
Fully-Anonymous Short Dynamic Group
Signatures Without Encryption

David Derler and Daniel Slamanig

IAIK, Graz Universtity of Technology, Austria
{david.derler|daniel.slamanig}@tugraz.at

Abstract. Group signatures are an important privacy-enhancing tool which
allow members of a group to anonymously produce signatures on behalf
of the group. Ideally, group signatures are dynamic and thus allow to dy-
namically enroll new members to a group. For such schemes Bellare et al.
(CT-RSA’05) proposed a strong security model (BSZ model) that preserves
anonymity of a group signature even if an adversary can see arbitrary key
exposures or arbitrary openings of other group signatures. All previous
constructions achieving this strong anonymity notion follow the so called
sign-encrypt-prove (SEP) paradigm. In contrast, all known constructions
which avoid this paradigm and follow the alternative “without encryption”
paradigm introduced by Bichsel et al. (SCN’10), only provide a weaker no-
tion of anonymity (which can be problematic in practice). Until now, it was
not clear if constructions following this paradigm, while providing strong
anonymity in the sense of BSZ, even exist. In this paper we positively an-
swer this question by providing a novel approach to dynamic group signa-
ture schemes following this paradigm, which is a composition of structure
preserving signatures on equivalence classes (Asiacrypt’14) and other stan-
dard primitives. Our results are interesting for various reasons: We can prove
our construction following this “without encryption” paradigm secure with-
out requiring random oracles. Moreover, when opting for an instantiation
in the ROM, the so obtained scheme is extremely efficient and outperforms
existing fully anonymous constructions following the SEP paradigm regard-
ing computational efficiency. Regarding constructions providing a weaker
anonymity notion than BSZ, we surprisingly even outperform the popular
short BBS group signature scheme (Crypto’04) and thereby obtain shorter
signatures.

Keywords: group signatures � BSZ model � CCA2-full anonymity � effi-
ciency � structure-preserving signatures on equivalence classes

1 Introduction

Group signatures, initially introduced by Chaum and van Heyst [CvH91], allow a
group manager to set up a group so that every member of this group can later
anonymously sign messages on behalf of the group. Thereby, a dedicated author-
ity (called opening authority) can open a given group signature to determine the

The authors have been supported by EU H2020 project Prismacloud, grant agreement
n◦644962.

1

mailto:david.derler@tugraz.at
daniel.slamanig@tugraz.at

identity of the actual signer. Group signatures were first rigorously formalized for
static groups by Bellare et al. in [BMW03] (denoted as the BMW model). In this
setting, all members are fixed at setup and also receive their honestly generated
keys at setup from the group manager. This model was later extended to the dy-
namic case by Bellare et al. in [BSZ05] (henceforth denoted as BSZ model), where
new group members can be dynamically enrolled to the group. Further, it separates
the role of the issuer and the opener such that they can operate independently.
Moreover, the BSZ model requires a strong anonymity notion, where anonymity of
a group signature is preserved even if the adversary can see arbitrary key exposures
and arbitrary openings of other group signatures. A slightly weaker model, which
is used to prove the security (and in particular anonymity) of the popular BBS
group signature scheme was introduced by Boneh et al. [BBS04]. This model is
a relaxation of the BSZ model, and in particular weakens anonymity so that the
adversary can not request openings for signatures. As it is common, we refer to this
anonymity notion as CPA-full anonymity, whereas we use CCA2-full anonymity to
refer to anonymity in the sense of BSZ.

A widely used paradigm to construct group signatures is the sign-encrypt-prove
(SEP) paradigm [CS97]. Here, a signature is essentially an encrypted membership
certificate together with a signature of knowledge, where the signer demonstrates
knowledge of some signed value in the ciphertext [ACJT00, BBS04, NS04, BSZ05,
DP06, BW07, BW06, Gro07, LPY15, LLM+16, LMPY16]. As an alternative to this
paradigm, Bichsel et al. in [BCN+10] proposed an elegant design paradigm for
group signatures which does not require to encrypt the membership certificate to
produce signatures. Essentially, they use a signature scheme which supports (1)
randomization of signatures so that multiple randomized versions of the same sig-
nature are unlinkable, and (2) efficiently proving knowledge of a signed value. In
their construction, on joining the group, the issuer uses such a signature scheme
to sign a commitment to the user’s secret key. The user can then produce a group
signature for a message by randomizing the signature and computing a signature
of knowledge for the message, which demonstrates knowledge of the signed secret
key. To open signatures, in contrast to constructions following SEP which sup-
port constant time opening by means of decrypting the ciphertext in the signature,
constructions in this paradigm require a linear scan, i.e., to check a given signature
against each potential user-key. Bichsel et al. proposed an instantation based on the
randomizable pairing-based Camensich-Lysyanskaya (CL) signature scheme [CL04]
(whose EUF-CMA security is based on the interactive LRSW assumption). Recently,
Pointcheval and Sanders [PS16] proposed another randomizable signature scheme
(whose EUF-CMA security is proven in the generic group model), which allows to
instantiate the approach due to Bichsel et al. more efficiently. We note that while
these two existing constructions do not explicitly use public key encryption, the
required assumptions for the scheme imply public key encryption. Yet, it seems to
be beneficial regarding performance to avoid to explicitly use public key encryption.

However, a drawback of existing constructions following this paradigm is that
they rely on a security model that is weaker than the BSZ model [BSZ05]. In par-
ticular, anonymity only holds for users whose keys do not leak, which essentially
means that once a user key leaks, all previous signatures of this user can potentially
be attributed to this user. Furthermore, the model in [BCN+10] assumes that the

2

opening authority and the issuing authority are one entity, meaning that the issuer
can identify all signers when seeing group signatures. Both weakenings can be highly
problematic in practical applications of group signatures. It is a natural question
to ask whether it is possible to prove that constructions following this paradigm
provide CCA2- or CPA-full anonymity. Unfortunately, we have to answer this nega-
tively. Even when allowing to modify the schemes to use explicit encryption upon
joining the group (which might solve the separability issue regarding issuer and
opener), it is easy to see that knowledge of the user secret key breaks CCA2- as well
as CPA-full anonymity in both constructions [BCN+10, PS16].1 This also confirms
the intuition that the anonymity notion used by existing constructions following
this paradigm is weaker than CCA2- as well as CPA-full anonymity.

An open question in this context is whether it is possible to come up with
schemes providing those more realistic anonymity notions, where, in vein of Bichsel
et al., an encrypted membership certificate in the group signatures is avoided but
explicit usage of encryption is allowed during the joining of a group. We, henceforth,
refer to such schemes as “without encryption”.

Contribution. In this paper, we propose a novel approach to construct group sig-
natures “without encryption”. In particular, our approach is a composition of struc-
ture preserving signatures on equivalence classes (SPS-EQ) [HS14], conventional dig-
ital signatures, public key encryption, non-interactive zero-knowledge proofs, and
signatures of knowledge. Although these tools may sound quite heavy, we obtain
surprisingly efficient group signatures, which provably provide CCA2-full anonymity
in the strongest model for dynamic group signatures, i.e., the BSZ model. In doing
so, we obtain the first construction which achieves this strong security notion with-
out an encrypted membership certificate in the signature. Thus, we can positively
answer the question posed above. When opting for an instantiation of our construc-
tion in the random oracle model, we outperform existing CCA2-fully anonymous
constructions in terms of computational efficiency. Moreover, when compared to the
popular BBS group signature scheme [BBS04] (which achieves CPA-full anonymity),
we surprisingly obtain significantly better computational efficiency and even shorter
signatures. Finally, when compared to existing instantiations in the vein of Bich-
sel et al. (who provide a substantially weaker anonymity notion), we obtain very
similar computational efficiency.

2 Preliminaries

In this section, we provide some preliminaries and recall the required primitives.

Notation. Let x←R X denote the operation that picks an element x uniformly at
random from a finite set X. By y ← A(x), we denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins and

1 Each valid group signature contains a valid randomizable signature on the secret key
of the user. While group signatures only contain a proof of knowledge of the signed
secret key, being in possession of secret key candidates allow to simply test them using
the verification algorithm of the randomizable signature scheme. This clearly provides
a distinguisher against CCA2- as well as CPA-full anonymity.

3

write y ← A(x; r) to make the random coins r of A explicit. We assume that every
algorithm outputs a special symbol ⊥ on error. We write Pr[Ω : E] to denote the
probability of an event E over the probability space Ω. A function ε : N → R+ is
called negligible if for all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0.
In the remainder of this paper, we use ε to denote such a negligible function.

Let G1 = 〈P 〉, G2 = 〈P̂ 〉, and GT be groups of prime order p. A bilinear map
e : G1 ×G2 → GT is a map, where it holds for all (P, Q̂, a, b) ∈ G1 ×G2 × Z2

p that

e(aP, bQ̂) = e(P, Q̂)ab, and e(P, P̂) 6= 1, and e is efficiently computable. We assume
the Type-3 setting, where G1 6= G2 and no efficiently computable isomorphism
ψ : G2 → G1 is known.

Definition 1 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter κ and generates a bilinear group BG = (p,G1,G2,GT ,
e, P, P̂) in the Type-3 setting, where the common group order p of the groups G1,G2

and GT is a prime of bitlength κ, e is a pairing and P and P̂ are generators of G1

and G2, respectively.

Based on this, we provide the required cryptographic hardness assumptions.

Decisional Diffie-Hellman Assumption (DDH). Let G = 〈P 〉 be a group of
prime order p, such that log2 p = κ. Then, for all PPT adversaries A there
exists a negligible function ε(·) such that:

Pr

[
b←R {0, 1}, r, s, t←R Zp,
b∗ ← A(P, rP, sP, (b · (rs) + (1− b) · t)P : b = b∗

]
≤ 1/2 + ε(κ).

Symmetric External Diffie-Hellman Assumption (SXDH). Let BG be a bi-
linear group generated by BGGen. Then, the SXDH assumption states that the
DDH assumption holds in G1 and G2.

Additionally, we introduce a plausible assumption in the Type-3 bilinear group
setting.

Computational co-Diffie-Hellman Inversion Assumption (co-CDHI): Let
BG← BGGen(1κ). The co-CDHI assumption states that for all PPT adversaries
A there exists a negligible function ε(·) such that:

Pr
[
a←R Zp, C ← A(BG, aP, 1/aP̂) : C = 1/aP

]
≤ ε(κ).

Digital Signature Schemes. Subsequently, we recall a definition of digital sig-
nature schemes.

Definition 2 (Digital Signatures). A digital signature scheme Σ is a triple (Key-
Gen, Sign,Verify) of PPT algorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated message
space M (we may omit to mention the message space M).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as input
and outputs a signature σ.

4

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈ M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

Besides correctness we require existential unforgeability under adaptively chosen
message attacks (EUF-CMA) [GMR88]. Subsequently, we recall formal definitions
of these properties.

Definition 3 (Correctness). A digital signature scheme Σ is correct, if for all κ,
all (sk, pk)← KeyGen(1κ) and all m ∈M it holds that

Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1.

Definition 4 (EUF-CMA). A digital signature scheme Σ is EUF-CMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that[

(sk, pk)← KeyGen(1κ),

(m∗, σ∗)← AOSign(sk,·)
(pk)

:
Verify(pk,m∗, σ∗) = 1 ∧

m∗ /∈ QSign

]
≤ ε(κ) ,

where A has access to an oracle OSign that allows to execute the Sign algorithm and
the environment keeps track of all message queried to OSign via QSign.

Public Key Encryption. We also require public key encryption, which we recall
below.

Definition 5. A public key encryption scheme Ω is a triple (KeyGen,Enc,Dec) of
PPT algorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs a
keypair (sk, pk). We assume that the message space M is implicitly defined by
pk.

Enc(pk,m) : This algorithm takes a public key pk and a message m ∈ M as input
and outputs a ciphertext c or ⊥.

Dec(sk, c) : This algorithm takes a secret key sk and a ciphertext c as input and
outputs a message m ∈M or ⊥.

We require a public key encryption scheme to be correct and IND-T secure and
recall the formal definitions below.

Definition 6 (Correctness). A public key encryption scheme Ω is correct if it
holds for all κ, for all (sk, pk)← KeyGen(1κ), and for all messages m ∈M that

Pr[Dec(sk,Enc(pk,m)) = m] = 1.

Definition 7 (IND-T Security). Let T ∈ {CPA,CCA2}. A public key encryption
scheme Ω is IND-T secure, if for all PPT adversaries A there exists a negligible
function ε(·) such that

Pr


(sk, pk)← KeyGen(1κ),
(m0,m1, st)← AOT(pk),
b←R {0, 1}, c← Enc(pk,mb),
b∗ ← AOT(c, st)

:
b = b∗ ∧
c /∈ QDec

 ≤ 1/2 + ε(κ),

5

where the adversary runs in two stages,

OT ←

{
∅ if T = CPA, and

{ODec(sk, ·)} if T = CCA2,

and QDec denotes the list of queries to ODec and we set QDec ← ∅ if T = CPA.

Non-Interactive Zero-Knowledge Proof Systems. Now, we recall a standard
definition of non-interactive zero-knowledge proof systems. Therefore, let LR be an
NP-language with witness relation R : LR = {x | ∃ w : R(x,w) = 1}.
Definition 8 (Non-Interactive Zero-Knowledge Proof System). A non-int-
eractive proof system Π is a tuple of algorithms (Setup, Proof, Verify), which are
defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We note that Proof is not required to run in polynomial time. If it, however, runs
in polynomial time we talk about a non-interactive argument system. We require
Π to be complete, sound, and adaptively zero-knowledge. Subsequently, we recall
formal definition of those properties (adapted from [BGI14]).

Definition 9 (Completeness). A non-interactive proof system Π is complete, if
for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x,w)← A(crs),
π ← Proof(crs, x, w)

:
Verify(crs, x, π) = 1

∧ (x,w) ∈ R

]
≈ 1.

Definition 10 (Soundness). A non-interactive proof system Π is sound, if for
every PPT adversary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), (x, π)← A(crs) : Verify(crs, x, π) = 1 ∧ x /∈ LR

]
≤ ε(κ).

If ε = 0, we have perfect soundness.

Definition 11 (Adaptive Zero-Knowledge). A non-interactive proof system Π
is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2) such
that for every PPT adversary A there is a negligible function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

If ε = 0, we have perfect adaptive zero-knowledge.

6

Signatures of Knowledge. Below we recall signatures of knowledge (SoKs)
[CL06], where LR is as above. For the formal notions we follow [BCC+15] and use a
stronger generalization of the original extraction property termed f -extractability.
A signature of knowledge (SoK) for LR is defined as follows.

Definition 12. A SoK is a tuple of PPT algorithms (Setup,Sign,Verify), which are
defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input and outputs a
common reference string crs. We assume that the message spaceM is implicitly
defined by crs.

Sign(crs, x, w,m) : This algorithm takes a common reference string crs, a word x,
a witness w, and a message m as input and outputs a signature σ.

Verify(crs, x,m, σ) : This algorithm takes a common reference string crs, a word x,
a message m, and a signature σ as input and outputs a bit b ∈ {0, 1}.

Definition 13 (Correctness). A SoK with respect to LR is correct, if there exists
a negligible function ε(·) such that for all x ∈ LR, for all w such that (x,w) ∈ R,
and for all m ∈M it holds that

Pr [crs← Setup(1κ), σ ← Sign(crs, x, w,m) : Verify(crs, x,m, σ) = 1] ≥ 1− ε(κ).

Definition 14 (Simulatability). A SoK with respect to LR is simulatable, if there
exists a PPT simulator S = (SimSetup,SimSign) such that for all PPT adversaries
A there exists a negligible function ε(·) such that it holds that∣∣∣∣∣Pr

[
crs← Setup(1κ), b← ASign(crs,·,·,·)(crs) : b = 1

]
−

Pr
[
(crs, τ)← SimSetup(1κ), b← ASim(crs,τ,·,·,·)(crs) : b = 1

] ∣∣∣∣∣ ≤ ε(κ),

where Sim(crs, τ, x, w,m) := SimSign(crs, τ, x,m) and Sim only responds if (x,w) ∈
R.

Definition 15 (f-Extractability). A SoK with respect to LR is f -extractable,
if in addition to S there exists a PPT extractor Extract, such that for all PPT
adversaries A there exists a negligible function ε(·) such that it holds that

Pr

 (crs, τ)← SimSetup(1κ),
(x,m, σ)← ASim(crs,τ,·,·,·)(crs),
y ← Extract(crs, τ, x,m, σ)

:

Verify(crs, x,m, σ) = 0 ∨
(x,m, σ) ∈ QSim ∨

(∃ w : (x,w) ∈ R ∧
y = f(w))

 ≥ 1− ε(κ),

where QSim denotes the queries (resp. answers) of Sim.

We note that, as illustrated in [BCC+15], this notion is a strengthening of the
original extractability notion from [CL06] which implies the original extractability
notion if f is the identity. In this case, we simply call the f -extractability prop-
erty extractability. Analogous to [BCC+15], we require the used SoK to be at the
same time extractable and straight-line f -extractable with respect to some f other
than the identity, where straight-line as usual says that the extractor runs without
rewinding the adversary [Fis05].

7

Structure Preserving Signatures on Equivalence Classes. Subsequently,
we briefly recall structure-preserving signatures on equivalence classes (SPS-EQ) as
presented in [HS14,FHS14]. Therefore, let p be a prime and ` > 1; then Z`p is a vector
space and one can define a projective equivalence relation on it, which propagates
to G`i and partitions G`i into equivalence classes. Let ∼R be this relation, i.e., for
M,N ∈ G`i : M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN . An SPS-EQ scheme now signs an

equivalence class [M]R for M ∈ (G∗i)` by signing a representative M of [M]R. One
of the design goals of SPS-EQis to guarantee that two message-signature pairs from
the same equivalence class cannot be linked. Let us recall the formal definition of
an SPS-EQ scheme subsequently.

Definition 16. An SPS-EQ on G∗i (for i ∈ {1, 2}) consists of the following PPT
algorithms:

BGGenR(1κ): A bilinear-group generation algorithm, which on input of a security
parameter κ outputs an asymmetric bilinear group BG.

KeyGenR(BG, `): An algorithm, which on input of an asymmetric bilinear group BG
and a vector length ` > 1 outputs a key pair (sk, pk).

SignR(M, sk): An algorithm, which given a representative M ∈ (G∗i)` and a secret
key sk outputs a signature σ for the equivalence class [M]R.

ChgRepR(M,σ, ρ, pk): An algorithm, which on input of a representative M ∈ (G∗i)`
of class [M]R, a signature σ for M , a scalar ρ and a public key pk returns an
updated message-signature pair (M ′, σ′), where M ′ = ρ ·M is the new repre-
sentative and σ′ its updated signature.

VerifyR(M,σ, pk): An algorithm, which on input of a representative M ∈ (G∗i)`, a
signature σ and a public key pk outputs a bit b ∈ {0, 1}.

VKeyR(sk, pk) is an algorithm, which given a secret key sk and a public key pk
outputs a bit b ∈ {0, 1}.

For security, we require the following properties.

Definition 17 (Correctness). An SPS-EQ scheme on (G∗i)` is called correct
if for all security parameters κ ∈ N, ` > 1, BG ← BGGenR(1κ), (sk, pk) ←
KeyGenR(BG, `), M ∈ (G∗i)` and ρ ∈ Z∗p:

VKeyR(sk, pk) = 1 ∧ Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 ∧

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = 1

]
= 1.

For EUF-CMA security, outputting a valid message-signature pair, corresponding to
an unqueried equivalence class, is considered to be a forgery:

Definition 18 (EUF-CMA). An SPS-EQ over (G∗i)` is existentially unforgeable
under adaptively chosen-message attacks, if for all PPT adversaries A with access
to a signing oracle O, there is a negligible function ε(·) such that:

Pr

BG← BGGenR(1κ),
(sk, pk)← KeyGenR(BG, `),
(M∗, σ∗)← AO(·,sk)(pk)

:
[M∗]R 6= [M]R ∀M ∈ Q ∧

VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ),

where Q is the set of queries that A has issued to the signing oracle O.

8

Besides EUF-CMA security, an additional security property for SPS-EQ was intro-
duced in [FHS15].

Definition 19 (Perfect Adaption of Signatures). An SPS-EQ scheme on (G∗i)`
perfectly adapts signatures if for all tuples (sk, pk,M, σ, ρ) where it holds that
VKeyR(sk, pk) = 1, VerifyR(M,σ, pk) = 1, M ∈ (G∗i)`, and ρ ∈ Z∗p, the distri-
butions (ρM,SignR(ρM, sk)) and ChgRepR(M,σ, ρ, pk) are identical.

An instantiation providing all above security properties is provided in [FHS14,
FHS15]. Here, assuming the DDH assumption to hold on the message space yields
that different message-signature pairs from the same equivalence class cannot be
linked.

3 Dynamic Group Signatures

Subsequently, we recall the established model for dynamic group signatures. We
follow Bellare et al. [BSZ05] (BSZ model), with the slight difference that we relax the
perfect correctness to only require computational correctness. Furthermore, we also
present the weaker anonymity notion of CPA-full anonymity from [BBS04] and the
notion of opening soundness [SSE+12], which addresses issues regarding hijacking
of signatures by malicious group members. In particular, we use the notion of weak
opening soundness, where the opening authority is required to be honest, since we
believe that this notion provides a good tradeoff between computational efficiency
of potential instantiations and expected security guarantee.

GKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a triple (gpk, ik, ok) containing the group public key gpk, the issuing key ik as
well as the opening key ok.

UKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a user key pair (uski, upki).

Join(gpk, uski, upki) : This algorithm takes the group public key gpk and the user’s
key pair (uski, upki) as input. It interacts with the Issue algorithm and outputs
the group signing key gski of user i on success.

Issue(gpk, ik, i, upki, reg) : This algorithm takes the group public key gpk, the issuing
key ik, the index i of a user, user i’s public key upki, and the registration table
reg as input. It interacts with the Join algorithm and adds an entry for user i
in reg on success. In the end, it returns reg.

Sign(gpk, gski,m) : This algorithm takes the group public key gpk, a group signing
key gski, and a message m as input and outputs a group signature σ.

Verify(gpk,m, σ) : This algorithm takes the group public key gpk, a message m and
a signature σ as input and outputs a bit b ∈ {0, 1}.

Open(gpk, ok, reg,m, σ) : This algorithm takes the group public key gpk, the open-
ing key ok, the registration table reg, a message m, and a valid signature σ on
m under gpk as input. It extracts the identity of the signer and returns a pair
(i, τ), where τ is a proof.

Judge(gpk,m, σ, i, upki, τ) : This algorithm takes the group public key gpk, a mes-
sage m, a valid signature σ on m under gpk, an index i, user i’s public key upki,
and a proof τ . It returns a bit b ∈ {0, 1}.

9

3.1 Oracles

In the following we recall the definitions of the oracles required by the security
model. We assume that the keys (gpk, ik, ok) created in the experiments are implic-
itly available to the oracles. Furthermore, the environment maintains the sets HU, CU
of honest and corrupted users, the set GS of message-signature tuples returned by
the challenge oracle, the lists upk, usk, gsk of user public keys, user private keys,
and group signing keys. The list upk is publicly readable and the environment also
maintains the registration table reg. Finally, SI represents a variable that ensures
the consistency of subsequent calls to CrptU and SndToI. All sets are initially empty
and all list entries are initially set to ⊥. In the context of lists, we use upki, uski,
etc. as shorthand for upk[i], usk[i], etc.

AddU(i) : This oracle takes an index i as input. If i ∈ CU∪HU it returns ⊥. Otherwise
it runs (uski, upki)← UKeyGen(1κ) and

(reg, gski)← 〈Issue(gpk, ik, i, upki, reg)↔ Join(gpk, uski, upki)〉.

Finally, it sets HU← HU ∪ {i} and returns upki.
CrptU(i, upkj) : This oracle takes an index i and user public key upkj as input.

If i ∈ CU ∪ HU it returns ⊥. Otherwise it sets CU ← CU ∪ {i}, SI ← i and
upki ← upkj .

SndToI(i) : This oracle takes an index i as input. If i 6= SI it returns ⊥. Otherwise,
it plays the role of an honest issuer when interacting with the corrupted user i.
More precisely, it runs

reg← 〈Issue(gpk, ik, i, upki, reg)↔ A〉

thereby interacting with the dishonest user who aims to join the group but does
not necessarily follow the Join protocol.

SndToU(i) : This oracle takes an index i as input. If i /∈ HU it sets HU ← HU ∪ {i},
runs (uski, upki) ← UKeyGen(1κ). Then it plays the role of the honest user i
when interacting with a corrupted issuer. More precisely, it runs

gski ← 〈A ↔ Join(gpk, uski, upki)〉,

thereby interacting with the dishonest issuer who does not necessarily follow
the Issue protocol.

USK(i) : This oracle takes an index i as input and returns (gski, uski).
RReg(i) : This oracle takes an index i as input and returns regi.
WReg(i, ρ) : This oracle takes an index i and a registration table entry ρ as input

and sets regi ← ρ.
GSig(i,m) : This oracle takes an index i and a message m as input. If i /∈ HU or

gski = ⊥ it returns ⊥ and σ ← Sign(gpk, gski,m) otherwise.
Ch(b, i0, i1,m) : This algorithm takes a bit b, two indexes i0 and i1, and a message

m as input. If {i0, i1} 6⊆ HU ∨ gski0 = ⊥ ∨ gski1 = ⊥ it returns ⊥. Otherwise,
it computes σ ← Sign(gpk, gskib ,m), sets GS← GS ∪ {(m,σ)} and returns σ.

Open(m,σ) : This oracle takes a message m and a signature σ as input. If (m,σ) ∈
GS or Verify(gpk,m, σ) = 0 it returns⊥. Otherwise, it returns (i, τ)← Open(gpk,
ok, reg,m, σ).

10

3.2 Security Notions

We require dynamic group signatures to be correct, anonymous, traceable, non-
frameable, and weakly opening sound. We recall the formal definitions below.

Correctness, informally requires that everything works correctly if everyone be-
haves honestly. Note that we relax perfect correctness to computational correctness.

Definition 20 (Correctness). A GSS is correct, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {AddU(·),RReg(·)},
(i,m)← AO(gpk),
σ ← Sign(gpk, gski,m),
(j, τ)← Open(gpk, ok, reg,m, σ)

:
Verify(gpk,m, σ) = 1 ∧

i ∈ HU ∧ gski 6= ⊥ ∧ i = j ∧
Judge(gpk,m, σ, i, upki, τ) = 1

 ≥ 1−ε(κ).

Anonymity captures the intuition that group signers remain anonymous for ev-
eryone except the opening authority. Thereby, the adversary can see arbitrary key
exposures. Furthermore, in the CCA2 case, the adversary can even request arbitrary
openings of other group signatures.

Definition 21 (T-Full Anonymity). Let T ∈ {CPA,CCA2}. A GSS is T-fully
anonymous, if for all PPT adversaries A there is a negligible function ε(·) such
that

Pr

[
(gpk, ik, ok)← GKeyGen(1κ), b←R {0, 1},
b∗ ← AOT(gpk, ik)

: b = b∗
]
≤ 1/2 + ε(κ),

where

OT ←


{

Ch(b, ·, ·, ·), SndToU(·),WReg(·, ·),
USK(·), CrptU(·, ·)

}
if T = CPA, and{

Ch(b, ·, ·, ·), Open(·, ·), SndToU(·),
WReg(·, ·), USK(·), CrptU(·, ·)

}
if T = CCA2.

Traceability models the requirement that, as long as the issuer behaves honestly
and it’s secret key remains secret, every valid signature can be traced back to a
user. This must even hold if the opening authority colludes with malicious users.

Definition 22 (Traceability). A GSS is traceable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {SndToI(·), AddU(·),
RReg(·), USK(·), CrptU(·)},
(m,σ)← AO(gpk, ok),
(i, τ)← Open(gpk, ok, reg,m, σ)

:
Verify(gpk,m, σ) = 1 ∧

(i = ⊥ ∨
Judge(gpk,m, σ, i, upki, τ) = 0)

 ≤ ε(κ).

Non-frameability requires that no one can forge signatures for honest users. This
must even hold if the issuing authority, the opening authority, and, other malicious
users collude.

11

Definition 23 (Non-Frameability). A GSS is non-frameable, if for all PPT ad-
versaries A there is a negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {SndToU(·), WReg(·, ·),
GSig(·, ·), USK(·), CrptU(·)},
(m,σ, i, τ)← AO(gpk, ok, ik)

:

Verify(gpk,m, σ) = 1 ∧
i ∈ HU ∧ gski 6= ⊥ ∧

i /∈ USK ∧ (i,m) /∈ SIG ∧
Judge(gpk,m, σ, i, upki, τ) = 1

 ≤ ε(κ),

where USK and SIG denote the queries to the oracles USK and Sign, respectively.

Weak opening soundness [SSE+12] essentially requires that no malicious user can
claim ownership of a signature issued by an honest user, as long as the opening
authority behaves honestly.

Definition 24 (Weak Opening Soundness). A GSS is weakly opening sound,
if for all PPT adversaries A there is a negligible function ε(·) such that

Pr


(gpk, ik, ok)← GKeyGen(1κ),
O ← {AddU(·)},
(m, i, j, st)← AO(gpk),
σ ← Sign(gpk, gski,m),
τ ← AO(st, σ, gskj)

:
i 6= j ∧ {i, j} ⊆ HU ∧

Judge(gpk,m, σ, j, upkj , τ) = 1

 ≤ ε(κ).

4 Construction

Our construction idea is inspired by [HS14], who use the “unlinkability” feature
of SPS-EQ signatures to construct anonymous credentials. Essentially, a credential
in their approach represents a signature for an equivalence class and to show a
credential they always present a newly re-randomized signature to a random repre-
sentative of this class. While, due to the intuitive relation of anonymous credentials
and group signatures, it might seem straightforward to map this idea to group sig-
natures it turns out that there are various subtle, yet challenging issues which we
need to solve.

First, the anonymity experiment does not put many restrictions on the Ch and
the USK oracle. In particular, Ch can be called an arbitrary number of times and
USK can be called for all users. Thus, the user secret keys must be of a form so that
it is possible to embed decision problem instances into them upon simulation, while
not influencing their distribution (as otherwise an adversary would be able to detect
the simulation). More precisely, anonymity in our paradigm seems to require that
the user keys contain no Zp elements, which, in turn, renders the non-frameability
proof more difficult. Second, if CCA2-full anonymity is required, the simulatability of
the open oracle needs to be ensured, while the reduction must not be aware of the
opening information (as otherwise the reduction could trivially break anonymity
on its own and would be meaningless). This seems to crucially require a proof
system providing rather strong extractability properties. To maintain efficiency, it
is important to find the mildest possible requirement which still allows the security
proofs to go through. Finally, the non-frameability adversary is given the issuing key
as well as the opening key. Thus, the reduction must be able to simulate the whole

12

join process without knowledge of a user secret key in a way that the distribution
change is not even detectable with the knowledge of these keys.

Now, before we present our full construction, we briefly revisit our basic idea. In
our scheme, each group member chooses a secret vector (R,P) ∈ (G∗1)2 representing
an equivalence class where the second component P is identical for all users. When
joining the group, a blinded version q · (R,P) with q←R Z∗p of this vector, i.e.,
another representative of the class, is signed by the issuer using an SPS-EQ, and,
by the re-randomization property of SPS-EQ and the feature to publicly change
representatives of classes, the user thus obtains a signature on the unblinded key
(R,P) using ChgRepR with q−1. To provide a means to open signatures, a user
additionally has to provide an encryption of a value R̂ ∈ G2 such that e(R, P̂) =
e(P, R̂) on joining (and has to sign the ciphertext as an identity proof). The group
signing key of the user is then the pair consisting of the vector (R,P) and the
SPS-EQ signature on this vector. A group member can sign a message m on behalf
of the group by randomizing it’s group signing key and computing a signature of
knowledge (SoK) to the message m proving knowledge of the used randomizer.2

The group signature is then the randomized group signing key and the SoK.
Very roughly, a signer then remains anonymous since it is infeasible to distin-

guish two randomized user secret keys under DDH in G1. The unforgeability of
SPS-EQ ensures that each valid signature can be opened. Furthermore, it is hard to
forge signatures of honest group members since it is hard to unblind a user secret
key under co-CDHI and the signature of knowledge essentially ensures that we can
extract such an unblinded user secret key from a successful adversary.

4.1 Detailed Construction

In our scheme, we require zero-knowledge proofs upon Join and Open. The NP
relation RJ corresponding to the proof carried out in Join is defined as

((Ui, Q, ĈJi , pkO), (r, ω)) ∈ RJ ⇐⇒ ĈJi = Ω.Enc(pkO, rP̂ ; ω) ∧ Ui = r ·Q.

The NP relation RO corresponding to the proof carried out upon Open is

((ĈJi , pkO, σ), (skO, R̂)) ∈ RO ⇐⇒ R̂ = Ω.Dec(skO, ĈJi) ∧
pkO ≡ skO ∧ e(σ1[1][1], P̂) = e(σ1[1][2], R̂).

Thereby, pk ≡ sk denotes the consistency of pk and sk.
Furthermore, upon Sign we require a signature of knowledge which is with re-

spect to the following NP relation RS.

((P,Q), ρ) ∈ RS ⇐⇒ Q = ρ · P .

For the sake of compact presentation, we assume that the languages defined by
RJ, RO, RS are implicit in the CRSs crsJ, crsO, and crsS, respectively. The full
construction can be found in Scheme 1.
2 For technical reasons and in particular for extractability, we actually require a signature

of knowledge for message m′ = σ1||m, where σ1 contains the re-randomized user secret
key and SPS-EQ signature.

13

GKeyGen(1κ) : Run BG ← BGGenR(1κ), (skR, pkR) ← KeyGenR(BG, 2), (skO, pkO) ←
Ω.KeyGen(1κ), crsJ ← Π.Setup(1κ), crsO ← Π.Setup(1κ), crsS ← SoK.Setup(1κ), set
gpk← (pkR, pkO, crsJ, crsO, crsS), ik← skR, ok← skO and return (gpk, ik, ok).

UKeyGen(1κ) : Return (uski, upki)← Σ.KeyGen(1κ).

Join(1)(gpk, uski, upki) : Choose q, r←R Z∗p, set (Ui, Q) ← (r · qP, qP), and output MJ ←
((Ui, Q), ĈJi , σJi , πJi) and st← (gpk, q, Ui, Q), where

ĈJi ← Ω.Enc(pkO, rP̂ ; ω), σJi ← Σ.Sign(uski, ĈJi),

πJi ← Π.Proof(crsJ, (Ui, Q, ĈJi , pkO), (r, ω)).

Issue(gpk, ik, i, upki, reg) : Receive MJ = ((Ui, Q), ĈJi , σJi , πJi), return reg and send σ′ to
user i, where

regi ← (ĈJi , σJi), σ
′ ← SignR((Ui, Q), skR),

if Π.Verify(crsJ, (Ui, Q, ĈJi , pkO), πJi) = 1 ∧ Σ.Verify(upki, ĈJi , σJi) = 1, and return
⊥ otherwise.

Join(2)(st, σ′) : Parse st as (gpk, q, Ui, Q) and return gski, where

gski = ((rP, P), σ)← ChgRepR((Ui, Q), σ′, q−1, pkR),

if VerifyR((Ui, Q), σ′, pkR) = 1, and return ⊥ otherwise.

Sign(gpk, gski,m) : Choose ρ←R Z∗p, and return σ ← (σ1, σ2), where

σ1 ← ChgRepR(gski, ρ, pkR), σ2 ← SoK.Sign(crsS, (P, σ1[1][2]), ρ, σ1||m).

Verify(gpk,m, σ) : Return 1 if the following holds, and 0 otherwise:

VerifyR(σ1, pkR) = 1 ∧ SoK.Verify(crsS, (P, σ1[1][2]), σ1||m,σ2) = 1.

Open(gpk, ok, reg,m, σ) : Parse σ as (σ1, σ2), and ok as skO. Obtain the lowest index i,a

so that it holds for (ĈJi , σJi) ← regi that R̂ ← Ω.Dec(skO, ĈJi) and e(σ1[1][1], P̂) =
e(σ1[1][2], R̂). Return (i, τ) and ⊥ if no such entry exists, where

τ ← (πO, ĈJi , σJi), and πO ← Π.Proof(crsO, (ĈJi , pkO, σ), (skO, R̂)).

Judge(gpk,m, σ, i, upki, τ) : Parse τ as (πO, ĈJi , σJi), and return 1 if the following holds
and 0 otherwise:

Σ.Verify(upki, ĈJi , σJi) = 1 ∧ Π.Verify(crsO, (ĈJi , pkO, σ), πO) = 1.

a We assume that the indexes are in ascending order w.r.t. the time of registration.

Scheme 1: Fully-Anonymous Dynamic Group Signature Scheme

Note that if multiple users collude and use the same value r upon Join(1), we always
return the first user who registered with this particular value r in Open. Then, Open
always returns the signer who initiated the collusion by sharing the r value, which,
we think, is the most reasonable choice. Note that this is in line with the BSZ
model: traceability only requires that every valid signature can be opened, while
not requiring that it opens to one particular user out of the set of colluding users;

14

correctness and non-frameability are defined with respect to honest users and are
therefore clearly not influenced.

4.2 Security

Theorem 1. If SPS-EQ is correct, SoK is correct, and Π is sound, then also
Scheme 1 is correct.

Proof. Correctness is straight forward to verify by inspection. We only have to take
care of one detail: There is the possibility that two honest executions of AddU yield
the same value r (which is chosen uniformly at random upon Join(1)). Since the
number of users is ≤ poly(κ), the probability of two colliding r is negligible. ut

Subsequently, we will formally prove the remaining security properties. In our
proofs, we omit to make the negligible distribution switches which arise when sam-
pling uniformly random from Zp instead of Z∗p explicit and instead treat them as
conceptual changes for the sake of compactness.

Theorem 2. If Π is adaptively zero-knowledge, SoK is simulatable, Ω is IND-CPA
secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds in G1,
then Scheme 1 is CPA-full anonymous.

Theorem 3. If Π is adaptively zero-knowledge, SoK is simulatable and straight-
line f -extractable, where f : Zp → G2 is defined as r 7→ r · P̂ , Ω is IND-CCA2
secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds in G1,
then Scheme 1 is CCA2-full anonymous.

Proof (Anonymity). We prove Theorem 2 and 3 by showing that the output dis-
tributions of the Ch oracle are (computationally) independent of the bit b, where
we highlight the parts of the proof which are specific to Theorem 3 and can be
omitted to prove Theorem 2. Therefore, let qCh ≤ poly(κ) be the number of queries
to Ch, qO ≤ poly(κ) be the number of queries to Open, and qSndToU ≤ poly(κ) be
the number of queries to SndToU.

Game 0: The original anonymity game.
Game 1: As Game 0, but we run (crsJ, τJ)← Π.S1(1κ) instead of crsJ ← Π.Setup(1κ)

upon running GKeyGen and store the trapdoor τJ. Then, we simulate all calls
to Π.Proof executed in Join using the simulator, i.e., without a witness.

Transition - Game 0 → Game 1: A distinguisher D0→1 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 0 and Game 1 is negligible, i.e., |Pr[S1]− Pr[S0]| ≤ εZKJ

(κ).
Game 2: As Game 1, but we run (crsO, τO)← Π.S1(1κ) instead of crsO ← Π.Setup(1κ)

upon running GKeyGen and store the trapdoor τO. Then, we simulate all calls
to Π.Proof in Open using the simulator, i.e., without a witness.

Transition - Game 1 → Game 2: A distinguisher D1→2 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKO

(κ).
Game 3: As Game 2, but we run (crsS, τS)← SoK.SimSetup(1κ) instead of crsS ←

SoK.Setup(1κ) upon running GKeyGen and store the trapdoor τS.

15

Transition - Game 2 → Game 3: A distinguisher D2→3 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
i.e., |Pr[S3]− Pr[S2]| ≤ εSIM(κ).

Game 4: As Game 3, but instead of computing (skO, pkO) ← Ω.KeyGen(1κ) in

GKeyGen, we obtain pkO from an IND-CPA (resp. IND-CCA2) challenger and
set skO ← ⊥.

In the CCA2 case, the environment additionally maintains a secret list GSK and
upon each call to the SndToU oracle it sets GSK[i] ← gski. Furthermore, we
simulate the Open algorithm executed within the Open oracle as follows.

Open(gpk, ok, reg,m, σ) : Obtain R̂ using the straight-line f -extractor, and ob-
tain index i such that e(GSK[i][1][2], R̂) = e(σ1[1][2], P̂). If i 6= ⊥ and the
entry for i in the registration table was not overwritten by the adversary,
compute a simulated proof τ and return (i, τ). Otherwise we submit ĈJi

to the decryption oracle provided by the IND-CCA2 challenger and re-
turn whatever the original open oracle would return (but with a simulated
proof).

Note that since we never need to simulate SoKs in the anonymity game, we
know that the conditions for the straight-line f -extractor to work with over-
whelming probability are satisfied for every query. If the extractor fails at some
point, we choose b←R {0, 1} and return b.

Transition - Game 3 → Game 4 (CPA): This change is conceptual, i.e., Pr[S3] =
Pr[S4].

Transition - Game 3 → Game 4 (CCA2): By the straight-line f -extractability of
the SoK, one can extract a witness ρ in every call to Open with overwhelming
probability 1− εEXT(κ). Thus, we have that Pr[S4] = 1/2 + (Pr[S3]− 1/2) · (1−
εEXT(κ))qO .

Game 5: As Game 4, but we compute the ciphertext ĈJi in the Join algorithm (ex-
ecuted within the SndToU oracle) as ĈJi ← Ω.Enc(pk, P̂), i.e., with a constant
message that is independent of the user.

Transition - Game 4 → Game 5: A distinguisher D4→5 is a distinguisher for the

IND-CPA (resp. IND-CCA2) game of Ω, i.e., |Pr[S5]−Pr[S4]| ≤ qSndToU · εCPA(κ)

(resp. |Pr[S5]− Pr[S4]| ≤ qSndToU · εCCA2(κ)).3

Game 6: As Game 5, but the environment obtains and stores a DDH instance
(aP, bP, cP) in G1. Additionally, we further modify the Join algorithm (executed
within SndToU) as follows. Instead of choosing r←R Zp, we use the random self

reducibility of DDH to obtain an independent DDH instance (uP, vP,wP)
RSR←

(aP, bP, cP), choose q←R Z∗p, compute (Ui, Qi) ← (q · uP, q · P). Furthermore,
the environment maintains a secret list DDH and upon each Issue it sets DDH[i]←
(uP, vP,wP).

3 For compactness, we collapsed the qSndToU game changes into a single game change and
note that one can straight forwardly unroll this to qSndToU game changes where a single
ciphertext is exchanged in each game.

16

Transition - Game 5 → Game 6: The output distributions in Game 5 and Game
6 are identical, i.e., Pr[S6] = Pr[S5].

Game 7: As Game 6, but all calls to ChgRepR(M,ρ, pkR) are replaced by SignR(ρ·
M, skR).

Transition - Game 6 → Game 7: Under perfect adaption of signatures, the output
distributions in Game 6 and Game 7 are identical, i.e., Pr[S7] = Pr[S6].

Game 8j (1 ≤ j ≤ qCh): As Game 7, but we modify the Ch oracle as follows. For
the first j queries, instead of running σ1 ← SignR(ρ · gskib [1], skR), we choose
R←R G1, and compute σ1 ← SignR(ρ · (R,P), skR).

Transition - Game 7 → Game 81: A distinguisher D7→81 is a DDH distinguisher.
To show this, we present an implementation of the Ch oracle, that—depending
on the validity of the DDH instance (aP, bP, cP)—interpolates between Game
7 and Game 81. That is, in the first query we obtain the tuple (uP, vP,wP)←
DDH[ib] and compute σ1 as σ1 ← SignR((wP, vP), skR). Then, if the initial DDH
instance (aP, bP, cP) is valid, we have a distribution as in Game 7, whereas
we have a distribution as in Game 81 otherwise. The success probability of a
distinguisher between Game 7 and Game 81 is thus negligible, i.e., |Pr[S81] −
Pr[S7]| ≤ εDDH(κ).

Transitions - Game 8j → Game 8j+1 (1 ≤ j ≤ qCh): The answers of the Ch oracle
for the first j queries are already random in Game 8j . Then, it is easy to
show that a distinguisher D8j→8j+1 is a DDH distinguisher, i.e., by embedding
(uP, vP,wP) ← DDH[ib] in the answer of the Ch query j + 1 using the same
strategy as above. Summing up, we have |Pr[S8q]−Pr[S81]| ≤ (qCh−1)·εDDH(κ).

In Game 8qCh , the simulation is independent of the bit b, i.e., Pr[S8q] = 1/2; what
remains is to obtain a bound on the success probability in Game 0. In the CPA case,
we have that Pr[S0] ≤ 1/2+qSndToU·εCPA(κ)+qCh·εDDH(κ)+εZKJ

(κ)+εZKO
(κ)+εSIM(κ),

which proves Theorem 2. In the CCA2 case, we have that Pr[S0] ≤ Pr[S3]+εZKJ
(κ)+

εZKO
+ εSIM(κ), that Pr[S4] ≤ 1/2 + qSndToU · εCCA2(κ) + qCh · εDDH(κ), and that

Pr[S4]−1/2
(1−εEXT(κ))qO + 1/2 = Pr[S3]. This yields Pr[S0] ≤ Pr[S4]−1/2

(1−εEXT(κ))qO + 1/2 + εZKJ
(κ) +

εZKO
+ εSIM(κ) = qSndToU·εCCA2(κ)+qCh·εDDH(κ)

(1−εEXT(κ))qO + 1/2 + εZKJ
(κ) + εZKO

(κ) + εSIM(κ), which

proves Theorem 3. ut

We note that one can avoid the factor qCh in the proof using the fact that one
can obtain qCh DDH instances (uP, viP,wiP)i∈[qCh] from a single DDH instance
(uP, vP,wP) so that (in-)validity of the original instance carries over to each
(uP, viP,wiP)i∈[qCh]. To do so, one chooses xi, yi←R Zp and computes viP ← xi ·
vP + yiP and wiP ← xi · wP + yi · uP .

Theorem 4. If SPS-EQ is EUF-CMA secure, and Π is sound, then Scheme 1 is
traceable.

Proof (Traceability). We show that traceability holds using a sequence of games,
where we let q ≤ poly(κ) be the number of queries to the SndToI oracle.

Game 0: The original traceability game.
Game 1: As the original game, but we obtain crsJ from a soundness challenger of

Π.

17

Transition - Game 0 → Game 1: This change is only conceptual, i.e., Pr[S0] =
Pr[S1].

Game 2: As Game 1, but after every successful execution of SndToI, we obtain
R̂← Ω.Dec(skO, CJi) and abort if e(Ui, P̂) 6= e(Q, R̂).

Transition - Game 0 → Game 1: If we abort we have a valid proof πJi attesting
that (Ui, Q, ĈJi , pkO) ∈ LRJ

, but by the perfect correctness of Ω there exists no

ω such that CJi = Ω.Enc(pkO, r · P̂ ; ω) ∧ Ui = r ·Q, i.e., we have that (Ui, Q,
ĈJi , pkO) is actually not in LRJ

. Thus, we only abort if the adversary breaks the
soundness of Π in one of the oracle queries, i.e., Pr[S2] = Pr[S1] · (1− εS(κ))q.

Game 3: As Game 2, but we obtain BG and a public key pkR from an EUF-
CMA challenger of the SPS-EQ. Whenever an SPS-EQ signature is required,
Rf forwards the message to be signed to the signing oracle provided by the
EUF-CMA challenger.

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

If the adversary eventually outputs a valid forgery (m,σ), we know that σ contains
an SPS-EQ signature σ1 for some (rP, P) such that we have never seen a corre-
sponding rP̂ , i.e., there is no entry i in the registration table where ĈJi contains
rP̂ s.t. e(σ1[1][1], P̂) = e(σ1[1][2], rP̂) holds. Consequently, σ1 is a valid SPS-EQ
signature for an unqueried equivalence class and we have that Pr[S3] ≤ εF(κ). All

in all, this yields that Pr[S0] ≤ εF(κ)
(1−εS(κ))q , which proves the theorem. ut

Theorem 5. If Π is sound and adaptively zero-knowledge, SoK is simulatable and
extractable, Σ is EUF-CMA secure, Ω is perfectly correct, and the co-CDHI assump-
tion holds, then Scheme 1 is non-frameable.

Proof (Non-frameability). We prove non-frameability using a sequence of games.
Thereby we let the number of users in the system be q ≤ poly(κ).

Game 0: The original non-frameability game.

Game 1: As Game 0, but we guess the index i that will be attacked by the adver-
sary. If the adversary attacks another index, we abort.

Transition - Game 0 → Game 1: The winning probability in Game 1 is the same
as in Game 0, unless an abort event happens. We thus have Pr[S1] = Pr[S0] ·1/q.

Game 2: As Game 1, but we run (crsJ, τJ)← Π.S1(1κ) instead of crsJ ← Π.Setup(1κ)
upon running GKeyGen and store the trapdoor τJ. Then, we simulate all calls
to Π.Proof in Join using the simulator, i.e., without a witness.

Transition - Game 1 → Game 2: A distinguisher D1→2 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKJ

(κ).

Game 3: As Game 2, but we obtain crsO from a soundness challenger upon running
GKeyGen.

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S3] = Pr[S2].

Game 4: As Game 3, but we setup the SoK in simulation mode, i.e., we run
(crsS, τS) ← SoK.SimSetup(1κ) instead of crsS ← SoK.Setup(1κ) upon running
GKeyGen and store the trapdoor τS. Then, we simulate all calls to SoK.Sign
using the simulator, i.e., without a witness.

18

Transition - Game 3 → Game 4: A distinguisher D3→4 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
i.e., |Pr[S4]− Pr[S3]| ≤ εSIM(κ).

Game 5: As Game 4, but we modify the Join algorithm (executed within the
SndToU oracle) when queried for user with index i as follows. We obtain a co-
CDHI instance (aP, 1/aP̂) for BG, choose r←R Zp, set (Ui, Q)← (r ·P, aP), and

compute ĈJi ← Ω.Enc(pkO, r · 1/aP̂) and store r. On successful execution we set
gski ← ((Ui, Q), σ′) (note that πJi as well as the signatures in the GSig oracle
are already simulated, i.e., the discrete log of Q is not required to be known to
the environment).

Transition - Game 4 → Game 5: Since r is uniformly random, we can write it as
r = r′a for some r′ ∈ Zp. Then it is easy to see that the game change is
conceptual, i.e., Pr[S5] = Pr[S4].

Game 6: As Game 5, but for every forgery output by the adversary, we extract ρ←
SoK.Extract(crsS, τS, (P, σ1[1][2]), σ1||m,σ2) and abort if the extraction fails.

Transition - Game 5 → Game 6: By the extractability of the SoK, one can extract
a witness ρ with overwhelming probability 1 − εEXT(κ).4 Thus, we abort with
probability εEXT(κ) and Pr[S6] = Pr[S5] · (1− εEXT(κ)).

Game 7: As Game 6, but we further modify the Join algorithm when queried for
user with index i (executed within the SndToU oracle) as follows. Instead of
choosing (uski, upki)← UKeyGen(1κ), we engage with an EUF-CMA challenger,
obtain upki and set uski ← ∅. If any signature is required, we obtain it using
the oracle provided by the EUF-CMA challenger.

Transition Game 6 → Game 7: This change is conceptual, i.e., Pr[S7] = Pr[S6].

At this point we have three possibilities if A outputs a valid forgery.

1. If a signature for ĈJi was never requested, A is an EUF-CMA forger for Σ and
the forgery is (ĈJi , σJi). The probability for this to happen is upper bounded
by εf(κ).

2. Otherwise, we know that ĈJi is honestly computed by the environment and—by
the perfect correctness of Ω—thus contains r/aP̂ , which leaves us two possibili-
ties:
(a) If e(σ[1][1], P̂) = e(σ[1][2], r/aP̂), A is an adversary against co-CDHI, since

we can obtain (((r · 1/aP, P), σ′)) ← ChgRepR(σ1, ρ
−1, pkR) and use r to

output r−1 · (r · 1/aP) = 1/aP . The probability for this to happen is upper
bounded by εco-CDHI(κ).

(b) If e(σ[1][1], P̂) 6= e(σ[1][2], r/aP̂), A has produced an opening proof for a
statement which is actually not in LRO

. The probability for this to happen
is upper bounded by εS(κ).

Taking the union bound we obtain εnf7(κ) ≤ εf(κ) + εco-CDHI(κ) + εS(κ), which
yields the following bound for the success probability in Game 1: Pr[S1] ≤ Pr[S5] +

εZKJ
(κ) + εSIM(κ). Furthermore, we know that Pr[S5] = εnf7(κ)

1−εEXT(κ) and Pr[S0] =

4 Note that using σ1||m as message in the SoK ensures that the conditions for the extractor
to work with overwhelming probability are satisfied for every forgery output by the
adversary.

19

Pr[S1]·q. Taking all together we have that Pr[S0] ≤ q ·(εnf7(κ)
1−εEXT(κ) +εZKJ

(κ)+εSIM(κ)),

which is negligible. ut

Theorem 6. If Ω is perfectly correct, and Σ is EUF-CMA secure, then Scheme 1
is weakly opening sound.

Proof. Upon honestly executing Join for users i and j, the probability that their r
(resp. R̂) values collide is negligible. The perfect correctness of Ω and the EUF-CMA
security of Σ thus uniquely determine user i as the signer of σ with overwhelming
probability. Then, it is easy to see that an adversary against weak opening soundness
is an adversary against soundness of Π. ut

5 Instantiation in the ROM

To compare our approach to existing approaches regarding signature size and com-
putational effort upon signature generation and verification, we present the sign and
verification algorithms for an instantiation of our scheme with the SPS-EQ from
[FHS14, FHS15], whose security holds in the generic group model. For the in-
stantiation of signatures of knowledge (SoKs) in the ROM, we apply the Fiat-
Shamir (FS) [FS87] heuristic to Σ-protocols and further apply the transformation
from [FKMV12] to obtain simulation soundness.

Before we introduce the approaches to obtain CPA-fully (resp. CCA2-fully) anony-
mous instantiations, we recall that the group signing key gski consists of a vector of
two group elements (R,P) ∈ (G∗1)2 and an SPS-EQ signature σ ∈ G1×G∗1 ×G∗2 on
this vector. Randomization of a gski with a random value ρ ∈ Z∗p, i.e., ChgRepR, re-
quires 4 multiplications in G1 and 1 multiplication in G2. Verification of an SPS-EQ
signature on gski requires 5 pairings.

Finally, we note that the proofs performed using Π within Join and Open can
straight-forwardly be instantiated using standard techniques. Therefore, and since
they are neither required within Sign nor Verify, we do not discuss their instantiation
here.

5.1 CPA-Full Anonymity

Subsequently, we show how Sign and Verify are instantiated in the CPA-full anonymity
setting. Therefore, let H : {0, 1}∗ → Zp be a random oracle and let x be the proven
statement (which is implicitly defined by the scheme):

Sign(gpk, gski,m) : Parse gski as ((R,P), σ), choose ρ←R Zp, compute σ1 = ((R′,
P ′), σ′) ← ChgRepR(gski, ρ, pkR). Choose ν←R Zp, compute N ← νP , c ←
H(N ||σ1||m||x), z ← ν + c · ρ, set σ2 ← (c, z), and return σ ← (σ1, σ2).

Verify(gpk,m, σ) : Parse σ as (σ1, σ2) = (((R′, P ′), σ), (c, z)), return 0 if VerifyR(
σ1, pkR) = 0. Otherwise compute N ← zP − cP ′ and check whether c =
H(N ||σ1||m||x) holds. If so return 1 and 0 otherwise.

Since the used Σ-protocol is a standard proof of knowledge of the discrete logarithm
logP P

′, it is easy to see that applying the transformations from [FKMV12] yields a

20

SoK in the ROM with the properties we require. All in all, group signatures contain
4 elements in G1, 1 element in G2 and 2 elements in Zp. Counting only the expensive
operations, signing costs 5 multiplications in G1 and 1 multiplication in G2, and
verification costs 2 multiplications in G1 and 5 pairings.

5.2 CCA2-Full Anonymity

When we want to achieve CCA2-full anonymity, we require our signatures of knowl-
edge to be straight-line extractable, since standard rewinding techniques would lead
to an exponential blowup in the reduction (cf. [BFW15]). One posssibility would
be to rely on the rather inefficient approach to straight-line extraction due to Fis-
chlin [Fis05]. However, as we do not need to straight-line extract the full witness
w, but it is sufficient for us to straight-line extract an image of w under a one-
way function f : ρ 7→ ρ · P̂ , we can fortunately use the notion of straight-line
f -extractable SoKs as recently proposed by Cerulli et al. [BCC+15]. This allows
us to still use the FS paradigm with good efficiency. The construction builds upon
the generic conversion in [FKMV12,BPW12] and the generic trick in [BCC+15] to
obtain straight-line f -extractability is by computing an extractable commitment to
the image of the witness w under a function f with respect to an extraction key in
the CRS and proving consistency with the witness.5

For straight-line extractability, we let Ŷ be a public key for the ElGamal variant
in G2 from [BCC+15], which is generated upon SoK.Setup and represents the CRS of
SoK. SoK.SimSetup additionally returns τ such that Ŷ = τ ·P̂ . Furthermore, let x be
the proven statement (implicitly defined by the scheme and the generic compiler).
Subsequently, we show how Sign and Verify are instantiated in this setting, where
H : {0, 1}∗ → Zp is modelled as a random oracle:

Sign(gpk, gski,m) : Parse gski as ((R,P), σ), choose ρ←R Zp, compute σ1 = ((R′,

P ′), σ′) ← ChgRepR(gski, ρ, pkR). Choose u, ν, η←R Zp, compute (Ĉ1, Ĉ2) =

(uŶ , ρP̂ + uP̂), N ← νP , M̂1 ← ηŶ , M̂2 ← (ν + η)P̂ , c← H(N ||M̂1||M̂2||σ1||
m||x), z1 ← ν + c · ρ, z2 ← η + c · u, set σ2 ← (Ĉ1, Ĉ2, c, z1, z2), and return
σ ← (σ1, σ2).

Verify(gpk,m, σ) : Parse σ as (σ1, σ2) = (((R′, P ′), σ), (c, z1, z2)), return 0 if Ver-
ifyR(σ1, pkR) = 0. Otherwise compute N ← z1P − cP ′, M̂1 ← z2 · Ŷ − c · Ĉ1,
M̂2 ← (z1 + z2) · P̂ − c · Ĉ2, and check whether c = H(N ||M̂1||M̂2||σ1||m||x)
holds. If so return 1 and 0 otherwise.

We now show that the above instantiation provides the properties we require. That
is, we show that the Σ-protocol provides perfect completeness, special honest-
verifier zero-knowledge (SHVZK) and special soundness. We additionally require
the Σ-protocol to provide quasi-unique responses [Fis05], i.e., given an accepting
proof it should be infeasible to find a new valid response for that proof, in order for
the compiler in [BCC+15] to apply.

Lemma 1. The above Σ-protocol is perfectly complete, SHVZK, special-sound and
has quasi-unique responses.

5 Note that one can still obtain the full witness w using a rewinding extractor.

21

Proof. We investigate all the properties below.

Perfect completeness. We omit perfect completeness since it is straight-forward
to verify by inspection.

SHVZK. We describe a simulator which outputs transcripts being indistinguish-
able from real transcripts. First, it chooses P ′←R G1, Ĉ1←R G2, Ĉ2←R G2. While P ′

and Ĉ1 are identically distributed as in a real transcript, the random choice of Ĉ2

is not detectable under DDH in G2 which holds in the SXDH setting (more gener-
ally under IND-CPA of the used encryption scheme). Then, the simulator chooses
z1, z2, c←R Zp and computes N ← z1 · P − c · P ′, M̂1 ← z2 · Ŷ − c · Ĉ1, M̂2 ←
(z1+z2)·P̂−c·Ĉ2. It is easy to see that the transcript (P ′, Ĉ1, Ĉ2, N, M̂1, M̂2, z1, z2, c)
represents a valid transcript and its distribution is computationally indistinguish-
able from a real transcript.

Special soundness. Let us consider that we have two accepting answers (z1, z2,
c) and (z′1, z

′
2, c
′) from the prover for distinct challenges c 6= c′. Then we have that

z1 − c · ρ = z′1 − c′ · ρ and z2 − c · u = z′2 − c′ · u,

and extract a witness as ρ← z1−z′1
c−c′ , u← z2−z′2

c−c′ .

Quasi-unique responses. The answers z1 and z2 are uniquely determined by the
word Ŷ , P ′, Ĉ1, Ĉ2, the commitments N , M̂1, M̂2 as well as the challenge c (and
thus the verification equation). ut

Lemma 2. Applying the generic conversions from [FKMV12] to the Fiat-Shamir
transformed version of the above Σ-protocol with the setup SoK.Setup as described
in Section 5.2 produces a signature of knowledge in the random oracle model, that
is extractable and straight-line f -extractable.

The proof is analogous to [BCC+15], but we re-state it for completeness.

Proof. For simulatability, we observe that the CRS output by SoK.SimSetup is iden-
tical to the CRS output by SoK.Setup and SoK.SimSign programs the random oracle
to simulate proofs. Simulatability then follows from SHVZK. For extractability we
rely on rewinding, special soundness and quasi-unique responses, using the results
from [FKMV12]. For straight-line f -extractability, we use the trapdoor τ to decrypt
(Ĉ1, Ĉ2) in the proof transcript and obtain ρP̂ = f(ρ). ut

Switching Groups. All in all, this instantiation yields signatures containing 4
elements in G1, 3 elements in G2, and 3 Zp elements. Counting only the expensive
operations, signing costs 5 multiplications in G1 and 6 multiplications in G2, and
verification costs 2 multiplications in G1, 4 multiplications in G2, and 5 pairings.
We observe that the protocol presented above now requires more operations in the
more expensive group G2 than in G1. However, as we work in the SXDH setting,
we can simply switch the roles of G1 and G2 and thus all elements in G1 to G2

and vice versa. This gives us improved computational performance at the expense
of slightly larger signatures.

22

6 Evaluation and Discussion

Subsequently, we discuss our work in the light of some recent concurrent and inde-
pendent work and discuss open issues. Moreover, we provide a performance evalua-
tion with respect to other schemes that provide the same degree of security as well
as with schemes that provide only weaker security guarantees.

6.1 Relation to Recent Work

In independent and concurrent work, a new model for fully-dynamic group sig-
natures was proposed by Bootle et al. in [BCC+16]. Bootle et al. address mali-
ciously generated issuer and opener keys, include the notion of opening soundness
from [SSE+12] and formally model revocation by means of epochs. Although our
work is independent of theirs, we want to briefly put our construction in context of
their recent model.

In our scheme, one can straight forwardly incorporate the requirement to sup-
port maliciously generated keys in the fashion of [BCC+16] by extending the actual
public keys of issuer and opener by a (straight-line extractable) zero-knowledge
proof of knowledge of the respective secret issuer and opener key.

Revocation for our scheme could be achieved using standard techniques from
the literature. However, it is not studied in [BCC+16] if any of the sophisticated
approaches to revocation fits in their model. For a practical revocation approach, it
seems to be reasonable to choose a re-issuing based approach, i.e., to set up a new
group after every epoch, as also used in [BCC+16]. Their group signature construc-
tion being secure in their model builds upon accountable ring signatures [BCC+15].
It comes at the cost of a group-public-key size linear in the number of group mem-
bers as well as a signature size logarithmic in the number of group members, and
the revocation related re-issuing requires every group member to obtain the new
group public key. If we apply the same revocation approach to our scheme, we will
have public keys as well as signatures of constant size, and re-issuing requires each
group member which is still active to re-join the new group.

While our scheme provides weak opening soundness, achieving the stronger no-
tion for our scheme (where also the opening authority may be malicious) would
require the opening authority to additionally prove that the opened index i cor-
responds to the lowest index in reg so that the respective entry together with the
signature in question satisfies the original relation RO. Such a proof can efficiently
be instantiated by means of non-interactive plaintext in-equality proofs as shown
in [BDSS16].

6.2 Performance Evaluation and Comparison

To underline the practical efficiency of our approach, we provide a comparison of
our ROM instantiation with other schemes in the ROM. In particular we use two
schemes who follow the approach of Bichsel et al., i.e., [BCN+10, PS16], which
are proven secure w.r.t. a weaker anonymity notion (denoted CCA−), and the
well known BBS scheme [BBS04] (with and without precomputations) providing
the stronger notion of CPA-full anonymity. We note that we use the plain BBS

23

scheme for comparison, which does not even provide non-frameability and the non-
frameable version would be even more expensive. Moreover, we use the group sig-
nature scheme with the shortest known signatures [DP06] (with and without pre-
computations) being secure in the strong BSZ model and thus providing CCA2-full
anonymity. Finally, we also compare our scheme to the recent CCA2-fully anony-
mous scheme by Libert et al. [LMPY16] which is secure in the ROM under standard
assumptions (SXDH).

In Table 1 we provide a comparison of the estimated efficiency in a 254bit BN-
pairing setting, based on performance values on an ARM-Cortex-M0+ with drop-in
hardware accelerator [UW14]. This processor is small enough to be suited for smart
cards or wireless sensor nodes [UW14]. Then, in Table 2, we provide an abstract
comparison regarding signature size and computational costs, and, we also include
the type of the underlying hardness assumption.

Computational Efficiency. When comparing our CPA-fully anonymous scheme
as well as our CCA2-fully anonymous scheme to other schemes providing the same
anonymity guarantees, ours are the by now fastest ones regarding signature gen-
eration and verification costs. While some of the schemes used for comparison use
slightly less progressive assumptions, it seems that very good performance requires
more progressive assumptions. When looking for instance at the most compact
CCA2-fully anonymous group signatures in the standard model under standard as-
sumptions (SXDH and XDLIN) by Libert et al. [LPY15], signature sizes in the best
case will have 30 G1 and 14 G2 elements (≈ 15000 bit when taking the setting in
Table 1), large public keys and computation times that are far from being feasible
for resource constrained devices.

Scheme Anon. Signature Size Signature Cost Verification Cost

[BCN+10] CCA− 1273bit 351ms 1105ms
[PS16] CCA− 1018bit 318ms 777ms

[BBS04] CPA 2289bit 1545ms 2092ms
[BBS04] (prec.) CPA 2289bit 1053ms 1600ms

This paper CPA 2037bit 266ms 886ms

This paper CCA2 3309bit 771ms 1290ms
This paper (switch) CCA2 3563bit 703ms 1154ms

[DP06] CCA2 2290bit 1380ms 2059ms
[DP06] (prec.) CCA2 2290bit 1020ms 1353ms

[LMPY16] CCA2 2547bit 1688ms 2299ms

Table 1. Estimated efficiency based on a BN-pairing implementation on an ARM-Cortex-
M0+ with a drop-in hardware accelerator, operating at 48MHz [UW14]. Using 254-bit
curves, this implementation delivers the performance values 33ms-101ms-252ms-164ms
(G1-G2-GT -pairing). For the estimation of signature sizes, we use 255bit for elements in
G1, 509bit for elements in G2 and 254bit for elements in Zp. The semantics of ‘CCA−’ is
the same as in Table 2. We note that [BBS04] is defined for a Type-2 pairing setting, which
means that our performance estimation for this scheme is rather optimistic and likely to
be worse in practice.

24

Regarding signature generation, we want to emphasize that our CPA-fully anony-
mous instantiation is the fastest among all schemes used for comparison (even the
ones only providing CCA− anonymity), and, to the best of our knowledge, the
fastest among all existing schemes. This is of particular importance since signature
generation is most likely to be executed on a constrained device. Regarding sig-
nature verification our CPA-fully anonymous instantiation is only outperformed by
the CCA− anonymous instantiation in [PS16].

Signature Size. Comparing schemes providing the same anonymity guarantees,
our CPA-fully anonymous instantiation even provides shorter signature sizes than
the popular BBS scheme [BBS04]. Regarding CCA2-fully anonymous schemes, it
seems that gained efficiency in the “without encryption” paradigm comes at the
cost of larger signatures compared to instantiations following the SEP paradigm.
It is interesting to note in this context that the schemes in vein of Bichsel et al.
providing the weakest anonymity (CCA−) have the smallest signatures among all
schemes.

6.3 Interesting Properties and Observations

Firstly, we observe that our construction does neither require any pairing compu-
tations nor computations in the target group GT upon signature creation, which
makes it especially suitable for constrained devices. Secondly, it seems that one
could exploit the R̂ values in a relatively straight forward manner to obtain trace-
able signatures [KTY04,Cho09].

Acknowledgements. We thank the anonymous referees from Asiacrypt’16 for
their valuable comments.

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A Practical
and Provably Secure Coalition-Resistant Group Signature Scheme. In Ad-
vances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, volume 1880, pages 255–270, 2000.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures. In
Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,
and Christophe Petit. Short Accountable Ring Signatures Based on DDH. In
Computer Security - ESORICS 2015 - 20th European Symposium on Research
in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings,
Part I, volume 9326 of LNCS, pages 243–265. Springer, 2015.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens
Groth. Foundations of fully dynamic group signatures. In ACNS, 2016. Full
Version: IACR ePrint Report 2016/368.

[BCN+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan
Warinschi. Get Shorty via Group Signatures without Encryption. In Secu-
rity and Cryptography for Networks, 7th International Conference, SCN 2010,
volume 6280 of LNCS, pages 381–398. Springer, 2010.

25

S
ch

e
m
e

A
n
o
n
.

S
ig

n
a
tu

re
S
ize

S
ig

n
a
tu

re
C

o
st

V
erifi

ca
tio

n
C

o
st

A
ssu

m
p
tio

n
T

y
p

e

[B
C

N
+

1
0
]

C
C

A
−

3G
1

+
2Z

p
1G

T
+

3G
1

5
P

+
1G

T
+

1G
1

In
tera

ctiv
e

[P
S
1
6
]

C
C

A
−

2G
1

+
2Z

p
1G

T
+

2G
1

3
P

+
1G

T
+

1G
1

G
G

M

[B
B

S
0
4
]

C
P

A
3G

1
+

6Z
p

3
P

+
3G

T
+

9G
1

5
P

+
4G

T
+

8G
1

q
-T

y
p

e
(n

o
n
-sta

tic)
[B

B
S
0
4
]

(p
rec.)

C
P

A
3G

1
+

6Z
p

3G
T

+
9G

1
4G

T
+

8G
1

q
-T

y
p

e
(n

o
n
-sta

tic)

T
h
is

p
a
p

er
C

P
A

1G
2

+
4G

1
+

2Z
p

1G
2

+
5G

1
5
P

+
2G

1
G

G
M

T
h
is

p
a
p

er
C

C
A

2
3G

2
+

4G
1

+
3Z

p
6G

2
+

5G
1

5
P

+
4G

2
+

2G
1

G
G

M
T

h
is

p
a
p

er
(sw

itch
)

C
C

A
2

4G
2

+
3G

1
+

3Z
p

5G
2

+
6G

1
5
P

+
2G

2
+

4G
1

G
G

M

[D
P

0
6
]

C
C

A
2

4G
1

+
5Z

p
3
P

+
3G

T
+

4G
1

5
P

+
4G

T
+

7
G

1
q
-T

y
p

e
(n

o
n
-sta

tic)
[D

P
0
6
]

(p
rec.)

C
C

A
2

4G
1

+
5Z

p
3G

T
+

8G
1

1
P

+
3G

T
+

2G
2

+
7G

1
q
-T

y
p

e
(n

o
n
-sta

tic)

[L
M

P
Y

1
6
]

C
C

A
2

7G
1

+
3Z

p
4
P

+
2G

T
+

1
6G

1
8
P

+
3G

T
+

7G
1

S
ta

n
d
a
rd

T
a
b
le

2
.

C
o
m

p
a
riso

n
o
f

rela
ted

g
ro

u
p

sig
n
a
tu

re
sch

em
es

in
th

e
R

O
M

reg
a
rd

in
g

sig
n
a
tu

re
size,

sig
n
in

g
a
n
d

v
erifi

ca
tio

n
co

st,
a
n
d

req
u
ired

h
a
rd

n
ess

a
ssu

m
p
tio

n
s,

w
h
ere,

in
term

s
o
f

co
m

p
u
ta

tio
n
a
l

co
sts,

w
e

o
n
ly

co
u
n
t

th
e

ex
p

en
siv

e
o
p

era
tio

n
s

in
G

1 ,
G

2 ,
a
n
d
G
T

a
s

w
ell

a
s

th
e

p
a
irin

g
s.

T
h
e

va
lu

es
fo

r
[B

C
N

+
1
0
]

a
n
d

[P
S
1
6
]

a
re

ta
k
en

fro
m

[P
S
1
6
].

W
e

u
se

‘C
C

A
−

’
to

d
en

o
te

a
n
o
n
y
m

ity
in

th
e

sen
se

o
f

[B
C

N
+

1
0
]

a
n
d

n
o
te

th
a
t

p
reco

m
p
u
ta

tio
n

in
[B

B
S
0
4
,D

P
0
6
]

req
u
ires

to
sto

re
ex

tra
elem

en
ts

in
G
T

.

26

[BDSS16] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-
Interactive Plaintext (In-)Equality Proofs and Group Signatures with Verifiable
Controllable Linkability. In CT-RSA’16, pages 127–143, 2016.

[BFW15] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of
knowledge in the random oracle model. In Public-Key Cryptography - PKC
2015 - 18th IACR International Conference on Practice and Theory in Public-
Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Pro-
ceedings, volume 9020 of LNCS, pages 629–649. Springer, 2015.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures and
Pseudorandom Functions. In Public-Key Cryptography - PKC 2014 - 17th
International Conference on Practice and Theory in Public-Key Cryptography,
volume 8383, pages 501–519. Springer, 2014.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
Group Signatures: Formal Definitions, Simplified Requirements, and a Con-
struction Based on General Assumptions. In Advances in Cryptology - EU-
ROCRYPT 2003, International Conference on the Theory and Applications
of Cryptographic Techniques, volume 2656 of LNCS, pages 614–629. Springer,
2003.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the fiat-shamir heuristic and applications to helios. In
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of LNCS, pages 626–643.
Springer, 2012.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures:
The Case of Dynamic Groups. In Topics in Cryptology - CT-RSA 2005, The
Cryptographers’ Track at the RSA Conference 2005, volume 3376 of LNCS,
pages 136–153. Springer, 2005.

[BW06] Xavier Boyen and Brent Waters. Compact Group Signatures Without Random
Oracles. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, volume 4004 of LNCS, pages 427–444. Springer, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-Domain Subgroup Hiding and Constant-
Size Group Signatures. In Public Key Cryptography - PKC 2007, 10th Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, volume
4450 of LNCS, pages 1–15. Springer, 2007.

[Cho09] Sherman S. M. Chow. Real Traceable Signatures. In Selected Areas in Cryptog-
raphy, 16th Annual International Workshop, SAC 2009, volume 5867 of LNCS,
pages 92–107. Springer, 2009.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous
Credentials from Bilinear Maps. In Advances in Cryptology - CRYPTO 2004,
24th Annual International Cryptology Conference, volume 3152 of LNCS, pages
56–72. Springer, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On Signatures of Knowledge. In Ad-
vances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, volume 4117 of LNCS, pages 78–96. Springer, 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for
Large Groups (Extended Abstract). In Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, volume 1294 of LNCS,
pages 410–424. Springer, 1997.

[CvH91] David Chaum and Eugène van Heyst. Group Signatures. In Advances in
Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of

27

of Cryptographic Techniques, volume 547 of LNCS, pages 257–265. Springer,
1991.

[DP06] Cécile Delerablée and David Pointcheval. Dynamic Fully Anonymous Short
Group Signatures. In Progressin Cryptology - VIETCRYPT 2006, First Inter-
national Conferenceon Cryptology in Vietnam, volume 4341 of LNCS, pages
193–210. Springer, 2006.

[FHS14] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
Preserving Signatures on Equivalence Classes and Constant-Size Anonymous
Credentials. IACR Cryptology ePrint Archive, Report 2014/944, 2014. http:

//eprint.iacr.org/.
[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical Round-

Optimal Blind Signatures in the Standard Model. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, volume 9216 of LNCS,
pages 233–253. Springer, 2015.

[Fis05] Marc Fischlin. Communication-Efficient Non-interactive Proofs of Knowl-
edge with Online Extractors. In Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 152–168.
Springer, 2005.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the fiat-shamir transform. In Progress in
Cryptology - INDOCRYPT 2012, 13th International Conference on Cryptology
in India, Kolkata, India, December 9-12, 2012. Proceedings, volume 7668 of
LNCS, pages 60–79. Springer, 2012.

[FS87] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO’87, volume 263 of LNCS,
pages 186–194. Springer, 1987.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM JoC, 17(2), 1988.

[Gro07] Jens Groth. Fully Anonymous Group Signatures Without Random Oracles. In
Advances in Cryptology - ASIACRYPT 2007, 13th International Conference
on the Theory and Application of Cryptology and Information Security, volume
4833 of LNCS, pages 164–180. Springer, 2007.

[HS14] Christian Hanser and Daniel Slamanig. Structure-Preserving Signatures on
Equivalence Classes and Their Application to Anonymous Credentials. In Ad-
vances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, volume
8873 of LNCS, pages 491–511. Springer, 2014.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures. In
Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, pages 571–589, 2004.

[LLM+16] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Signature Schemes with Efficient Protocols and Dynamic Group Signa-
tures from Lattice Assumptions. Cryptology ePrint Archive, Report 2016/101,
2016.

[LMPY16] Benôıt Libert, Fabrice Mouhartem, Thomas Peters, and Moti Yung. Practical
“Signatures with Efficient Protocols” from Simple Assumptions. In Asia CCS,
2016.

[LPY15] Benôıt Libert, Thomas Peters, and Moti Yung. Short Group Signatures via
Structure-Preserving Signatures: Standard Model Security from Simple As-
sumptions. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryp-
tology Conference, pages 296–316, 2015.

28

http://eprint.iacr.org/
http://eprint.iacr.org/

[NS04] Lan Nguyen and Reihaneh Safavi-Naini. Efficient and provably secure
trapdoor-free group signature schemes from bilinear pairings. In Advances in
Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory
and Application of Cryptology and Information Security, pages 372–386, 2004.

[PS16] David Pointcheval and Olivier Sanders. Short Randomizable Signatures. In
Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, volume 9610 of LNCS, pages 111–126. Springer, 2016.

[SSE+12] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and Kazuo
Ohta. On the Security of Dynamic Group Signatures: Preventing Signature
Hijacking. In Public Key Cryptography - PKC 2012 - 15th International Con-
ference on Practice and Theory in Public Key Cryptography, volume 7293 of
LNCS, pages 715–732. Springer, 2012.

[UW14] Thomas Unterluggauer and Erich Wenger. Efficient Pairings and ECC for Em-
bedded Systems. In Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, volume 8731 of LNCS, pages 298–315.
Springer, 2014.

29

	Fully-Anonymous Short Dynamic Group Signatures Without Encryption

