
Key Derivation for Squared-Friendly Applications:
Lower Bounds
Maciej Skorski
maciej.skorski@mimuw.edu.pl

Abstract
Security of a cryptographic application is typically defined by a security game. The adversary,
within certain resources, cannot win with probability much better than 0 (for unpredictability
applications, like one-way functions) or much better than 1

2 (indistinguishability applications for
instance encryption schemes). In so called squared-friendly applications the winning probability
of the adversary, for different values of the application secret randomness, is not only close to 0
or 1

2 on average, but also concentrated in the sense that it’s second central moment is small. The
class of squared-friendly applications, which contains all unpredictability applications and many
indistinguishability applications, is particularly important in the context of key derivation. Barak
et al. observed that for square-friendly applications one can beat the “RT-bound”, extracting
secure keys with significantly smaller entropy loss. In turn Dodis and Yu showed that in squared-
friendly applications one can directly use a “weak” key, which has only high entropy, as a secure
key.

In this paper we give sharp lower bounds on square security assuming security for “weak”
keys. We show that any application which is either (a) secure with weak keys or (b) allows for
saving entropy in a key derived by hashing, must be square-friendly. Quantitatively, our lower
bounds match the positive results of Dodis and Yu and Barak et al. (TCC’13, CRYPTO’11)
Hence, they can be understood as a general characterization of squared-friendly applications.

Whereas the positive results on squared-friendly applications where derived by one clever
application of the Cauchy-Schwarz Inequality, for tight lower bounds we need more machinery.
In our approach we use convex optimization techniques and some theory of circular matrices.

1 Introduction

When analyzing the security of cryptographic primitives one typically assumes the access to
perfect randomness. In practice, we are often limited to imperfect sources of randomness.

1.1 Key derivation
Ideal and real settings. For any cryptographic primitive (like encryption or signatures),
which needs a “random” m-bit string R to sample the secure key1, we compare two different
settings:

(a) ideal setting: R is perfectly random: uniform and independent of any side information
available to the attacker

(b) real settings: there is only an imperfect entropy source X and the secure key R needs to
be derived fromX. The attacker may have some side information aboutX, in particular
the additional randomness used to derive R from X.

The security of the primitive is parametrized by ε, which is the success probability (for
so called unpredictability applications) or the advantage (for so called indistinguishability
applications) of an attacker with certain resources2

1 In applications like block-ciphers R is simply the key. In other applications like RSA R is used to
sample public or secret keys. We will simply refer to R as the key

2 For example bounded running time, circuit size or the number of oracle queries
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Generic approach and the entropy loss. The general way to derive a secure key is to
“extract” the randomness from X by a seeded extractor. In particular, the Leftover Hash
Lemma implies that if the min-entropy of X is at least m + L then H(X), H, where H is
randomly chosen function from a universal family, is δ-close to uniform with δ =

√
2−L.

This means that if an application is ε-secure for uniform R, then the same application keyed
with R = H(X), and even published H, is ε′-secure with

ε′ 6 ε+
√

2−L. (1)

where the entropy loss L is the difference between the entropy of X and m. Note that from
Equation (1) it follows that we need L = 2 log(1/ε) to obtain (roughly) the same security
ε′ = 2ε. Unfortunately, if we want the security against all statistical tests, this loss is neces-
sary for any extractor, as implied by the so called “RT-bound” [RTS00].

Need for better techniques for cryptographic applications. The RT-bound does
not exclude the possibility of deriving a secure key wasting much less than 2 log(1/ε) bits of
entropy for particular applications. Saving the entropy, apart from scientific curiosity, is a
problem of real-word applications. Minimizing the entropy loss is of crucial importance for
some applications where it affects efficiency (for example in the elliptic-curve Diffie-Hellman
key exchange) and sometimes the entropy amount we have is bounded (e.e. biometric data)
than the required length of a key; see also the discussion in [BDK+11]. Hence, better tech-
niques than simple extracting are desired. Below we discuss what is known about possible
improvements in key derivation for cryptographic applications.

Key derivation for unpredictability applications. It is known that unpredictability
applications directly tolerate weak keys, provided that the entropy deficiency is not too big.
More precisely, any unpredictability application which is ε-secure with the uniform m-bit
key, is also ε′ = 2dε-secure for any key of entropy m − d. If we have a source X that has
“enough” entropy but its length is too big, we can condense it to a string of length m with
almost full entropy. Essentially, since we a achieve a very good condensing rate: any X

of m + log log(1/ε) bits of entropy can be condensed to an m bit string with the entropy
deficiency d = 3 which is ε′ = 23ε-close to uniform3, we are able to derive a key (roughly)
equally secure as the uniform key, with the entropy loss only L = O (log log(1/ε)), i.e. actu-
ally without entropy waste [DPW14].

Key derivation for indistinguishability applications. The situation for indistin-
guishability applications is completely different. For the one-time pad which needs an m-bit
uniform key, a key of even m − 1 bits of entropy might be insecure [BDK+11]. For some
applications we can overcome this difficulty if the winning probability of the adversary, as
a function of the key, is not only close to 1/2 on average, but also concentrated around 1/2.
Recall that the advantage of an attacker, for a particular key, is defined as the difference
between the winning probability and 1/24. One introduces the following two interesting
properties:

(a) strong security: the absolute advantage is small on average (close to the advantage)
(b) square security: the squared advantage is small on average (close to the advantage)

3 Thus, for condensing we lose incomparably less in the amount than for extracting
4 In indistinguishability games an adversary needs to guess a bit at the end of the game. Since he can
flip his answer, any bias indicates that his guess is better than a random answer
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Property (a) provides basically the same bounds as for the unpredictability applications.
Namely, we can apply a weak key directly, losing a factor 2d in the security where d is
the entropy deficiency. Unfortunately, is satisfied only for a very limited class of applica-
tions. Property (b) offers slightly worse bounds but is satisfied for a wide class of indistin-
guishability applications, called “squared-friendly”. One can use a “weak key” directly with a
squared-friendly application achieving security of roughly

√
2dε where ε is the security with

the uniform key and d is the entropy deficiency [DY13]. Alternatively, if we want to obtain
security O(ε) instead of O(

√
ε), one can use universal hashing to extract an ε-secure key

with the entropy loss reduced by half [BDK+11] , i.e. up to L = log(1/ε). The improvement
in the security analysis over the “standard” LHL comes from restrictions on the class of the
test functions, imposed by the squared-friendly assumption.

1.2 Our results
In what follows we assume that P is an arbitrary indistinguishability application which
needs an m-bit uniform key. We give tight lower bounds on the amount of square security
(the expected square of the attacker’s advantage) or strong-security (the expected absolute
average of the attacker’s advantage) that is necessary for an application to be secure with
weak keys, that is keys with entropy deficiency. The notion of entropy here is either the
min-entropy or the collision entropy. Collision entropy is less restrictive than min-entropy
and is a natural choice to applications involving hash functions, like the LHL5. It is equally
good for squared-friendly applications as min-entropy. Therefore, as remarked in [DY13],
results for collision entropy are more desired. Nevertheless, we provide bounds for both
entropy notions6.

Summary of our contribution. We characterize squared-friendly applications by their
“nice” features. Namely, we show that square-friendly applications are precisely those ap-
plications which are secure with weak keys or offers improvements in the entropy loss for a
key derived by the LHL. Hence the current state of art is optimal: we cannot do better key
derivation than for squared-friendly applications unless we build a theory on stronger than
collision entropy requirements for weak keys (which would be in some sense inconvenient
because of a natural connection between collision entropy and hash functions).

Any application secure with weak keys has large square-security. The follow-
ing results was proved by Dodis and Yu:

I Theorem ( [DY13]). Applications which are σ-square-secure with the uniform key, i.e.
when the averaged squared advantage of any attacker is less than σ, are ε =

√
2dσ-secure

with any key of collision entropy at least m− d.

The following question is therefore natural

Q: If P is secure for all keys of high (collision or min-) entropy, how much square-
security does it have?

We give an answer in the following two theorems. The first is actually trivial and perhaps
known in folklore.

5 For some applications we really need the LHL because of its simplicity, efficiency and nice algebraic
features [BDK+11]

6 Actually collision entropy is more challenging and our observations on strong security are known in
folklore , but we study also the min-entropy case for the sake of completeness
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I Theorem. Let d > 1. Suppose that P is ε-secure with any key of min-entropy at least
m− d. Then P is ε′-strongly secure with ε′ = O(ε).

The second one is more interesting

I Theorem (Informal). Let d > 1. If P is ε-secure with any key of collision entropy at least
m− d, then P is σ-square-secure with σ = O(ε2).

The bounds in both cases are tight. Note that if the entropy deficiency d is bounded then
our lower bound perfectly (up to a constant factor) matches the result of Dodis and Yu for
any P .

Square Security is necessary to improve key derivation by condensing colli-
sion entropy. In the previous paragraph, we discussed the case when the entropy defi-
ciency d is bounded away from 0. However, sometimes we intentionally extremely condense
collision entropy so that this gap is close to 0, to achieve better than O(

√
ε) security at the

price of starting with more than m-bits of entropy. For ε-secure square friendly applica-
tions one can derive by universal hashing a (roughly) ε-secure key from any source having
m+log(1/ε) bits of min-entropy (or even collision entropy) [BDK+11]. Let us briefly discuss
this result. The proof of the classical Leftover Hash lemma consists of two separate claims:

(a) Universal hash functions can extremely condense collision entropy.
(b) Distributions of extremely high collision entropy are close to uniform.
More precisely, in the first step one applies a random function from a universal family to
“condense” the collision entropy of X from m + L bits, where L � 0, to an m-bit string
with m − log(1 + 2−L) ≈ m − 2−L bits of collision entropy 7. In the next step one shows
that any m-bit random variable with collision entropy at least m− ε2 is ε-close to uniform.
Thus, L = 2 log(1/ε) is enough to obtain ε-security. As observed by Barak et al. [BDK+11],
for ε-secure applications which are in addition ε-square-secure, it suffices to start with m− ε
bits of the collision entropy in step (b), which reduces by half, i.e. up to L = log(1/ε)
(comparing to the RT-bound), the entropy loss needed to achieve ε-closeness.

I Theorem ( [BDK+11]). Suppose that P with a uniform m-bit key is ε-secure and σ-square
secure. Let R be any key of collision entropy at least m − d (possibly given some side
information). Then P keyed with R is ε′-secure with ε′ = ε +

√
σ(2d − 1), even if the used

hash function is published. In particular, for σ = O(ε) and d = O(ε) we obtain ε′ = O(ε).

Applying this to R being X condensed by universal hashing we get

I Corollary ( [BDK+11]). Suppose that P with a uniform m-bit key is ε-secure and σ-square
secure (that is, average squared advantage of attackers is not bigger than σ). Suppose that
X has min-entropy (or collision entropy) at least m+ L and let R be an m-bit key derived
by universal hashing. Then P keyed with R is ε′-secure with ε′ = ε +

√
2−Lσ, even if the

used hash function is published. In particular, ε′ = O(ε) for σ = O(ε) and L = log(1/ε).

The first result motivates the following question about weak keys with the entropy deficiency
close to 0.

Q: Suppose that an application P is secure for all keys of extremely condensed collision
entropy, possibly given some side information. How much square-security does P
have?

7 conditioned on the choice of the function, which can be thought as a seed for the condenser
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We give an answer in the following theorem

I Theorem (Informal). Let d � 1 and suppose that P is ε-secure with all keys of collision
entropy at least m− d (possibly given side information, like the condenser’s seed). Then P
is σ-square secure with σ = O(max(d, ε2/d)).

Our theorem, applied for d = ε, shows the full converse of the observation of Barak et al. A
good illustrative example is the case of the Leftover Hash Lemma. As mentioned, universal
hash functions condense m + log(1/ε) bits of entropy into an m-bit string with m − ε bits
of entropy. If we use universal hash functions only as a condenser (which is exactly how
we use them in the LHL), then we have a “black-box” equivalence between distributions of
collision entropy at leastm−ε and hashes of distributions having at leastm+log(1/ε) bits of
entropy8. If follows then that we want to reduce the entropy loss by half to L = log(1/ε) and
achieve ε-security, then our application must be ε-square secure. This lower bound matches
the positive result of Barak et al. [BDK+11] and, since is holds for any application, can be
viewed as a general characterization of squared-friendly applications.

Square security is necessary for reducing the entropy loss in the LHL. As
remarked in the discussion in the previous paragraph, we can heuristically identify the set
of randomly “hashed” high entropy distributions with the set of distributions of extremely
high collision entropy (conditioned on the choice of a hash function as the uniform “seed”).
This “equivalence”, is reasonable for the “black-box” use of hash functions. However, it is
natural to ask if is natural to ask if we can prove it formally. That is, we ask if square
security is necessary for improvements in the entropy loss for key derived not by a general
“black-box” collision entropy condenser but precisely by hashing.

Q: Suppose that an application P is secure for any key derived by applying a ran-
domly chosen (almost) universal hash function to a min-entropy source, even if the
hash function is published. Suppose that the entropy loss vs security trade-off is
significantly better than (pessimistic) RT-bound. Is P square-secure?

We give an affirmative answer and a lower bound that (almost) matches the results of
[BDK+11] for any application.

I Theorem (The improved LHL [BDK+11] is tight for any application, informal). Let ε =
2−(1−β)m where β is some small positive number. Then there exists an ε-universal family
H of hash functions from n to m bits, efficiently commutable and samplable with the use of
n2 uniformly random bits, with the following property: for any application P , if for every
source X of min-entropy at least k = m+ log(1/ε) and H chosen randomly from H we have
that P is secure with the key H(X) and published H, then P must be σ-square-secure with
σ = ε

1−3β/2
1−β .

This theorem for β close to 1 (exponential but meaningful security) shows that ε1−o(1)-
square-security is necessary for saving log(1/ε) bits of entropy in deriving an ε-secure key
by universal hashing (which is almost tight since ε-square-security is enough.

1.3 Our techniques
Our main technical contribution is an explicit characterization of a distribution which max-
imizes the expectation of a given function, subject to collision entropy constraints. Similar

8 Because the only information that a general condenser provides is about the entropy in its output.
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characterizations, with respect to min-entropy, have been proven to be very useful when we
need to know the “worst-case” distribution maximizing or minimizing the attacker advant-
age [BSW03], [VZ12]. Therefore, our techniques might be of independent interests.

1.4 Organization of the paper
In Section 2 we provide the basic notations and definitions for security, square-security and
entropy. In Section 3 we state the known positive result. Our main auxiliary result on
optimization problems with collision entropy constraints is presented in Section 4. The
lower bounds are given in Section 5.

2 Preliminaries

Basic notions. The min entropy of X is H∞(X) = log(1/maxx Pr[X = x]). The collision
probability of X is CP(X) =

∑
x Pr[X = x]2, that is CP(X) = Pr[X = X ′] where X ′ is

an independent copy of X. The collision entropy of X is H2 = CP(X) and the conditional
collision entropy H2(X|Z) equals − log (Ez←Z CP(X|Z=z)). The statistical distance of X
and Y (taking values in the same space) is ∆(X;Y ) =

∑
x |Pr[X = x]− Pr[Y = x]|.

Security of indistinugishability and unpredictability applications. Consider
any application whose security is defined by a security game between an attacker A and a
challenger C(r), where r is an m-bit key key derived from Um in the “ideal” setting and
from some distribution R in the “real” setting. For every key r we denote by WinA(r) the
probability (over the randomness used by A and C) that the adversary A wins the game
when challenged on the key r. The advantage of the adversary A on the key r is defined,
depending on the type of the application (unpredictability, indistinugishability) as follows:

AdvA(r) def= WinA(r), (unpredictability) (2)

AdvA(r) def= WinA(r)− 1
2 , (indistingusihability) (3)

Now we define the security in the ideal and real models as follows:

I Definition 1 (Security in the ideal and real model). An application P is (T, ε)-secure in the
ideal model if

| E
r←Um

AdvA(r)| 6 ε (4)

for all attackers A with resources less than T . We say that P is (T, ε)-secure in the (m− d)-
real2 if for every distribution R of collision entropy at least m− d

| E
r←R

AdvA(r)| 6 ε, (5)

for all attackers A with resources less than T .

Square security. Finally, we define the notion of square-security (in the ideal model)

I Definition 2 (Square security). An application P is (T, ε)-square-secure if

E
r←Um

AdvA(r)2 6 ε, (6)

for all attackers A with resources less than T .
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Security in the presence of side information. Sometimes we need to consider
stronger adversaries, which has additional information S. For example, this is always the
case where the weak key has been derived from an entropy source using public randomness.

I Definition 3 (Security in the presence of side information). Given a side information S ∈ S,
an application P is (T, ε)-secure in the (m− d)-real2 model if for every distribution R such
that H2(R|S) > m− d we have

max
s∈S
| E
r←R

AdvA(r, s)| 6 ε, (7)

for all attackers A with resources less than T . In the ideal model P is (T, ε)-secure if
maxs∈S |Er←Um AdvA(r, s)| 6 ε and respectively (T, ε)-square-secure if maxs∈S |Er←Um AdvA(r, s)2| 6
ε for all attackers A with resources less than T .

I Remark. Note that in the nonuniform setting, security and square security in the ideal
model with and without side information coincide.

3 Square security- positive results

Improved key derivation for square-secure applications. Let D be an arbit-
rary real-valued function on {0, 1}m and let Y be an arbitrary m-bit random variable
with collision entropy H2(X) > m − d. By the Cauchy Schwarz Inequality one obtains
[DY13,BDK+11] the following inequalities

E D(Y ) 6
√

E D(Um)2 ·
√

2d, (8)

E D(Y )−E D(Um) 6
√

VarD(Um) ·
√

2d − 1. (9)

When the side information S is present, and H2(Y |S) > m− d, we get

E D(Y, S) 6
√

E D(Um, S)2 ·
√

2d, (10)

E D(Y )−E D(UY) 6
√

E
s←S

VarD(Um, s) ·
√

2d − 1. (11)

These inequalities, applied to D = AdvA link the security in the real model with the entropy
deficiency of a weak key and the security in the ideal model. In particular, one obtains the
following results, already mentioned in Section 1.1

I Theorem 4 ( [DY13]). Suppose that P is (T, σ)-square secure in the ideal model. Then it
is (T, ε) secure in the (m− d)-real2 model with ε =

√
2dσ.

I Theorem 5 ( [BDK+11, DY13]). Suppose that an application P in the ideal model is
(T, ε)-secure and (T, σ)-square-secure. Then it is (T, δ) secure in the real (m−d)-model with
δ = ε+

√
(2d − 1)σ.

Theorem 4 states that a weak key can be used directly in a square-secure application provided
that the entropy deficiency is not too big. The second theorem deals with the case where
the deficiency is extremely small. It is essentially important when one notices that universal
hash functions condense collision entropy at a very good rate. Theorem 5 yields the following
important corollary

I Corollary 6 (Improved LHL, [BDK+11]). Suppose that P is as above. Let X be an n-bit
random variable of collision entropy at least m + L, let H be a 1+γ

2m -universal family of
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functions from n to m bits and let H be a random member of H. Then P keyed with H(X)
is ε′-secure with ε′ 6 ε +

√
σ (γ + 2−L) against all adversaries with resources T and given

H. In other words, for all A with resources T we have

E
(r,h)←H(X),H

AdvA(r, h) 6 ε+
√
σ (γ + 2−L). (12)

In particular, for γ 6 ε and σ 6 4ε we achieve security ε′ 6 3ε with only Ł = log(1/ε) bits
of the entropy loss.

Summing up, when we want to derive a secure key for an ε-square-secure application from
a source X, we have two options

(a) We condense (if necessary) X by hashing into a string with small entropy deficiency.
From a source which has m−O(1) bits of entropy we derive a O(

√
ε)-secure key.

(b) If we want more security, we can condense X even stronger, with deficiency extremely
close to 0, sacrificing some entropy amount. From a source which hasm+log(1/ε)−O(1)
bits of entropy we derive a O(ε)-secure key.

In every case we obtain the meaningful security, in particular even if entropy amount we
start with is smaller than the length of the key we need. The application of a generic ex-
tractor in such a case gives no security guarantee! For more examples and applications we
refer the reader to [DY13] and [BDK+11].

Security and square security - mathematical insight. It is worth of mentioning
that the idea behind square security is, conceptually, simple and natural. All we need is the
concentration of the adversary’s winning probability, which is guaranteed by the small first
central or second central moment.

What applications are square-secure? It is known that PRGs, PRFs and one-time
pads cannot have good square security [BSW03]. In turn, many applications such as such as
stateless chosen plaintext attack (CPA) secure encryption and weak pseudo-random func-
tions (weak PRFs), can be proven to be “square-friendly” that is they have square-security
roughly the same as the standard security. The general method to prove that security implies
square-security is the so called “double run trick” [BDK+11,DY13].

4 Optimization: auxiliary results

Our main technical tool is a characterization of a distribution that maximizes the expectation
of a given function under the collision entropy constraints.

I Lemma 7 (Maximizing the expectation subject to collision entropy constraints). Let D : S →
[0, 1] be a function on a finite set S and let Y = Y ∗ be any optimal solution to the following
problem

maximize
Y ∈S

E D(Y )

subject to H2(X) > k
(13)

where the maximum is taken over all random variables Y taking values in S. Then there
exist a number λ > 0 and a real number t such that if we define

D′(x) = max(D(x)− t, 0) (14)
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then D′ satisfies the following condition

∀x : D′(x) = λPY ∗(x). (15)

In particular, VarD′(U) = λ2

|S|2 . Moreover, if values of D(·) are all different, then we have
λ > 0 and λ, t are unique.

I Remark. If values of D(·) are all different, then λ > 0 (see Appendix A).

I Corollary 8. We have the following identities E D′(Um) = λ
|S| , E D′(Um)2 = 1+θ

|S|2λ2 , and
E D′(Y ∗) = (1+θ)λ

|S| (D, θ, Y ∗, λ, t and D′ are as in Theorem 7).

5 Square security- lower bounds

5.1 Weak keys with the entropy deficiency bounded away from 0
We start with the following results, witch states that every indistinguishability application
which is secure with all keys of high min-entropy must be strongly secure. The proof is
relatively simple and is given in the appendix.

I Theorem 9. Suppose that an indistinguishability application P , which needs an m-bit key,
is (T, ε)-secure in the (m− d)-real∞model, where d > 1. Then P is 2ε-strongly secure. This
bound is tight.

More challenging and more interesting is the case of an application secure with all keys of
high collision entropy.

I Theorem 10. Suppose that an indistinguishability application P , which needs an m-bit
key, is (T, ε)-secure in the (m−d)-real2 model, where d > 1. Then P is (T, σ)-square-secure
with σ = 4ε2

Note that for bounded d the level of square security perfectly matches the positive result of
Dodis and Yu Theorem 4. It is easy to see that this bound is tight up to a constant factor
and thus we cannot get the bound O

(
ε2/2d

)
. The proof is heavily based on Theorem 7 and

appears in Appendix B.

5.2 Weak keys with the entropy deficiency close to 0
Below we provide a lower bound when the entropy deficiency is close to 0.

I Theorem 11. Suppose that P , which uses an m-bit key, is (T, ε)-secure in the (m − d)-
real2 model (possibly with side information). Then P is σ-square-secure with σ 6 ε2 +
max

(
2d − 1, 4ε2

2d−1

)
. In particular, if d� 1 then σ 6 2 max(d, ε

2

d ).

The proof is based on Theorem 7 and is given in Appendix C. From this we see that
Theorem 5 for d = ε is tight.

5.3 Leftover Hash Lemma as a Key Derivation Function
Finally, we consider the case of a key derived by hashing.
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I Theorem 12. Let α ∈ [1, 2] and let ε > 0. Suppose that an application P , which uses
an m-bit secure key, has the following property: for every n-bit source X of min-entropy
k > m + α log(1/ε), and every efficient εα-universal family H of hash functions from n to
m bits, we have

E AdvA(H(X), H) 6 Cε,

for some constant C and all adversaries A with resources at most T . Then P is (T, σ)-
square-secure with

σ 6
3
2 ·max

(
2−m/2εα/2, 4(C + 1)22m/2ε2−α/2

)
. (16)

For ε > 2−m we get σ = O
(
2m/2ε2−α/2). In particular, if α = 1 and ε = 2−(1−β)m for

some β > 0 then σ = O
(
2−(1−3β/2)m) = O

(
ε

1−3β/2
1−β

)
. Thus, any application P which

allows deriving an ε′-secure key with ε′ = O(ε) and entropy loss L = log(1/ε) must be
σ = O

(
ε1−o(1))-square-secure. On the positive side we know that σ-square-security with

σ = ε is enough Theorem 6.

I Corollary 13 (The Improved LHL is tight for any application). For any application P , the
security guarantee in the improved Leftover Hash Lemma (Theorem 6) cannot be improved by
more than a factor εo(1). Note that we require H to be efficiently computable and samplable,
in order to exclude some (possible) “pathological” counterexamples.

The proof of Theorem 12 relies on some advanced facts from matrices theory. We briefly
sketch our approach, the full proof is given in Appendix D. The key technical fact we prove
is that the hashes of high-min-entropy distributions are really mapped onto high collision
entropy distributions (with quantitative parameters good enough for our purposes). Once
we have a such a correspondence, we reduce the problem to Theorem 11. To this end,
we consider the probability Pr[H(x) = y] that x is hashed into y as a matrix with rows
y and columns x and observe use this matrix to obtain a linear map which realizes that
correspondence. To obtain a map with a good behavior, we fill it using some special “pattern”
which ensures nice algebraic properties and simplifies inverting.

6 Conclusion

We show that the positive results of Dodis,Yu and Barak et al. in key derivation cannot be
further improved.

References
AKT08G. Allaire, S. M. Kaber, and K. Trabelsi, Numerical linear algebra, Texts in applied math-

ematics, Springer, 2008.
BDK+11B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F. Standaert, and Yu Yu,

Leftover hash lemma, revisited, Proc. 31th CRYPTO, 2011.
BSW03B. Barak, R. Shaltiel, and A. Wigderson, RANDOM-APPROX, 2003.
BV04Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University

Press, New York, NY, USA, 2004.
DPW14Y. Dodis, K. Pietrzak, and D. Wichs, Key derivation without entropy waste, EUROCRYPT,

Springer Berlin Heidelberg, 2014, pp. 93–110 (English).
DY13Y. Dodis and Yu Yu, Overcoming weak expectations, Theory of Cryptography, Lecture

Notes in Computer Science, vol. 7785, 2013.



Maciej Skorski maciej.skorski@mimuw.edu.pl 11

Gra05R. M. Gray, Toeplitz and circulant matrices: A review, Commun. Inf. Theory 2 (2005),
no. 3, 155–239.

RTS00J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extractors, and depth-two su-
perconcentrators, SIAM JOURNAL ON DISCRETE MATHEMATICS 13 (2000), 2000.

VZ12S. Vadhan and C. J. Zheng, Characterizing pseudoentropy and simplifying pseudorandom
generator constructions, 44th STOC, STOC ’12, 2012.

A Proof of Theorem 7

Proof. Our problem is equivalent to the following constrained maximization problem over
R|S|

maximize
(p(x))x∈R|S|

∑
x

D(y)p(x)

subject to −p(x) 6 0 for all x ∈ S∑
x

p(x) = 1∑
x

p(x)2 6 2−k

(17)

The corresponding Lagrangian is given by

L((p(x))x; (λ1(x))x, λ2, λ3) =
∑
x

D(x)p(x) +
∑
x

λ1(x)p(x)− λ2

(∑
x

p(x)− 1
)

− λ3

(∑
x

p(x)2 − 2−k
)

(18)

Note that the equality constraint is linear, the inequality constraints are convex and, since
k < n, there exists a vector p = p(x) such that p(x) > 0 for all x,

∑
x p(x) = 1 and∑

x p(x)2 < 2k. This means that Slater’s Constraint Qualification is satisfied and the strong
duality holds [BV04]. In this case the Karush-Kuhn-Tucker (KKT) conditions imply that
for the optimal solution p = p∗ we have

D(x) = −λ1(x) + λ2 + λ3p
∗(x) (19)

where λ1(x) > 0 for all x, λ3 > 0 and λ2 ∈ R are the Lagrange Multipliers, satisfying the
following so called “complementary slackness” condition

∀x λ1(x) = 0 if p∗(x) > 0,
λ3 = 0 if

∑
x(p∗(x))2 < 2−k. (20)

The characterization in Equation (15) follows now by setting λ = λ3 and t = λ2. Indeed,
by Equation (19), Equation (20) and λ1(x) > 0 we get

max(D(x)− λ2, 0) = max(−λ1(x) + λ3p
∗(x), 0) = λ3p

∗(x).

Finally, note that if all values of D(·) are different then in Equation (19) we cannot have
λ3 = 0, because then Equation (20) implies that D is constant on the support of p∗ (which
has at least two points provided that k > 0). To proof the uniqueness part, observe that if
there exists a different pair (t′, λ′) for the same optimal solution p∗, then for all x such that
p∗(x) > 0 we have

∀x ∈ supp(p∗) D(x) = t+ λp∗(x) + t′ = λ′p∗(x), (21)



12 Key Derivation for Squared-Friendly Applications: Lower Bounds

and, since the case λ = λ′ cannot happen because it implies t = t′, we get p∗(x) = t−t′
λ−λ′ .

J J

B Proof of Theorem 10

Proof. We show that the following implication is true:

(I) If for D1 = D and D2 = 1 −D we have E D1(Y ) 6 1
2 + ε, E D2(Y ) 6 1

2 + ε for
every Y of collision entropy at least m− d, then VarD(U) 6 3ε2.

Having this, we easily derive the result of Theorem 10.
I Claim 13.1. If (I) is satisfied then Theorem 10 holds.

Proof of Claim 13.1. First, we observe that

E (WinA(U)− 1/2)2 = Var (WinA(U)) + (E WinA(U)− 1/2)2
, (22)

hence it is enough to bound the variance of the winning probability. Next, we fix any
adversary A with resources T , and set D(x) = WinA(x), D1(x) = D(x) and D2(x) = 1−D(x);
by Theorem 1 we get maxY E D1(Y ) 6 1

2 + ε where Y runs over al m-bit random variables
of collision entropy at least m− d. Second, we notice that for the indistinguishability case,
there exists adversary A′, with the same running time, which flips the success probability
of A, i.e. such that WinA′(x) = 1 − WinA(x). Thus, for D2(x) = 1 − D(x) we obtain
maxY E D2(Y ) 6 1

2 + ε. It follows that for every Y we have 1
2 − ε 6 E D(Y ) 6 1

2 + ε. Hence
the assumption of (I) is satisfied and we get Var (WinA(U)) 6 2ε2 which, combined with
Equation (22), finishes the proof. J J

It remains to prove that (I) holds under the assumptions in Theorem 10. Let D1 = D, D2 =
1−D and let Y ∗i , for i = 1, 2, be optimal for maximizing E D(Y ) under restrictions CP(Y ) >
1+θ
2m where θ = 2d − 1, and let (Y ∗1 , t1, λ1), (Y ∗2 , t2, λ2) be the corresponding maximizing
distributions and numbers from the characterization in Theorem 7 (by the approximation
argument, we can assume that all values of D are different, perturbing them slightly if
necessary; this, according to Section 4, implies that the numbers ti, λi for i = 1, 2 are unique
and λi > 0). According to (I), we assume that

E Di(Y ∗i ) 6 1
2 + ε, i = 1, 2 (23)

Consider now the following cases:
Case 1: t1 < 0 or Case 2: t2 < 0. Suppose that ti < 0 for i = 1 or i = 2. Since Di > 0, this
implies that D′i(x) = max(D(x)− t, 0) = D(x)− t and thus VarDi = VarD′i. By Theorem 8
we get

E Di(Y ∗)−E Di(Um) = E D′i(Y ∗)−E D′i(Um)
= 2−mθλi

=
√
θ ·
√

2−2m(1 + θ)λ2
i − (2−mλi)2

=
√
θ ·VarD′i(Um)

Since we have VarD = VarDi and |E Di(Y ∗)−E Di(Um)| 6 2ε by Equation (23), we obtain

VarDi(Um) 6 4ε2/θ (24)
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t1

1− t2

x

D(x)

Figure 1 t1, t2 > 0, t1 + t2 > 1

t1

1− t2

x

D(x)

Figure 2 t1, t2 > 0, 1 > t1 + t2

Figure 3 Cases t1, t2 > 0

We assume further that t1, t2 > 0 and split the analysis into two cases, illustrated in Figure 3.

Case 3: t1 > 0, t2 > 0, t1 + t2 > 1 (see Figure 1). In this and the next case we will use the
following simple lemma:

I Lemma 14. Let V , V1, V2 be r.v.’s such that V1, V2 > 0, V1V2 = 0 and V = V1 +V2. Then
VarV 6 VarV1 + VarV2.

I Corollary 15. For any discrete real random variable V , the expression Var (max(V − t, 0))
decreases with t.

Define S1 = {x : D(x) > t1} and S2 = {x : D(x) 6 1− t2}. By the assumption on t1 and
t2, the sets S1 and S2 are disjoint. Note that Y ∗1 and Y ∗2 are supported, respectively, on the
sets S1 and S2 by the characterization in Theorem 7. From Equation (23) it follows now
that

1/2− ε 6 1− t2 6 t1 6 1/2 + ε. (25)

By Theorem 8 this implies that D′i(x) = max(Di(x)− ti, 0) satisfy

(1 + θ) E D′(U) = E D′(Y ∗i ) = E D(Y ∗i )− ti 6 2ε (26)

Hence, again by Theorem 8 we get

VarD′i(U) = θ(E D′i(U))2 6
4θε2

(1 + θ)2 (27)

Define V1 = max(D1, t1), V2 = D1 if 1−t2 6 D1 6 t1 and 0 otherwise, and V3 = min(D1, 1−
t2) = 1−max(D2, t2). Since D1 = V1 + V2 + V3, applying Theorem 14 twice, we get

VarD1 6 VarV1 + VarV2 + VarV3

6
8θε2

(1 + θ)2 + ε2

6 3ε2 (28)

Case 4: t1 > 0, t2 > 0, t1 + t2 < 1 (see Figure 2). We show the following estimate

I Claim 15.1. We have VarD 6 (1 + 1/θ)
(
VarD′1(U) + VarD′2(U)

)
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Proof of Claim 15.1 . Observe that we have

VarD(U) = Var(D(U)− t1)
= Var (max(D(U)− t1, 0)) + Var (max(t1 −D(U), 0))

+ 2 E max(D(U)− t1, 0) ·E max(t1 −D(U), 0).

Since t2 6 1 − t1 we get Var (max(t1 −D(U), 0)) 6 Var (max(1− t2 −D(U), 0)), by The-
orem 15 applied to V = 1−D(U). Clearly we have E max(t1 −D(U), 0) 6 E max(1− t2 −
D(U), 0). Therefore

VarD(U) 6 VarD′1(U) + VarD′2(U) + 2 E D′1(U) E D′2(U)

By Theorem 8 we get VarD′i(U) = θ · (E D′i(U))2 for i = 1, 2. Plugging this into the above
equation, we get

VarD(U) = (1 + θ−1)
(
VarD′1(U) + VarD′2(U)

)
− θ

(√
VarD′1(U)−

√
VarD′2(U)

)2

and the claim follows. J J

I Claim 15.2. We have
√

VarD′1(U) +
√

VarD′1(U) 6 2ε/
√
θ.

Proof of Claim. By Theorem 8 we have
√

VarD′i(U) =
(
E D′i(Y ∗i )−E D′i(U)

)
/
√
θ for i =

1, 2. This implies√
VarD′1(U) +

√
VarD′2(U) 6

(
E D′1(Y ∗i )−E D′1(U) + E D′2(Y ∗i )−E D′2(U)

)
/
√
θ.

Since E D′(Y ∗i ) = E D(Y ∗i )− ti, which follows from Equation (15), and since max(Di(x)−
ti, 0) + ti = max(Di(x), ti) we can rewrite the above equation as√

VarD′1(U) +
√

VarD′2(U) 6 (E D1(Y ∗i ) + E D2(Y ∗i )−E(max(D1(U), t1) + max(D2(U), t2))) /
√
θ.

Since max(D1(x), t1) + max(D2(x), t2) > D1(x) + D2(x) = 1, the result follows. J J

By combining the inequality
√

VarD′1(U) + VarD′2(U) 6
√

VarD′1(U) +
√

VarD′2(U) with
Claim 15.1 and Claim 15.2 we finally obtain

VarD 6
(
θ−1 + θ−2) · 4ε2 (29)

Summarizing. The result follows by combining the estimates Equation (24), Equation (28)
and Equation (29).
Tightness. To see that the lower bound is sharp, suppose that the class of adversaries consists
of A and A′ where A′ is obtained by “flipping” the guess A. Let S1, S2, S3, S4 be any disjoint
subsets of {0, 1}m such that |S1| = |S4| = 2m−d and |S2| = |S3| = 2m−1 − 2m−1−d. Let
γ ∈ (0, 1) and suppose that the distribution of WinA(r) is as follows: 1

2 +ε for r ∈ S1, 1
2 +γε for

r ∈ S2, 1
2−γε for r ∈ S3 and 1

2−ε on r ∈ S4. It is easy to see that maxY Er←Y WinA(r) = 1
2 +ε

and maxY Er←Y WinA′(r) = 1
2 + ε, where the maximum is over all distributions of collision

entropy m− d. However

E
r←U

(WinA(r)− 1/2)2 = E
r←U

(WinA′(r)− 1/2)2

= 2 · 2−dε2 + 2 ·
(
2−1 − 2−1−d) · γ2ε2,

which for γ → 1 becomes arbitrarily close to 2ε2. J J
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C Proof of Theorem 11

Proof. The observation in Section 2 implies that we can assume, without losing generality,
that there is no side information. Using Theorem 7 we derive an estimate on the variance
of a function D, which has small advantage in distinguishing between distributions of high
collision entropy and the uniform distribution.

I Lemma 16. Let D be a real-valued function on m-bit strings. Suppose that E D(Y ) −
E D(Um) 6 δ for all distributions Y over {0, 1}m such that CP(Y ) 6 1+θ

2m . Then VarD 6
max(θ(E D(Um))2, θ−1δ2).

Proof of Theorem 16. We can assume that the values of D are all different (by the approx-
imation argument we can assume this by perturbing the values slightly and once we prove
the theorem under that restriction, we can pass with the changes to 0). From Theorem 7
and Section 4 it follows then that the expectation E D(Y ) is maximized by a distribution
Y = Y ∗ satisfying CP(Y ∗) = 1+θ

2m and λPY ∗(x) = max(D(x)−t, 0) for some unique numbers
λ > 0, t ∈ R and all x. Let D′(x) = max(D(x)− t, 0). By Theorem 8 we get

E D′(Um)2 − (E D′(Um))2 = λ2θ

22m = θ · (E D′(Um))2. (30)

This equation and the uniqueness of t show that t < 0 if and only if VarD(Um) > θ(E D(Um))2.
Consider now two cases:
Case 1: t > 0. Then VarD(Um) 6 θ(E D(Um))2.
Case 2: t < 0. We have D′(x) = D(x)− t and therefore, as in the proof of Theorem 10, Case
1 and Case 2, we obtain

E D(Y ∗)−E D(Um) =
√
θ ·VarD(Um), (31)

which implies that VarD(Um) 6 θ−1δ2. The result follows by taking the maximum over
both estimates. J J

Let θ = 2d−1 and let D(r) = WinA, where A is any adversary with resources T . We observe
that for every Y such that CP(Y ) 6 1+θ

2m , by the triangle inequality and Theorem 1 we
obtain

E D(Y )−E D(U) 6 |E D(Y )− 1/2|+ |E D(U)− 1/2| 6 2ε.

Applying Theorem 16 we get Var(WinA) 6 max(θ, 4ε2/θ). Recalling that we have |E D(U)−
1/2| 6 ε, by the identity in Equation (22) we obtain

E(D(U)− 1/2)2 6 max(θ, 4ε2/θ) + ε2,

which finishes the proof. J J

D Proof of Theorem 12

of Theorem 12. The proof is based on the following lemma

I Lemma 17 (Distributions of high collision entropy as random hashes). Let X = {x1, . . . , xN}
and Y = {y1, . . . , yM} be any sets and let η be a number such that 0 < η < 1/(2

√
M). Then

there exists an efficient family H = {hξ}ξ of functions from X to Y, which is γ-universal
with γ = Mη2, and has the following property: for every K and every distribution Y over
Y such that CP(Y ) 6 (1 + η)/M there exists a set S ⊂ X of size |S| = K such that (a)
SD(H(US);Y ) 6 M

K and (b) CP(H(US)) 6 CP(Y ) + 2M
K .
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We show how Theorem 17 implies Theorem 12. Set M = 2m, N = 2n, M = 2k, and
η = 2−m/2εα/2 so that γ = εα. Note that ε < 1/4 implies η < 1/(2

√
M). Fix any adversary

A′ which doesn’t use side information and let A be the adversary which challenged on r and
given h as advise, runs A′. Clearly, we have WinA(r, h) = WinA′(r). By the assumption we
have E WinA(H(X), H) 6 1/2+Cε for all X of min-entropy at least k. Therefore, we obtain

E WinA′(H(X)) 6 1/2 + Cε, for every X such that H∞(X) > k.

This inequality, combined with Theorem 17 where M = 2m and η =, yields

E WinA′(Y ) 6 1/2 + Cε+ 2m−k, for every Y such that CP(Y ) 6 1 + η

2m .

In other words, our application is (T, ε′)-secure in the (m − d′)-real2 model where ε′ =
Cε+ 2m−k 6 (C+ 1)ε and 2d′ = 1 + η. Applying the lower bound in Theorem 11, we obtain
(T, σ)-square-security with σ = ε′2 + max

(
η, 4ε′2η−1). This yields Equation (16).

Proof. Proof of Theorem 17 Let {ξj}j∈{1,...,N} be pairwise independent random variables
taking values in {y1, . . . , yM} such that

Pr[ξj = yi] =


1
M + δ if i ≡ j mod M
1
M if i ≡ j + 1, . . . , j + M

2 − 1 mod M
1
M −

2δ
M if i ≡ j + M

2 , . . . , j +M − 1 mod M

(32)

The distribution of {ξj}j has a circular “pattern”, illustrated in the table below.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y1
1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

y2
1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

y3
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4

y4
1
4

1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4 + δ

Table 1 The distribution of {ξj}j for M = 4 and N = 12

Let A = [ai,j ] be the M ×M matrix with the entries

ai,j = Pr[ξj = yi]. (33)

The matrix A is the “base” pattern of the table (Pr[ξj = yi])i,j . For the special case M = 4
this matrix is

A =


1
4 + δ 1

4
1
4 −

δ
2

1
4 −

δ
2

1
4

1
4 + δ 1

4 −
δ
2

1
4 −

δ
2

1
4 −

δ
2

1
4

1
4 + δ 1

4 −
δ
2

1
4 −

δ
2

1
4 −

δ
2

1
4

1
4 + δ

 .

Define h to be a function such that

h(xj) = ξj (34)

We construct H X as follows: for every i = 1, . . . ,M let Si be a set such that

Si ⊂ {xj : j ≡ i mod M} . (35)
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Let S =
⋃
i Si. Observe that Prx←S [H(x) = yi] =

∑
j ai,j ·

|Sj |
|S| . Hence we obtain

(
Pr
x←S

[H(x) = y1] , . . . , Pr
x←S

[H(x) = yM ]
)T

= A ·
(
|S1|
|S|

,
|S2|
|S|

. . . ,
|SM |
|S|

)T
(36)

From Equation (36) we immediately obtain the following corollary
I Claim 17.1. Let Y be a random variable with values in {y1, . . . , yM} and let Sj be sets
satisfying (35). Denote sj = |Sj |

|S| , pj = Pr[Y = yj ] and suppose that

A · (s1, s2, . . . , sM )T = (p1, p2, . . . , pM )T (37)

where A is the matrix defined in Equation (33). Let S =
⋃
j Sj . Then we have Y d= H(US).

This claim reduces the problem of representing a distribution Y as a random hash of a
high-entropy distribution X to the problem of solving system of linear equations. A natural
way is to solve the system in Equation (37) for s and then find sets Sj such that sj = |Sj |

|S|

or at least sj ≈ |Sj ||S| . Note that there are two issues in this approach.

(a) The solution s of the equation A · s = p is not necessarily positive.
(b) The value |S|, necessary to obtain a good approximation sj ≈ |Sj ||S| , could be much bigger

than 2m.
We deal with issue (a) by observing that from Claim 17.1 it follows that uniform Y can
be represented by X uniform over a 2m-element set, with the corresponding weights s1 =
. . . = sM = 1

M . Intuitively, we expect that the same is true for every distribution Y

close to Um and that the corresponding weights sj are also close to 1
M . To state this in

a quantitative form, we estimate the so called matrix condition number, a toll widely used
in numerical analysis to estimate changes of a solution caused by a perturbation of linear
systems. Problem of computing the condition number is extremely simplified due to the fact
that the matrix A has a “cyclic” pattern. To deal with problem (b) we observe that under
the condition log |S| 6 m+ log(1/ε) we approximate the distribution Y well enough.

We return to the proof. Below we give the standard result on perturbed linear system.

I Lemma 18 (Perturbation of a linear system, [AKT08]). Let ‖ · ‖ be a vector norm on the
space CM and let ‖A‖, for any M ×M matrix A, be the associated matrix norm defined by
‖A‖ = sup‖x‖=1 ‖Ax‖. Define the condition number of a non-singular M ×M matrix A,
relative to the norm ‖ · ‖, as cond(A) = ‖A‖ · ‖A−1‖. Suppose that s0 and s are solutions of
the systems

As0 = p0 and As = p

Then we have
‖s− s0‖
‖s0‖

6 cond(A) · ‖b
′ − b‖
‖b‖

(38)

In our case, the convenient norm is the matrix norm induced by the second norm. This
norm is also called the spectral norm, because it can be computed directly from the singular
values of the matrix.

I Lemma 19 (Computing spectral norm [AKT08]). For any matrix A with complex elements
we have

‖A‖2 = σmax

σmin
(39)
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where σmax and σmin are, respectively, the biggest and the smallest singular values of A, i.e.
the biggest and the smallest eigenvalues of the (symmetric) matrix AA∗.

By Equation (32) we obtain the following corollary
I Claim 19.1. The matrix A defined in Equation (33) is a doubly stochastic and circulant
matrix. That is, rows and columns sum to 1 and every row is a right cyclic shift of the row
above.
Circular matrices appear in many problems in physics, signal and image processing, prob-
ability, statistics, numerical analysis, and coding theory. Their theory is relatively simple
comparing to the case of general matrices, and many basic questions can be answered in a
simple closed form. For circulant matrices the eigenvalues and eigenvectors could be directly
computed. In particular, we have the following decomposition theorem

I Lemma 20 (Spectral decomposition theorem for circulant matrices [Gra05]). Let C be a
circulant M ×M matrix with complex elements whose first row is (c0, c1, . . . , cM−1). Then
we have

C = UΛU∗, (40)

for the diagonal matrix Λ = diag (λ0, . . . , λM−1) which consists of the elements (eigenvalues
of C)

λj =
M∑
i=0

ciρ
i
j (41)

and the unitary matrix U = (u0, . . . , uM−1) with the columns (eigenvectors of C)

uj = 1√
M

(
1, ρj , ρ2

k, . . . , ρ
(M−1)
j

)T
(42)

where ρj = exp
(
− 2kπ

M

)
is the j-th of the M -th roots of unity.

Combining Theorem 18 and Theorem 19 we obtain the following well known fact

I Lemma 21. Let C be a normal matrix, i.e. matrix unitarily similar to a diagonal matrix:
C = Udiag(λ1, . . . , λM )U∗. Then ‖C‖2 = maxi |λi|.

From Theorem 21 as a corollary we immediately obtain

I Lemma 22. Let C be a M ×M normal matrix with eigenvalues λ1, . . . , λM . Then the
condition number with respect to the spectral norm is given by cond2(C) = maxi |λi|

mini |λi| .

The last claim together with Theorem 20 allows us computing the condition number of a
circulant matrix.
I Claim 22.1. Let δ 6 1

2 and let A be the matrix defined in Equation (33). Then cond2(A) 6
1/δ.

Proof of Claim. Denote ρ = exp
(
− 2πi
M

)
. By Claim 19.1 and Theorem 20 we know that the

eigenvalues λ0, λ1, . . . , λM−1 are given by λi =
∑M−1
j=0 A1,j+1ρ

ij . By Equation (33) we have
A1,j+1 = 1

M + δ for j = 0, A1,j+1 = 1
M for j = 1, . . . , M2 − 1 and A1,j+1 = 1

M −
2δ
M . Since

1 + ρi + ρ2i + . . .+ ρ(M−1)i = 0 for i 6≡ 0 mod M , we obtain

λi =
{

1 if i = 0
δ + 2δ

M ·
1−(−1)i

1−ρi if i ∈ {1, . . . ,M − 1}
(43)
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Having established the explicit formula on the eigenvalues of A, we can easily identify the
smallest and the biggest one in absolute value. We start by observing that the homographic
mapping of the complex plane z → 1

1−z , maps the unit circle |z| = 1 into the line <(z) = 1
2 .

Indeed,

1
1− exp(θi) = exp(−θi/2)

exp(−θi/2)− exp(θi/2) = cos(θ/2)− i sin(θ/2)
−2i sin(θ/2) = 1

2 + i
2 tan(θ/2) . (44)

From Equation (44) it follows that if z = exp(θi) runs around the unit circle in the counter-
clockwise direction, starting from z = 0, then the point 1

1−z runs along the line <(z) = 1
2

from
( 1

2 ,+∞
)
to
( 1

2 ,−∞
)
. Applying this observation to the points z = ρi with odd i and

the formula in Equation (43), which for odd i becomes λ = δ
(

1 + 4
M ·

1
1−z

)
, we see that

|λM/2| 6 |λi| 6 |λ1|, i ≡ 1 mod 2

Since we have λM/2 = δ
(
1 + 2

M

)
and, by Equation (44), λ1 = δ

(
1 + 2

M + 2i
M tan(π/M)

)
the

above inequality implies

δ

(
1 + 2

M

)
6 |λi| 6 δ ·

√
1 + 4

M
+ 4
M2 sin2 ( π

M

) , for i ≡ 1 mod 2 (45)

Noticing that λi = 1 for i = 0 and λi = δ for positive even i, we finally obtain

|λmin| = δ

|λmax| = max
(

1, δ
(

1 + 4
M + 4

M2 sin2( πM )

) 1
2
)
. (46)

Recall the inequality sin t > 2t
π for t ∈

(
0, π2

)
. Applying this to Equation (46) we get

|λmax| 6 max
(

1, δ ·
√

2 + 4
M

)
6 max(1, 2δ), hence |λmax| = 1 for δ 6 1

2 . Thus, the result
follows. J J

Now we are ready to make the first step towards the actual proof. Namely, we prove that
every distribution of sufficiently low collision probability can be (exactly) represented as a
random hash of a distribution uniform over some set. The problem is the size of this set,
which is not guaranteed to be sufficiently small.

I Claim 22.2. Let A be the matrix defined in Equation (33) and let Y be a distribution over
{y1, . . . , yM} such that CP(Y ) 6 1+η

M . Define the vector p as pj = Pr[Y = yj ]. Then the
solution s of the equation As = p is non-negative, provided that δ >M1/2η.

Proof of Claim. Let p0 and p be the vectors of probability masses of U and Y respectively,
that is p0

j = 1
M and pj = Pr[Y = yj ]. Let s and s0 be the solutions of the systems As0 = p0

and As = p. Using Theorem 18, Claim 22.1 and the fact that s0 = p0, we get

‖s− s0‖2 6 δ−1 · ‖p− p0‖2 (47)

Note that ,by assumption, we have

‖p− p0‖2 =
∑
y

|Pr[Y = y]− 1/M |2 = CP(Y )− 1
M

= η/M, (48)
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and recall the basic inequalities between the vector norms∥∥s− s0∥∥
∞ 6

∥∥s− s0∥∥
1 6
√
M ·

∥∥s− s0∥∥
2 . (49)

Note that if the condition ‖s − s0‖∞ 6 1
M is satisfied, then sj > 0 for all j. The claim

follows now easily by combining Equation (47), Equation (48) and Equation (49). J J

In the next step we relax the assumption on the equality of the distributions in Claim 22.2
and show how to approximately obtain any low collision entropy distribution by hashing a
bounded set.

I Claim 22.3. Let A be the matrix defined in Equation (33) and let Y be a distribution over
{y1, . . . , yM}. Then for any K there exists a distribution Y ′ such that

(a) The solution s′ of the equation As′ = p′, where p′j = Pr[Y ′ = yj ], is a vector whose
entries are positive and are integer multiples of 1

K

(b) We have SD(Y ′;Y ) 6 M
K and CP(Y ′) 6 CP(Y ) + 2M

K .

Proof of Claim. Define the probability vector s′ as follows

s′j = γ/K + bKsjc/K (50)

where γ = 1−
∑M
j=1bKsjc. Observe that we have

0 6 γ 6 1−M/K (51)

and

sj + (γ − 1)/K 6 s′j 6 sj + γ/K. (52)

Since the matrix A has positive entries and since the rows of A sum to 1, we have

Ajs+ (γ − 1)/K 6 Ajs
′ 6 Ajs+ γ/K. (53)

for every row Aj of the matrix A. By definition we have Ajs = pj and Ajs′ = p′j . Hence
Equation (53) implies

‖p′ − p‖1 6M/K (54)

and

‖p‖2
2 −

M(1− γ)
K

+ M(1− γ)2

K2 6 ‖p′‖2
2 6 ‖p‖2

2 + 2Mγ

K
+ Mγ2

K2 . (55)

From Equation (51) it follows that γ
(
1 + 1

K

)
< 1. Thus, from Equation (55) we have

‖p′‖2
2 6 ‖p‖2

2 + 2M
K . This, combined with Equation (54) finishes the proof. J J

The lemma follows now directly from the last claim. J J

J J
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E Proof of Theorem 21

Proof of Lemma. It is well known that multiplying by a unitary matrix preserves the spec-
tral norm, that is ‖UA‖2 = ‖AU‖2 = ‖A‖ for any square matrix A and unitary U of the
same dimension. To see this, note that for any vector v ∈ CM we have

‖UAv‖2
2 = (UAv)∗UAv = v∗A∗U∗UAv = v∗A∗Av = ‖Av‖2

2.

The equality ‖UA‖2 = ‖A‖2 follows from this directly, and the second equality ‖AU‖2 =
‖A‖2 follows by observing that |v‖2 = 1 if and only if ‖Uv‖ = 1 and combining this with
the definition of the spectral norm. Therefore we have ‖C‖2 = ‖diag(λ1, . . . , λM )‖2 and the
claim follows. J J
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