ≤ qCh): As Game 7, but we modify the Ch oracle as follows. For the first j

queries, instead of running σ1 ← SignR(ρ · gskib [1], skR), we choose R←R G1, and compute
σ1 ← SignR(ρ · (R,P ), skR).

Transition - Game 7 → Game 81: A distinguisher between Game 7 and Game 81 is a DDH
distinguisher. To show this, we present an implementation of the Ch oracle, that—depending
on the validity of the DDH instance (aP, bP, cP )—interpolates between Game 7 and Game
81. That is, in the first query we obtain the tuple (uP, vP,wP )← DDH[ib] and compute σ1
as σ1 ← SignR((wP, vP ), skR). Then, if the initial DDH instance (aP, bP, cP ) is valid, we
have a distribution as in Game 7, whereas we have a distribution as in Game 81 otherwise.
The success probability of a distinguisher between Game 7 and Game 81 is thus negligible,
i.e., |Pr[S81 ]− Pr[S7]| ≤ εDDH(κ).

Transitions - Game 8j → Game 8j+1 (1 ≤ j ≤ qCh): The answers of the Ch oracle for the first
j queries are already random in Game 8j . Then, it is easy to show that a distinguisher for
Game 8j and game 8j+1 is a DDH distinguisher, i.e., by embedding (uP, vP,wP )← DDH[ib]
in the answer of the Ch query j+1 using the same strategy as above. Summing up, we have
|Pr[S8q ]− Pr[S81 ]| ≤ (qCh − 1) · εDDH(κ).

In Game 8qCh , the simulation is independent of the bit b, i.e., Pr[S8q ] = 1/2; what remains is to
obtain a bound on the success probability in Game 0. We have that Pr[S0] ≤ Pr[S3] + εZKJ

(κ) +

εZKO
+εSIM(κ), that Pr[S4] ≤ 1/2+qSndToU ·εCCA2(κ)+qCh ·εDDH(κ), and that Pr[S4]−1/2

(1−εEXT(κ))qO + 1/2 =

Pr[S3]. Combining those equations yields Pr[S0] ≤ Pr[S4]−1/2
(1−εEXT(κ))qO +1/2+εZKJ

(κ)+εZKO
+εSIM(κ) =

qSndToU·εCCA2(κ)+qCh·εDDH(κ)
(1−εEXT(κ))qO + 1/2 + εZKJ

(κ) + εZKO
+ εSIM(κ). ut

Theorem 2. If SPS-EQ is EUF-CMA secure, NIZK is a proof of knowledge, and the DL as-
sumption holds in G1, then Scheme 1 is traceable.

Proof (Traceability). We show that traceability holds by showing that an efficient adversary Atr

against traceability can efficiently be turned into an efficient adversary

(1) ADL against the discrete logarithm problem in G1, or
(2) Af against EUF-CMA security of the underlying SPS-EQ.

We do so by presenting efficient reductions RDL and Rf , respectively, that simulate the envi-
ronment for Atr and interact with the challengers from respective external security games.

1. Here, RDL obtains a DL instance tP for the group G1, sets T ← tP , sets up the NIZK used
in Join in extraction mode, i.e., via (crsJ, τJ) ← NIZK.E1(1κ) and performs the remaining
GKeyGen as in the original game. It starts Atr on (gpk, ok). At the end of each successful
SndToI, it extracts (·, ·, ·, t) ← E2(crsJ, τ, (Ui, Q, ĈJi , pkO), πJi). If t · P 6= T it aborts as we
are in the second case, and outputs t as a solution to the DL problem in G1 otherwise.
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If the adversary Atr eventually outputs a forgery (m,σ), but did never engage in such an
aforementioned SndToI execution, then RDL aborts because we are in the second case.

2. Here, Rf obtains BG and a public key pkR from the challenger in the EUF-CMA game of the
SPS-EQ, sets up the NIZK used in Join in extraction mode, i.e., via (crsJ, τJ)← NIZK.E1(1κ)
and performs the remaining GKeyGen as in the original game. It starts Atr on (gpk, ok).
Whenever a signature is required,Rf forwards the message to be signed to the signing oracle
provided by the EUF-CMA challenger. Furthermore, at the end of each successful SndToI, it
extracts (r, q, ω, ·)← E2(crsJ, τ, (Ui, Q, ĈJi , pkO), πJi). If CJi 6= PKE.Enc(pkO, rP̂ ; ω) ∨ Ui 6=
r ·Q, it aborts as we are in the first case.2 Otherwise, if Atr eventually outputs (m,σ), we
know that no SndToI oracle execution did abort and thus σ contains an SPS-EQ signature
σ1 for some (rP, P ) such that Rf has never seen a corresponding rP̂ , i.e., there is no entry
i in the registration table where ĈJi contains rP̂ s.t. e(σ1[1][1], P̂ ) = e(σ1[1][2], rP̂ ) holds.
Consequently, Rf outputs σ1 as a forgery for the SPS-EQ scheme as a signature on an
unqueried equivalence class. ut

The simulations of both reductions are negligibly close to an original game and the reductions
(in particular the extractor) succeed with overwhelming probability. We note that (1) and (2)
could be combined into a single reduction, thus circumventing the security loss of 1/2, but we
opted for a separate presentation for the sake of readability.

Theorem 3. If NIZK is an adaptively zero knowledge proof of knowledge, SoK is simulatable
and extractable, DSS is EUF-CMA secure, PKE is perfectly correct, and the co-CDHI assumption
holds, then Scheme 1 is non-frameable.

Proof (Non-frameability). We prove non-frameability using a sequence of games. Thereby we
assume that the upper bound of users in the system is q ≤ poly(κ).

Game 0: The original non-frameability game.
Game 1: As Game 0, but we guess the index i that will be attacked by the adversary. If the

adversary attacks another index, we abort.
Transition - Game 0 → Game 1: The winning probability in Game 1 is the same as in Game

0, unless an abort event happens. We thus have Pr[S1] = Pr[S0] · 1/q.
Game 2: As Game 1, but we run (crsJ, τJ) ← NIZK.S1(1κ) instead of crsJ ← NIZK.Setup(1κ)

upon running GKeyGen and store the trapdoor τJ. Then, we simulate all calls to NIZK.Proof
in Join using the simulator, i.e., without a witness.

Transition - Game 1 → Game 2: A distinguisher between Game 1 and Game 2 is an adversary
against adaptive zero knowledge of NIZK, and, therefore, the probability to distinguish Game
1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKJ

(κ).
Game 3: As Game 2, but we run (crsO, τO)← NIZK.E1(1κ) instead of crsO ← NIZK.Setup(1κ)

upon running GKeyGen and store the trapdoor τE.
Transition - Game 2 → Game 3: A distinguisher between Game 2 and Game 3 distinguishes

an extraction CRS from an honest CRS, and, therefore, the probability to distinguish Game
2 and Game 3 is negligible, i.e., |Pr[S3]− Pr[S2]| ≤ εext1(κ).

Game 4: As Game 3, but we setup the SoK in simulation mode, i.e., we run (crsS, τS) ←
SoK.SimSetup(1κ) instead of crsS ← SoK.Setup(1κ) upon running GKeyGen and store the
trapdoor τS. Then, we simulate all calls to SoK.Sign using the simulator, i.e., without a
witness.

Transition - Game 3 → Game 4: A distinguisher between Game 3 and Game 4 is an adversary
against simulatability of SoK. Therefore, the distinguishing probability is negligible, i.e.,
|Pr[S4]− Pr[S3]| ≤ εSIM(κ).

2 Note that the perfect correctness of the PKE and extractability of the proof of knowledge ensure
that we are always in Case 2 if we do not abort.
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Game 5: As Game 4, but we modify the Join algorithm (executed within the SndToU oracle)
when queried for user with index i as follows. We obtain a co-CDHI instance (aP, 1/aP̂ ) for
BG, choose r←R Zp, set (Ui, Q) ← (r · P, aP ), and compute ĈJi ← PKE.Enc(pkO, r · 1/aP̂ )
and store r. On successful execution we set gski ← ((Ui, Q), σ′) (note that πJi as well as the
signatures in the GSig oracle are already simulated, i.e., the discrete log of Q is not required
to be known to the environment).

Transition - Game 4 → Game 5: Since r is uniformly random, we can write it as r = r′a
for some r′ ∈ Zp. Then it is easy to see that the game change is only conceptual, i.e.,
Pr[S5] = Pr[S4].

Game 6: As Game 5, but for every forgery output by the adversary, we extract ρ← Extract(crsS,
τS, σ1[1][2],m, σ2) and abort if the extraction fails.

Transition - Game 5 → Game 6: By the extractability of the SoK, one can extract a witness
ρ with overwhelming probability 1− εEXT(κ). Thus, we abort with probability εEXT(κ) and
Pr[S6] = Pr[S5] · (1− εEXT(κ)).

Game 7: As Game 6, but we further modify the Join algorithm when queried for user with
index i as follows (executed within the SndToU oracle). Instead of choosing (uski, upki) ←
UKeyGen(1κ), we engage with an EUF-CMA challenger, obtain upki and set uski ← ∅. If any
signature is required, we obtain it using the oracle provided by the EUF-CMA challenger.

Transition Game 6 → Game 7: This change is only conceptual, i.e., Pr[S7] = Pr[S6].
Game 8: As Game 7, but we obtain a DL instance tP for the group G1 and set T ← tP .
Transition Game 7 → Game 8: This change is only conceptual, i.e., Pr[S8] = Pr[S7].

At this point we have three possibilities if A outputs a valid forgery.

1. If a signature for ĈJi was never requested, A is an EUF-CMA forger for the DSS and
(ĈJi , σJi). Then Pr[S8] ≤ εf(κ).

2. Otherwise, we know that ĈJi is honestly computed by the environment and—by the perfect
correctness of PKE—thus contains r/aP̂ , which leaves us two possibilities:
(a) If e(σ[1][1], P̂ ) = e(σ[1][2], r/aP̂ ),A is an adversary against co-CDHI, since we can obtain

(((r · 1/aP, P ), σ′))← ChgRepR(σ1, ρ
−1, pkR) and use r to output r−1 · (r · 1/aP ) = 1/aP .

That is, Pr[S8] ≤ εco-CDHI(κ).
(b) If e(σ[1][1], P̂ ) 6= e(σ[1][2], r/aP̂ ), A honestly performed the proof πO with respect to the

T -part of the OR statement. We can thus obtain (·, ·, t)← NIZK.E2(crsO, τE, (ĈJi , σJi , pkO,
upki), πO) and output t as a solution to the DL problem with overwhelming probability

1− εext2(κ). In this case Pr[S8] ≤ εDL(κ)
1−εext2(κ) .

Independent of whether case (1), (2a), or (2b) holds, the success probability in Game 8 is negli-

gible. Henceforth, we use εnf8(κ) = max{εf(κ), εco-CDHI(κ), εDL(κ)
1−εext2(κ)}, which yields the following

bound for the success probability in Game 1: Pr[S1] ≤ Pr[S5] + εZKJ
(κ) + εext1(κ) + εSIM(κ).

Furthermore, we know that Pr[S5] = εnf8(κ)
1−εEXT(κ) and Pr[S0] = Pr[S1] · q. Taking all together we

have that Pr[S0] ≤ q · ( εnf8(κ)
1−εEXT(κ) + εZKJ

(κ) + εext2(κ) + εSIM(κ)), which is negligible. ut

4.1 Instantiation in the ROM

To compare our approach to existing approaches regarding signature size and computational
effort upon signature generation and verification, we present the sign and verification algorithms
for an instantiation of our scheme with the SPS-EQ from [FHS14,FHS15], whose security holds
in the generic group model, and signatures of knowledge obtained when applying the Fiat-
Shamir [FS87] heuristic to Σ-protocols. Before we do so, we recall that the group signing
key gski consists of a vector of two group elements (R,P ) ∈ (G∗1)2 and an SPS-EQ signature
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σ ∈ G1 × G∗1 × G∗2 on this vector. Randomization of a gski with a random value ρ ∈ Z∗p,
i.e., ChgRepR, requires 4 multiplications in G1 and 1 multiplication in G2. Verification of an
SPS-EQ signature on gski requires 5 pairings. Subsequently, we show how Sign and Verify are
instantiated in this setting, where H : {0, 1}∗ → Zp is modelled as a random oracle:

Sign(gpk, gski,m) : Given gpk, gski = ((R,P ), σ) andm, choose ρ←R Z∗p, compute σ1 = ((R′, P ′),

σ′) ← ChgRepR(gski, ρ, pkR). Choose ν←R Z∗p, compute N ← νP , c ← H(N ||m), z ← ν +
c · ρ, and set σ2 ← (c, z).

Verify(gpk,m, σ) : Given gpk, m, and σ = (σ1, σ2) = (((R′, P ′), σ), (c, z)), return 0 if VerifyR(σ1,
pkR) = 0. Otherwise compute N ← cP ′ − zP and check whether c = H(N ||m) holds. If so
return 1 and 0 otherwise.

All in all, group signatures contain 4 elements in G1, 1 element in G2 and 2 elements in Zp.
Counting only the expensive operations, signing costs 5 multiplications in G1 and 1 multiplica-
tion in G2, and verification costs 2 multiplications in G1 and 5 pairings.

We note that the proofs performed using the NIZK within Join and Open can straight-
forwardly be instantiated using standard techniques. Therefore, and since they are neither
required within Sign nor Verify, we do not discuss their instantiation here.

5 Evaluation and Discussion

To underline the practical efficiency of our approach, we provide a comparison of our approach
when instantiated in the ROM with other related schemes in the ROM. In particular we use
two schemes who follow the approach of Bichsel et al., i.e., [BCN+10,PS16], which are proven
secure in a weaker model, and the well known BBS scheme [BBS04] (with and without pre-
computations) providing the weaker anonymity notion of CPA-full anonymity. We note that we
use the plain BBS scheme for comparison, which does not even provide non-frameability. The
non-frameable version would be even more expensive. Moreover, we use the group signature
scheme with the shortest known signatures [DP06] (with and without precomputations) being
secure in the strong BSZ model and thus providing CCA2-full anonymity. In Table 1, we pro-
vide a comparison regarding signature size and computational costs. In Table 2 we provide a

Scheme Anon. Signature Size Signature Cost Verification Cost

[BCN+10] BCN+ 3G1 + 2Zp 1GT + 3G1 5P + 1GT + 1G1

[PS16] BCN+ 2G1 + 2Zp 1GT + 2G1 3P + 1GT + 1G1

[BBS04] CPA 3G1 + 6Zp 3P + 3GT + 9G1 5P + 4GT + 8G1

[BBS04] (prec.) CPA 3G1 + 6Zp 3GT + 9G1 4GT + 8G1

This paper CCA2 1G2 + 4G1 + 2Zp 1G2 + 5G1 5P + 2G1

[DP06] CCA2 4G1 + 5Zp 3P + 3GT + 4G1 5P + 4GT + 7 G1

[DP06] (prec.) CCA2 4G1 + 5Zp 3GT + 8G1 1P + 3GT + 2G2 + 7G1

Table 1. Comparison of related group signature schemes regarding signature size, signing and verifi-
cation cost, where, in terms of computational costs, we only count the expensive operations in G1, G2,
and GT as well as the pairings. The values for [BCN+10] and [PS16] are taken from [PS16]. We use
‘BCN+’ to denote anonymity in the sense of [BCN+10] and note that precomputation in [BBS04,DP06]
requires to store extra elements in GT .

comparison of the estimated efficiency in a 254bit BN-pairing setting, based on performance
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Scheme Anon. Signature Size Signature Cost Verification Cost

[BCN+10] BCN+ 1273bit 351ms 1105ms
[PS16] BCN+ 1018bit 318ms 777ms

[BBS04] CPA 2289bit 1545ms 2092ms
[BBS04] (prec.) CPA 2289bit 1053ms 1600ms

This paper CCA2 2037bit 266ms 886ms

[DP06] CCA2 2290bit 1380ms 2059ms
[DP06] (prec.) CCA2 2290bit 1020ms 1353ms

Table 2. Estimated efficiency based on a BN-pairing implementation on an ARM-Cortex-M0+ with
a drop-in hardware accelerator, operating at 48MHz [UW14]. At the 112bit security level, (254-bit
curves), this implementation delivers the performance values 33ms-101ms-252ms-164ms (G1-G2-GT -
pairing). For the estimation of signature sizes, we use 255bit for elements in G1, 509bit for elements
in G2 and 254bit for elements in Zp. The semantics of ‘BCN+’ is the same as in Table 1. We note
that [BBS04] is defined for a Type-2 pairing setting, which means that our performance estimation for
this scheme is rather optimistic and likely to be worse in practice.

values on an ARM-Cortex-M0+ with drop-in hardware accelerator [UW14]. This processor is
small enough to be suitable to be employed in smart cards or wireless sensor nodes [UW14].

Compared to [BBS04] and [DP06], we achieve shorter signatures and are more efficient
with respect to signature generation and verification by some orders of magnitude. Recall,
while [DP06] provides CCA2-full anonymity, the security guarantees provided by [BBS04] are
even weaker than the ones provided by our scheme, i.e., it only provides CPA-full anonymity.
Furthermore, for the schemes which do not achieve full anonymity and are proven secure in a
weaker model while following a similar paradigm as we do, the efficiency in our scheme is in
between [BCN+10] and [PS16] for verification. It seems that the stronger security notion in our
scheme comes at the cost of slightly larger signatures when compared to [BCN+10,PS16].

Regarding signature generation, we want to emphasize that our scheme is the fastest among
the schemes used for comparison. This is of particular importance since signature generation is
most likely to be executed on a constrained device.

We note that if the weaker anonymity notion CPA-full anonymity [BBS04] is sufficient (re-
call that here the anonymity adversary does not have access to the Open oracle), one could
replace the CCA2-secure encryption scheme with a CPA-secure encryption scheme. However,
since the choice of the encryption scheme neither has an impact on the signature size nor the
computational efficiency of signing and verification, opting for a weaker security notion only
seems to make sense in very specific applications.

Finally, we mention two interesting open points and leave a rigorous investigation open
as future work. Firstly, it would be interesting to investigate whether our scheme provides the
notion of opening soundness introduced by Sakai et al. [SSE+12]. Furthermore, our construction
paradigm also seems to be interesting when it comes to efficient standard model instantiations.
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