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Abstract
Smart phones and mobile devices have become more and
more ubiquitous recently. This ubiquity gives chance for
mobile advertising, especially location-based advertising, to
develop into a very promising market. In many location-
based advertising services, it is implied that service providers
would obtain actual locations of users in order to serve rele-
vant advertisements which are near users’ current locations.
However, this practice has raised a significant privacy con-
cern as various private information of an user can be inferred
based on her locations and trajectories. In this work, we
propose PrAd, a location-based advertising model that ap-
preciates users’ location privacy; i.e. it never reveals their
locations to any untrusted party. Our solution is concep-
tualized based on several state-of-the-art privacy preserving
techniques such as data obfuscation, space encoding and pri-
vate information retrieval (PIR). We especially introduce al-
gorithmic modification to existing hardware-based PIR tech-
nique to make it more practical and thus suit real-time ap-
plications. Moreover, PrAd enables a correct billing mech-
anism among involved parties without revealing any indi-
vidual sensitive information. Finally, we confirm the effec-
tiveness of our proposed framework by evaluating its perfor-
mance using a real world dataset.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Spatial databases and GIS
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Design, Security
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1. INTRODUCTION
A tremendous growth in smartphone usage has been wit-

nessed in recent years and it is expected that more than
one-third of global population will use smartphones within
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the next few years. In such a context, mobile-advertising
has become a promising market. One of the most popu-
lar forms of mobile-advertising is location-based advertising
(LBA). This is a form of advertising that leverages location-
based services to conduct mobile advertising. LBA offers a
mechanism in which location-specific advertisements (those
that are particularly relevant to a specific location) are de-
livered to appropriate consumers (those that are close to the
advertisement’s location, for example). For brevity, we sim-
ply refer to location-specific advertisements as ads. Most
of today’s LBA services track users’ personal and private
information in order to be able to serve the most relevant
ads to the users. Such tracking has raised many concerns
about privacy violation. To a certain extent, location-based
advertising server (LBAS) has to take into consideration at
least the locations of users and ads. However, LBAS should
not be trusted as it may reveal users’ locations to a third
party without users’ consent. Several studies have shown
that location disclosing has great implications in term of
privacy [1,2]. Given a location information of individuals, a
broad set of other sensitive information such as health sta-
tus or religious view could be inferred [1]. These concerns
raise a need of protecting location privacy in LBA.

In this paper, we focus on a specific type of LBA that dis-
plays appropriate location-based ads on user’s phone dur-
ing their usage of ad-sponsored applications. We target the
highest level of location privacy, which completely protects
users’ location privacy from any untrusted parties. The most
prominent and powerful candidate of these untrusted parties
is LBAS since it has access to users’ location information.

Various techniques have been proposed to protect location
privacy in the context of location based services (LBS) [3–8].
The main idea of these techniques is to enable location-based
queries such as nearest neighbor queries or range query in
such a way that actual locations of query points are not
revealed. Among these solutions, there are three main cate-
gories. The first category [3,4] employs location obfuscation
idea, in which a query point is either cloaked in a group of
some other query points or blurred in an area so that the ex-
act location of the query point cannot be inferred. However,
in this class of techniques, user’s location can be restricted
in a small area of the space, thus it is relative easy to infer
her location. The other category [5, 6] uses space encod-
ing techniques to hide actual location of Point of Interests
(POI). Approaches based on this concept are still not able
to protect users’ location information from inference attacks
where the untrusted LBAS may match users’ queries with
outliers or popular locations based on the access frequen-
cies. The third major concept employs private information
retrieval (PIR) [1, 7, 8]. Generally, PIR-based approaches
utilize PIR protocol [9] to implement a query procedure in



which database item is retrieved privately from location-
based service without it learning which block was retrieved.
Though this technique is resistant to attacks that the two
other classes are vulnerable to, it has its own limitations.
Approach proposed in [7] leaks the cardinality of the PIR
request while scheme presented in [1] incurs a prohibitive
computational cost. On a different perspective, there are
many studies on privacy issues in mobile-advertising [10,11].
However, these studies focus on content personalization and
targeted advertising instead of location-based advertising.
Thus, they do not try to protect location privacy of users.

In this work, by adopting space encoding and PIR tech-
niques, we propose PrAd, a novel LBA model targeting
location privacy; i.e. enable location-based advertising with-
out compromising location privacy of users. Our key insight
is instead of sending location information to LBAS and let-
ting it select appropriate ads to deliver to users, PrAd keeps
the sensitive information on user’s phone, carries out the
selection locally, and then privately requests pertinent ads
from LBAS. LBAS no longer obtains location information of
users or processes spatial queries, which means it is deprived
of sensitive information. Moreover, we design PrAd such
that ads retrieval and delivery are carried out privately, i.e.
without LBAS knowing which are requested and retrieved.
We introduce three main privacy metrics and justify that
PrAd satisfies all those three metrics, and thus can put the
claim that PrAd can obtain location privacy in LBA.

PrAd encodes locations of both users and advertisements
using one-way space encoding function. Mobile devices re-
quest ads by first computing its own location index, and
sending such index to LBAS to retrieve pertinent advertise-
ments. Only encrypted indices are sent out of the device and
hence no location information ever leaves the device. The
space encoding technique is designed so that locality and
neighborhood of spatial objects are preserved. In PrAd ap-
proach, ads selection is performed locally on user’s devices
instead of being processed by LBAS as in traditional model.
Utilizing this technique alone can protect users’ location pri-
vacy in snapshots. That is, given a single advertisement
retrieval, LBAS cannot find out from where the request is
made, i.e. where the user currently is. However, based on
access frequencies of records in its database, history queries
and external geographic knowledge, LBAS can carry out in-
ference or correlation attacks to deduce user’s location. We
further improve PrAd by adopting an ORAM-based private
information retrieval technique [12] to completely nullify in-
ference and correlation attacks. The PIR scheme proposed
in [12] requires periodical offline processing to reshuffle the
entire database, which implies not only a considerable com-
putational and operational cost but also a degradation of
quality of service due to the offline period. We introduce
modifications to the scheme to avoid such reshuffling. We re-
mark that by avoiding such shuffling, the service can operate
continuously and smoothly without any interruption, which
significantly enhance quality of service. Finally, PrAd uses
homomorphic encryption techniques to ensure proper and
accurate accounting as well as billing among LBAS, ap-
plication publisher and advertisers. The only assumption
PrAd makes is the presence of a piece of trusted and tam-
per proof primitive, namely Secure Coprocessor (SC), con-
nect to LBAS’s system in such a way that every request to
LBAS is replayed through this SC.

2. BACKGROUND
In this section, we first present a generic view of LBA. We

later discuss some background concepts in location privacy
and provide a brief overview of PIR. Similar to other location
privacy schemes [1,5,7], our goal is to protect user’s location
and identity information. In order to achieve these privacy
measures, we place trust in trusted and tamper-proof unit
residing on the untrusted server, receiving queries from users
and privately retrieving appropriate records to answer such
queries. The assumption of such a trusted primitive is indeed
valid and has been employed in several works [7, 13]

2.1 Location Based Advertising
Location-based advertising is a relatively new model com-

pared to other types of advertising. LBA can be considered
as a combination of mobile advertising, which is a form of
advertising via mobile phones or devices, and location-based
service, which is a class of services whose features are sig-
nificantly controlled by location data. The basic principle
behind LBA is to use technology to locate consumers’ posi-
tion and use that information to serve them with appropri-
ate location-specific advertisements on their mobile phones
or devices. Location-based services can generally be clas-
sified into two types. In push approach, service providers
target and offer services to consumers without any specific
request from the latter whereas users explicitly request for
service in pull approach. LBA’s main categories comprises
of messaging, display, search and product placement.

In this work, we focus on a very popular scheme of LBA
which leverages on push location-based service to offer dis-
play mobile advertising. This model involves several parties
serving different roles. For simplicity, we informally define
the four main parties participating in the service:

1. Advertiser: This party are businesses and marketers
that want to advertise their products to customers.
This party pays LBAS to get their ads delivered to the
customer. LBAS, in turn, pays Application Publisher
to display ads that it collected from Advertisers on
their apps. We refer to such mobile applications as
ads-sponsored or ads-funded apps.

2. LBAS: This party collects ads from Advertisers and
then delivers them to mobile applications of customers
in the ads’ proximity.

3. Application Publisher : This party mostly includes mo-
bile developers who distribute mobile applications to
users free of charge and then gain benefit from Adver-
tisers by displaying ads on their apps.

4. User/Consumer: This party represents advertisers’
main target. Users install ad-sponsored applications
on their mobile devices, which enables displays of ads
on their devices during their usage.

Application Publishers who want to cooperate with LBAS
include in their mobile applications a connection to LBAS.
Using this connection, the mobile application can communi-
cate with LBAS to fetch ads. LBAS should have access to
both locations of ads and customers to realize LBA. This in-
formation obtaining is problematic from privacy perspective.
We consider LBAS as an untrusted party and thus, user’s
location should not be revealed to LBAS. In this work, we
propose a mechanism to offer LBA in such a way that the
untrusted LBAS can learn nothing about user’s location.



2.2 Location Privacy Preliminaries
Privacy Metrics. Assume that an untrusted LBAS

hosts an ads database ADB = {a1, a2, a3, ..., an}, in which
ai is a set of ads relevant to point of interest (POI) li and
that a set of users U={u1, u2, u3,....,um} subscribe to S’s
services, our target is to enable users to privately retrieve
ads in such a way that no sensitive location or identity in-
formation is disclosed to the untrusted LBAS. We consider
an ad-retrieval as a spatial query issued by the user and
the answers for such queries are appropriate ads. We adopt
privacy metrics defined in [7] in our work.

Definition 1 (u-anonymity). Given a query, with

respect to the server’s knowledge, the user who issues the

query should be indistinguishable among the entire set of

users. That is, for every query q, the probability Pq(uj)

that user uj issues query q is the same for every user, i.e.

Pq(uj) = 1
m

where m is the total number of users

The above definition is to ensure the untruted LBAS is
blinded from the information of who issues the query. In
addition, we also need to hide the location from which the
query is issued.

Definition 2 (a-anonymity). The location at which

the query is issued should be kept secret. That is, for every

query q, with respect to the server’s knowledge, the probabil-

ity P ′
q(l) that the query q is issued at location l is the same

for every location, i.e. P ′
q(l) = 1

area(A)
where A is the entire

region covering all POIs.

We argue that privacy measures implemented by the two
above definitions are much stronger than metrics used in
other anonymity approaches [3, 4, 14]. In such notions, a
user is only indistinguishable among a small set of k-1 other
users or her location is hidden in a small region R. In fact,
the privacy requirements of Definitions 1 and 2 stimulate an
extreme case of other anonymity approaches where k = m
(a user is indistinguishable among all users) and R = A
(user location is blurred into the entire region).

While a-anonymity and u-anonymity can guarantee the
privacy of the query in snapshot, they still reveal the access
frequency, which allows the untrusted server to carry out
correlation attack [7]. To prevent this, LBAS should obtain
no information about which item is retrieved from it per each
request. Thus, we propose that a query should be evaluated
in a data-oblivious way. We use the similar definition of data
obliviousness as defined in [15]

Definition 3 (Data-oblivious Execution). An ex-

ecution is considered data-oblivious if it incurs the same

sequences of operations and memory accesses for any two

inputs of the same length.

Thread model. The purpose of an adversary is to learn
users’ location. We assume the most powerful adversary,
who pretends to be a normal user and together with the
untrusted LBAS conspire against the user. Note that the

LBAS can play an adversary by self-issuing queries and ob-
serving records’ access pattern to find the correspondence
between user’s location and records hosted on it. In this
work, we consider LBAS as a primary adversary.

2.3 Private Information Retrieval
In PIR setting, a database is modelled as a n-bit string

X = {X1, X2, X3, ..., Xn} hosted on an untrusted server S,
and the user is interested in retrieving the ith bit in X, which
is Xi, without revealing the value of i. A broad range of PIR
schemes can be classified into cryptographic and hardware-
based approaches.

Cryptographic PIR. The original PIR scheme is pro-
posed in an information-theoretical setting in which even
an adversary with infinite computational power cannot find
out the value of i. However, it is proven that in theoreti-
cal PIR setting, the communication cost is equivalent to the
size of the entire database. Thus, in order to reduce such
an overhead, several computational PIR approaches only try
to ensure that computationally bounded adversary cannot
find i within polynomial time [16]. Even though they can
mitigate the huge communication cost, they still have to per-
form a linear scan on the entire database. This class of PIR
suffers from a prohibitive communication and computation
cost, which makes it less practical in real applications.

Hardware-based PIR. In order to obtain strong privacy
without suffering from high costs, a class of Hardware-based
PIR has been proposed [12, 17, 18]. These approaches as-
sume a tamper-resistant hardware device is installed on the
untrusted server (which is the LBAS in our case). Such a
device, in several cases referred to as Secure Coprocessor
(SC), is equipped with hardware cryptographic accelerators
that are able to execute fast and efficiently cryptographic
operations. Hardware-based PIR approaches trust the SC
to privately perform information retrievals. By placing trust
on the SC, these techniques achieve optimal communication
and computation costs in comparison with cryptographic
PIR approaches. Because of this, we employ this class of
PIR approaches to build our privacy-aware LBA system.

2.4 Homomorphic Encryption
We also utilize basic additive homomorphic encryption to

carry out the accounting. Additive homomorphic encryption
system is an asymmetric cryptosystem that allows addition
operation to be performed directly on ciphertexts. In details,
each plaintext x is encrypted using a public key pk. Given a
public key pk, anyone can calculate the sum of E(pk, x1) and
E(pk, x2), to generate a result which is E(pk, x1 +x2). This
result, when decrypted with a secret key sk corresponding to
pk, renders the plaintext x1+x2. Note that in performing an
addition of E(pk, x1) and E(pk, x2) using pk, no information
on x1 and x2 is revealed.

3. PRIVACY-AWARE LBA
As discussed above, with a tremendous growth of smart-

phone usage, LBA has become a very promising market.
However, privacy concerns, especially location privacy, to a
certain extent, discourage a portion of users to participate
in this market. We argue that if LBA service does not com-
promise users location privacy, it will be much more broadly
accepted and its market will be further extended.

We make a simple yet elegant observation that instead of
disclosing the location information of consumers to LBAS



as in traditional model, a privacy-aware LBA can keep such
information locally on user’s smartphone and privately re-
quests pertinent ads from LBAS. In specific, mobile devices
perform simple computation to find out which ads should be
served in current spatial context and then privately retrieves
those ads from LBAS, without the latter knowing which ads
are actually delivered to the consumers. Later on, ads re-
ports, which tell how many times certain ads are displayed,
are collected anonymously to ensure no sensitive informa-
tion is leaked. By guaranteeing privacy in each phase of the
LBA serving, we can protect users’ location privacy. PrAd,
a framework for location-privacy aware LBA, implements
exactly the above mentioned observation.

3.1 Architecture
PrAd proposes two changes to the traditional LBA ar-

chitecture. The first change involves the presence of a
trusted primitive, namely Secure Coprocessor (SC) (figure
1). Specifically, SC is connected to LBAS and every request
to LBAS is routed through it. Moreover, it is presumed that
SC is able to read and write data from and to LBAS’s stor-
age and that no other process or adversary can tamper with
or inspect the internal state of SC; i.e. it is inaccessible to
the LBAS. Such primitive can be implemented using IBM
secure cryptographic processors [19] or the recently proposed
Software Guard Extensions (SGX) from Intel [20].

The second component of PrAd is a small service called
mPrAd running in user’s device. Unlike traditional LBA
where each ads-sponsored application individually fetches
ads directly from LBAS, they are all bound to mPrAd to
retrieve ads PrAd model. mPrAd first collects exact loca-
tion information from sensor (i.e. GPS sensor) and performs
the space encoding (see subsection 3.2) to get a correspond-
ing location index i. It then establishes a secure channel
to SC and submits the request via that secure channel. The
SC receives the request, performs a private ads retrieval (de-
tailed in subsection 3.3). It then returns the ads to mPrad.
Upon receiving response from SC, mPrAd forwards them to
the requesting applications. Every time an advertisement is
displayed on the application’s GUI, it sends an acknowl-
edgement to mPrAd. Based on these acknowledgements,
mPrAd keeps track of how many times each advertisement
is displayed. At the end of a billing period, mPrAd con-
structs billing vectors and reports them anonymously to the
LBAS (subsection 3.4). We sequentially discuss details of
each procedure in the following subsections.
mPrAd contains two secret keys, one for performing space

encoding and the other to encrypt billing vector. The rea-
son to delegate these tasks to a small independent service
like mPrAd is that ads-sponsored applications are not al-
ways trusted. There are incentives for such applications to
leak users’ current location to the untrusted parties. Hence,
ads-sponsored application should not be granted access to
location sensor, which is required in the first place for space-
encoding process, unless there is an explicit need of location
information to facilitate its authorized activities. The other
reason is that there are so many apps developers that dis-
tributing a set of secret keys required in our model incurs
many complications. By introducing mPrAd, we can avoid
such secret key distribution problem. One more reason is
that there may be several ads-funded applications running
in the same smartphone; and running a single mPrAd to
serve all of those ads can save computational and commu-

nication cost compared to each application perform ads re-
trieval separately.

3.2 Space Encoding
Unlike traditional LBS model in which an user sends her

location information l to the server and let the server queries
for which service is pertinent to l and then serves the user
with those services, the client device in our model makes
such a selection on its own. To realise this, we assume that
LBAS stores ads in a database D = 〈A1, A2, . . . , An〉, in
which Ai is a set of advertisements co-located at location l
whose index is i. The client first calculate an index i from
her location l, and then requests Ai from LBAS. The process
of computing i from l is referred to as space encoding.

Since we want to protect user’s location against the LBAS,
the space encoding has to be a one-way function where for-
ward computation (compute i from l) is easy to performed
while invert computation (inferring l from i) is computation-
ally impossible. Moreover, because the ads selection process
needs real-time performance and that smartphone has lim-
ited computational power, the space encoding’s computa-
tional cost should be low. Besides, to ensure the correctness
of the advertising service, the space encoding must preserve
the locality and clustering aspects of spatial data. Given
these requirements, we adopt a Hilbert curve based space-
encoding technique proposed in [5] as a space encoder in our
model. We briefly present the notion of space filling curve
and summarize the technique in [5].

A space filling curve visits all points in the space without
crossing itself. This class of curves retains the proximity and
locality aspects of spatial data. Hibert curve [21] is one of
the most famous member of this class due to its excellence
in preserving distance and clustering characteristics of the
spatial data. The space encoding technique introduced in [5]
uses a set of four parameters to form a Space Decryption Key
SDK. The four parameters comprise of the curve’s starting
point (X0, Y0), curve orientation O, curve order N and curve
scale factor F . It is proven that this space encoder is secure,
i.e. it is computationally impossible to invert the encryp-
tion without the knowledge of SDK = 〈(X0, Y0), O,N, F 〉.
Given ads are stored based on location index is calculated
by this space encoding and all ads contents are encrypted
properly, LBAS has no information to locate the user when
it serves her request.

In the real world, many ads are located in the same area.
For example, there are many products from different brands
offered in one supermarket, and many supermarkets co-
located in the same neighborhood. PrAd groups all ads
that are in the same area into one set and then indexes such
a set with the location index of that area. Note that the size
of such an area is a sensitive parameter in our framework.
We discuss the effect of this parameter in our evaluation.

Without loss of generality, let us presume that there is
a minimum bounding rectangle surrounding the entire re-
gion. We divide such a rectangle into x unit squares, each of
which represents an area. Note that there will be areas (unit
squares) containing ads and some others don’t. PrAd only
keeps track of areas that contain ads. Besides all ads submit-
ted by advertisers, PrAd stores a special ads record which
is to be served to users having no ads in their proximity.

Our framework allows users to flexibly decide a range of
the area in which they want to retrieve ads. mPrAd treats
a wide area as an union of several unit squares. In case a



Figure 1: Private ads retrieval

user prefers to retrieve ads in an area comprising of many
unit squares, mPrAd only needs to calculate location in-
dex of its current location. Based on this, it infers indices
of surrounded unit squares and requests the corresponding
advertisements from LBAS.

3.3 Private Ads Retrieval
Because the space-encoding is a one-way function, LBAS

cannot invert the transformation to infer actual location of
the users from their submitted indices. Hence, it can protect
user’s location privacy in snapshots; i.e. for a single request,
user’s location information is kept private. However, her
privacy is still vulnerable to correlation attack. In such,
the LBAS, with external geographic knowledge of the area,
observes the access frequencies and history trajectories of
the user to infer her locations. PrAd takes one step further
to address this issue. All communication between the SC
and LBAS storage is performed obliviously; i.e. without the
latter learning the intended access of the former.

In specific, PrAd aims to enable SC to privately retrieve
selected ads from the LBAS such that LBAS cannot learn
which ads SC truly wants to get. Moreover, we also want
to support update operation. When an advertiser join or
leave the system, the set of advertisement records captured
in LBAS’s database changes. Thus, to offer flexibility for
PrAd, supporting update operations is necessary. Due to
privacy concern, the LBAS must be kept oblivious to what
operation SC performs on its database. In another word,
LBAS does not know whether an access that SC made is a
read or a write or which item the SC intentionally accesses.

To realize this, PrAd adopts an idea of hardware-based
PIR techniques due to its optimal communication and com-
putation costs. It is worth mentioning that placing a trust
on a secure coprocessor (SC) connected to LBAS is funda-
mentally different from trusting the LBAS. We only need to
trust the SC’s designer, instead of paying credits not only to
the LBAS’s designer but also its administrator and all other
applications installed on it. Another observation is that it
is easier to vet the SC compared to screening the LBAS.

Several SC-based PIR protocols employ random permuta-
tion techniques to first permute the original database DB
into permuted one (DBp) and later on access DBp to pri-
vately retrieve records [12, 22, 23]. Even though these ap-
proaches are able to obtain optimal communication and
computation costs, they need to carry out an offline prepro-
cessing to reshuffle the entire database periodically. The cost
of this offline reshuffling is not trivial and thus make these
protocols inapplicable in our context. We introduce some
modifications to avoid these overheads. As the result, our
private ads retrieval is able to achieve optimal communica-
tion and almost optimal computation cost without periodi-
cally performing the reshuffling. The key insight is instead of
performing one big reshuffle periodically, we slightly change

the database after each retrieval. Such a change should be
minimum to keep the processing cost low, yet still significant
enough to nullify LBAS’s correlation and access pattern at-
tacks. In the following, we present a protocol that allows
SC to privately access LBAS’s database. SC issues Access
(Read, Ai, null) to retrieve Ai or Access (Write, Ai, v) to
update Ai with new value v.

The architecture. An ads database D =
〈A1, A2, . . . , An〉 consisting of n records, is hosted on LBAS.
SC is connected to LBAS and able to read and write records
from and to the LBAS’s database. SC comprises of a pri-
vate memory M with a limited storage capacity. As SC is
tamper-resistant, it follows that its private memory is also
trusted and LBAS cannot have any access to or observation
on the content of the memory. Every request to LBAS is
configured to be routed through SC. The role of the SC is
to serve as a proxy sitting between users and LBAS.

The Oblivious Protocol:

Access(op,Ai, v):

1: x← pos[Ai]
2: y ← flag[x] . if x = null, y = null
3: if x = null then
4: a← PickWhite()
5: b← PickBlack()
6: else if y = white then
7: a← x
8: b← PickBlack()
9: else . x 6= null & y = black

10: a← PickWhite()
11: b← x
12: end if

13: ReadCell(a), ReadCell(b)
14: value← Ai.value
15: if op = Write then
16: Ai.value← v
17: end if

18: Am ← PickRandomS()
19: An ← PickRandomS()
20: WriteCell(a,Am), WriteCell(b, An)

21: pos[Am]← a, pos[An]← b
22: pos[Aa]← null, pos[Ab]← null
23: flag[a]← black, flag[b]← black

24: return value

In the LBAS initialization or pre-deploy phase, the
SC randomly chooses n − k records, encrypts them using
a semantically secure encryption, in which re-encryption
of the same value and encryptions of different values are
indistinguishable, and then writes them to the permuted



DBp, stored on LBAS’s storage server. For the sake of
exposition, we consider this storage server comprises of
n − k cells, each of which is allocated to one record. Other
k records are cached in SC’s memory, which will keep track
of the following three data structures:

1. stash S : a list of k records

2. pos: a map keeping track of positions of n− k records
stored in the LBAS storage.

3. flag : a boolean array to color cells on LBAS storage.
black cells are those that are already accessed; white
cells are those that have not been accessed yet.

The above protocol makes use of the following support-
ing functions: PickWhite() and PickBlack() are to choose
a white and black cell uniformly from random, respec-
tively; PickRandomS() arbitrarily selects one item among k
records currently located in the stash S; ReadCell(x) reads
an advertisement record located at cell x on the LBAS stor-
age into S whereas WriteCell(x,Ai) writes a records Ai

from S to cell x on LBAS storage.
For an access to an advertisement record Ai, the protocol

first checks the state of Ai. If it is in S, the protocol ac-
cesses two random cells, one white and one black ; otherwise,
it accesses the cell containing Ai and another random cell of
alternative color. After reading two cells from external stor-
age to S, SC chooses two random items in S to write back
to the accessed cells, mark these cells as black, and update
the position mapping accordingly. Once all cells are marked
as black, the SC flips the flag array to mark all except one
random cell as white and start the session all over again.

3.4 Billing and Accounting
Client apps need to report to LBAS a number of times

each advertisement is clicked or displayed for appropriate
billing and accounting. We refer to this feedback as ads-
report. It is necessary to hide the knowledge of what adver-
tisements displayed on which users’ mobile apps in other to
guarantee users’ location privacy. Thus, ads reports should
be collected in an anonymous way. Instead of each individ-
ual sending her ads report directly to LBAS and advertiser,
a group of users first aggregate their ads report and only
the aggregated information is sent to LBAS and advertiser.
These pieces of accumulated ads reports will not reveal sen-
sitive information of individual users but are sufficient to
perform billing and accounting.

We take advantages of homomorphic encryption and k-
anonymity [24] to maintain the anonymity of ads reports. In
detail, for every advertiser, mPrAd keeps track of a number
of times its ads are displayed. This information is captured
in the form of 〈Advertiser − Counter〉. Within one billing
period, whenever a counter for a specific advertiser reaches
a predefined threshold, say C, mPrAd encrypts the counter
using homomorphic encryption to get encrypted value EC,
put it to a message of form 〈Advertiser − P − EC〉 where
P is a number of extra peers the message has to be routed
through before reaching LBAS and sends it out to another
peer. Initially, P is set to some threshold MP . Upon receiv-
ing a message, the peer checks whether its own counter for
that advertiser is greater than 0. If it is, it updates EC by
first encrypting its own counter and then homomorphically
adding its own counter to EC. It later resets the counter to

0, decrease P by one. It later sends EC to LBAS if P = 0,
or forwards the accumulated billing message to a next peer
otherwise. In case the receiving peer’s counter for the adver-
tiser specified in the message is 0, it proceeds with the same
procedure except for updating EC. At the end of billing pe-
riod, client app encrypts and sends out every counters which
are greater than 0.

Since the time constraint in reporting billing information
is quite flexible, these billing message could be transmit-
ted using Delay-Tolerant Network (DTN) [25] to save en-
ergy and communication cost. Note that the selection of
receiving peer is performed randomly using DTN technique,
which increases the anonymity of the accumulated ads re-
ports. In other to prevent one peer from inferring which ads
are displayed on the previous peer, mPrAd can pair each
ads report which an empty ads report, i.e. ads report whose
counter is 0. Upon receiving billing counters of advertisers,
LBAS decrypts them and update its billing database accord-
ingly. Billing information can also be sent to advertisers so
that they can verify the correctness of LBAS billing.

3.5 Security
PrAd satisfies all three security metrics discussed in sec-

tion 2, and thus offers strong location privacy. In addition,
the use of homomorphic encryption and k-anonymity con-
cept in PrAd ’s billing procedure further fortifies our claim.

Given the presences of SC, there is no direct interac-
tion between users and LBAS. The only interaction between
LBAS and SC is facilitated through the private protocol
described in subsection 3.3. That is, in the view of the
LBAS, every request is exactly the same as each other no
matter by whom it is issued. Thus, our technique satisfy
the u-anonymity metric. Thanks to the space encoding as
well as the randomized encryption and database permuta-
tion privately performed in each ads retrieval, LBAS cannot
figure out which POI is actually received interest. That
is, it does not know from where user sent their request.
Thus, a-anonymity is guaranteed. Finally, with respect to
the view of LBAS, the SC performs exactly the same se-
quence of operations for access. Specifically, it reads one
black and one white records from LBAS, and then replaces
those two records with randomly chosen and encrypted item
from SC’s stash. We contend that our ads retrieval ap-
proach is data-oblivious and nullifies LBAS’s ability of in-
ferring any sensitive information based on database’s ac-
cess frequency. It is clear that our technique appreciates
all three privacy metrics, a-anonymity, u-anonymity, and
data-oblivious execution. In billing process, ads-reports are
collected anonymously so that LBAS cannot learn which
ads is displayed on which user’s device. At this point, we
claim that PrAd achieves strong location privacy in provid-
ing LBA service.

4. EVALUATION
We empirically evaluate the overall effectiveness of

PrAd with respect to its scalability and the effect of unit
square’s size on its performance. We perform these sets of
experiment on an Intel Core i7-2600 processor with 8GB
of memory. In order to emulate a secure coprocessor, we
limit our CPU clock to one tenth of its original power and
use only 128MB of RAM to represents SC’s cache. These
choices are based on the IBM 4765 Cryptographic Copro-
cessor [19]. Our experiments are performed using YELP
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Figure 2: Experiment results on PrAd performance

dataset 1, which comprises of 42,153 businesses, 252,898
users and 31,617 check-in sets covering large cities such as
Phoenix, Las Vegas, Madison, Waterloo and Edinburgh. We
consider businesses as advertisers, YELP users as clients who
use ads-sponsored applications in our model. We treat a
check-in data as a user visiting advertisers’ locations; i.e.
she will retrieve ads near those advertisers’ locations. As
one advertisers can launch several ads, we will consider a
number of reviews a YELP business gets as a number of ads
its representing advertisers offer. The intuition behind this
is that the more popular the YELP business is, the more
reviews it gets, which is analogous to the fact that the more
dominant the advertiser is, the more ads it offers. We stim-
ulate ads content as a string of 100 characters.

In our two sets of experiments, we report three metrics
which are the pre-deployed LBAS initialization time, SC
processing time (PAR time) and overall ads retrieval time
on client’s phone (end-to-end time). The first metric is re-
ported as an average value of a hundred attempts while the
other two metrics are averaged over a thousand ads retrieval
requests. As the experiments reported, all these three met-
rics are in the order of milliseconds, which suggests that
PrAd performance satisfies real-time requirement and thus
practical deployment.

4.1 The effect of unit square size
In our model, ads are grouped and indexed with respect

to a unit square. The size of these unit square is a very
sensitive parameter. If it is too large, there may be so many
ads grouped into one record, which may leads to rendering
unrelevant ads to the clients. The other disadvantage is that
as the cost of encryption and decryption directly depends
on the size of a record, if the record is too big, the overhead
will be high. On the other hand, if the unit square is too
small, PrAd ends up performing several ads retrieval for
each request, which is again incurs overhead.

In this set of experiment, we fix the number of ads to 400k,
and varies the size of the unit square from 250 to 4k square
meters and report the three metrics. The result is reported
in figure 2a

As we can observe from the figure, as the size of the unit
square increases, all three metrics increase. The reason for
these increases is that the larger the unit square is, the more
ads are grouped into one unit. This in turn implies larger
records. Recall that the dominant operations in our protocol
are cryptographic operations whose costs are directly depen-
dent on the size of the record, the increasing in record size
leads to higher processing cost. Also note that as the sizes of

1http://www.yelp.com/dataset_challenge

each ads record increases, the delay in end-to-end time also
further increases since more data needs to be transferred
during each ads retrieval.

4.2 Scalability
In the second sets of experiments, we varies the number

of ads that LBAS serves and report the same three metrics
as in the first set of experiment. The experiments witness
the increase of all three metrics. In specific, end-to-end time
grows by almost 4 times when the number of ads increases
from 25k to 400k, and so do PAR and initiation times (see
Figure 2b). We remark that though all the three metrics
are increasing when the number of ads that PrAd serves
increases, the performance is still practical, as all the metrics
are only in order of miliseconds. We believe that this is
efficient enough to support real-time applications. Thus we
claim that PrAd is scalable and practical.

5. RELATED WORK
Data Transformation. Inspired by cryptographic tech-

niques, a number of works [5,26,27] have advocated for the
use of data transformation in protecting location privacy.
Khoshgozaran et al. [5] utilized a Hilbert-based transfor-
mation to support privacy-preserving evaluating of approx-
imate Nearest Neighbor (NN) queries. Another work pro-
posed by Wong et. al. [27] uses a different transformation
which preserves relative distances among all points of inter-
est in the spatial database. While the approach in [5] can
only render approximate result, this technique enables an-
swering accurate kNN queries. Later, Lien et al. [26] suggest
using Moore curve and Paillier cryptosystem to perform a
secret circular shifts of spatial data so that kNN queries can
be processed in a privacy-preserving manner. However, this
technique can only provide almost accurate results rather
than exact answers. Note subtly that these techniques are
deterministic; the same encoded results are always rendered
for the same queries. Though they can protect users’ privacy
in snapshots, they are vulnerable to correlation attacks [7].

PIR-based Location Privacy. The PIR concept was
originally introduced by Chor et al. [9] and has been exten-
sively studied over years by both research and industry com-
munities [12,28–30]. Secure hardware PIR is the most prac-
tical mechanism among all PIR techniques. Khoshgozaran
et al. [7] adopt this concept to protect location privacy in
kNN queries. The main idea of this technique is to reduce a
query processing to a set of PIR block retrieval executed by
the trusted secure coprocessor. Though each block retrieval
is completely private, the untrusted LBS is still able to in-
fer user’s location by observing a number of PIR request
for each query. Ghinita et. al. [1] present another tech-
nique that can completely protect users’ location privacy as
each query incurs exactly one PIR request. However, this
technique is limited to single NN queries and suffers from
prohibitive performance overhead.

Private Advertising System.There are several works
on designing privacy-aware advertising system to protect
users’ privacy. The first class of these systems target person-
alized online advertisement on ordinary browsers. Adnos-
tic [31] and Privad [32] enable private advertising by main-
taining users’ profiles locally on their computers. The se-
lection of ads shown on users’ displays are performed based
on these profiles. Juels [33] utilizes PIR and mix network to
protect users’ privacy. RePriv [34], from Microsoft, provides



private advertising based on user’s browsing behaviour.
Another class of private advertising system focuses on mo-

bile advertising. MoRePriv [11] advocates for OS-level ser-
vice to solve a conflict of privacy and content personalization
on mobile devices. SmartAds [35] only reveals the ad key-
word, while keeping all other sensitive information private.
MobiAd [36] downloads and displays advertisement based
on users’ interest profiles. Despite providing a certain level
of privacy, these schemes still leak some user information
to the server. Moreover, they pay very little attention to
location privacy issue. Hence, none of these works can be
directly applied to LBA.

6. CONCLUSION
In this work, we have proposed PrAd, a privacy-

preserving LBA framework that enables correct ads serv-
ing and billing. PrAd leverages on space-encoding, private
information retrieval and homomorphic encryption to en-
able the LBAS to provide location-based advertising service
without compromising users’ location privacy. This privacy
aware mechanism will arguably encourage more consumers
to join the system and thus give rise for the market. We have
intuitively proven the security of our system and evaluated
its performance using real world data set. The experiments
show that PrAd operates at scale and in real-time. With
the realization of hardware-attested secure primitive such as
those proposed in [19,20], we believe that the deployment of
such privacy-preserving LBA model is realistic.
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