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Abstract. In Crypto’05, Bellare et al. proved O(`q2/2n) bound for the
PRF (pseudorandom function) security of the CBC-MAC based on an
n-bit random permutation Π, provided ` < 2n/3. Here an adversary can
make at most q prefix-free queries each having at most ` “blocks” (el-
ements of {0, 1}n). In the same paper O(`o(1)q2/2n) bound for EMAC
(or encrypted CBC-MAC) was proved, provided ` < 2n/4. Both proofs
are based on structure graphs representing all collisions among “in-
termediate inputs” to Π during the computation of CBC. The problem
of bounding PRF-advantage is shown to be reduced to bounding the
number of structure graphs satisfying certain collision patterns. Unfor-
tunately, we have shown here that the Lemma 10 in the Crypto’05 paper,
stating an important result on structure graphs, is incorrect. This is due
to the fact that the authors overlooked certain structure graphs.
This invalidates the proofs of the PRF bounds. In ICALP’06, Pietrzak
improved the bound for EMAC by showing a tight bound O(q2/2n) under
the restriction that ` < 2n/8. As he used the same flawed lemma, this
proof also becomes invalid. In this paper, we have revised and sometimes
simplified these proofs. We revisit structure graphs in a slightly different
mathematical language and provide a complete characterization of cer-
tain types of structure graphs. Using this characterization, we show that
PRF security of CBC-MAC is about σq/2n provided ` < 2n/3 where
σ is the total number of blocks in all queries. We also recovered the
tight bound of EMAC with a much relaxed constraint ` < 2n/4 than the
original.
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1 Introduction

Brief History on CBC and EMAC. The notion of authentication in cryp-
tographic protocols was first introduced by Diffie and Hellman in their seminal
paper [9] of 1976. In symmetric key settings, this need is fulfilled by message au-
thentication codes, better known as MACs. CBC-MAC is a block cipher based
MAC construction which is based on the CBC mode of operation invented by
Ehrsam et al. [13]. The CBC-MAC was an international standard [1] which had
been proved to be secure for fixed length messages [2, 5] or prefix-free message



spaces [30, 16]. The fixed length constraint is not desired in practice. One way
to circumvent this is to use the length of message as the first block in CBC com-
putation. This requires prior knowledge of message length. A more reasonable
and popular approach is to encrypt the CBC output with an independent keyed
permutation. This later approach is called the EMAC which has been proved
to be secure without any restrictions on the message [30]. We refer readers to
section 2 for a brief overview of literature related to CBC-MAC.

CBC and EMAC Functions. Throughout the paper, we fix a positive integer
n and let B := {0, 1}n. Elements of these sets are called blocks. Let Perm :=
Perm(n) be the set of all permutations over B. The CBC (cipher block chaining)
function with key π ∈ Perm, denoted CBCπ, takes as input a message M =
(M [1], . . . ,M [m]) ∈ Bm and outputs a block outπ(M)[m] which is inductively
computed as outπ(M)[0] = 0n and

outπ(M)[i] = π(outπ(M)[i− 1]⊕M [i]), i = 1, . . . ,m.

For 0 < i < m, inπ(M)[i] := outπ(M)[i − 1] ⊕M i and outπ(M)[i] are said to
be the intermediate input and output respectively. Fig 3 in section 3 provides an
illustration of CBC computation and intermediate values.

Security Definitions. In this paper we consider two types of attacks for an
adversary which makes queries of at most ` blocks: atk = pf and atk = any mean
no query is a prefix of another and the queries are arbitrary distinct strings,
respectively. Let Advatk

F (q, `, σ) denote the maximum advantage attainable by
any adversary making q queries and the total number of blocks in all q queries
is at most σ, mounting an atk attack, in distinguishing whether its oracle is F ,1

or a random function that outputs n bits. To analyze the security of CBC and
EMAC for the random permutation Π, the collision probability and full collision
probability

CPn(M1,M2)
def
= PrΠ [CBCΠ(M1) = CBCΠ(M2)]

FCPn(M1,M2)
def
= PrΠ [outΠ(M2)[m2] = outΠ(Mr)[j]; ∃ (r, j) 6= (2,m2)]

had been introduced for distinct messages M1 and M2. Moreover, let CPatk
2,` and

FCPatk
2,` denote the maximum collision and full collision probabilities respectively

where the maximum is taken over all distinct messages M,M ′ having at most `
blocks and satisfies atk. In [3], the following results had been shown:

Advany
EMAC(q, `) ≤

(
q

2

)
(CPany

2,` + 2−n), Advpf
CBC(q, `) ≤ q2(FCPpf

2,` + 4`/2n).

(1)
As EMAC encrypts output of CBC-MAC under an independent key, as long

as there is no collision in the output of CBC-MAC, the final output behaves

1 In this paper, it is either CBC or EMAC based on the random permutation Π on n
bits (i.e., Π is chosen uniformly from Perm).



randomly. This is essentially same as the Carter-Wegman construction [33]. The
CBC-MAC function can be similarly viewed as a (dependent) nested construc-
tion in which the final encryption is computed under the same key as the internal
computation. This is why we need an extended definition of collision which is ap-
propriately captured by the full collision event. Thus, bounding PRF advantages
are reduced to bounding (full) collision probabilities. These are again reduced
to bounding the number of structure graphs as described in the following para-
graph.

Structure Graph. Block-vertex structure graph G associated to a mes-
sage M and a permutation π, is the directed edge labeled graph induced by the
edge-set E consists of all edges

ei : outπ(M)[i− 1]→ outπ(M)[i] := (outπ(M)[i− 1], outπ(M)[i]), 1 ≤ i ≤ m.

The label for ei is L(ei) = M [i]. Note that a block-vertex structure graph can
be viewed simply as an M -walk. In this paper we often use this equivalent
representation of block-vertex structure graphs. A structure graph G∗ over
a vertex set V ∗ ⊆ I(an index set) is an isomorphic graph of the block-vertex
structure graph mapping 0n to 0. The labelled walk of G is preserved in G∗

(in isomorphism sense) due to the isomorphism between G and G∗. So we can
have a similar representation of a structure graph in terms of walks. We refer
readers to Definition 4 for a more formal definition of a structure graph. The
(block-vertex) structure graph is also similarly defined for a tuple (or sometimes
pair) of messages M = (M1, . . . ,Mq).

Given a structure graph G∗ = (V ∗, E∗), suppose we reconstruct the graph by
defining edges one by one along the M -walk. Now there are three possibilities at
any point of time: (1) we add a new edge heading to a new vertex (not obtained
so far) (2) we get an old edge which is already defined and (3) we add a new edge
heading to an already existing vertex. True collisions correspond to the last case.
The number of such true collision can be equivalently defined as the following
sum

TC(G) := in− deg(0n) +
∑

v∈V \{0}

(in− deg(v)− 1).

Let us assign a variable Yv, meant for the intermediate output, for each node
v ∈ V ∗. Let δ := (u, v ; z) be a triple such that u→ z, v → z and u 6= v. We call
such triple input-collision (also called collision). Given any such input-collision
the following linear equation, denoted Lδ must hold whenever Y -variables are
actually assigned as intermediate outputs:

Yv ⊕ Yu = cδ where cδ = L(v, z)⊕ L(u, z).

When 0 has no in-degree, accident of a structure graph G∗, denoted Acc(G), is
the rank of all linear equations Lδ over all collisions of the graph. When 0 has
positive in-degree we add one to the rank to define accident. In section 5, we
provide a more detailed study on the structure graph.



A Flaw in [3, Lemma 10]. The Lemma 10 of [3] states that for any structure
graph G∗ realized by a pair of messages Acc(G∗) = 1 implies TC(G∗) = 1.
This result has been used to bound FCPn (in [3]) as well as CPn (in [3, 31]).
Unfortunately, the claim is incorrect as illustrated in Fig. 1 where we have two
structure graphs with true collision 2 and accident one. Surprisingly, this flaw
remained unobserved till now, although it has been applied for other results.

v1

v′2 v2

v3 v1

v2

v3

(a) (b)

M1[1]

∗

M1[2]

M1[3]

M2[1]

M1[1]

M1[2]

M1[3]

M2[1]

Fig. 1: Counter-example for [3, Lemma 10]. The walks corresponding to the two mes-
sages start at v1, and end at v3. Here M2[1] := M1[1] ⊕M1[2] ⊕M1[3] and ∗ can be
any number of blocks. In particular when ∗ has no block, figure (a) is same as (b).
In (a) we have two input-collisions δ1 := (v1, v

′
2 ; v2) and δ2 := (v1, v2 ; v3). The

two linear equations Lδ1 and Lδ2 corresponding to the two input-collisions are same
as Yv1 ⊕ Yv2 = M1[1]⊕M1[2] and so the rank of all collisions (which is also accident)
is one. However, true collision is two (at v′2 and v3) which contradicts [3, Lemma 10].
Similar argument can be given for figure (b).

1.1 Our Contributions

Due to the above flaw, it is a natural question to see the impact of this flaw to
those results in addition to [3], where it has been applied. This work serves this
purpose. To our best knowledge, it has been applied in [31] and probably in [10,
Lemma 3] (no proof of this claim is publicly available though). The bound on

FCPpf
2,` [3] is also used in the PRF analysis of truncated CBC [14]. Any revision

in the FCPpf
2,` bound [3] will also necessitate revision of bound in [14].

Characterization of all Accident one Structure Graphs. As the Lemma
10 is wrong and we have identified two graphs which violate lemma 10, it is
important to see whether there are any more missing cases. We first settle this
issue and showed that these are the only missing cases. To do so, we have char-
acterized all structure graphs (realized by a single message) having at most one
accident (see Lemma 4 in section 6). This will actually help when we study
structure graphs for two messages.

Revision of the CP and FCP, and PRF bound of CBC. We revise the
FCP bound of [3]. Fortunately, the upper bounds of FCP and hence PRF
advantage of CBC, are only increased by a constant factor keeping the order of
bound same. In section 7 we have shown this. In case of the CP bound due to



Bellare et al. in [3] the [3, Lemma 15], used to bound the main claim, is false.
Fortunately, it can be shown that the main claim remains true after revision.

Revision of the PRF bound of EMAC. We revisit the proof of EMAC
by Pietrzak [31] in section 8. Unfortunately, a straight forward revision gives a
non-tight bound on EMAC. Then, we take a different approach (by consider a
different bad event) to show (in Theorem 3 of the same section) the tight bound
for EMAC. Our approach is much simpler and gives the tight bound even for
a more relaxed choice of `, namely ` < 2n/4, whereas the original constraint was
` < 2n/8.

2 Related Works

The security of MAC constructions has seen constant research interest. Among
the block cipher based constructions CBC MAC and its variants are the most
popular. Here we try to summarize the research on PRF security of CBC MAC
and its variants. The aim is to list the state of the art results as well as emphasize
the progress that has been made till date.

• Analysis of CBC-MAC. First concrete results on CBC MAC was given by
Bellare et al. [2]. They showed a bound of 2`2q2/2n for fixed length queries,
which was further improved to `2q2/2n by Maurer [22]. Later Bernstein [5]
simplified the proof for fixed-length CBC MAC. Petrank and Rackoff [30]
extended the proof in [2] to prefix-free queries and similar extension on Bern-
stein’s proof was done by Rackoff and Gorbunov [16]. Both bounds are about
`2q2/2n. The most recent bound on CBC MAC is by Bellare et al. [3] who
improved (in terms of `) the bound to 12`q2/2n + 64`4q2/22n. Another way
of improving the bound is to show the PRF bound of the form qσ/2n [26].

• Analysis of EMAC. In [2] Bellare et al. also suggested some variants of
CBC MAC to handle variable length messages. In particular, they mentioned
a construction where the output of CBC MAC is further encrypted by an
independent key. This construction known as EMAC was first developed
during the RACE [4] project. Patrank and Rackoff [30] proved that DMAC
(same as EMAC) is secure up to 2.5`2q2/2n. Bellare et al. [3] improved the
bound to q2 · d′(`)/2n which was further improved by Pietrzak to q2/2n for
` ≤ 2n/8. However, proof of the later result is invalid due to the flaw that
we discussed earlier. A stated result [10] on CPeq

2,` also gives a tight bound

of O(q2/2n) for equal length messages.

• Analysis of variants of CBC-MAC and EMAC. Although the EMAC
construction is tolerant to variable length messages it has a domain lim-
ited to B+. Black and Rogaway [7] introduced three refinements to EMAC,
viz., ECBC, FCBC and XCBC to allow use of variable block length strings.
ECBC and FCBC were shown to be secure upto 2.5σ2/2n [7] and the bound
on XCBC was shown to be 3.75σ2/2n [7]. Jaulmes et al. [19] gave a random-
ized version of EMAC which they called RMAC and proved that the con-
struction resists birthday attacks. However the proof seems to be incorrect



(as suggested in [3]). Other excellent variants of CBC MAC are TMAC [21],
OMAC [17] and GCBC [24]. A variant of OMAC, namely OMAC1 is equiv-
alent to CMAC which became an NIST recommendation [12] in 2005. An-
other design approach is the PMAC construction proposed by Black and
Rogaway [6] which is inherently parallel. The improved bounds for XCBC,
TMAC, PMAC and OMAC are shown in the form of O(`q2/2n), O(σ2/2n)
and O(σq/2n) as shown in [23, 18, 27, 25]. Apart from these specific construc-
tions Jutla [20] suggested a general class of DAG-based PRF constructions.

Beyond Birthday Bound (BBB) Security. Another direction of research
is BBB security, where the aim is to achieve more than n/2-bits security in σ.
Among the block cipher based BBB secure MACs, PMAC Plus [35] and 3kf9 [36]
are two efficient candidates. Both these candidates are three-key constructions.
Recently, Dutta et al. [8] proposed a one-key candidate named 1kf9, which also
offers beyond birthday security of 3kf9.

Structure Graph Analysis. Structure graph is the basic tool for analyzing
sequential construction based on random permutation as evident from the work
on CBC based MACs [3, 31, 14] and 1kf9 [8]. Although structure graph has been
mainly used in analysis of random permutation based constructions it has also
found application in random function based construction as evident from the
analysis of NI MAC by Gazi et al. [15] and the one key compression function
based MAC by Dutta et al. [11]. From our observation these later works[15, 8,
11] are free from the flaw that we observed for [3, 31]. Gazi et al. [14] have used
the FCP bound from [3] to bound the probability of a bad event. As the FCP
bound [3] needs revision the bound in [14] will also get revised by a constant
factor. Their proof is valid apart from the revision of some constant factor. So
in the paper we focus solely on [3, 31].

3 Preliminaries

Basic Notation. Throughout the paper, we fix a positive integer n. Let Perm
be the set of all permutations on B := {0, 1}n. Elements of B are called blocks.
For any two integers a ≤ b, we write [a..b] (or simply [b], when a = 1) to denote
the set {a, a+ 1, . . . , b}. Let φ be a property defined for the elements of S then
the subset

S[φ]
def
= {x ∈ S : x satisfies φ}.

The above set will appear in this paper many times for different choices of S
and φ. Let P(m, k) := m(m−1) · · · (m−k+ 1) denote the k-permutations of m.

3.1 Notation on Sequences

Let I and S be two sets. A S-sequence x over the index set I is denoted as
(x[α])α∈I where x[α] ∈ S for all α ∈ I. Length of the sequence is |I|, the size



of the index set. In this paper we mostly consider block sequences, i.e. S = B.
When the index set is [a..b], we also write the sequence as a tuple or vector
x[a..b] := (x[a], . . . , x[b]). Sometimes, by abusing notation, x also represents the
set {x[α] : α ∈ I}. Similarly x[a..b] represents {x[α] : α ∈ [a..b]}. We write
#x to denote the number of distinct elements in the sequence x. We write S+

and S≤` := ∪i≤`Si to represent the set of all S sequences of finite length and
of length at most ` respectively. Now we define an equivalence relation which
captures the equalities among the elements of the sequence x.

Definition 1. Given a sequence x over an index set I, we define an equivalence
relation ∼x over the index set as follows: α ∼x β if x[α] = x[β].

Let ρ : D → R and let x and y, respectively, be D- and R-sequences over an

index set I. We write x
ρ7−→ y to mean that ρ(x[α]) = y[α] for all α ∈ I and

we simply say that ρ multi-maps x to y. This is a property of function ρ. When
D = R, the subset Perm[x

π7−→ y] represents the set of all permutations π multi-
mapping x to y. We say that (x, y) is permutation compatible if there exists a

permutation π such that x
π7−→ y. It is easy to see that (x, y) is permutation

compatible if and only if ∼x=∼y.

3.2 Notation on Strings

We call B an alphabet and its element will be referred as letters. A string over
the alphabet B is an element of B∗. We can also say that a string is a finite
concatenation S := a1‖a2‖ . . . ‖a` where ai ∈ B. Note that the elements of B are
also strings. We can also view strings as B-sequences over an index set I. The
length of a string S, denoted by |S| is defined as the total number of letters in
it. Note that for an empty string the length will be 0 as it does not have any
letters in it. For a string S = X‖Y , X (or Y ) is said to be a prefix (or suffix) of
S. We write X <1 S if X is a prefix of S. We write X <2 S if X[1..x− 1] <1 S
but X[x] 6= S[s], where x = |X| and s = |S|. For two strings S1 and S2 of
lengths s1 and s2 respectively, a non-negative integer p := LCP(S1;S2) (or s :=
LCS(S1;S2)) is called the index of the largest common prefix (or largest common
suffix), if S1[1..p] = S2[1..p] and S1[p + 1] 6= S2[p + 1] (or S1[s..s1] = S2[s..s2]
and S1[s− 1] 6= S2[s− 1]).

.

3.3 Basic Definitions and Notation of Graph

Directed edge-labeled graph. A directed edge-labeled graph is a pair G :=
(V,E) with E ⊆ V × V × L where V is the set of vertices, L is the set of edge
labels, and E is the set of edges along with their corresponding labels. In this
paper we will consider only those directed edge-labeled graphs where for every
vertices u, v ∈ V there exists at most one label a ∈ L with ((u, v) ; a) ∈ E. We

also write u
a−→ v to mean that ((u, v) ; a) ∈ E.



Convention: By abusing notation, E also denotes the set of unlabeled edges and
the label a of the edge e := (u, v) is expressed as LG(e) (this notation makes sense
as there is a unique choice of the label for an edge) or simply L(e) whenever the
graph is understood.

For an edge e := (u, v), vertex u (or v) is called a predecessor (or successor)
of v (or u respectively). An edge (u, v) is called a loop if u = v. We define two
sets:

1. Predecessor set of a vertex v is nbd(∗ → v) := {u : (u, v) ∈ E}.
2. Similarly we define nbd(v → ∗) := {u : (v, u) ∈ E}, the successor set of v.

Size of the predecessor and successor sets of v are called in-degree and out-
degree respectively. We implicitly assume that no vertex have both in-degree
and out-degree zero. So the vertex set and hence the graph without the egde
labels is uniquely determined by the edge set.

Definition 2 (walk). A walk of length s is defined as a vertex sequence w :=
(w[0], . . . , w[s]), such that w[i − 1] → w[i] for all i ∈ [s]. We define label of the
walk as L(w) := (a1, . . . , as) where ai = L(w[i− 1], w[i]), i ∈ [s].

Since a walk is a V -sequence over the index set {0, 1, . . . , s}, we define a
subwalk w[a..b] := (w[a], . . . , w[b]) where 0 ≤ a ≤ b ≤ s.

When all vertices of a walk sequence are distinct, we call it a path. When all
vertices w[0], . . . , w[s − 1] are distinct and w[s] = w[0] then we call it a cycle.
Other special examples of walks, which will be studied later in the paper, are ρ
walks and ρ′ walks.

A ρ walk is a walk w := (w[0], . . . , w[s]) such that for some 0 ≤ i < j,
w[0..j − 1] is a path, w[j] = w[i] and for all j < k ≤ s, w[k] = w[i + r] where
0 ≤ r < (j − i) and (k − r) is multiple of (j − i). It is illustrated in Fig 2(a). In
words, a ρ walk comes back to one of previous vertex (which makes a cycle) and
afterwards it remains in the cycle.

A ρ′ walk is an extension of a ρ walk that leaves the cycle and does not come
back. It is illustrated in Fig 2(b). Note that length of the subwalks labelled with
∗ can be zero.

v1 v2

(a) ρ walk

v1 v2

v3

(b) ρ′ walk

∗ ∗
∗

Fig. 2: The graph corresponding to ρ and ρ′ walks. Note that the lengths of the parts
mentioned by ∗ can be zero.

A directed edge-label graph G = (V,E) is called a function graph if for
all v ∈ V , there does not exists two distinct successors v1 and v2 of v with
LG(v, v1) = LG(v, v2). In other words, for every vertex v and a label a we can



find at most one successor w for which the label of the edge (u, v) is a. This
observation can be extended for a walk in a function graph G as follows:

w1[0] = w2[0],L(w1) = L(w2) ⇒ w1 = w2.

So if there is a walk with label M then it must be unique and we call such a
walk M -walk.

3.4 PRF Advantage of a Keyed function

If S is a finite set, then x
$←− S denotes the uniform random sampling of x

from S. Let D ⊆ B+ be a finite set. A random function from D to B is

RF(D)
$← Func(D,B), the set of all functions from D to B. When the domain D

is understood, we simply write the random function as RF.

Definition 3. Let F be a keyed function from D to B with a finite key space
K. We define the prf-advantage (or pseudorandom function advantage) of an
adversary A against F as

Advatk
F (A)

def
= |Pr[AFK = 1 : K

$← K]− Pr[ARF = 1]|.

The maximum prf-advantage of F is defined as

Advatk
F (q, `, σ) = max

A
Advatk

F (A)

where the maximum is taken over all adversaries A making at most q queries
from the domain D, say M1, . . . ,Mq with Mi ∈ Bmi , such that

∑
imi ≤ σ

and maximi ≤ `. Note that atk = pf means none of the query is a prefix
of another; atk = eq means the queries are of equal length; and atk = any
means all queries are arbitrary distinct strings. This is an information theoretic
definition and we allow an unbounded time adversary. There is no loss to assume
that A always makes exactly q distinct queries, represented by a sequence say
M = (M1, . . . ,Mq). In this case for any T = (T1, . . . , Tq) ∈ Bq, we have

PrRF[M RF7−→ T ] = 2−nq.

3.5 Coefficient-H Technique

Let A be an adversary which makes q distinct queries (possibly adaptive) to F .
Let the queries be x1, . . . , xq and the corresponding F outputs be y1, . . . , yq. We
write the view, view(AF ) by the q-tuple of pairs ((x1, y1), . . . , (xq, yq)) where xi
denotes the ith query and yi is the corresponding response.

For any q-tuple of pairs τ = ((x1, y1), . . . , (xq, yq)), the following probability

IPF (τ)
def
= PrF [(x1, . . . , xq)

F7−→ (y1, . . . , yq)]

is called the interpolation probability, where the probability is taken under the
randomness of F ’s key. Here we assume that F is stateless and so the above
probability is independent of the order of the pairs.



Theorem 1. [Coefficient-H Technique] Let Tgood be some set of q-tuples of
pairs. Suppose the interpolation probability for a (stateless) oracle O follows
the inequality

IPO(τ) ≥ (1− ε) · IPRF(τ) = (1− ε)2−nq ∀τ ∈ Tgood.

Then, for any adversary A we have,

Advatk
F (A) ≤ ε+ Pr[view(ARF) /∈ Tgood].

This technique was first introduced by Patarin in his PhD thesis [28] (as men-
tioned in [32]). The proof of this theorem can be found in [29]. So we skip the
proof. We use this theorem while we bound PRF advantage of CBC and EMAC
function defined next.

3.6 (E)CBC Function based on a Permutation

CBC Function. The CBC (cipher block chaining) function with an oracle
π ∈ Perm, viewed as a key of the construction, takes as input a message M =
(M [1], . . . ,M [m]) ∈ Bm with m blocks and outputs CBCπ(M) := outπ(M)[m].
This is inductively computed as follows: outπ(M)[0] = 0n and

outπ(M)[i] = π(inπ(M)[i]), inπ(M)[i] = outπ(M)[i− 1]⊕M [i], i ∈ [m]. (2)

We call inπ(M) and outπ(M) intermediate input and output vectors respec-
tively, associated to π. Note that the intermediate input vector inπ is uniquely
determined by outπ (and not depends on the permutation π). We can write
down this association generically as a function out2inM : Bm → Bm mapping
any block vector y to a block vector x where x[1] = M [1] and x[i] = y[i−1]⊕M [i]
if 1 < i ≤ m. So for all permutation π ∈ Perm, out2in(outπ) = inπ.

M1 M2 M3 Mm−1 Mm

CBCπ(M)

inπ[1] inπ[2] inπ[3] inπ[m− 1] inπ[m]

0n

outπ[1] outπ[2] outπ[3] outπ[m− 1] outπ[m]

π π π π π

Fig. 3: CBC function and its intermediate values.

EMAC Function. The EMAC function (E for encrypted) is derived from the
CBC function by additionally encrypting the output with another permutation

π′ ∈ Perm. Formally, EMACπ,π′(M)
def
= π′(CBCπ(M)).



4 PRF Analysis of CBC and EMAC

In this section we quickly recall the PRF analysis of CBC and EMAC as done
in [3, 31]. Here CBC is based on uniform random permutation Π chosen uni-
formly from Perm and EMAC is based on two independent random permutations
Π and Π ′. In this section we reduce the bounding PRF advantages of CBC and
EMAC to the full bounding collision and collision probability respectively. We
use coefficient-H technique rather than the game playing technique used in [3].

4.1 PRF Advantage of EMAC

Let M1 and M2 be two distinct tuple of blocks. Let collπ(M1;M2) denote the
event that CBCπ(M1) = CBCπ(M2) and we call it collision event for a pair of
messages M1 and M2. We similarly define collision event for a tuple of q ≥ 2
distinct messages M = (M1, . . . ,Mq) as

collπ(M) =
⋃
i 6=j

collπ(Mi;Mj).

We define collision probability as CPn(M) = Pr[collΠ(M)]. Let CPatk
q,` =

max
M

CPn(M) where the maximum is taken over all q-tuple of distinct messages

M having at most ` blocks each and satisfy atk (i.e., when atk = eq, messages
must have equal length, similarly when atk = pf no message is prefix to other
and finally atk = any means no restriction other than length restriction). Fol-
lowing [3], we view EMAC as an instance of the Carter-Wegman paradigm [33].
This enables us to reduce the problem of bounding the prf-advantage of EMAC
to bounding the collision probability as

Advany
EMAC(q, `) ≤ CPany

q,` +
q(q − 1)

2n+1
. (3)

Note that CPany
q,` ≤

(
q
2

)
CPany

2,` as the collision for q messages is
(
q
2

)
union of

collision events for two messages. Bellare et al. [3] proved that

CPany
2,` ≤

2d′(`)

2n
+

64`4

22n
. (4)

where d′(`) = max`′≤` d(`′) and d(`′) is the the number of divisors of `′. In [34],
it was shown that d′(`) = `1/Θ(ln ln `) = `o(1). Using this bound of collision prob-
ability for a pair of messages the prf-advantage of EMAC is about O(d′(`)q2/2n)
for ` < 2n/4. Later [31] provided an improved analysis of EMAC and proved
that the PRF advantage of EMAC is about O(q2/2n) for ` < min{q1/2, 2n/8}.
We revisit this improved analysis later in section 8. A related claim on CP is
CPeq

2,` = 2−n + (d(`))2 · ` · 2−2n + `6 · 2−3n [10] which gives tight bound for equal
length messages.



4.2 PRF Advantage of CBC

Now we revisit the security analysis of CBC-MAC construction. Let Fcollπ(M1;M2),
called full collision, denote the event that

inπ(M2)[m2] = inπ(Mr)[j] for some (r, j) 6= (2,m2).

In other words, if the full collision event does not hold then the last intermediate
input of π is “fresh” (not appeared before) while computing CBCπ(M2). So when
π is replaced by a random permutation and this event does not hold then the
CBC-output should behave “almost” randomly. We use this intuition while we
provide a bound of prf-advantage of CBC.

Remark 1. We would like to remark that in the original paper [3], full collision
event is defined through the intermediate outputs instead of inputs. Since we
consider CBC based on permutation only, equalities among inputs and equalities
among outputs are same.

For a q-tuple of messagesM, the union of full collision event similarly denoted
by Fcollπ(M). The probability of this event, called full collision probability,
is denoted by FCPn(M). The maximum full collision probability is denoted by
FCPatk

q,`. Similar to the previous lemma, the following result has been proved
in [3].

Advpf
CBC(q, `) ≤ q2(FCPpf

2,` + 4`/2n). (5)

Note that we must restrict adversary to make prefix-free queries, since otherwise
it would be easy to distinguish CBC from a random function (using the classical
length extension attack). Similarly, if M2 is prefix of M1, it is easy to see that
FCPn(M1,M2) = 1 so the above result becomes meaningless. As before, we
also state an equivalent form of PRF advantage of CBC in terms of full collision
probability among q messages. The above equation 5 would be again straight
forward application of the following result.

Proposition 1. Advpf
CBC(q, `, σ) ≤ FCPpf

q,` +
2σq

2n
+

q2

2n+1
.

Proof. Let Tgood := ((M1, T1), (M2, T2), . . . , (Mq, Tq)) be the set of all pairs
of M = (M1, . . . ,Mq) ∈ (B+)q and T = (T1, . . . , Tq) ∈ Bq such that Mi’s
are distinct and Ti’s are also distinct. Trivially, random function RF returns a
collision pair on any q distinct queries with probability at most

(
q
2

)
2−n for any

adversary A. Thus,

Pr[view(ARF) /∈ Tgood] ≤
q2

2n+1
.

Using coefficient H-technique, now we only need to bound the relationship be-
tween the interpolation probabilities. We fix M = (M1, . . . ,Mq) ∈ (B+)q and
T = (T1, . . . , Tq) ∈ Bq such that Mi ∈ Bmi ’s are distinct and Ti’s are also dis-
tinct. Let mi ≤ ` for all i and we write

∑
imi = m ≤ σ. Now, A permutation π

is called bad if



1. Fcollπ(M) holds, or

2. for some r, r′ ∈ [q], i ∈ [mr], out
π(Mr)[i] = Tr′ .

All other permutations are called good. We define an equivalence relation ∼ on

Perm as π ∼ π′ if inπ(Mr) = inπ
′
(Mr) for all r. It is clearly an equivalence rela-

tion and a good permutation can only be related with another good permutation.
Let C be an equivalence class consisting of some good permutations. Let s be
the number of distinct intermediate inputs for the computation of all CBCπ(Mr)
where π ∈ C. Note that s is same for all π ∈ C. Then, |C| = (2n − s − q)! as
the output of exactly (2n − s − q) inputs of π are determined. Since Ti’s are

not intermediate outputs, |C[M CBCΠ7−→ T ]| = (2n − s)! (since q additional restric-
tions on input-output are being added). So for any class of good permutations

C, Pr[M CBCΠ7−→ T | Π ∈ C] = (2n − s)!/(2n − s− q)! ≥ 2−nq. Thus,

Pr[M CBC7−→ T ] ≥
∑

C is good

Pr[M CBC7−→ T | Π ∈ C]× Pr[Π ∈ C]

≥ Pr[Π is good]× 2−nq.

So it is sufficient to bound a random permutation being bad. Then we will be
done by using coefficient H-technique as stated in theorem 1 in section 3.5. By
definition of full collision probability, the first condition of bad can happen with
probability at most FCPpf

q,`. The second condition says that we sample at most
m many outputs of a random permutation and one of them belongs to the set
{T1, . . . , Tq}. This can happen with probability at most mq

2n−m which is further

less than mq/2n−1 provided m < 2n−1. Note that m ≤ σ. If m ≥ 2n−1 then the
above bound holds trivially. So probability of bad permutation is bounded by
FCPpf

q,` +mq/2n−1. After applying coefficient-H technique, we have proved the
result. ut

Remark 2. Note that FCPpf
q,` ≤ q(q− 1)FCPany

2,` by considering all ordered pair
(Mi,Mj). This also proves the original claim by [3] as stated in Eq. 5. In fact,
it is potentially a better bound than the original as it uses the total number of
blocks σ instead of `q. In [3] Bellare et al. proved that

FCPpf
2,` ≤

8`

2n
+

64`4

22n
. (6)

In section 7 we revisit the above bound. In particular we revise the proof in light
of the flaw in [3, Lemma 10] and get an increment in the multiplication factor.

Moreover, our revised bound of FCPpf
q,` would be in the order σq

2n instead of `q2

2n

(whenever ` ≤ 2n/3). So our analysis rectifies the previous proof and also provides
better bound in some cases (e.g., average message length is much smaller than
the length of longest messages which may occur when message lengths are very
skewed).



5 Revisiting Structure Graph

In the previous section we have seen that how the PRF advantage of CBC or
EMAC is essentially reduced to bound some collision events of internal inputs
or outputs of the underlying permutation. Thus, it would be useful to have an
object which deals with the intermediate inputs and outputs. Structure graph
does so and it has been used to bound the (full) collision probabilities in [BPR05]
paper. In this section we revisit the structure graph and show that one of the
main claims in [3]([3, Lemma 10]) about a structure graph is false.

Notation and Conventions for this section: Let us fix a tuple of messages
M = (M1, . . . ,Mq) throughout this section where Mi ∈ Bmi and let m :=∑q
i=1mi and maximi = `.

5.1 Intermediate Inputs and Outputs

Index Set. We first collect all intermediate inputs and outputs which are ob-
tained through the computation of CBCπ(Mr) for all r. These intermediate val-
ues will be defined as a sequence over a two-dimensional index set. Each index
is a pair where the first element of the pair corresponds to the message number
and the second element is the block number of that message. More formally, we
define the index set

I = {(r, i) : r ∈ [q], i ∈ [mr]}
and the dictionary order ≺ on it as follows: (r, i) ≺ (r′, i′) if r < r′ or r = r′

and i < i′. Let x be a sequence over this index set. For any r ∈ [q], we denote
the subsequence (x[r, 1], . . . , x[r,mr]) by x[r, ∗]. Sometimes we also consider the
index set I0 = I ∪ {(r, 0) : r ∈ [q]}, and the natural extension of the order ≺ on
I0.

Sequences for Intermediate Inputs and Outputs. We denote the sequence
of intermediate outputs and inputs over the index set I as outπ(M) and inπ(M)
respectively where

outπ(M)[r, ∗] = outπ(Mr), inπ(M)[r, ∗] = inπ(Mr), ∀r ∈ [q].

For a single message, we have seen before that the intermediate input sequence
is uniquely determined by intermediate output sequence and we denote the as-
sociation by a function out2in. The same is true for q messages and we extend
this definition as follows: Given any block sequence y over the index set I,
we define out2in(y) as a block sequence x over the same index space where
x[r, ∗] = out2inMr (y[r, ∗]), r ∈ [q]. Thus, for any π, we have out2in(outπ) = inπ.

5.2 Structure Graphs and Block-Vertex Structure Graphs

A block-vertex structure graph is a graph theoretical representation of interme-
diate output outπ. The block-vertex structure graph Bstructπ for a permu-
tation π is defined by the set of labeled edges

E
def
= ∪qr=1{(outπ[r, i− 1], outπ[r, i] ; Mr[i]) : i ∈ [mr]}.



Let Bstruct(M) denote the set of all block structure graphs. Clearly, 0n ∈ V
has positive out-degree and it is a union of Mi-walks, for i ∈ [q]. Note that as
explained below,

v
A−→ w ⇒ π(v ⊕A) = w. (7)

So for every v ∈ V , all outward edges (similarly for inward edges) have distinct
edge labels. Using this property, it is easy to see that the walks are unique and
we denote them by wMi

or simply wi whenever the message tuple is understood.
See Fig. 4 for a single message (i.e., q = 1) in which the input and output vectors
are stored in a directed graph.

While storing the intermediate sequences as a set of labeled edges, we may
loose the order as well as the repetition of the elements. Interestingly, we see
that we can uniquely reconstruct the intermediate sequences from such an edge-
labeled graph by using uniqueness of Mi-walks. More precisely, outπ[r, i] = wr[i].

0
2

3
1

0

0

Fig. 4: Let M1 = (1, 0, 0, 0, 0) and π(1) = 2, π(2) = 3, π(3) = 2. For any such π,
we have outπ = (2, 3, 2, 3, 2) and inπ = (1, 2, 3, 2, 3). However, the graph consists of
three vertices {0, 2, 3} and edge set E = {(0, 2), (2, 3), (3, 2)} with labels 1, 0 and 0
respectively. We see that the intermediate input and output sequences actually can
be reconstructed from this labeled structure graph. The walk corresponding to the
message M1 will uniquely identify the output vector as outπ = (2, 3, 2, 3, 2) and the
input vector inπ = (1, 2, 3, 2, 3) can be constructed using the relation between input,
output and message.

Let G = (V,E) be a labeled directed graph and f : V → V ∗ is a bijective
function. Then one can define a labeled directed graph G∗ = (V ∗, E∗) isomorphic
to G for which f is an isomorphism. More precisely, ((u, v) , a) ∈ E if and only if
((f(u), f(v)) ; a) ∈ E∗. When f is an injective function we can view the function
where the range set is the image set of the function and this makes the function
bijective. We call the graph obtained as described above a transformed G with
respect to f .

Definition 4 (structure graph). For every vertex v of a block-vertex structure
graphs G = (V,E), we define a mapping α : V → I as αv = α(v) = (r, i) where
(r, i) is the minimum index such that wr[i] = v. Clearly, it is an injective mapping
with an image set say V ∗. Structure graph G∗ = (V ∗, E∗) associated to π is the
α-transformed block-vertex structure graph.



Y0 = 0n
Y1

Y2Y3

(a)

α−→

0
(1, 1)

(1, 2)(1, 3)

(b)

M1[1]

M1[2]M1[3]

M1[4]

M2[1]

M1[1]
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M1[4]
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Fig. 5: Structure Graph corresponding to the labeled structure graph.

Example 1. Let M1 = (M1
1 ,M

2
1 ,M

3
1 ,M

4
1 ) and M2 = (M1

2 ) be two messages
and for π ∈ Perm let inπ[1, ∗] = (Y0 = 0n, Y1, Y2, Y3); outπ[1, ∗] = (Y1, Y2, Y3)
and inπ[2, ∗] = (Y0);outπ[2, ∗] = (Y3). The corresponding block labeled structure
graph Bstructπ is as shown in fig. 5(a). Following the above steps we arrive at a
valid structure graph structπ in fig. 5(b).

Let wr∗ denote the Mr-walk in G∗. It is easy to see that a structure graph is
again an union of Mr-walks w∗r starting from 0.2 A structure graph is called a
zero-output graph if 0 has positive in-degree, otherwise we call it nonzero-
output graph. To express it mathematically, we define a binary function Iszero
such that for all zero-output graph G∗, Iszero(G∗) = 1, otherwise it maps to 0.

To reconstruct a block-vertex structure graph realizing G∗ we have to find
labels from B for all the vertices in a “consistent manner” and we call those
labeling valid. Basically, we need to find an injective mapping α−1 : V ∗ → B
such that image set of α−1 is V and α := (α−1)−1 is an isomorphism.

Definition 5 (valid block label). An injective function Y : V ∗ → B is called
valid block label for a structure graph S = (V ∗, E∗) if the graph G = (V,E)
is a block-vertex structure graph where

1. V = {0n} ∪ {Yi := Y (i) : i ∈ V ∗} and
2. E is the edge set after relabeling i by Yi (we assume Y0 := 0n).

Necessary Condition of Valid Labeling Function Y . Now we try to
find necessary conditions of a valid labeling. First of all, by definition, Yi should
be all distinct as the valid block label is injective (distinct vertex should get
distinct block label). In addition to this, whenever e1 := (u, z), e2 := (v, z) ∈ E
we must have Yu ⊕ L(e1) = Yv ⊕ L(e2) as these are input for the vertex z. An
input-collision or simply a collision of a graph G is defined by such a triple
δ = (u, v; z). The set {u, v} is called the source of the collision whereas z is called
the head of the collision. We also say the edges e1 and e2 colliding edges. Thus,
an input-collision δ = (u, v; z) induces a linear restriction Lδ : Yu ⊕ Yv = cδ
where cδ = L(u, z) ⊕ L(v, z) ∈ B. Thus, a valid block label must satisfy the
above condition for all collisions δ. Let ∆G∗ denote the set of all collisions of G∗.
Let rank(G∗) denote the rank of all linear equations {Lδ : δ ∈ ∆G∗}. Accident

2 Note that, as per the convention used here and in the preceding discussion w∗r [i] =
α(wr[i]).



of a structure graph is defined depending on whether the graph is zero-output
or not.

Definition 6 (Accident of a structure graph). We define accident of a

structure graph G∗ as Acc(G∗)
def
= rank(G∗) + Iszero(G∗). Thus, accident of a

non-zero structure graph G∗ is defined to be rank(G∗) rank of the graph, whereas
accident of a zero-output graph is rank(G∗) + 1.

Lemma 1. If there is a vertex v with in-degree d then rank(G∗) ≥ d− 1. More-
over, if the graph is a zero-output graph then Acc(G∗) ≥ d.

Proof. Let v1, . . . , vd be all predecessor of v. Let us define an input-collision
δi,j := (vi, vj ; v). It is now easy to see that Lδi,j = L1,i ⊕ L1,j . Moreover, L1,i’s
are linearly independent. Thus, the first part is proved, The second part is also
trivial from the first part and the definition of accident. ut

Remark 3. Another simple but useful observation is as follows: if a structure
graph G∗ has at least two collisions with different source, then rank(G∗) ≥ 2.

Remark 4. Our definition of accident is based on linear algebra whereas the
original definition of accident in [3] is based on graph theory. One can check
that both definitions are eventually equivalent. We find this definition is useful
proving lemma 2 as stated below. Moreover, as the definition is more non-visual
than the original, it would be less prone to have an error while applying the
definition.

Let S = (V ∗, E∗) be a structure graph with rank r and |V ∗| = s + 1. Then
from linear algebra we know that some s − r choices of Yi values will uniquely
determine the rest and so the number of valid block labeling is at most P(2n, s−
r). Any valid choice of Y induces a block-vertex structure graph G = (V,E) such
thatG∗ = S. Note that s+Iszero(G) is the number of vertices v ∈ V with positive
in-degree. So exactly (2n− s− Iszero(G))! number of permutations can result in
block-vertex structure graph G. Therefore,

Pr[BstructΠ = G] =
2n − (s+ Iszero(G))!

2n!
=

1

P(2n, s+ Iszero(G))
. (8)

So Pr[structΠ = S] =
∑
G:G∗=S Pr[Bstruct

Π = G]. Here the sum is taken over
all block-vertex structure graphs G such that the induced structure graph G∗ =
S. As there are at most P(2n, s − r) many vertex-label structure graphs (by
bounding the number of valid block label functions as described above and using
s+ 1 ≤ m), we proved the following important result.

Lemma 2. For any structure graph S with accident a,

Pr[structΠ = S] ≤ 1

(2n −m)a
.



Now we state another important result which bounds the number of structure
graphs with a accident. The proof of this result can be found in [3, 31]. So we
skip the proof here.

Lemma 3. The number of structures graphs associated to M = (M1, . . . ,Mt)
with accident a is at most

(
m
2

)a
. In particular, there exists exactly one structure

graph with zero accident.

Corollary 1. Let a ≥ 1 be an integer. Then,

Pr[Acc(structΠ) ≥ a : Π
$← Perm] ≤ (

m2

2n
)a.

This can be shown by making a straightforward algebraic simplification after
applying the lemma 2 and lemma 3. So we skip the proof. ut

5.3 True Collision and an Observation on [3, Lemma 10]

The definition of accident is not obvious by looking at the structure graph. It
would be good to have some transparent definition for a structure graph. True
collision is such a metric. Let G∗ be a structure graph and w∗i are the Mi-walks.
Suppose we reconstruct the graph G∗ again by making all the walks w∗i for i = 1
to q. While we walk along w∗i for all i we count how many times we reach an
existing vertex which increases its current in-degree. The total count is defined
to be the number of true collisions of the graph. Mathematically, one can define
it as follows: For a vertex v ∈ V ∗ \ {0}, we define number of true collision at
v by TC(v) := |nbd(∗ → v)| − 1 and TC(0) = |nbd(∗ → 0)|. So the above

count is actually the sum TC(G∗)
def
=
∑
v∈V ∗ TC(v). By lemma 1 we know that

Acc(G∗) ≥ TC(v) for all v ∈ V ∗. From the definition of accidents it is also
obvious that Acc(G∗) ≤ TC(G∗).

Lemma 10 of [3]. To identify all structure graphs with accident one it would be
good if we have some relationship between true collision and accident. Lemma 10
of [3] was meant for this. It says that when q = 2, Acc(G∗) = 1⇒ TC(G∗) = 1.
This lemma is wrong due to the following counter example. This lemma has
been used to bound the PRF advantage of CBC [3] and EMAC [31, 3]. As this
becomes wrong, it would be very important to look back the proof and rectify
the results as much as possible.

0

(1, 1) (1, 2)

(1, 3) 0

(1, 1)

(1, 2)

(a) (b)

M1[1]

M1[2]

M1[3]

M1[4]

M2[1]

M1[1]

M1[2]

M1[3]

M2[1]

Fig. 6: The counter examples. This is because one equation is generated by the other.
We call it alternating closed walk.



6 Characterization of Accident one Structure Graphs

In this section we characterize all structure graphs with zero and one accidents.
We have already seen that the authors have missed some structure graphs for
two messages. Thus it is important to see whether there are other such graphs
or not. To do so we characterize single message structure graph which is much
easier to convince. Later in section we characterize all structure graphs for a
pair of messages satisfying some event. Note that from here onwards we won’t
be dealing with the block-vertex structure graph. So for simplicity from here
onwards we will use G (instead of G∗) to represent a structure graph and wr
(instead of wr∗) to represent the Mr-walk in the structure graph.

Let structa(M) = {G ∈ struct(M) : Acc(G) = a}, the set of all struc-
ture graphs associated to M with accident a. In particular we are interested in
struct0(M) and struct1(M) the set of all structure graphs with accident 0 and
1 respectively. Lemma 3 says that the number of graphs with accident one is
at most

(
m
2

)
where m =

∑
imi and Mi ∈ Bmi . Thus, the number of structure

graphs with accident zero is at most one. In the following we actually identify a
structure graph and hence it is unique, We call it the free graph associated to
M.

Free Graphs. As there is no accident every non-zero vertex has in-degree one
and 0 has in-degree zero (i.e., non-zero output graph). Being a structure graph,
it is union of Mi-walks wMi

. A Mi-walk starting from 0 with no vertex having
in-degree two must be a path. So G is an union of Mi-paths wMi

. Now for any
i 6= j, let p = LCP(Mi;Mj). Then, wi[1..p] = wj [1..p] and wi[p+ 1] 6= wj [p+ 1]
(if these are defined). It is also easy to see that wi[1..p], wi[p + 1..mi], and
wj [p + 1..mj ] are disjoint paths. Thus, any two paths wi and wj are same up
to the length of the largest common prefix of Mi and Mj and afterwards they
remain disjoint. We call this unique graph free graph. A free graph for three
messages is illustrated in Fig 7.

0
i j

m1

m2

m3

Fig. 7: Free structure graph for three messages.

6.1 Accident one for a single message

Now we consider a single message M ∈ B+ structure graph. Note the any such
structure graph must be a walk w of length m. We say a node w[i] is fresh in
the walk if w[i] 6= w[j] for all j 6= i.



Case A: 0 has positive in-degree As 0 has positive in-degree there can
not be any more collision pairs otherwise the accident would be at least two.
Let c be the minimum positive integer such that w[c] = 0, so we have a cycle
(w[0], w[1], . . . , w[c]) and let X be its label. Suppose M = Xi‖Y where i is the
maximum positive integer for which we can write M in this form. So X is not a
prefix of Y . Let s = LCP(X;Y ). Thus, w[ic+ j] = w[j] ∀j ∈ [0..s].

1. If Y is a prefix of X then the structure graph is a cycle of size c where it
ends at w[s]. It is illustrated in fig. 8(a) where the ∗ is empty.

2. If Y is not a prefix of X then w[ic+ s] = w[s] and w[ic+ s+ 1] 6= w[s+ 1].
Further, w[ic+ s+ 1] 6= w[j] for all j ∈ [c] since otherwise we get a collision.
In fact it can be shown that all subsequent nodes are fresh. Suppose not,
then let j > ic + s + 1 be the first such integer for which w[j] = w[k] for
some k < j and hence we obtain a collision. So the structure graph is an edge
disjoint union of a cycle of size c and a path starting from s, as illustrated in
fig. 8(a). Length of the cycle is c where as the length of the path is m−ic−s.
We also called this graph ρ′ graph. The tail (path from 0 to the cycle) of the
ρ′ walk is empty.

Case B: 0 has zero in-degree As 0 has zero in-degree, there is a collision
δ = (u0, v0; z). In fact, all other collisions must have same source as that of δ.

Consider the M -walk (w[0], w[1], . . .) which is clearly not a path. Let (i0, j0)
be the smallest positive distinct integers such that w[i0] = w[j0].3 As 0 has zero
in-degree so 1 ≤ i0 < j0. So we can assume that w[i0−1] = u0 and w[j0−1] = v0.
Now we let, as done in the case A, A = L(w[0..i0]), X = L(w[i0..j0]), j0− i0 = c.
Then, A‖X is the prefix of M . Let t be the largest positive integers such that
M = A‖Xt‖Y . So X is not a prefix of Y . If Y is a prefix of X then we have a
structure graph as illustrated in fig. 8(d) and 8(f) (the end point lies inside the
cycle). Suppose Y is not a prefix and let s = LCP(X;Y ).

Claim. The walk after A‖Xt‖Y [1..s] is a path and disjoint from the rest (illus-
trated in fig. 8(c)).

Proof of the claim. Suppose ∃v 6= w[s] ∈ w[tc+ s..m] ∩ w[1..tc+ s]. Then,

Case B.1: w[tc + s + 1] = w[i] i ∈ [tc + s]. If s 6= j0 − 1 then we have a
new collision δ′ = (w[i− 1], w[tc+ s];w[i]) independent of δ which increases the
number of accidents to 2. If s = j0 − 1 then i 6= i0 as X[s+ 1] 6= Y [1]. Now the
only way to make δ′ dependent on δ is to have i − 1 = i0 − 1. This implies a
collision at w[j] where j ∈ [1..i0 − 1], as the walk must come back to i0 − 1 at
the (i− 1)-th step. This again gives a new accident.

Case B.2: w[tc+s+1] /∈ w[1..tc+s] and w[j] = w[i] j ∈ [tc+s+2..m], i ∈ [tc+
s]. So, there is a new collision δ′ = (w[j − 1], w[i− 1];w[i]) which is independent
of δ. This gives a new accident. So w[tc+ s+ 1..m] ∩ w[1..tc+ s] = ∅.
3 i0 and j0 can be fixed one by one. First fix i0 to be the smallest positive integer such

that w[i0] = w[j] j ∈ [i0 + 1..m]. Now, fix the smallest positive integer j0 such that
w[j0] = w[i0].



Case B.3: w[tc + s..m] is not a path. Therefore ∃i, j ∈ [tc + s..m] such that
(w[i], w[j];w[i + 1]) is a collision. Clearly this will be independent from δ and
hence gives a new accident. So none of the case 1, 2 or 3 is possible. ut

Observe that s = j0 − 1 is a special case. In addition to this condition, suppose
we have an edge e := (w[i0 − 1], w[tc + s + 1]) which creates a collision δ′ =
(w[i0 − 1], w[j0 − 1];w[tc + s + 1]) dependent on δ. e cannot occur in a single
message graph, as that will imply nbd(∗ → w[j]) ≥ 2 for some j ∈ [0..i0−1] which
gives a new accident. But for a two message graph this is realizable (counter-
examples) as illustrated in fig. 8(b) and 8(e). We summarise our discussions in
the following lemma.

Lemma 4. For m ≥ 1, M ∈ Bm and π ∈ Perm, following graphs exhaust all
possible forms for Gπ(M).

s

0

(a)

0 i0 − 1 i0

j0 − 1(tc+ s+ 1)

(b)

0 i0 − 1 i0

j0 − 1

s

(c)

0 i0 − 1 i0

sj0 − 1

(d)

0 i0 − 1

j0 − 1

(tc+ s+ 1)

(e)

0
i0 − 1

i0

(f)

Fig. 8: Characterizing all accident 1 structure graphs realizable by a single message.
The dashed lines in these illustrations represent optional subwalks. Here the vertex
w[i] is represented by i, for notational simplicity.

7 Revisiting CPn(M1,M2) and FCPn(M1,M2) Bounds [3]

In this section our main aim is to revise the proofs of (CP ) and (FCP ) bounds
and consequently the PRF advantages in [3]. As mentioned earlier the motivation
for this revision is our observation that one of the main tools [3, Lemma 10] in
bounding |struct1[coll]| and |struct1[Fcoll]| is false.

We start off with a discussion that establishes the role of structure graphs in
the PRF security analysis of CBC-MAC and EMAC. Note that we have already
seen that bounding PRF advantages of CBC-MAC and EMAC are reduced to
bounding full collision probability FCPpf

2,` and collision probability CPany
2,` re-

spectively. So it would be sufficient to bound these probabilities. For this we
first prove a general claim as stated in proposition 2.

Structure Graph Events. Let M = (M1, . . . ,Mq) be a tuple of q messages.
Let E be an event defined on the intermediate output sequence outπ(M) for a



permutation π. We say that the event E is defined by structure graph if
there is an event E′ defined on the structure graph structπ such that E holds if
and only if E′ holds. We call such an event a structure graph event. Moreover,
we say that E is non-free if it is false for the free structure graph (the structure
graph with accident zero). Note the the collision event for any distinct messages
as well as the full collision event for prefix-free messages are examples of non-
free structure graph events. In consistency with our notation, we denote the set
of all structure graphs with a accidents and satisfying a non-free event E by
structa(E).

Proposition 2. Let E be a non-free structure graph event for the message tuple
M. Then,

PrΠ [E] ≤ |struct1[E]|
2n −m

+
m4

22n
.

Proof. Note that for any structure graph event E,

PrΠ [E] =
∑
a≥0

Pr[structΠ ∈ structa[E]].

As the event is non-free, the sum can be done for a ≥ 1. Moreover, we know

that Pr[Acc(structΠ) ≥ 2] ≤ m4

22n . So the result follows from the Lemma 2 which
bounds probability of realizing a structure graph with a accidents. ut

7.1 Revisiting The CP2,` Bound

Suppose M1 ∈ Bm1 and M2 ∈ Bm2 such that M1[m1] 6= M2[m2], 0 ≤ m1 ≤ m2,
since otherwise we can remove the largest common suffix which does not change
the collision probability. Note that the first message M1 now can be empty
(then M2 is not as they are distinct) and in this case collision event means that
outΠ(M2)[m2] = 0n. This is a structure graph event because 0 is a vertex of the
structure graph. Due to proposition 2, we only need to bound the number of
structure graphs with accident one satisfying coll event for the pair of messages.
More precisely, we have to bound the size of the set

struct1(M1,M2)[coll].

Case 1: M1 is an empty message. In this case we have

struct1(M1,M2)[coll] = struct1(M2)[wM2 [m2] = 0].

Now, we make the following claim which is essentially [3, Lemma 14]:

Claim. |struct1(M2)[w2[m2] = 0]| ≤ d(m2)

Proof of the claim. Let x be the smallest positive integer such that wM2 [x] = 0.
Let X be the label of the walk wM2

[0..x]. If M2 = Xd some positive integer d,



then struct1(M2)[wM2 [x] = 0] contains exactly one structure graph. Note that
x must divide m2 and hence possible choices of such x is at most d(m2), the
number of divisors of m2. If M2 = Xd‖Y for some non-empty Y where d is the
largest such integer of this form. If Y is a prefix then W2[m2] is the point in
the cycle and it must be 0. This can be zero only if Y = X which contradicts
the maximality of d. So now assume that Y = Y1‖Y2 such that Y1 is the largest
common prefix of X and Y , and Y2 is some non-empty string. If s is length of
Y1 then Y2[1] 6= Y [s+ 1]. Thus, w2[dx+ s+ 1] 6= w2[s+ 1]. As it is a zero-output
structure graph, we can not have any collision. So there is no way to obtain
w2[m2] = 0. This proves the claim.

Case 2: M1 is not an empty message. In this case we have a collision

(u := w1[m1 − 1], v := w2[m2 − 1], z := w2[m2])

as the labels of the last edges for walks w1 and w2 are different. Any other
collision, if any, must have the same source set {u, v}. Moreover, 0 can not have
positive in-degree. Now we consider different sub-cases:

Case 2.1: Both w1 and w2 are paths: In this case, the union of w1[1..m1−1]
and w2[1..m2 − 1] is a free graph (as w1[m1 − 1] and w2[m2 − 1] can not appear
before in the graph and so no collision among the path can occur). This gives
only one choice of the graph as shown in the figure 9(a). So the number of choices
is bounded by at most 1. This is proved as part of the incorrect lemma [3, Lemma
15].

Case 2.2: w2 is not a path: Then we have already characterized all pos-
sibilities of w2. So there exists some integers t, c such that w2[1..t] is a path
with w2[t − 1] = u and w2[t] = p, w2[t..t + c] is a cycle of length c such that
w2[t+ c− 1] = v. (Note that w2[t− 1] 6= w2[m2 − 1].) Now, w1[m1 − 1] = u.

Claim 2.2.1: w1[1..m1 − 1] = w2[1..t− 1] and so m1 = t.

Proof. Let s be the length of largest common prefix of w1[1..m1−1] and w2[1..t−
1]. If s < t − 1 then in the walk w1 there is no way to reach u without coming
back to the walk w2[1..t− 1]. Coming back is not possible as it leads a collision
with a different generator set. Similarly we can disprove that s = t − 1 and
m1 > t. Thus, we have m1 = t and w1[1..m1 − 1] = w2[1..t− 1]. ut

Now, we make two cases for the choices of p = LCP(M1;M2).

1. Case 2.2.1.(a): If w1[p] = z then we have the structure graph as illustrated
in Fig 9(b). In this case M1 is a prefix of M2. The number of such structure
graphs is again at most d(m2 −m1) (similar to the previous case where M1

is the empty message). This is also [3, Lemma 13].



2. Case 2.2.1.(b): If w1[p] 6= z. Then we get a case which was not considered
in [3]. In this case w1[p] should be a fresh node otherwise we get a collision
with different source set. Thus, we get a structure graph which is shown in
the Fig 9(c). Let M1 = A‖a where A = M1[1..t − 1] and a = M1[t]. Note
that t− 1 is the length of the largest common prefix of M1 and M2. Then,

M2 = A‖b‖(X‖x)d−1‖X‖c, where c = M2[m2], b = M2[t], x = a⊕ b⊕ c.

The choice of X is variable. But it must satisfy the above for some d > 1. In
fact X is determined by its length which is c. Again, c must divide m2−m1

and hence the number of choices of c is at most d(m2 −m1)− 1.

This completes the characterization of all structure graphs satisfying coll with
accident one and bounds the number of such graphs for all cases. Note that the
cases 2.2.1.(a) and 2.2.1.(b) cannot hold simultaneously. But, case 2.2.1.(b) and
2.1 can hold simultaneously which makes the total count of these two cases at
most d(m2−m1). Since the order of messages do not matter in coll we are done.

Lemma 5. For M1 ∈ Bm1 , M2 ∈ Bm2 ,

1. If M1 <1 M2 then struct1(M1,M2)[coll] is of the form illustrated in Fig 9(b)
and the number of such graphs is at most d′(m2).

2. If M1 <2 M2 then struct1(M1,M2)[coll] is of the form illustrated in Fig 9(c)
and the number of such graphs is at most d′(m2).

3. In all other cases, struct1(M1,M2)[coll] is of the form illustrated in Fig 9(a)
and the number of such graphs is at most one.

0
p

m2

(a)

0
p = z

(b)

0 p = u z

vm2

(c)

∗
∗

∗

∗

Fig. 9: Characterizing all accident 1 structure graphs realizable by two messages which
satisfy coll event. Dashed lines represents w1 and solid lines represents w2.

Corollary 2. |struct1(M1,M2)[coll]| ≤ d′(m2) for any distinct messages M1,M2

with m1 ≤ m2. Thus,

CPany
2,` ≤

d′(m2)

2n −m1 −m2
+

(m1 +m2)4

22n

7.2 Revision of FCPpf
2,` Bound

Since Fcoll is a non-free structure graph event. So, by using proposition 2 we
have,

FCP(
npf)(M1,M2) ≤ |struct1(Fcoll)|

2n −m1 −m2
+

(m1 +m2)4

22n
.



Thus, it would be again sufficient to bound the number of structure graphs
for two messages with accident one and satisfy full collision property. Bellare
et al. [3] proved that |struct1(Fcoll)| ≤ 4 max{m1,m2}. While bounding the
|struct1(Fcoll)|, Bellare et al. proved a strong result that will be useful in our
analysis also. We reproduce the lemma [3, Lemma 19] here in our notations.

Lemma 6. For b ∈ {1, 2} and any i ∈ [0..mb],

|struct1(M1,M2)[wb[i] ∈ wb[0..i− 1, i+ 1..mb]]| ≤ mb.

Since the proof for lemma 6 can be found in [3], we skip it here. Equipped
with the observation that the [3, Lemma 10] is incorrect, we revise the bound to
|struct1(Fcoll)| ≤ 3(m1 +m2) and the new bound is

Lemma 7. FCPpf
n (M1,M2) ≤ 3(m1+m2)

2n−m1−m2
+ (m1+m2)

4

22n .

Proof. We need to bound the number of structure graphs for a pair of prefix-
free messages M1 ∈ Bm1 and M2 ∈ Bm2 which has at most one accident and
satisfies the Fcoll event. Note that the event implies that the structure graph
must have at least one accident as the messages are prefix-free. The event Fcoll
can be written as w2[m2] ∈ w2[0..m2 − 1] ∪ w2[m2] ∈ w1[1..m1].

Case 1: w2[m2] ∈ w2[0..m2 − 1]. This case can be bounded by a straight-
forward application of lemma 6 to at most m2.

Case 2: w2[m2] ∈ w1[1..m1]. Suppose Fcoll(M1;M2) happens due to w2[m2] =
w1[r] for an arbitrary r ∈ [1..m1 − 1]. Then Fcoll(M1;M2) is equivalent to
coll(M1[1..r],M2). For simplicity let M ′1 := M1[1..r]. Let s := LCS(M ′1;M2).
Then M ′1[s − 1] 6= M2[m2 − r + s − 1]. Let M∗1 = M ′1[1..s − 1] and M∗2 =
M2[1..m2 − r + s− 1]. From lemma 5 we know that G∗ ∈ struct1(M∗1 ;M∗2 )[coll]
must be one of (a), (b) or (c) in fig. 9. Note that G∗ is a subgraph of some
G ∈ struct1(M1;M2)[Fcoll].

Case 2.1: G∗ is as in fig. 9(a). Therefore w∗1 and w∗2 are paths. For a fixed
r the only possible collision is at (w∗1 [s − 2], w∗2 [m2 − r + s − 2];w∗1 [s − 1]) and
hence the number of such graphs is at most 1. There are at most m1 possible
values for r. So, the number of choices for G ∈ struct1(M1;M2)[Fcoll] is at most
m1.

Case 2.2: G∗ is either as in fig. 9(b) or (c). Therefore, b ∈ {1, 2} w∗b is not
a path. Without loss of generality assume b = 1. Let p∗ = LCP(M∗1 ;M∗2 ). We
know that M∗1 <1 M1 and M∗2 <1 M2. Therefore M1[1..p∗] = M2[1..p∗]. Now we
must have a collision (u, v ; z) in w∗1 . From lemma 5 we know that the graph
can be either fig. 9(b) or (c) depending on whether z = w∗1 [p∗] or z = w∗1 [p∗+ 1].
Next we make two claims which will enable us to bound the two cases. The
proofs for these two claims are given later in the section.

Claim 2.2.1: If G∗ is fig. 9(b) then w1[LCP(M1; M2)] is not fresh in w1.



Claim 2.2.2: If G∗ is fig. 9(c) then w1[LCP(M1; M2) + 1] is not fresh in
w1.

Recall that in a walk w a vertex w[i] is not fresh if ∃ j 6= i such that w[j] = w[i].
By claim 2.2.1 we know that w1[LCP(M1;M2)] is not fresh when G∗ is as in
fig. 9(b). Similarly, by claim 2.2.2 we know that w1[LCP(M1;M2) + 1] is not
fresh when G∗ is as in fig. 9(c). So using lemma 6 we bound the number of such
graphs G to at most m1+m1 = 2m1 when w∗1 is not a path. Similarly we have at
most 2m2 choices when w∗2 is not a path. Therefore the total number of choices
in case 2.2 is at most 2(m1 + m2). Combining case 1, 2.1 and 2.2 we have at
most 3(m1 +m2) number of choices. The result follows. ut

Proof for claim 2.2.1: Therefore z = w∗1 [p∗]. Let q be the minimum index such
that w∗1 [q] = w∗1 [p∗]. Let P = L(w∗1 [0..p∗]) andX = L(w∗1 [p∗..q]), c = q−p∗. Then
M∗1 = P‖X and M∗2 = P . As M∗1 and M∗2 are formed by removing the largest
common suffix from of M ′1 and M2 respectively, therefore M ′1 = (M∗1 ‖Xi1‖Y ) =
(P‖Xi1+1‖Y ) and M2 = (M∗2 ‖Xi2‖Y ) = (P‖Xi2‖Y ) where i1, i2 ≥ 0 are the
largest such indices. Since M ′1 and M2 are prefix-free, we have i1 + 1 > i2. Now
M1 = (M ′1‖Z) = (P‖Xi1+1‖Y ‖Z), where |Z| ≥ 0. From now onwards we will
work on the walk w1 (instead of w∗1 which is a subwalk of w1) corresponding
to M1. If Y is a prefix of X then M2 <1 M1 which contradicts the prefix-free
condition. So Y is not a preifx of X. If X is a prefix of Y then it contradicts the
maximality of i1, i2. So X is not a preifx of Y . Assume Y = Y1‖Y2 such that Y1
is the largest common prefix of X and Y , and Y2 is some non-empty string. If
p is the length of Y1, then Y2[1] = Y [p + 1] 6= X[p + 1]. Thus M1[1..i2c + p] =
M2[1..i2c + p] and M1[i2c + p + 1] 6= M2[i2c + p + 1]. So, p = LCP(M1;M2).
Further since i2 < i1 + 1, w1[p] is traversed twice ⇒ LCP(M1;M2) will not be
fresh. Note that we started off with an arbitrary r. So LCP(M1;M2) will not be
fresh irrespective of the value of r.

Proof for claim 2.2.2: Therefore z = w∗1 [p∗+1]. As noted earlier in the revision
of CP bound, this case was missing in [3] proof. Using a similar line of argument
as in the previous case we can conclude that irrespective of the value of r, the
cycle goes through w1[LCP(M1;M2) + 1] twice ⇒ LCP(M1;M2) + 1 is not fresh.

Note that our approach in Case 2.2 above is a bit subtle. We used lemma 5 to
identify a fundamental property (cycle goes through p or p+ 1 twice) and then
exploited this property to bound the counting. A straightforward approach of
summing the counts for graphs in fig. 9(b) and (c) over all values of r will give
a worse bound of mbd

′(mb) b ∈ {1, 2}. To get a tighter bound of mb we needed

this subtlety. Now we extend the bound for FCPpf
n (M1;M2) to FCPpf

q,`, in order



to get the revised prf bound for CBC MAC.

FCPpf
q,` ≤

∑
i6=j∈[q]

FCPpf
n (Mi;Mj)

≤
∑

i6=j∈[q]

(
3(mi +mj)

2n −m1 −m2
+

(mi +mj)
4

22n
)

≤
∑

i6=j∈[q]

6(mi +mj)

2n
+

(mi +mj)
4

22n

≤ 12mq

2n
+

16mq`3

22n
≤ 12σq

2n
+

16σq`3

22n
(9)

Here we have computed the bound in terms of q, ` and σ. Another approach (as
used in [3]) is to bound the value using q and ` only, in which case the bound
will be

FCPpf
q,` ≤

12`q2

2n
+

16`4q2

22n

Using proposition 1 and eq. 9 we get,

Theorem 2. Advpf
CBC(q, `, σ) ≤ 14σq

2n
+

16σq`3

22n
+

q2

2n+1

This gives a bound of O(σq2n ) for ` < 2n/3. As noted earlier, this is a better
bound whenever the average message length is much smaller than the length of
the longest message.

8 Revised Security Analysis of EMAC

In this section we revisit the PRF analysis of EMAC due to Pietrzack [31]. We
first identify the actual flaw in the proof and then provide a different proof to
obtain, in fact, a better bound of EMAC (in terms of `). For notational simplicity
we will keep our bounds in order notation and avoid the constant factors.

8.1 Flaw and Revisision of PRF advantage of EMAC [31]

The proposed bound for EMAC as stated in [31]

Advprf
EMAC(q, `, σ) = O(

q2

2n
(1 +

`8

2n
))

provided `2 ≤ q. Thus, it becomes tight bound q2/2n when ` ≤ min(q1/2, 2n/8).
To show that we need to bound the collision probability CPq,`. We can group
the q message into O(q/`2) groups, each group consists of about `2 messages.
So collision event among q messages implies that collision occur in two of the
groups. Since coll is a non-free event, we have seen in proposition 2 that

CPq,` = O(
|struct1(M)[coll]|

2n
) +O(

q4`4

22n
).



Applying this with q = 2`2 (i.e. for two groups) we have

CPq,` = O(
q2

`4
)×CP`2,` = O(

q2N

`42n
) +O(

q2`8

22n
)

where N denote the number of accident one structure graphs satisfying coll for
`2 messages with maximum length `. The O(q2/`4) term is due to the number of
ways in which we can choose two groups. Author claimed that N = O(`4) ([31,
Lemma 4]) and so plugging this bound for ` we have the desired bound. Now for
proving this bound for N author considered two cases for a pair of messages M
and M ′ (note that accident one and collision must occur for a pair of messages).
More precisely, it can be shown that

N = `4 max
M≮1M ′

|struct1(M.M ′)[coll]|+ `4. (10)

Recall that M ≮1 M
′ means that they become prefix-free after removing largest

common suffix of M and M ′.

Claim 1 of [31]. If M ≮1 M
′ then |struct1(M.M ′)[coll]| = 1.

If this claim was happened to be true then N = O(`4). However, we have seen
before there exists M <2 M

′ (such that M ≮1 M
′) with |struct1(M,M ′)[coll]| =

d(`− 1). Thus, |struct1(M,M ′)[coll ∧M ≮1 M
′]| = O(d′(`)). If we plug in this,

we find the modified bound as N = O(`4(d′(`))2) and so the revised bound for
the collision probability becomes O(q2d′(`)/2n) which is not tight.

8.2 Simple Proof of EMAC

We have seen in the last subsection that the influence of the flaw from [3, Lemma
10] is more serious having tight bound of EMAC. So it is very crucial to revisit
the security analysis of EMAC. One possible approach to fix the proof of [31], by
bounding N in a different way. For example, we can consider two cases M <1 M

′

and M <2 M
′ (i.e., M [1..m−1] <1 M2 but M ≮1 M

′). For any pair of messages
which are not related by any one of these two relations then the number of
structure graphs can be shown to be one. However, we need to show that the
remaining graphs is still about `4 (see second term of Eq. 10).

In this section we actually took a slightly different and, in fact simpler, ap-
proach. Instead of making groups of q messages we directly bound the number
of structure graphs for a slightly different choices of permutations. We will ig-
nore all those permutations (i.e. bad permutations) which induces one of the
following:

1. For some pair of messages Mi and Mj the number of accident is two or more.
2. For some message Mi, the accident is one.

Let φ be the property to represent the complement of the event. Let S be a
structure graph associated to a q-tuple of messages. We recall that S is an union
of q walks wi. We denote the sub-graph Si and Si,j to represent the walk wi



and wi ∪ wj . Note that these are again structure graphs associated to Mi and
(Mi,Mj) respectively. In this notation, φ is a property on all structure graphs
S onM such that Acc(Si,j) ≤ 1 for all i 6= j and Acc(Si) = 0 for all i. We call
a permutation good if its induced structure graph satisfies φ, otherwise we call
bad. Now we claim our new bound.

Lemma 8. CPq,`(M) ≤ q2

2n + `2q
2n + `4q2

22n .

Proof. We first bound the probability of bad random permutation. For a bad
permutation (1) there exists i and j such that the accident for the pair of message
Mi and Mj is at least 2 or (2) there exists i, such that the accident for Mi is
at least one. The first event can happen with probability O(`4q2/22n) by using
corollary 1. Similarly the second event can happen with O(`2q/2n). Now we
bound the probability p := Pr[coll ∧ φ]. Note that collision event implies that
there exists i and j such that collision event holds for the message Mi and Mj .
Now φ implies that accident of Si,j is one whereas accident of Si and Sj are zero.
In section 6 we have characterized all structure graphs for a pair of messages
with accident one satisfying collision. Among all possibilities only one structure
graph satisfies φ. Hence there is exactly one structure graph. This implies that
Pr[coll(Mi,Mj)∧φ] = O(2−n). Hence, by summing over all possible i, j we have

Pr[coll(M) ∧ φ] = O(q2/2n).

Now we summarize above discussion as

CPq,`(M) = PrΠ [collΠ(M) ∧ (structΠ(M) ∈ struct(M)[φ])]

+ Pr[structΠ(M) /∈ structΠ(M)[φ]]]

=
∑
i 6=j

O(
|struct(Mi,Mj)[coll ∧ φ]|

2n
) +O(`2q/2n) +O(`4q2/22n)

= O(q2/2n) +O(`2q/2n) +O(`4q2/22n) (11)

This completes the proof. ut

Theorem 3. Advany
EMAC(q, `, σ) = O( 2q2

2n + q`2

22n + q2`4

22n ). So if ` ≤ min{q1/2, 2n/4}
then Advany

EMAC(q, `, σ) = O( q
2

2n ).

Note that our theorem gives tight bound for a better constraint than what we
had before in [31]. The condition q > `2 can be dropped if we assume ` ≤ 2n/4−k

for some small k such that 2−k is negligible. More precisely, if ` ≤ 2n/4−k then

the PRF advantage of EMAC is about q2

2n + 1
2k

.

9 Conclusion and Future Work

In this paper we have revisited the PRF security analysis of CBC-MAC and
EMAC. We made the revision as we have found one of the main claims in the



original papers providing improved bounds is not correct. This claim, in fact,
influences some of the other claims. More importantly, the tight bound claim
of EMAC becomes invalid even after a simple fix of the claim. So we feel that
revision is essential and this paper serves this. Fortunately we have recovered
same bounds, at least in terms of the order, for both constructions. While revising
we attain potentially better bound of O(σq/2n) for CBC-MAC. Moreover, we
have found a better way to analyze EMAC which provides tight bound with a
much relaxed constraint on message length `. Namely our constraint is ` < 2n/4

whereas the original constraint was ` < 2n/8.

Acknowledgement

We have communicated with the authors of the papers [3, 31] and they have
acknowledged our findings. We would like to thank them for giving their valuable
time to go through our findings.

References

1. Information Technology – Security Techniques – Message Authentication Codes
(MACs) – Part 1: Mechanisms Using A Block Cipher. ISO/IEC 9797-1, Interna-
tional Organization for Standardization, Geneva, CH, 1999.

2. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of The Cipher Block
Chaining Message Authentication Code. J. Comput. Syst. Sci., 61(3):362–399,
2000.

3. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Anal-
yses for CBC MACs. In Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, pages 527–545, 2005.

4. A. Berendschot, B. den Boer, J. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham, C. Jansen, P. Landrock, B. Pre-
neel, G. Roelofsen, P. de Rooij, and J Vandewalle. Final Report of Race Integrity
Primitives, 1995.

5. D. J. Bernstein. A Short Proof of the Unpredictability of Cipher Block Chaining,
2005.

6. John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Par-
allelizable Message Authentication. In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,
pages 384–397, 2002.

7. John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The
Three-Key Constructions. J. Cryptology, 18(2):111–131, 2005.

8. Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang. One-
key Double-Sum MAC with Beyond-Birthday Security. IACR Cryptology ePrint
Archive, 2015:958, 2015.

9. Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.



10. Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin.
Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC
Modes. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, pages 494–510, 2004.

11. Avijit Dutta, Mridul Nandi, and Goutam Paul. One-Key Compression Function
Based MAC with BBB Security. IACR Cryptology ePrint Archive, 2015:1016, 2015.

12. M Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST Special Publication 800-38b, National Institute of
Standards and Technology, U. S. Department of Commerce, 2005.

13. William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message Verification and Transmission Error Detection by Block Chaining. US
Patent 4074066, 1976.
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