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Abstract. We present a multi-party computation protocol in the case
of dishonest majority which has very low round complexity. Our proto-
col sits philosophically between Gentry’s Fully Homomorphic Encryption
based protocol and the SPDZ-BMR protocol of Lindell et al (CRYPTO
2015). Our protocol avoids various inefficiencies of the previous two pro-
tocols. Compared to Gentry’s protocol we only require Somewhat Ho-
momorphic Encryption (SHE). Whilst in comparison to the SPDZ-BMR
protocol we require only a quadratic complexity in the number of players
(as opposed to cubic), we have fewer rounds, and we require less proofs
of correctness of ciphertexts. In addition we present a variant of our
protocol which trades the depth of the required SHE scheme for more
homomorphic multiplications.

1 Introduction

Secure multiparty computation: In the setting of secure multiparty computation
(MPC), a set of mutually distrusting parties wish to compute a joint function of
their private inputs. Secure computation has been studied has been studied since
the 1980s, and it has been shown that any functionality can be securely com-
puted, even in the presence of a dishonest majority [28,14]. Classically, two main
types of adversaries have been considered: passive (or semi-honest) adversaries
follow the protocol specification but try to learn more than allowed from the
transcript, and active (or malicious) adversaries who run any arbitrary strategy
in an attempt to breach security.

Efficient MPC: In the last decade, significant effort has been placed on making
secure computation efficient, both theoretically (with asymptotic efficiency) and
practically. Both in theory and in practice the round complexity of MPC proto-
cols is of interest. The theoretical interest is obvious, but it is in practice that
probably the most effect can be felt. It is well known from practical experiments
that often round complexity has more of an effect on the performance of MPC
systems than communication complexity. This is especially true in networks with
high latency (e.g., when the participating parties are on opposite sides of the
world), where protocols with many rounds perform very poorly. In practice, one
also finds that constants matter considerably.

Most of the research effort on making secure computation practically effi-
cient has focused on the case of two parties [28,25,24]. The most progress has



been with protocols based on Yao’s garbled circuits [28]. Extraordinary effi-
ciency has been achieved for both passive adversaries [4,1] and active adversaries
[19,20,27,18,16,22,23]. In contrast, the case of multiple parties is way behind.
When considering protocols with many rounds, the protocol of GMW can be
used for passive adversaries (see [14] with an implementation in [7]) and the
protocols of SPDZ and TinyOT can be used for active adversaries [10,9,17].
However, as mentioned above, these protocols have inherent inefficiency based
on the fact that the number of rounds in the protocol is linear in the depth of the
circuit that the parties compute. In contrast to the impressive progress made in
this area for the case of two parties, very little is known for multiple parties.

The focus of this paper: In this paper, we focus on the construction of a con-
cretely efficient MPC protocol which requires a constant number of rounds. Our
protocol is based on the BMR approach [3]. This approach consists of construct-
ing a two phase protocol. In the first phase the parties use a generic MPC
protocol to construct a “garbled” version of the function being computed. Then,
in a constant round evaluation phase the garbled function is evaluated. The first
garbling phase works in a gate-by-gate manner, and so by processing all gates
in one go we obtain a constant round protocol. Indeed this first garbling phase
evaluates, via generic MPC, a circuit of constant depth.

In recent work [21] an efficient variant of the BMR protocol is used which
utilizes the SPDZ [10] generic MPC protocol in the first garbling phase. In ad-
dition the authors introduce other optimizations which make the entire protocol
actively secure for very little additional overhead. The SPDZ protocol itself uses
a two phase approach, in the first phase, which utilizes Somewhat Homomorphic
Encryption (SHE), correlated randomness is produced. Then in the second phase
this correlated randomness is used to evaluate the desired functionality (which
in this case is the BMR garbling). Thus overall this protocol, which we dub
SPDZ-BMR, consists of three phases; a phase using SHE, a phase doing generic
MPC via the SPDZ online phase, and the final BMR circuit evaluation phase.

There is another approach to constant round MPC, which utilizes Fully Ho-
momorphic Encryption (FHE), namely Gentry’s MPC protocol [13]. In this pro-
tocol the parties simply input their data using the encryption of the underlying
FHE scheme, the parties evaluate the function locally using FHE, and then per-
form a distributed decryption (which requires ROut = 2 rounds of interaction
with current FHE schemes). This protocol is essentially optimal in terms of the
number of rounds of communication, but it suffers from a number of drawbacks.
The major drawback is that it requires FHE, which is itself a prohibitively expen-
sive operation (and currently not practical). In addition, it is not immediately
clear how to make the protocol actively secure without incurring significant ad-
ditional costs. We outline in this paper how to address this latter problem, as a
by-product of the analysis of our main protocol.

Our Contributions: Returning to the BMR based approach we note that any
MPC protocol could be used for the BMR garbling phase, as long as it can
be made actively secure within the specific context of the BMR protocol. In



particular we could utilize Gentry’s FHE-based MPC protocol (using only a
SHE scheme) to perform the first stage of the BMR protocol; a protocol idea
which we shall denote by SHE-BMR. The main observation as to why this is
possible is that, as we have mentioned, the depth of the circuit computing the
BMR garbled circuit is itself constant (and, in particular, independent of the
depth of the circuit computing the function itself). This is due to the fact that
in the BMR approach all garbled gates are computed in parallel; thus, the depth
of the circuit computing the entire garbled circuit equals the depth of the circuit
required to compute a single garble gate. We therefore conclude that somewhat
homomorphic encryption suffices, with the depth being that sufficient to compute
a single garbled gate.

A number of problems arise with this idea, which we address in this paper.
First, can we make the resulting protocol actively secure for little additional
cost? Second, is the required depth of the SHE scheme sufficiently small to make
the scheme somewhat practical? Recall the SPDZ-BMR protocol only requires
the underlying SHE scheme to support circuits of multiplicative depth one, and
increasing the depth increases the cost of the SHE itself. Third, is the resulting
round complexity of the scheme significantly less than that of the SPDZ-BMR
protocol? Note that we can only expect a constant factor improvement, but such
constants matter in practice. Fourth, can we save on any additional costs of the
SPDZ-BMR protocol?

Since we use Gentry’s FHE-based protocol (or an SHE version of it), we now
outline two key challenges with using Gentry’s FHE based protocol, which also
apply to our protocol. When entering data we require an actively secure protocol
to encrypt the FHE data, in particular we need to guarantee to the receiving
parties that each encryption is well formed. The standard technique to do this
is to also transmit a zero-knowledge proof of the correctness of encryption. A
method to do this is given in [9, Appendix F], or [2, Section 3.2]. This is costly,
and in practice rather inefficient. We call this protocol ID, and the associated
round cost by RID. In addition if we need to make further input dependent inputs,
then this round cost will multiply. Thus we also need to introduce a sub-protocol
with round cost RInput+ = 1, which enables us to place all the zero-knowledge
proofs for proving correctness of input into a pre-processing phase.

The second problem with Gentry’s protocol is that we need to ensure that the
distributed decryption is also actively secure; in the sense that the malicious par-
ties cannot get an honest party to accept an incorrect result. To our knowledge
this has not yet been treated in the literature, and we present a sub-protocol for
performing this. We denote this sub-protocol by Out+ and its associated round
cost by ROut+. Importantly, our sub-protocol has round complexity ROut+ = 2.

We present a variant of our protocol which reduces the depth of the required
SHE scheme, at the expense of requiring each party to input a larger amount of
data. Interestingly, the main aim of the design in the SPDZ-BMR protocol was to
reduce the number of multiplications needed (since each multiplication required
generating a multiplication tuple for SPDZ, and this was the main cost). In
contrast, when using SHE directly, additional multiplications are not expensive



as long as they are carried out in parallel. Stated differently, the main concern is
the depth of the circuit computing the BMR garbled circuit, and not necessarily
its size. Of course, for concrete efficiency, one must try to minimize both, as
reducing one slightly while greatly increasing the other would not be beneficial.
In order to achieve this reduction in the depth of the circuit computing the
BMR circuit, we utilize an observation that when computing the garbled circuit
it suffices to obtain either the PRF key on the output wire or its additive inverse.
This is due to the fact that we can actually take the PRF key to be the square
of the value obtained in the garbled gate, which is the same whether k or −k is
obtained. This allows us to combine the generation of the indicator-bits and the
key-vector generation together. The additional flexibility of being able to output
either the key or its additive inverse allows us to reduce the required SHE depth
by one; in particular, from a depth of four to a depth of three.

In summary, we actually obtain two distinct protocols πb where b ∈ {0, 1};
for which b = 0 means applying our basic variant protocol and b = 1 means
applying the modified variant with a reduced depth cost. In some sense we can
think of our basic SHE-BMR protocol as the same as the SPDZ-BMR protocol
of [21], but it “cuts out the middle man” of producing multiplication triples, and
the interaction needed to evaluate the garbling via the online phase of SPDZ.
Indeed almost all of our basic protocol is identical to that described in [21].
However, naively applying SHE to the protocol from [21] results in a protocol
that is neither efficient nor secure. For example, naively applying Gentry’s MPC
protocol to the garbling stage would result in needing an SHE scheme which
supports a depth logarithmic in the number of parties n; whereas we would
rather utilize a SHE scheme with constant depth. Thus we need to carefully
design the FHE based MPC protocol to realise the BMR garbled circuit.

By utilizing the actively secure input and output routines in Gentry’s pro-
tocol we also obtain an actively secure variant of Gentry’s FHE based protocol
which we denote by Ga. This is in addition to the original passively secure FHE
based protocol of Gentry which we denote by Gp.

Comparison: By way of comparison we outline in Figure 1 differences between
the variants of our protocol, and those of Gentry and SPDZ-BMR. We let n
denote the number of parties, W and G denote the number of wires and gates
in the binary circuit respectively, and Win the number of input wires and Wout

the number of output wires. To ease counting of rounds we consider a secure
broadcast to be a single round operation (in the case of a dishonest majority,
where parties may abort, a simple two-round echo-broadcast protocol suffices in
any case [15]). We will see later that ROut+ = 2, and RID = 3. In the table the
various functions T1, T2, T3 describing the number of executions of ID are

T1 = 16 ·G · n3 + (8 ·G+ 4 ·W ) · n2 + 9 ·W · n+ 156 ·G · n,
T2 = 4 ·G · n2 + (3 ·W + 1) · n,
T3 = (4 ·G+ 2 ·W ) · n2 + (W + 1) · n.



If we compare the SPDZ-BMR protocol with our protocol variants π0 and
π1 we see that the major difference in computational cost is the number of
invocations of the protocol ID. The difference between SPDZ-BMR and π0 is
equal to T1 − T2 = 16 · G · n3 + 4 · (G + W ) · n2 + (6 ·W − 1) · n + 156 · G · n
invocations. To be very concrete, for 9 parties, a circuit of size 10,000 gates and
wires, the number of ID invocations equals 141,210,000 in SPDZ-BMR versus
3,510,009 in SHE-BMR-π0 versus 4,950,009 in SHE-BMR-π1. Thus, π0 is one
fortieth of the cost of SPDZ-BMR, and π1 is one twenty-eighth of the cost of
SPDZ-BMR. This gap widens further as the number of parties grows, with the
difference for 25 parties being a factor of 100 for π0 and 70 for π1. We remark,
however, that even for just 3 parties, protocols π0 and π1 are already one twenty-
third and one eighteenth of the cost, respectively.

Protocol Security
Rounds of Depth of Number of
Interaction FHE/SHE ID Execs

Gp passive 3 = 1 +ROut Depth of f 0
Ga active 5 = RID +ROut+ 1 + Depth of f n+Win

SPDZ-BMR active 16 = 13 +RID 1 T1

π0 active 9 = RID + 4 +ROut+ 4 T2

π1 active 9 = RID + 4 +ROut+ 3 T3

Fig. 1: Comparison of Gentry’s, the SPDZ-BMR and our protocol

On the downside we require an SHE scheme which will support depth three
or four circuits, as opposed to the depth one circuits of the SPDZ-BMR proto-
col. The SHE scheme needs to support message spaces of Fp, where p > 2κ. We
use [8], which gives potential parameter sizes for various SHE schemes supporting
depth two and five, and run the experiments there to compare the parameters
required for our specific depths here (depth 1 for SPDZ, depth 4 for protocol
π0 and depth 3 for protocol π1). Specifically, assuming ciphertexts live in a ring
Rq, then the dimension needs to go up by approximately a factor of 1.5 for
depth-3 and a factor of 2 for depth-4, and the modulus by a factor of 1.6 for
depth-3 and a factor of 2 for depth-4. Assuming standard DCRT representation
of Rq elements, this equates to an increase in the ciphertext size by a factor of
approximately 2.4 for depth-3, and by approximately a factor of 4 for depth-4.
Furthermore, the performance penalty (cost of doing arithmetic) increases by a
factor of approximately 3.6 for depth-3, and by a factor of 8 for depth-4. Factor-
ing in this addditional cost, we have that when compared to SPDZ-BMR, the
relative improvement in the computational cost in the above example becomes
a factor of 40/8 = 5 for π0 and 28/3.6 = 7.7 for π1 for 9 parties, and a factor
of 100/8 = 12.5 for π0 and 70/3.6 ≈ 19.4 for π1 for 25 parties. Thus, both π0

and π1 significantly outperform BMR-SPDZ, and the depth reduction carried
out in π1 provides additional speedup (and reduction in bandwidth).



2 Background on MPC and FHE

As a warm up to our main protocol, and to introduce the aspects of the FHE
functionality we shall be using in detail we first give an outline of Gentry’s FHE
based protocol to evaluate the generic MPC functionality.

2.1 The Generic MPC Functionality

The goal of all the protocols in this paper are to securely realise the functionality
given in Figure 2. Namely we want protocols which allow n mutually distrusting
parties, with a possibly dishonest majority, to evaluate the function f(x1, . . . , xn)
on their joint inputs.

The General MPC Functionality: FMPC

The functionality is parametrized by a function f(x1, . . . , xn) which is input as
a binary circuit Cf . The protocol consists of three externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init, Cf ) from all parties, where Cf is a Boolean circuit, the
functionality activates and stores Cf .

Wait: This waits on the adversary to return a GO/NO-GO decision. If the adver-
sary returns NO-GO then the functionality aborts.

InputData: On input (input, Pi, varid, xi) from Pi and (input, Pi, varid, ?) from
all other parties, with varid a fresh identifier, the functionality stores (varid, xi).
The functionality then calls Wait.

Output: On input (output) from all parties, if (varid, xi) is stored for each Pi,
the functionality computes y = f(x1, . . . , xn) and outputs y to the adversary.
The functionality then calls Wait. If Wait does not result in an abort, the
functionality outputs y to all parties.

Fig. 2: The MPC Functionality: FMPC

2.2 A Basic FHE Functionality With Distributed Decryption

We first describe in Figure 3 a basic FHE functionality which contains a dis-
tributed decryption functionality. Two points need to be noted about the func-
tionality: Firstly, the distributed decryption operation in Output can produce
an incorrect result under the control of the adversary, but the “additive error”
which is introduced by the adversary is introduced before the adversary learns
the correct output. Secondly, the InputData routine is actively secure, and so a
proof of correctness of its correct decryption is needed for each input ciphertext.
The need for such an actively secure input routines is because we need to ensure
that parties enter “valid” FHE/SHE encryptions, and that the simulator can
“extract” the plaintext values.

A method to perform the required InputData operation is given in [9, Ap-
pendix F], or [2, Section 3.2]. The basic idea is to check a number of executions



of InputData at the same time. The protocol run in two phases, in the first
phase a set of reference ciphertexts are produced and via cut-and-choose one
subset is checked for correctness, whilst the other is permuted into buckets; one
bucket for each value entered via InputData. In the second phase the input ci-
phertexts are checked for correctness by combining them homomorphically with
the reference ciphertexts and opening the result. An analysis of the protocol
from [9] indicates that it requires RID = 3 rounds of communication: In the first
round of the proof one party broadcasts the reference ciphertexts, in the next
round the parties choose which ciphertexts to open, and in the third round the
ciphertexts are opened and combined.3 Thus, overall, three rounds suffice.

To be able to easily count the number of rounds of interaction, and the
depth of the operations being performed, we provide a count of these operations
in the functionality and/or protocol descriptions. For the functionalities where
these are given this counting can be thought of as definitional, whereas for the
protocols this counting is the induced counts given the underlying definitions of
the basic operation costs from the functionalities.

In the following, we fix the notation 〈varid〉 to represent the result stored in
the variable varid by the FFHE/FSHE functionalities. In particular, we will use the
arithmetic shorthands 〈z〉 = 〈x〉+ 〈y〉 and 〈z〉 = 〈x〉 · 〈y〉 to represent the result
of calling the Add and Multiply commands in the FFHE/FSHE functionality,
and we will slightly abuse those shorthands to denote subsequent additions or
multiplications.

The description of Output in the case of a passively secure functionality
is identical to the behaviour of the standard distributed decryption procedure
for FHE schemes such as BGV, again see [9] for how the distributed decryption
is performed. We shall provide a simple mechanism to provide active security
for the Output command in the next section, which comes at the expense of
increasing the required supported depth of the SHE scheme by one.

In the case of a passively secure variant of the FHE functionality, one would
always have e = 0 in the Output routine. Furthermore, we would not need a
proof of correctness of the input ciphertexts and so the number of rounds of
interaction in the InputData routine would be RID = 1.

2.3 Gentry’s FHE-Based MPC Protcol

In [13] Gentry presents an MPC protocol which has optimal round complexity
to implement FMPC. In the FFHE-hybrid model the protocol can be trivially de-
scribed as follows: The parties enter their data using the InputData command
of the FHE functionality, the required function is evaluated using the Add and
Multiply commands (i.e. each party locally evaluates the function using the
FHE operations). The Add-scalar command is computed by locally encrypting
the scalar with fixed randomness (so that all parties have the same ciphertext)
and then using the regular FHE Add command. Finally, the output is obtained
using the Output command of the FHE functionality. For passively secure ad-
versaries this gives us an “efficient” MPC protocol, assuming the FHE scheme

3 Choosing at random which ciphertexts to open cannot be carried out in a single
round. However, it is possible for all parties to commit to the randomness in previous
rounds and only decrypt in this round.



The FHE Functionality: FFHE/FSHE

The functionality consists of externally exposed commands Initialize, InputData,
Add, Multiply and Output, and one internal subroutine Wait.

Initialize: On input (init,p) from all parties, the functionality activates and stores
p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the adver-
sary returns NO-GO then the functionality aborts.

InputData: On input (input,Pi,varid,x) from Pi and (input,Pi,varid,?) from all
other parties, with varid a fresh identifier, the functionality stores (varid,x).
The functionality then calls Wait.
Depth Cost: D(x) = 0.
Round Cost: RID.

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x+ y mod p).

Add-scalar: On command (add-scalar, a, varid1, varid2) from all parties (if varid1

is present in memory and varid2 is not), the functionality retrieves (varid1, x)
and stores (varid2, a+ x mod p).

Multiply: On command (multiply, varid1, varid2, varid3) from all parties (if varid1,
varid2 are present in memory and varid3 is not), the functionality retrieves
(varid1,x), (varid2,y) and stores (varid3,x · y mod p).
In the case of the FSHE version of this functionality only a limited depth of
such commands can be performed; this depth is specified for the functionality.
Depth Cost: D(varid3) = max(D(varid1), D(varid2)) + 1.

Output: On input (output,varid, i) from all honest parties (if varid is present in
memory), and a value e ∈ Fp from the adversary, the functionality retrieves
(varid, x), and if i = 0 it outputs (varid, x) to the adversary. The functionality
then calls Wait. If Wait does not result in an abort, then the functionality
outputs x+ e to all parties if i = 0, or it outputs x+ e only to party i if i 6= 0.
Round Cost: ROut = 2 (Basically commit to the distributed decryption and
then open)

Fig. 3: The FHE/SHE Functionality: FFHE/FSHE



can actually evaluate the function. For active adversaries we then have to im-
pose complex zero-knowledge proofs to ensure that the InputData command
is performed correctly, and we need a way of securing the Output command
(which we will come to later).

3 The SPDZ-BMR Protocol

We shall now overview the SPDZ-BMR protocol from [21]. Much of the details we
cover here focus on the offline SHE-part of the SPDZ protocol and how it is used
in the SPDZ-BMR protocol. Recall the SPDZ protocol makes use of two phases;
one an offline phase which uses an SHE scheme (which for our purposes we
model via the functionality FSHE above restricted to functions of multiplicative
depth one), and an online phase using (essentially) only information theoretic
constructs. These two phases are used to create a shared garbled circuit which
is then evaluated in a third phase in the SPDZ-BMR protocol.

First Phase Cost: The first phase of the SPDZ-BMR protocol requires an upper
bound on the total number of parties n, internal wires W , gates G and input
wires per party Win of the circuit which will be evaluated. The phase then calls
the offline phase of the SPDZ engine to produce M = 13 · G multiplication
triples, B = W shared random bits, R = 2 ·W · n shared random values and
I = 8 ·G · n shared values for entering data per party.

The main cost of the SPDZ-BMR protocol is actually in computing this
initial data; yet the paper [21] does not address this cost in much detail. Delving
into the paper [9] we see that each of these operations requires parties to encrypt
random data under the SHE scheme and to produce additive sharings of SHE
encrypted data. This first operation is identical to our input command on the
functionality FSHE. We delve into the costs of the operations in more detail:

– Encrypting (Input) Data ID: When a party produces an encryption we
need to ensure that it is validly formed, so as to protect against active
attackers. As remarked above this is done using a zero-knowledge proof of
correctness. Whilst the computational costs of this can be amortized due to
“packing” in the SHE scheme, it is a non-trivial cost per encryption. We
shall denote the computational and round cost in what follows by CID and
RID respectively, i.e. the computational and round cost of the actively secure
EncCommit operation from [9].

– Producing Random ReSharings: Given a ciphertext encrypting a value
m this procedure results in an additive sharing of m amongst the n parties.
The computational cost of this procedure is dominated by the invocations
of the ID protocol. Since each party needs to encrypt a random value, the
computational cost n · CID and the round complexity is RID + 1. Again, the
computational costs can be amortized due to the packing of the SHE scheme.

– Producing Multiplication Triples: To produce an unchecked triple this
requires (per party) the encryption of two random values (of ai and bi in
the triple ([a], [b], [c])), plus four resharings (three of which can be done in



parallel, with the fourth only partially in parallel). To produce a checked
triple, this needs to be done twice (in parallel), followed by a sacrificing step
of one of the triples via a procedure (described in [9]) which requires another
two rounds of interaction. Thus the total computational cost is dominated
by 12 · n · CID; the round complexity is RID + 4.

– Producing Shared Random Bits: To produce an unchecked random bit
we require (per party) the encryption of one random value, one passively
secure distributed decryption (requiring only one round of interaction), plus
two resharings (which can be done in parallel). To produce a checked random
bit, the above has to be combined with an unchecked multiplication triple
in a sacrificing step which requires two rounds of interaction. Thus the total
computational cost is dominated by 9 · n · CID; and the round complexity is
RID + 4.

– Producing Shared Random Values: This requires (per party) the en-
cryption of one random value, and two resharings which can be done in
parallel. Thus the total computational cost is 2 ·n ·CID, and the round com-
plexity is RID + 1.

– Producing Input Data: Per data item which needs to be input for each
player this requires the encryption of one random value plus two resharings
(which cannot be fully parallelised), as well as one additional round of inter-
action. Thus the total computational cost is dominated by CID + 2 · n · CID,
and the round complexity is RID + 3.

A major bottleneck in the protocol, for active security, is the cost of encrypting
the random data required by the protocol. Combining the costs, using the various
formulae above, we see that this cost is given by

TID · CID = 12 · n · CID ·M + 9 · n · CID ·B
+ 2 · n · CID ·R+ (1 + 2 · n) · n · CID · I

= (12 · 13 ·G+ 9 ·W + 4 ·W · n+ (1 + 2 · n) · n · 8 ·G) · n · CID

= (16 ·G · n3 + (8 ·G+ 4 ·W ) · n2 + 9 ·W · n+ 156 ·G · n) · CID

which is cubic in the number of players. In our protocol the same amortization
due to SHE packing can be achieved. Thus we do not pay further attention to
the constant improvement in performance due to packing, as the same constant
can be applied to our protocol.

The total round complexity of the SPDZ offline phase is the maximum round
complexity of the various pre-processing operations in the SPDZ offline phase;
namely RID +4. This holds since the transmission of all random encrypted values
can occur in one round at the beginning of this phase. We stress that the depth
of the SHE needed for SPDZ is just one, making it very efficient.

Second Phase Cost: A careful analysis of the rest of the garbling phase of the
SPDZ-BMR protocol implies that it requires an additional six rounds of com-
munication.4
4 With reference to [21] this is one round in the preprocessing-I phase and the start of

the preprocessing-II phase due to the Output commands, and three to evaluate the



Third Phase Cost: The online phase of the SPDZ-BMR protocol requires three
rounds of interaction, one to open the secret shared values and two to verify the
associated MACs.

Summary: In summary, the round complexity of SPDZ-BMR is RID + 10 in the
offline phase, and 3 in the online phase.

4 Extending the FFHE/FSHE Functionalities

4.1 The Extended Functionality Definition

The first step in describing our new offline protocol for constructing the BMR
circuit is to extend the functionalities FFHE/FSHE to new functionalities FFHE+/
FSHE+ . In Figure 4 we present the FFHE+ functionality; the definition of the
FSHE+ functionality is immediate. These new functionalities mimic the output
possibilities of the SPDZ offline phase, which were exploited in [21]; by allowing
the functionality to produce encryptions of random data and encryptions of
random bits. In addition the functionalities provide a version of Output, which
we call Output+, which does not allow the adversary to introduce an error
value. There is in addition a new version of InputData called InputData+
which will enable us to reduce the number of rounds of interaction in our main
protocol. Functionally this does nothing different from InputData but it will be
convenient to introduce a different name for a different implementation within
our FHE functionality.4.2 Securely Realising the Extended Functionality

In Figure 5 we give the protocol πFHE+ for realising the FFHE+ functionality in
the FFHE-hybrid model.

Let us look at the Output+ command in more detail (after first reading
Figure 5). Suppose the adversary tries to make player Pj accept an incorrect
value, by introducing errors into the calls to the weakly secure Output command
from FFHE. The honest player Pj will receive varid + e1 instead of varid and
authvaridj + e2 instead of authvaridj , for some adversarially chosen values of e1

and e2. If player Pj is not to abort then these quantities must satisfy authvaridj+
e2 = skj · (varid + e1). Now since we know that authvaridj = varid · skj then this
implies that the adversary needs to select e1 and e2 such that e2 = skj ·e1, which
it needs to do without having any knowledge of skj . Thus either the adversary
needs to select e1 = e2 = 0, or he needs to guess the correct value of skj . This
will happen with probability at most 1/p, which is negligible.

The protocol which implements InputData+ works by first running In-
putData with a random value, and then later providing the difference between
the random value input and the real input. This enables preprocessing of the
InputData procedure, thereby reducing the overall number of rounds.

required circuits in step 3 of preprocessing-II (since the circuits are of depth three,
and hence require three rounds of computation), plus two to verify all the associated
MAC values.



The Extended Functionality FFHE+

This functionality runs the same Initialize, Wait, InputData, Add, Multiply,
and Output commands as FFHE of Figure 3. It additionally has the four following
externally exposed commands:

Output+: On input (output+,varid, i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid, x), and if i = 0 it outputs (varid, x)
to the adversary. The functionality then calls Wait, and only if Wait does not
abort then it outputs x to all parties if i = 0, or it outputs x only to party i if
i 6= 0.

InputData+: On input (input+,Pi,varid,x) from Pi and (input+,Pi,varid,?) from
all other parties, with varid a fresh identifier, the functionality stores (varid,x).
The functionality then calls Wait.

RandomElement: This command is executed on input (randomelement, varid)
from all parties, with varid a fresh identifier. The functionality then selects
uniformly at random x ∈ Fp and stores (varid,x).

RandomBit: This command is executed on input (randombit, varid) from all par-
ties, with varid a fresh identifier. The functionality then selects uniformly at
random x ∈ {0, 1} and stores (varid,x).

Fig. 4: The Extended Functionality FFHE+

The protocol which implements the RandomElement command generates
an encrypted random value 〈x〉, unknown to any party as long as one of the
parties honestly chooses his additional share xi randomly.

The protocol which implements the RandomBit command is more elab-
orate, and borrows much from the equivalent operations in the SPDZ offline
phase, see [9]. The basic idea is to generate an encrypted random value 〈x〉,
unknown to any party. This value is then squared to obtain 〈s〉. The value of
s is then publicly revealed and an arbitrary square root y is taken. As long as
s 6= 0 (which happens with negligible probability due to the size of p) we then
have that 〈b〉 = 〈x〉/y is an encryption of a value chosen uniformly from {−1, 1}.
Since p is prime, with probability 1/2 the square root taken will be equal to x
and with probability 1/2 it will be equal to −x. This encryption of a value in
{−1, 1} is turned into an encryption of a value in {0, 1} by the final step, by
computing the linear function (〈b〉+1)/2 However, unlike in SPDZ no sacrificing
procedure is required as the Output+ command is actively secure.

Theorem 1. Protocol πFHE+ securely computes FFHE+ in the FFHE-hybrid model
in the UC framework, in the presence of static, active adversaries corrupting any
number of parties.

Proof (sketch). By [5], it suffices to prove the security of Protocol πFHE+ in the
SUC (simple UC) framework. We will sketch the proof for each of the processes
in the functionality separately. In the FFHE-hybrid model the security follows in
a straightforward way utilizing the security of the commands in FFHE.



Protocol πFHE+

This protocol implements the functionality FFHE+ in the FFHE-hybrid model.

Initialize: This performs the initialisation routine just as in the FFHE function-
ality. However, in addition, each party executes InputData to obtain an en-
cryption 〈ski〉 of a random MAC value ski known only to player Pi.

Output+: On input (output+, varid, i) from all honest parties, if varid is present
in memory, the following steps are executed.
1. If i 6= 0, party Pi computes authvaridi = 〈varid〉 · 〈ski〉, else, each party Pj

computes authvaridj = 〈varid〉 · 〈skj〉.
2. The parties call FFHE with the command (output, varid, i).
3. If i 6= 0, they call FFHE with the command (output, authvaridi, i), else,

they use command (output, authvaridj, j ) for every j ∈ [1, . . . , n].
4. Any party Pj aborts if authvaridj 6= varid · skj .

Depth Needed: D(varid) + 1.
Round Cost: 2 (since steps 2 and 3 can be performed in parallel).

InputData+: The first step of this command does not depend on the input, and
so can be run in a pre-processing step if the number of values to be input per
party are known in advance. Upon input (input+, Pi, varid, x) with x ∈ Fp for
Pi and (input+, Pi, varid, ?) for all other parties:
1. Party Pi chooses a random ri ∈ Fp (in the same field as x) and sends

(input, Pi, varid-1, ri) to Functionality FFHE.
2. All parties Pj with j 6= i send (input, Pi, varid-1, ?) to Functionality FFHE.
3. Party Pi broadcasts ci = xi − ri (mod p) to all parties.
4. All parties send (add-scalar, ci, varid-1, varid) to Functionality FFHE.

Depth Needed: D(xi) = D(c) = 0.
Round Cost: RID + 1. Although all RID rounds can be performed in parallel at
the start of the protocol.

RandomElement:
1. For i = 1, . . . , n, each Pi chooses a random xi ∈ Fp, and calls FFHE with

the command (input,Pi,xi) from party Pi and (input,Pi,?) for the others.
2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉+ · · ·+ 〈xn〉.

Depth Needed: D(xi) = max{D(xi)} = 0.
Round Cost: RID.

RandomBit: This command requires a more elaborate implementation
1. For i = 1, . . . , n, call FFHE with the command (input,Pi,xi) from party Pi

and (input,Pi,?) for the rest of the parties.
2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉+ · · ·+ 〈xn〉.
3. Call Multiply to compute 〈s〉 = 〈x〉 · 〈x〉.
4. Call FFHE+ on input (output+, s, 0) so all parties obtain s.
5. y =

√
s (mod p), if s = 0 then restart the protocol.

6. 〈b〉 = 〈x〉/y.
7. 〈varid〉 = (〈b〉+ 1)/2, note this last operation is a linear operation.

Depth Needed: D(s) + 1 = 2. Note this is the depth required, but the output
encrypted bit has depth zero.
Round Cost: RID + 2.

Fig. 5: Protocol πFHE+



Output+: The security of Output+ relies on the security of the InputData
and Output commands of FFHE. Namely, by the security of InputData we
have that all skj values are secret, and by the security of Output the only
change that A can make to the output is an additive difference e (fixed before
the output is given). Thus, A can only change the output if it chooses additive
differences e1, e2 with e1 6= 0 such that (x + e1) · skj = x · skj + e2 (mod p),
where x is the value output. This implies that e1 · skj = e2 (mod p). Since skj
is secret, the adversary can cause this equality to hold with probability at most
p.

We remark that the MAC key skj is only used for output values given to Pj .
Thus, it always remains secret (even when used for many outputs).

The simulator for Output+ works simply by simulating the Output in-
teraction with FFHE for all honest Pi. Regarding a corrupt Pj , the simulator
receives the value x that is supposed to be output. Furthermore, the simulator
receives the value skj from the InputData instruction, as well as any errors
that are introduced in the Output calls by corrupted parties. Thus, the simu-
lator can construct the exact value that A would receive in a real execution, as
required.

InputData+: The only difference between InputData+ and InputData is that
InputData+ can be run such that the actual input is only known to the party
in the last round of the protocol. This is done in a straightforward way by using
InputData to have a party input a random string, and then using that result
to mask the real data (at the end). The simulator for this procedure therefore
relies directly on the InputData procedure of FFHE in a straightforward way.
Namely, in the FFHE-hybrid model when the party Pi is corrupted, the sim-
ulator receives the value ri that party Pi sends to InputData. Then, upon
receiving ci as broadcast by Pi, the simulator defines xi = ci + ri (mod p) and
sends (input+, Pi, varid, xi) to the ideal functionality as input. In the case that
Pi is honest, the simulator chooses a random ci ∈ Fp and simulates Pi broad-
casting that value. Furthermore, it simulates the (input, ...) and (add-scalar, ...)
interaction with FFHE.

The view of the adversary is identical in the simulated and real executions. In
addition, since InputData is secure and ci is broadcast and therefore the same
for all parties, the protocol fully determines the input value xi = ci + ripmodp,
as required.

RandomElement: This is a straightforward coin tossing protocol. The security
is derived from the fact that FFHE provides a secure InputData protocol that
reveals no information about the input values. Thus, no party knows anything
about the x-values input by the others. Formally, a simulator just simulates the
message interaction with FFHE for all of the (input, Pi, xi) and (input, Pi, ?)
messages. As long as at least one party is honest, the distribution over the value
x defined is uniform, as required.

RandomBit: The first step of this protocol is to essentially run RandomEle-
ment in order to define a random shared value x. Then, the value s = x2



(mod p) is output to all parties, and each takes the same square-root y of s. As-
sume that the square root taken is the one that is between 1 and (p − 1)/2.
Now, if 1 ≤ x ≤ p−1

2 , then y = x and so 〈b〉 = 〈1〉, and we have that
〈varid〉 = 〈 1+1

2 〉 = 〈1〉. Else, if p−1
2 < x ≤ p − 1 then 〈b〉 = 〈−1〉 and we

have 〈varid〉 = 〈−1+1
2 〉 = 〈0〉. The security relies on the fact that the result is

fully determined from the (input, ...) messages sent in the beginning. Relying on
the security of InputData and Add/Multiply in FFHE, and on the security
of the Output+ procedure, the value x is uniformly distributed and the value
s that is output to all parties equals x2 and no other value. All other steps are
deterministic and thus this guarantees that the output is a uniformly distributed
bit, as required.

Regarding simulation, the simulator simulates the calls to InputData, Add
and Multiply as in the protocol. For the output, the simulator simply chooses
a random s as the value received from Output+. The view of the parties is
clearly identical to in a real execution.

This completes the proof sketch of the theorem. ut

5 The First Variant of the SHE-BMR Protocol: π0

In this section we outline our basic protocol, which follows much upon the lines
of the SPDZ-BMR protocol. The modifications needed for a variant using only
depth three will be left to Section 6. We divide our discussion into three subsec-
tions. In the first section we outline the offline functionality Foffline we require.
This functionality produces a shared garbled circuit which computes the function
amongst the players.

For each wire there are 2 ·n wire labels, corresponding to two labels for each
party. The wire labels are held as encrypted key values 〈kiw,β〉, where encryption
is under the SHE scheme, along with encrypted masking values 〈λw〉; where
1 ≤ w ≤ W , β ∈ {0, 1} and 1 ≤ i ≤ n. The garbled gates are held as a set of
linear combinations of outputs from a suitable Pseudo-Random Function (PRF)
which is keyed by the wire labels of all parties. These linear combinations are
then used to one-time pad encrypt the output wire label, with the precise linear
combination to be used in any given situation determined by the encrypted mask
values. The output wire masking values are decrypted towards all parties, and
the input wire masking values are decrypted towards the inputting party, but
everything else remains held in encrypted form.

We then present the online protocol πMPC,0 which implements FMPC in the
Foffline-hybrid model. This proceeds by first decrypting the input wire labels
desired for each party via the distributed decryption functionality, and revealing
the associated selector variables Λw = ρw ⊕ λw, where ρw is the actual intended
wire value. The parties are then able, for each gate, to determine which linear
combination to apply (using the selector variables), and can then determine
the output wire label using the given linear combination. From this they can
determine the output selector variable and repeat the process for the next gate,
and so on. Once all gates have been processed in this way the players have learnt



the selector variables Λw for the output wires, and so can compute the output
wire values from Λw ⊕ λw, where the value of λw, for the output wires, was
revealed in the pre-processing phase.

At the end of this section we present the offline protocol itself πoffline,0 which
implements Foffline in the FFHE+ -hybrid model.

5.1 Functionality Foffline for the Offline Phase

We first present the offline functionality for our main MPC protocol. This is
almost identical to the offline functionality for the SPDZ-BMR protocol of [21].
The main difference is that it is built on top of our FFHE+ functionality from
the previous section, as opposed to the SPDZ MPC protocol. In particular this
means we have just a single pre-processing step as opposed to the two phases in
[21], which are in turn inherited from the two phases of the SPDZ protocol. Our
functionality is presented in Figure 6.

5.2 The SHE-BMR Protocol Specification πMPC,0

We can now give our protocol πMPC,0, described in Figure 7, which securely com-
putes the functionality FMPC described in Figure 2 in the Foffline-hybrid model.

We do not discuss the protocol in detail, since it is almost identical to the
protocol from [21]. The only thing to really notice from the point of view of
complexity is that the round complexity will be two more than the round com-
plexity of the pre-processing phase, since the calls to Output+ will consume
two rounds in parallel. In addition the computational cost is mainly in the pre-
processing step. The overal depth required of the SHE scheme will be one more
than for the pre-processing phase, since we need to consume another level when
executing Output+.

5.3 The πoffline,0 Protocol
Protocol πoffline,0 in Figure 8 implements Foffline in the FFHE+ -hybrid model.For completeness, we show how to calculate the output indicators for func-
tions fg = AND and fg = OR in Figure 9 as shown in [21]. Note that we
consume a multiplicative depth of two for both operations.

– For fg = AND, we compute 〈t〉 = 〈λa〉 · 〈λ2〉 and then 〈xa〉 = (〈t〉 − 〈λc〉)2,
〈xb〉 = (〈λa〉 − 〈t〉 − 〈λc〉)2, 〈xc〉 = (〈λb〉 − 〈t〉 − 〈λc〉)2, 〈xd〉 = (1 − 〈λa〉 −
〈λb〉+ 〈t〉 − 〈λc〉)2.

– For fg = OR, we first compute 〈t〉 = 〈λa〉⊕〈λb〉 = 〈λa〉+〈λb〉−2 · 〈λa〉 · 〈λ2〉,
and then 〈xa〉 = (〈t〉 − 〈λc〉)2, 〈xb〉 = (1 − 〈λa〉 − 〈λb〉 + 2 · 〈t〉 − 〈λc〉)2,
〈xc〉 = 〈xb〉, 〈xd〉 = 〈xa〉.

5.4 Security

The security of our protocol follows from the proof of the security of the SPDZ-
BMR protocol in [21]. Apart from the use of Gentry’s MPC protocol, as op-
posed to the SPDZ protocol, (which is purely an implementation change) the
only difference is that the InputData in SPDZ-BMR is generated in a way that



The Offline Functionality - Foffline

This functionality runs the same Initialize, Wait, and Output+ commands as
FFHE+ . In addition it has the following command:

Preprocessing: On input (preprocessing, Cf ), for a circuit Cf with at most W
wires and G gates, the functionality performs the following operations.
– For all wires w ∈ [1, . . . ,W ] :
• The functionality chooses and stores a random masking value 〈λw〉

where λw ∈ {0, 1}.
• For every value β ∈ {0, 1}, each party Pi chooses and stores a random

key 〈kiw,β〉, where kiw,β ∈ Fp.
– For all wires w which are attached to party Pi the functionality decrypts
〈λw〉 to party Pi by running Output+ as in functionality FFHE+ .

– For all output wires w the functionality decrypts 〈λw〉 to all parties by
running Output+ as in functionality FFHE+ .

– For every gate g with input wires 1 ≤ a, b ≤W and output wire 1 ≤ c ≤W .
• Party Pi provides the following values for x ∈ {a, b} on the 4 ·G values:

Fkix,0
(0||1||g), . . . , Fkix,0

(0||n||g), Fkix,0
(1||1||g), . . . , Fkix,0

(1||n||g)

Fkix,1
(0||1||g), . . . , Fkix,1

(0||n||g), Fkix,1
(1||1||g), . . . , Fkix,1

(1||n||g)

(In our protocols, the parties actually provide sums of pairs of these
values; see Figure 9. This reduces the number of values input from 8
per-party per-gate to only 4 per-party per-gate.)

• Define the selector variables

χ1 =

(
0, If fg(λa, λb) = λc.

1, Otherwise.
χ2 =

(
0, if fg(λa, λ̄b) = λc.

1, Otherwise.

χ3 =

(
0, If fg(λ̄a, λb) = λc.

1, Otherwise.
χ4 =

(
0, If fg(λ̄a, λ̄b) = λc.

1, Otherwise.

• Set Ag = (A1
g, . . . , A

n
g ), Bg = (B1

g , . . . , B
n
g ), Cg = (C1

g , . . . , C
n
g ), Dg =

(D1
g , . . . , D

n
g ) where for 1 ≤ j ≤ n:

Ajg =

 
nX
i=1

Fkia,0
(0||j||g) + Fki

b,0
(0||j||g)

!
+ kjc,χ1

Bjg =

 
nX
i=1

Fkia,0
(1||j||g) + Fki

b,1
(0||j||g)

!
+ kjc,χ2

Cjg =

 
nX
i=1

Fkia,1
(0||j||g) + Fki

b,0
(1||j||g)

!
+ kjc,χ3

Dj
g =

 
nX
i=1

Fkia,1
(1||j||g) + Fki

b,1
(1||j||g)

!
+ kjc,χ4

• The functionality finally stores the values 〈Ag〉, 〈Bg〉, 〈Cg〉, 〈Dg〉.

Fig. 6: The Offline Functionality Foffline



The MPC Protocol - πMPC,0

On input a circuit Cf representing the function f , the parties execute the following
commands in sequence.

Preprocessing: This sub-task is performed as follows.
– Call Initialize on Foffline to initialize the FHE scheme.
– Call Preprocessing on Foffline with input Cf .

Online Computation: This sub-task is performed as follows.
– For all his input wires w, each party computes Λw = ρw ⊕ λw, where λw

was obtained in the preprocessing stage, and Λw is broadcast to all parties.
– Party i calls Output+ to all parties on Foffline to decrypt the key 〈kiw〉

associated to Λw, for all his input wires w.
– The parties call Output+ on Foffline to decrypt {Ag}, {Bg}, {Cg}, and
{Dg} for every gate g.

– Passing through the circuit topologically, the parties can now locally com-
pute the following operations for each gate g. Let the gates input wires be
labelled a and b, and the output wire be labelled c.
• For j = 1, . . . , n compute kjc according to the following cases:

(Λa, Λb) = (0, 0) : Set kjc = Ajg −
“Pn

i=1 Fkia(0||j||g) + Fki
b
(0||j||g)

”
.

(Λa, Λb) = (0, 1) : Set kjc = Bjg −
“Pn

i=1 Fkia(1||j||g) + Fki
b
(0||j||g)

”
.

(Λa, Λb) = (1, 0) : Set kjc = Cjg −
“Pn

i=1 Fkia(0||j||g) + Fki
b
(1||j||g)

”
.

(Λa, Λb) = (1, 1) : Set kjc = Dj
g −

“Pn
i=1 Fkia(1||j||g) + Fki

b
(1||j||g)

”
.

• If kic 6∈ {kic,0, kic,1}, then Pi outputs abort. Otherwise, it proceeds. If
Pi aborts it notifies all other parties with that information. If Pi is
notified that another party has aborted it aborts as well.

• If kic = kic,0 then Pi sets Λc = 0; if kic = kic,1 then Pi sets Λc = 1.
• The output of the gate is defined to be (k1

c , . . . , k
n
c ) and Λc.

– Assuming party Pi does not abort it will obtain Λw for every circuit-output
wire w. The party can then recover the actual output value from ρw =
Λw ⊕ λw, where λw was obtained in the preprocessing stage.

Depth Needed: D(Output+ ({Ag}, {Bg}, {Cg}, {Dg})) = 3 + 1 = 4.
Round Cost: If no party aborts, the round cost of the online stage is that of
the first three steps, which can be done in parallel, giving a total round cost of
two.

Fig. 7: The MPC Protocol - πMPC,0



The offline Protocol: πoffline,0

The protocol runs the commands Initialize, Wait, and Output+ by calling the
equivalent commands on FFHE+ . Thus we only need to describe Preprocessing.

Preprocessing: This step proceeds as follows:
1. Call Initialize on the functionality FFHE+ with input a prime p > 2k.
2. Generate wire masks: For every circuit wire w we need to generate a

random and hidden masking-values λw. Thus for all wires w the parties
execute RandomBit of FFHE+ ; the output is denoted by 〈λw〉.
Depth Needed: D(RandomBit) = 2
Round Cost: RID + 2.

3. Generate keys: For every wire w, each party i ∈ [1, . . . , n] and for β ∈
{0, 1}, the parties execute the command InputData of the functionality
FFHE+ to obtain output 〈kiw,β〉; where player i learns kiw,β . For the vector
of shares

`
〈kiw,β〉

´n
i=1

we shall abuse the notation and denote it by 〈kw,β〉.
Depth Needed: D(kiw,β) = 0.
Round Cost: RID.

4. Output masks for circuit-input-wires: For all wires w which are at-
tached to party Pi we execute the command Output+ on the functionality
FFHE+ to decrypt 〈λw〉 to party i.
Depth Needed: max(D(RandomBit), D(Output+ (λw))) = max(2, 1) = 2.
Round Cost: 2.

5. Output masks for circuit-output-wires: In order to reveal the real
values of the circuit-output-wires it is required to reveal their masking
values. That is, for every circuit-output-wire w, the parties execute the
command Output+ on the functionality FFHE+ for the stored value 〈λw〉.
Depth Needed: max(D(RandomBit), D(Output+ (λw))) = max(2, 1) = 2.
Round Cost: 2.

6. Calculate garbled gates: See Figure 9 for the details of this step.

We note that steps two and three can be run in parallel, and that steps four and
five also can be run in parallel, but need to follow steps two. We also note that the
calls to InputData+ in the last step (detailed in Figure 9) need to be executed
after step three. Hence, we have:
Total Depth Needed: 3.
Total Round Cost: max(RID + 3, RID + 4) = RID + 4.

Fig. 8: The offline Protocol: πoffline,0



Calculated Garbed Gates Step of πoffline,0

Calculate garbled gates: This step is operated for each gate g in the circuit in
parallel. Specifically, let g be a gate whose input wires are a, b and output wire
is c. Do as follows:
(a) Calculate output indicators: This step calculates four indicators
〈xa〉, 〈xb〉, 〈xc〉, 〈xd〉 whose values will be 〈0〉 or 〈1〉. Each indicator is de-
termined by some quadratic function fg on 〈λa〉, 〈λb〉, 〈λc〉, depending on
the truth table of the gate. See Section 5.3 for details.

〈xa〉 = (fg(〈λa〉, 〈λb〉)− 〈λc〉)2

〈xb〉 = (fg(〈λa〉, (1− 〈λb〉))− 〈λc〉)2

〈xc〉 = (fg((1− 〈λa〉), 〈λb〉)− 〈λc〉)2

〈xd〉 = (fg((1− 〈λa〉), (1− 〈λb〉))− 〈λc〉)2

Depth Needed: D(x∗) = D(λ∗) + 2 = 2.
(b) Assign the correct vector: The indicators are used to choose, for every

garbled label, either kc,0 or kc,1, for t = a, b, c, d,

〈vc,xt〉 = (1− 〈xt〉) · 〈kc,0〉+ 〈xt〉 · 〈kc,1〉.

Depth Needed: D(vc,x∗) = max(D(x∗), D(kc,∗)) + 1 = 3.
(c) Calculate garbled labels: Party i can now compute the 2 ·n PRF values

Fki
w,β

(0||1||g), . . . , Fki
w,β

(0||n||g) and Fki
w,β

(1||1||g), . . . , Fki
w,β

(1||n||g), for

each input wire w of gate G, and β = 0, 1.

F 0
ki
w,β

(g) =
“
Fki

w,β
(0||1||g), . . . , Fki

w,β
(0||n||g)

”
F 1
ki
w,β

(g) =
“
Fki

w,β
(1||1||g), . . . , Fki

w,β
(1||n||g)

”
.

Then, they call 4 ·n ·G times the command InputData+ on the function-
ality FFHE, so all the parties obtain the output:

〈F 0
kia,0

+ F 0
ki
b,0
〉, 〈F 1

kia,0
+ F 0

ki
b,1
〉, 〈F 0

kia,1
+ F 1

ki
b,0
〉, 〈F 1

kia,1
+ F 1

ki
b,1
〉.

All the parties now compute 〈Ag〉, 〈Bg〉, 〈Cg〉, 〈Dg〉 via

〈Ag〉 = 〈vc,xa〉+

nX
i=1

〈F 0
kia,0

(g) + F 0
ki
b,0

(g)〉

〈Bg〉 = 〈vc,xb〉+

nX
i=1

〈F 1
kia,0

(g) + F 0
ki
b,1

(g)〉

〈Cg〉 = 〈vc,xc〉+

nX
i=1

〈F 0
kia,1

(g) + F 1
ki
b,0

(g)〉

〈Dg〉 = 〈vc,xd〉+

nX
i=1

〈F 1
kia,1

(g) + F 1
ki
b,1

(g)〉

Round Cost: RID = RID + 1, but the RID can be done in parallel before.
Depth Needed: D(Ag) = D(Bg) = D(Cg) = D(Dg) = D(vc,x∗) = 3.

Fig. 9: Calculate Garbled Gates Step of πoffline,0



guarantees that it is random. For our basic protocol, this is not the case. How-
ever, there is nothing that forces the adversary to input the value it actually
gets and security is preserved. In particular, the adversary can ignore the value
it obtained and use a different one honestly, and no problem arises. So, it is no
different from this case where the adversary can choose the value in InputData.

5.5 Analysis of Efficiency

Just as in our analysis of the SPDZ-BMR protocol, we wish to estimate the cost
of the most expensive operations; which are the encryptions of input data and
random input data.

– Each party calls InputData once during the Initialize phase of the ex-
tended FHE functionality.

– We perform W RandomBit operations, each of which consumes a CID per
party.

– To create the encrypted PRF keys we require an additional 2 ·W invocations
of CID per party.

– Finally to enter the garbled labels we require, 4 · n2 · G invocations of the
input data routine, which consists of 4 ·n ·G invocations of InputData per
party.

Thus the cost of encrypting the data for the SHE-BMR protocol is(
4 · n2 ·G+ (3 ·W + 1) · n

)
· CID,

which is quadratic in n as opposed to the cubic complexity of the SPDZ-BMR
protocol.

6 A Modified SHE-BMR Protocol of Depth 3: π1

6.1 Protocol π1 Description

In this section we give a description of the protocol π1, which requires only a
multiplicative depth of three rather than four as in π0. On the downside, it also
requires additional 2 ·W · n · (n− 1) calls to InputData. The new protocol π1

is, in fact, just a variant of π0, and for which set of parameters one would be
preferred in practice over the other remains to be empirically tested.

Protocol π0 securely computes the BMR garbled gates, as follows. For every
gate the parties first compute the shares 〈xa〉, 〈xb〉, 〈xc〉, 〈xd〉 and then use these
shares to compute the shares 〈vc,xa〉, 〈vc,xb〉, 〈vc,xc〉, 〈vc,xd〉 of the keys kc,0 or
kc,1 on the output wire of the gate. Finally, these shares are masked by the
pseudorandom values provided by all parties; see Figure 9. Considering how these
equations are computed, we have that the 〈x∗〉 values require two multiplications
and the 〈vc,x∗〉 require an additional multiplication. The final multiplication,
making it depth-4, is needed for computing Output+. Thus, our aim is to
compute the 〈vc,x∗〉 values directly, with just two multiplications instead of three.



In order to achieve this, we directly considered AND and XOR gates, and
provide direct formulae for them. The main idea is that it actually suffices to
compute shares of either the key kc,∗ on the output wire or its opposite −kc,∗
modulo p. The reason that this suffices is that the square of these values is the
same. Thus, we have two versions of each key: the basic-key and the squared-key.
The offline protocol works by the parties calling RandomElement in order to
generate each basic-key and then squaring the result and revealing the squared-
key to the appropriate party. Recall that in BMR, each party has one part of
the key, and inputs it in the offline phase to generate the garbled gates. The
parties then compute the shares of the basic-keys on the output wire of the gate
(or their negative) and mask the result with the outputs of the PRF, computed
using the revealed squared-keys. Observe that in the online phase, the basic-key
is revealed (since this is what is masked) and the parties then square it in order
to compute the PRF values to decrypt the next garbled gate.

The important property here is that since the basic-key is random and was
never revealed, the parties have no idea if they received the basic-key or it’s
negative. This is crucial because this would leak information about the values
on the wires (as we mentioned, we compute either the key or its negative, and
this depends on the values on the wires).

This adds 2 ·W ·n · (n− 1) calls to InputData to generate the keys via calls
to RandomElement to ensure that no party knows them in the offline phase.

The AND gate. We now present the equations for computing an AND gate with
input wires a, b and output wire c. In order to motivate these equations, we build
the first equation for computing 〈vc,xa〉, which is the share of the key output
from the first ciphertext in the garbled gate. We denote the basic-keys (before
being squared) on the output wire by k̃c,0, k̃c,1. We have:

〈vc,xa〉 = (1− 〈λa〉) ·
(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
(1)

+〈λa〉 ·
(

(〈λb〉 − 〈λc〉) · 〈k̃c,1〉+ (1− 〈λb〉 − 〈λc〉) · 〈k̃c,0〉
)
.

This equation can be read as follows. Recall that if the indicator-bit λc on the
output wire equals 1 then the roles of the 0-key and 1-key are reversed. Then,
if the input-bit on wire a equals 0, then 〈λa〉 equals 0 and so the output is a
function of the first row of the equation. Now, once a equals 0, the output equals
0 irrespective of b, since this is an AND gate. Thus, if the output indicator bit
equals 0 then the output should be 〈k̃c,0〉; otherwise the output should be 〈k̃c,1〉.
In contrast, if the input on wire a equals 1, then the output depends only on
the second row of the equation (since 1−〈λa〉 equals 0). The output in this case
depends on b. If b = 1 and c = 0 or if b = 0 and c = 1 then the output should
be 〈k̃c,1〉 (since in the first case a = b = 1 and the output is the 1-key, and in
the second case the output should be the 0-key but c = 1 and so the roles are
reversed). This is obtained by multiplying 〈k̃c,1〉 by 〈λb〉− 〈λc〉 which equals ±1
in both of these cases (and 0 otherwise). Observe also that 〈k̃c,0〉 is multiplied
in the second row by 1− 〈λb〉 − 〈λc〉 which equals 0 in both of these cases that
b = 0, c = 1 and b = 1, c = 0. In contrast, if b = c = 0 or b = c = 1 then the



output should be 〈k̃c,0〉 (since if b = c = 0 then the output is 0, and if b = c = 1
then the output is 1 but the 1-key is reversed). This holds using the same logic
as above. The remaining three equations are computed similarly, as follows:

〈vc,xb〉 = (1− 〈λa〉) ·
(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
(2)

+〈λa〉 ·
(

(〈λb〉 − 〈λc〉) · 〈k̃c,0〉+ (1− 〈λb〉 − 〈λc〉) · 〈k̃c,1〉
)

〈vc,xc〉 = 〈λa〉 ·
(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
(3)

+(1− 〈λa〉) ·
(

(〈λb〉 − 〈λc〉) · 〈k̃c,1〉+ (1− 〈λb〉 − 〈λc〉) · 〈k̃c,0〉
)

〈vc,xd〉 = 〈λa〉 ·
(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
(4)

+(1− 〈λa〉) ·
(

(〈λb〉 − 〈λc〉) · 〈k̃c,0〉+ (1− 〈λb〉 − 〈λc〉) · 〈k̃c,1〉
)

In order to prove correctness of these equations, we present the truth table of
the outputs in Table 1. Observe that all values are correct, but sometimes the
negative value of the basic-key is obtained.

λa λb λc 〈vc,xa〉 〈vc,xb〉 〈vc,xc〉 〈vc,xd〉
0 0 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 0 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
0 1 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉
0 1 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,0〉 〈−k̃c,1〉
1 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉
1 0 1 〈−k̃c,1〉 〈−k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉
1 1 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉
1 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈k̃c,1〉 〈k̃c,1〉

Table 1: The truth table of the vectors for an AND gate computed in Figure 10.

The XOR gate. We use a similar idea as above to compute the XOR gate.
Intuitively, in a XOR gate, there are two cases: λa = λb and λa 6= λb. Multiplying
by λa − λb gives ±1 if λa 6= λb and 0 if λa = λb. Furthermore, multiplying by
1− λa − λb gives the exact reverse case; it equals 0 if λa 6= λb and equals ±1 if



λa = λb. This yields the following equations:

〈vc,xa〉 = (〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,0〉+ (1− 〈λc〉) · 〈k̃c,1〉

)
(5)

+(1− 〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
〈vc,xb〉 = (〈λa〉 − 〈λb〉) ·

(
〈λc〉 · 〈k̃c,1〉+ (1− 〈λc〉) · 〈k̃c,0〉

)
(6)

+(1− 〈λa〉 − 〈λb〉) ·
(
〈λc〉 · 〈k̃c,0〉+ (1− 〈λc〉) · 〈k̃c,1〉

)
〈vc,xc〉 = 〈vc,xb〉 (7)
〈vc,xd〉 = 〈vc,xa〉 (8)

Observe that 〈vc,xc〉 and 〈vc,xd〉 need not be computed at all since (1− a)⊕ b =
a⊕ (1− b) and (1− a)⊕ (1− b) = a⊕ b. As above, we prove correctness via the
truth table given in Table 2.

λa λb λc 〈vc,xa〉 〈vc,xb〉 〈vc,xc〉 〈vc,xd〉
0 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
0 0 1 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 1 0 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉
0 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 0 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
1 0 1 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
1 1 0 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 1 1 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉

Table 2: The truth table of the vectors for a XOR gate computed in Figure 10.

The modified protocol. In Figure 10 (part 1) we show the modifications required
to the offline protocol in this case. The main differences are that the basic keys
are generated using RandomElement (instead of just being chosen by each
party), that the function actually outputs either the key 〈k̃iw,β〉 or 〈−k̃iw,β〉.
Since the actual key used is kiw,β = (k̃iw,β)2, upon receiving some k in the online
phase, the parties square it and use the result. This is the only modification to
the online phase, as showed in Figure 10 (part 2), which is used to guarantee
that it makes no difference whether they receive the key or its negative since the
square is always the same.



The Offline Protocol: πoffline,1

This protocol is identical to the πoffline,0 protocol given in Figure 8, except for the
following changes:

3 Generate keys in Figure 8 is changed as follows:
(a) For every wire w, bit value β ∈ {0, 1} and party i ∈ [1, . . . , n], the parties

execute the command RandomElement of the functionality FFHE+ to
obtain output 〈k̃iw,β〉. We stress that nobody learns k̃iw,β . Let varid be the

identifier of 〈k̃iw,β〉. In the following, we shall abuse the notation to denote

〈k̃w,β〉 =
“
〈k̃1
w,β〉, . . . , 〈k̃nw,β〉

”
.

(b) The parties call (multiply, varid, varid, varid2) where varid2 is a new identi-

fier, in order to share a ciphertext 〈kiw,β〉 = 〈k̃iw,β〉
2
.

(c) The parties call FFHE+ on input (output+, varid2, i) for party Pi to obtain
kiw,β .

Depth Needed: D(Output+ (kiw,β)) = 2.
Round Cost: RID + 2.

4 Calculate garbled gates in Figure 9 is changed as follows:
(a) The calculate output indicators and assign the correct vector phases

are replaced by the following functions, that choose, for every garbled label,
either k̃c,0, −k̃c,0, k̃c,1 or −k̃c,1.
– For an AND gate, the parties compute shares of the keys on the output

wires according to Equations (1)–(4).
– For a XOR gate, the parties compute shares of the keys on the output

wires according to Equations (5)–(8).
Depth Needed: D(vc,xa) = D(vc,xb) = D(vc,xc) = D(vc,xd) = 2.

Total Round Cost: max(RID + 3, RID + 4) = RID + 4.
Total Depth Needed: 2.

————————————————————————————————

The modified MPC Protocol - πMPC,1

This protocol is identical to the πMPC,1 protocol described in Figure 7, except for
the four cases of the Online Computation sub-task, in which for j = 1, . . . , n,
the values kjc are now computed as follows:

Case (Λa, Λb) = (0, 0) : Compute kjc =
“
Ajg − (

Pn
i=1 Fkia(0||j||g) + Fki

b
(0||j||g))

”2

.

Case (Λa, Λb) = (0, 1) : Compute kjc =
“
Bjg − (

Pn
i=1 Fkia(1||j||g) + Fki

b
(0||j||g))

”2

.

Case (Λa, Λb) = (1, 0) : Compute kjc =
“
Cjg − (

Pn
i=1 Fkia(0||j||g) + Fki

b
(1||j||g))

”2

.

Case (Λa, Λb) = (1, 1) : Compute kjc =
“
Dj
g − (

Pn
i=1 Fkia(1||j||g) + Fki

b
(1||j||g))

”2

.

Depth Needed: DOut+ +D({Ag}, {Bg}, {Cg}, {Dg}) = 2 + 1 = 3.

Fig. 10: The Modified Protocol π1



6.2 Security Of the Modified Protocol

Observe that in the offline phase, the only difference is that the 〈vc,x∗〉 values
contain the “tilde” version of the keys; more formally, the 〈vc,x∗〉 ciphertexts
encrypt the square root of the keys, and not the keys themselves. Thus, in the
online phase, the parties receive the square roots of the keys and need to square
them before proceeding. The only issue that needs to be explained here is that the
specific square root provided reveals no information. This needs to be justified
because if an adversary could know that −k̃ is computed or k̃, then it would
know some information about the masks λa, λb, λc. However, since the k̃ values
are uniformly distributed in Fp, and the keys themselves revealed in the offline
phase are k = k̃2, it follows that each of the two square roots of k are equally
probable. Stated differently, given k, the distribution over k̃ and −k̃ is identical.

6.3 Analysis of Efficiency of the Modified Protocol

As we noted in the introduction, the two main sources of overhead that concern
our MPC protocol are the number of rounds and the number of calls to the ID
protocol. The former is not changed by our π1 variant, but the latter does. To
generate the keys in πoffline,1, we now perform 2 ·W ·n2 calls to InputData, via
calls to RandomElement. In π0 we performed 2 ·W · n calls to generate the
keys, so overall we add 2 ·W · n · (n − 1) calls to InputData. To analyse the
number of homomorphic multiplications we go through each step of the protocol:

– Generate keys step: We perform 4 ·W · n more multiplications (half of
them to square the keys, the other half to Output+ them).

– Calculate garbled gates step:
1. For every AND gate, we used 13 multiplications in the first variant. Now,

by careful rewriting of the equations, we can do this in 20.
2. For every XOR gate, we used 7 multiplications in the first variant. Now

we use 12.
3. So, on average, we pass from 10 to 16 multiplications per gate, which is

an increase of 60% per gate.

Thus, overall on average we perform 4 ·W · n+ 6 ·G more homomorphic multi-
plications. However, in practice each homomorphic multiplication will be more
efficient since the overall depth of the SHE scheme can now be three rather than
four.
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