
All Your Queries Are Belong to Us:

The Power of File-Injection Attacks on

Searchable Encryption

Yupeng Zhang∗ Jonathan Katz† Charalampos Papamanthou∗

Abstract

The goal of searchable encryption (SE) is to enable a client to execute searches over encrypted
files stored on an untrusted server while ensuring some measure of privacy for both the encrypted
files and the search queries. Research has focused on developing efficient SE schemes at the
expense of allowing some small, well-characterized “(information) leakage” to the server about
the files and/or the queries. The practical impact of this leakage, however, remains unclear.

We thoroughly study file-injection attacks—in which the server sends files to the client that
the client then encrypts and stores—on the query privacy of single-keyword and conjunctive
SE schemes. We show such attacks can reveal the client’s queries in their entirety using very
few injected files, even for SE schemes having low leakage. We also demonstrate that natural
countermeasures for preventing file-injection attacks can be easily circumvented. Our attacks
outperform prior work significantly in terms of their effectiveness as well as in terms of their
assumptions about the attacker’s prior knowledge.

1 Introduction

The goal of searchable encryption (SE) is to enable a client to perform keyword searches over
encrypted files stored on an untrusted server while still guaranteeing some measure of privacy
for both the files themselves as well as the client’s queries. In principle, solutions that leak no
information to the server can be constructed based on powerful techniques such as secure two-
party computation, fully-homomorphic encryption, and/or oblivious RAM. Such systems, however,
would be prohibitively expensive and completely impractical [15].

In light of the above, researchers have focused on the development of novel SE schemes that are
much more efficient, at the expense of allowing some information to “leak” to the server [19, 9, 8,
11, 6, 16, 12, 20, 13, 5]. The situation is summarized, e.g., by Cash et al. [6]:

The premise of [our] work is that in order to provide truly practical SSE solutions one
needs to accept a certain level of leakage; therefore, the aim is to achieve an acceptable
balance between leakage and performance.

∗Department of Electrical and Computer Engineering and UMIACS, University of Maryland. Research supported
in part by NSF grants #1514261 and #1526950, by a Google Faculty Research Award, and by Yahoo! Labs through
the Faculty Research Engagement Program (FREP). Email: {zhangyp,cpap}@umd.edu.
†Department of Computer Science, University of Maryland. Research supported in part by NSF awards #1223623

and #1514261. Email: jkatz@cs.umd.edu.

1

The question then becomes: what sort of leakage is acceptable? Roughly speaking, and focusing on
single-keyword search for simplicity, current state-of-the-art schemes leak mainly two things: the
query pattern (i.e., when a query is repeated) and the file-access pattern (namely, which files are
returned in response to each query); these are collectively called L1 leakage in [4]. The prevailing
argument is that L1 leakage is inconsequential in practice, and so represents a reasonable sacrifice
for obtaining an efficient SE scheme.

In truth, the ramifications of different types of leakage are poorly understood; indeed, charac-
terizing the real-world consequences of the leakage of existing SE schemes was highlighted as an
important open question in [6]. Recently, several groups have shown that even seemingly minor
leakage can be exploited to learn sensitive information, especially if the attacker has significant
prior knowledge about the client’s files or the keywords they contain. Islam et al. [10] (IKK12),
who initiated this line of work, showed that if the server knows (almost) all the contents of the
client’s files, then it can determine the client’s queries from L1 leakage. Cash et al. [4] (CGPR15)
gave an improved attack that works for larger keyword universes while assuming (slightly) less
knowledge about the files of the client. They also explored the effects of even greater leakage, and
showed how query-recovery attacks could serve as a springboard for learning further information
about the client’s files.

A different attack for query recovery was given by Liu et al. [14]. The attack assumes a known
distribution on the keywords being searched by the client, and works only after the client issues a
large number of queries.

1.1 Our Contributions

In this paper, we further investigate the consequences of leakage in SE schemes through the lens
of file-injection attacks. In such attacks, the server sends files of its choice to the client, who then
encrypts and uploads them as dictated by the SE scheme. This attack was introduced by Cash
et al. [4], who called it a known-document attack. As argued by those authors, it would be quite
easy to carry out such attacks: for example, if a client is using an SE scheme for searching email
(e.g., Pmail [2]), with incoming emails processed automatically, then the server can inject files by
simply sending email to the client (from a spoofed email address, if it wishes to avoid suspicion).
We stress that the server otherwise behaves entirely in an “honest-but-curious” fashion.

We show that file-injection attacks are devastating for query privacy: that is, a server can learn
a very high fraction of the keywords being searched by the client, by injecting a relatively small
number of files. As compared to prior work [10, 4], our attacks are both more effective in terms
of the fraction of queries recovered and far less demanding in terms of the prior information the
server is assumed to know. Our attacks differ in that the server must inject files, but as argued
above this would be easy to carry out in practice.

We consider both adaptive and non-adaptive attacks, where adaptivity refers (in part) to
whether the server injects files before or after the client’s query is made. Our adaptive attacks
are more effective, but assume the SE scheme does not satisfy forward privacy [7, 20]. (Forward
privacy means that the server cannot tell if a newly inserted file matches previous search queries.
With the exception of [7, 20], however, all efficient SE schemes supporting updates do not have
forward privacy.) Our work thus highlights the importance of forward privacy in any real-world
deployment.

2

1.2 Organization of the paper

We begin by showing a simple, binary-search attack that allows the server to learn 100% of the
client’s queries with no prior knowledge about the client’s files. We then propose an easy counter-
measure: limiting the number of keywords that are indexed per file. (We show that this idea is
viable insofar as it has limited effect on the utility of searchable encryption.) However, our attacks
can be suitably modified to defeat this countermeasure, either using a larger number of injected
files (but still no prior knowledge about the client’s files) or based on limited knowledge—as low
as 10%—of the client’s files. Our attacks still outperform prior work [10, 4], having a significantly
higher recovery rate and requiring a lower fraction of the client’s files to be known.

We additionally investigate the effectiveness of padding files with random keywords (suggested
in [10, 4]) as another countermeasure against our attacks. We show that the performance of our
attacks degrades only slightly when such padding is used, in contrast to prior attacks that fail
completely.

Finally, we initiate a study of the implications of leakage on conjunctive queries, and show how
to extend our attacks to this setting. Our attacks work against SE schemes having “ideal” leakage,
but are even more effective against the scheme of Cash et al. [6] (the most efficient SE scheme
allowing conjunctive queries), which suffers from larger leakage.

2 Background

For the purposes of this paper, only minimal background about searchable encryption (SE) is
needed. At a high level, an SE scheme allows a client to store encrypted versions of its files on a
server, such that at a later point in time the client can retrieve all files containing a certain keyword
(or collection of keywords). We assume a set of keywords K = {k0, k1, . . .} known to an attacker,
and for simplicity view a file as an unordered set of keywords. (Although the order and multiplicity
of the keywords matter, and a file may contain non-keywords as well, these details are irrelevant
for our purposes.)

We assume an SE scheme in which searching for some keyword k is done via the following
process (all efficient SE schemes work in this way): first, the client deterministically computes a
token t corresponding to k and sends t to the server; using t, the server then computes and sends
back the file identifiers of all files containing keyword k. (These file identifiers need not be “actual”
filenames; they can instead simply be pointers to the appropriate encrypted files residing at the
server.) The client then downloads the appropriate files.

Because the token is generated deterministically from the keyword, the server can tell when
queries repeat and thus learn the query pattern; the returned file identifiers reveal the file-access
pattern. Our attacks rely only on knowledge of the file-access pattern, though we additionally
assume that the server can identify when a specific file identifier corresponds to some particular
file injected by the server. (The same assumption is made by Cash et al. [4].) This is reasonable
to assume, even if file identifiers are chosen randomly by the client, for several reasons: (1) the
server can identify the file returned based on its length (even if padding is used to mitigate this, it
is impractical to pad every file to the maximum file length); (2) in SE schemes supporting updates,
the server can inject a file F and then identify F with the next (encrypted) file uploaded by the
client; (3) if the server can influence the queries of the client, or even if it knows some of the client’s
queries, then the server can use that information to identify specific injected files with particular
file identifiers. We postpone further discussion to Section 8.

3

k0 k1 k2 k3 k4 k5 k6 k7File 1:

k0 k1 k2 k3 k4 k5 k6 k7File 2:

k0 k1 k2 k3 k4 k5 k6 k7File 3:

sea
rch

 resu
lt

0

1

0

Figure 1: An example of the binary-search attack with |K| = 8. Each file injected by the attacker
contains 4 keywords, which are shaded in the figure. If file 2 is returned in response to some token,
but files 1 and 3 are not, the keyword corresponding to that token is k2.

In this paper, we focus only on query-recovery attacks, where the server observes various tokens
sent by the client and the file identifiers returned, and the server’s goal is to determine the keywords
corresponding to those tokens. As noted by Cash et al. [4], though, such query-recovery attacks
can also be used to learn partial information about the client’s files.

3 Binary-Search Attack

In this section, we present a basic query-recovery attack that we call the binary-search attack. This
attack does not require the server to have any knowledge about the client’s files, and recovers all
the keywords being searched by the client with 100% accuracy.

3.1 Basic Algorithm

The basic observation is that if the server injects a file F containing exactly half the keywords from
the keyword universe K, then by observing whether the token t sent by the client matches that
file (i.e., whether F is returned in response to that token), the server learns one bit of information
about the keyword corresponding to t. Using a standard non-adaptive version of binary search, the
server can thus use dlog |K|e injected files to determine the keyword exactly. The idea is illustrated
in Figure 1 for |K| = 8.

The attack is described more formally in the pseudocode of Figure 2. We assume for simplicity
that |K| is a power of 2, and identify K with the set {0, . . . , |K| − 1} written in binary. The
attack begins by having the server generate a set F of log |K| files to be injected, where the ith
file contains exactly those keywords whose ith most-significant bit is equal to 1. At some point,1

the server learns, for each injected file, whether it is returned in response to some token t. We
let R = r1r2 · · · denote the search results on the injected files, where ri = 1 if and only if the ith
file is returned in response to the token. For this attack, the server can deduce that the keyword
corresponding to t is precisely R.

We highlight again that for this attack, the files are generated non-adaptively and independent
of the token t. We note further that the same injected files can be used to recover the keywords
corresponding to any number of tokens, i.e., once these files are injected, the server can recover

1This can occur if the files are injected before the token t is sent, or if the files are injected after t is sent and the
SE scheme does not satisfy forward privacy.

4

Algorithm F← Inject Files(K)

1: for i = 1, . . . , log |K| do
2: Generate a file Fi that contains exactly the keywords in K whose ith bit is 1.

3: Output F = {F1, . . . , Flog |K|}.

Algorithm k ← Recover(R,K)

1: Return R as the keyword from universe K associated with the token.

Figure 2: The binary-search attack. R denotes the search results for the token to be recovered on
the injected files.

the keywords corresponding to any future tokens sent by the client. The number of injected files
needed for this attack is quite reasonable; with a 10,000-keyword universe, a server who sends only
one email per day to the client can inject the necessary files in just 2 weeks.

Small keyword universe. For completeness and future reference, we note that the binary-search
attack can be optimized if the hidden keyword is known to lie in some smaller universe of keywords,
or if the server only cares about keywords lying in some subset of the entire keyword universe (and
gives up on learning the keyword if it lies outside this subset). Specifically, the server can carry
out the binary-search attack from Figure 2 based on any subset K ′ ⊂ K of the keyword universe
using only log |K ′| injected files.

3.2 Threshold Countermeasure

A prominent feature of the binary-search attack is that the files that need to be injected for the
attack each contain a large number of keywords, i.e., |K|/2 keywords per file. We observe, then,
that one possible countermeasure to our attack is to modify the SE scheme so as to limit the number
of keywords per indexed file to some threshold T � |K|/2. This could be done either by simply
not indexing files containing more than T keywords (possibly caching such files at the client), or
by choosing at most T keywords to index from any file containing more than T keywords.

The threshold T can be set to some reasonably small value while not significantly impacting the
utility of the SE scheme. For example, in the Enron email dataset [1] with roughly 5,000 keywords
(see Section 5 for further details), the average number of keywords per email is 90; only 3% of the
emails contain more than 200 keywords. Using the threshold countermeasure with T = 200 would
thus affect only 3% of the honest client’s files, but would require the server to inject many more
files in order to carry out a naive variant of the binary-search attack. Specifically, the server could
replace each file Fi (that contains |K|/2 keywords) in the basic attack with a sequence of |K|/2T
files Fi,1, . . . , Fi,|K|/2T each containing T keywords, such that ∪jFi,j = Fi. If any of these files is
returned, this is equivalent to the original file Fi being returned in the basic attack. Note, however,
that the server must now inject |K|/2T · log |K| files. Unfortunately, as we explore in detail in
the following section, the threshold countermeasure can be defeated using fewer injected files via
more-sophisticated attacks.

Note also that the threshold countermeasure does not affect the binary-search attack with small
keyword universe K ′ ⊂ K, as long as |K ′| ≤ 2T .

5

4 Advanced Attacks

In this section, we present more-sophisticated attacks for when the threshold countermeasure intro-
duced in the previous section is used. In Section 4.1 we show an attack that uses fewer injected files
than a naive modification of the binary-search attack, still without any knowledge of the client’s
files. Then, in the following section, we show attacks that reduce the number of injected files even
further, but based on the assumption that the server has information about some fraction of the
client’s files.

4.1 Hierarchical-Search Attack

We noted earlier that the threshold countermeasure does not affect the binary-search attack with
small keyword universe K ′ ⊂ K if |K ′| ≤ 2T . We can leverage this to learn keywords in the entire
universe using what we call a hierarchical search attack. This attack works by first partitioning
the keyword universe into d|K|/T e subsets containing T keywords each. The server injects files
containing the keywords in each subset to learn which subset the client’s keyword lies in. In addition,
it uses the small-universe, binary-search attack on adjacent pairs of these subsets to determine the
keyword exactly. The algorithm is presented in Figure 3.

Algorithm F← Inject Files hierarchical(K)

1: Partition the universe into w = d|K|/T e subsets K1, . . . ,Kw of T keywords each.
2: for i = 1, 2, . . . , w do
3: Generate Fi containing every keyword k ∈ Ki.

4: for i = 1, 2, . . . , w/2 do
5: Fi ← Inject Files(K2i−1 ∪K2i).

6: Output F = {F1, . . . , Fw,F1, . . . ,Fw/2}.

Algorithm k ← Recover hierarchical(R,K)

1: Parse the search result R as

R = {r1, . . . , rw, R1, . . . , Rw/2} ,

corresponding to the results on the files in F described above.

2: Using the {ri}, identify the subset K2x−1 ∪K2x the unknown keyword lies in.
3: k ← Recover(Rx,K2x−1 ∪K2x).

Figure 3: The hierarchical-search attack. T is the threshold determining the maximum number of
keywords in a file. R denotes the search results on the injected files. Inject Files and Recover are
from Figure 2.

We now calculate the number of injected files required by this attack. In Step 3 of In-
ject Files hierarchical, the server injects d|K|/T e files, and in Step 5 it injects d|K|/2T e · dlog 2T e
files. The total number of injected files is therefore at most

d|K|/2T e · (dlog 2T e+ 2) .

6

In fact, for each i the first file in the set Fi generated by Inject files(K2i−1 ∪ K2i) is the same as
F2i−1 and the server does not need to inject it again. Also, the server does not need to generate
Fw in Step 3 because if the keyword is not in F1, . . . , Fw−1 then the server knows it must be in Fw.
So the total number of injected files can be improved to

d|K|/2T e · (dlog 2T e+ 1)− 1 .

When the size of the keyword universe is |K| = 5, 000 and the threshold is T = 200, the
server needs to inject only 131 files, and the number of injected files grows linearly with the size of
the keyword universe. We highlight again that the same injected files can be used to recover the
keywords corresponding to any number of tokens; i.e., once these files are injected, the server can
recover the keywords of any future searches made by the client.

We remark that an adaptive version of the above attack is also possible. Here, the attacker would
first inject d|K|/T e−1 files to learn what subset the unknown keyword lies in, and then carry out the
small-universe, binary-search attack on a subset of size T . This requires only d|K|/T e+ log T − 1
injected files, but has the disadvantage of being adaptive and hence requires the SE scheme to
not satisfy forward privacy. This version of the attack also has the disadvantage of targeting one
particular search query of the client; additional files may need to be injected to learn the keyword
used in some subsequent search query.

4.2 Attacks Using Partial Knowledge

With the goal of further decreasing the number of injected files required to recover a token in
presence of the threshold countermeasure, we now explore additional attacks that leverage prior
information that the server might have about some of the client’s files; we refer to the files known
to the server as leaked files.2 A similar assumption is used in prior work showing attacks on SE
schemes [10, 4]; previous attacks, however, require the server to know about 90% of the client’s files
to be effective (see Section 5), whereas our attacks work well even when the server knows a much
smaller fraction of the client’s files.

Our attacks utilize the frequency of occurrence of the tokens and keywords in the client’s files.
We define the frequency of a token (resp., keyword) as the fraction of the client’s files containing this
token (resp., keyword). Similarly, we define the joint frequency of two tokens (resp., keywords) as
the fraction of files containing both tokens (resp., keywords). The server learns the exact frequency
(resp., joint frequency) of a token (resp., pair of tokens) based on the observed search results. The
server obtains an estimate of the frequencies (resp., joint frequencies) of all the keywords based on
the client’s files that it knows. We let f(t) denote the exact (observed) frequency of token t, and
let f(t1, t2) be the joint frequency of tokens t1, t2. We use f∗(k) to denote the estimated frequency
of keyword k, and define f∗(k1, k2) analogously. Our attacks use the observation that if the leaked
files are representative of all the client’s files, then f(t) and f∗(k) are close when t is the token
corresponding to keyword k.

4.2.1 Recovering One Keyword

Say the server obtains a token t sent by the client, having observed frequency f(t). The server
first constructs a candidate universe K ′ for the keyword corresponding to t consisting of the 2T

2We stress that our attacks only rely on the content of these leaked files; we do not assume the server can identify
the file identifiers corresponding to the leaked files after they have been uploaded to the server.

7

Algorithm k ← Inject Files Single(t,K)

1: Let K ′ be the set of 2T keywords with estimated frequencies closest to f(t).
2: F← Inject Files(K ′).

Algorithm k ← Recover Single(R,K ′)

1: If R contains all 0s, output ⊥.
2: Else k ← Recover(R,K ′).

Figure 4: Recovering a single keyword using partial file knowledge. T is the threshold determining
the maximum number of keywords in a file. R denotes the search results on the injected files.
Inject Files and Recover are from Figure 2.

keywords whose estimated frequencies are closest to f(t). The server then uses the small-universe,
binary-search attack to recover the keyword exactly. In this way, the number of injected files is
only dlog 2T e. The attack is presented in detail in Figure 4.

Differences from attacks in previous sections. The attack just described is adaptive, in that
it targets a particular token t and injects files whose contents depend on the results of a search
using t. This means the attack only applies to SE schemes that do not satisfy forward privacy. It
also means that the attack needs to be carried out again in order to learn the keyword corresponding
to some other token.

Another difference from our previous attacks is that this attack does not work with certainty.
In particular, if the observed and estimated frequencies are far apart, or the number of keywords
whose estimated frequencies are close to the observed frequency is larger than 2T , the server may
fail to recover the keyword corresponding to the token. On the other hand, the server can tell
whether the attack succeeds or not, so will never associate an incorrect keyword with a token. This
also means that if the attack fails, the attacker can re-run the attack with a different candidate
universe, or switch to using one of our earlier attacks, in order to learn the correct keyword. (We
rely on this feature to design an attack for multiple tokens in the following section.) This is in
contrast to earlier attacks [10, 4], where the attacker cannot always tell whether the keyword was
recovered correctly.

4.2.2 Recovering Multiple Keywords

To learn the keywords corresponding to m tokens, the server can repeat the attack above for each
token, but then the number of injected files will be (in the worst case) m · dlog 2T e. A natural way
to attempt to reduce the number of injected files is for the server to determine a candidate universe
of size 2T for each token and then use the union of those candidate universes when injecting the
files. In that case, however, the union would almost surely contain more than 2T keywords, in
which case the number of keywords in the files produce by the binary-search attack will exceed the
threshold T .

A second approach would be for the server to make the size of the candidate universe for each
token 2T/m, so the size of their union cannot exceed 2T keywords. Here, however, if m is large
then the candidate universe for each token is very small and so the probability of the corresponding
keyword not lying in its candidate universe increases substantially. Therefore, the recovery rate of

8

t = {t1, . . . , tm} is the set of m tokens whose keywords we wish to recover.

Algorithm k← Attack Multiple Tokens(t,K)

Build ground truth set G.

1: Sort tokens in t according to their exact frequencies f(t). Let t1 denote the n tokens with
highest observed frequencies.

2: for each token t in t1 do
3: Set its candidate universe Kt as the set of 2T

n keywords with estimated frequencies f∗(k)
nearest to f(t).

4: Define K ′ = ∪t∈t1Kt and inject files generated by F1 ← Inject Files(K ′).
5: for each token t in t1 do
6: Let Rt be the search result of token t on files F1.
7: if Rt is not all 0s then
8: kt ← Recover(Rt,K

′).
9: Add (t, kt) to G.

Recover the remaining tokens, let t2 be the set of unrecovered tokens.

10: for each token t′ ∈ t2 do
11: Set its candidate universe Kt′ as the set of 2T keywords with estimated frequencies f∗(k)

nearest to f(t′).
12: for each keyword k′ ∈ Kt′ do
13: for each token/keyword pair (t, k) ∈ G do
14: If |f(t, t′)− f∗(k, k′)| > δ · f∗(k, k′), remove k′ from candidate universe Kt′ .

15: Set K ′′ = ∪t′∈t2Kt′ .
16: if |K ′′| ≤ 2T then
17: F2 ← Inject Files(K ′′).
18: for each token t′ ∈ t2 do
19: Let Rt′ be the search result of token t′ on files F2.
20: kt′ ← Recover(Rt′ ,K

′′)

21: else
22: F2 ← Inject Files hierarchical(K ′′).
23: for each token t′ ∈ t2 do
24: Let Rt′ be the search result of token t′ on files F2.
25: kt′ ← Recover hierarchical(Rt′ ,K

′′)

26: Output k that includes all recovered keywords.

Figure 5: Recovering multiple keywords using partial file knowledge. T is the threshold determining
the maximum number of keywords in a file; δ is a parameter. Inject Files and Recover are from
Figure 2.

this attack would be low.
Instead, we propose a more-complex attack that recovers multiple tokens by taking into account

the joint frequencies for tokens and keywords. Our attack has two main steps (see Figure 5):

9

1. First, we recover the keywords corresponding to a subset of the tokens, namely the n � m
tokens with the highest observed frequencies. We recover the keywords using the second
approach sketched above, which works (with few injected files) because n is small. This gives
us as a set of tokens and their associated keywords as “ground truth.”

2. Given the ground truth, we recover the keyword associated with some other token t′ using
the following observation: if k′ is the keyword corresponding to t′, then the observed joint
frequency f(t, t′) should be “close” to the estimated joint frequency f∗(k, k′) for all pairs (t, k)
in our ground-truth set, where “closeness” is determined by a parameter δ. By discarding
candidate keywords that do not satisfy this property, we are left with a small set K ′ of
candidate keywords for t′. If the candidate universe of keywords for each token is small
enough, then even their union will be small. We then use a small-universe, binary-search
attack to recover the corresponding keywords exactly.

Note that in the above attack the ability to tell whether a token is recovered correctly when
building the ground truth is crucial—otherwise the ground-truth set could contain many incorrect
associations.

Parameter selection. Our attack has two parameters: n and δ. A larger value of n means that
the ground-truth set can potentially be larger, but if n is too large then there is a risk that the
candidate universe Kt (comprising the 2T/n keywords with estimated frequencies closest to f(t))
will not contain the true keyword corresponding to t. In our experiments, we set n heuristically to
a value that achieves good performance.

The value of δ is chosen based on statistical-estimation theory. The estimated joint frequency
is an empirical average computed from a collection of leaked files assumed to be sampled uniformly
from the set of all files. Thus, we set δ such that if keywords k, k′ correspond to tokens t, t′,
respectively, then the estimated joint frequency f∗(k, k′) is within ±δ · f∗(k, k′) of the true value
f(t, t′) at least 99% of the time.

Ground-truth set selection. When building the ground-truth set, we recover the keywords
associated with those tokens having the highest observed frequencies. We do so because those
keywords can be recovered correctly with higher probability, as we explain next.

If the leaked files are chosen uniformly from the set of all files, then using statistical-estimation
theory as above the attacker can compute a value δ such that at least 99% of the time it holds that
|f∗(k)− f(t)| ≤ ε · f∗(k), where k denotes the (unknown) keyword corresponding to t. Thus, if the
attacker sets the candidate universe Kt to be the set of all keywords whose estimated frequencies
are within distance ε · f∗(k) of f(t), the candidate universe will include the keyword corresponding
to t at least 99% of the time. The problem with taking this approach, in general, is that the set
Kt constructed this way may be too large.

If we assume a Zipfian distribution [3] for the keyword frequencies, however, then the size of Kt

as constructed above is smallest when f(t) is largest. (This is a consequence of the fact that the
Zipfian distribution places high probability on a few items and low probability on many items.) In
particular, then, the set of 2T/n keywords with estimated frequencies closest to f(t) (as chosen by
our algorithm), will “cover” all keywords within distance ε·f∗(k) of f(t) from f(t)—or, equivalently,
the candidate universe will contain the true keyword k—with high probability.

10

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

Figure 6: Recovering the keyword corresponding to a single token. Probability of recovering the
correct keyword as a function of the percentage of files leaked.

5 Experiments

We simulate the attacks from Section 4. (We do not run any simulations for the binary-search attack
described in Section 3, since this attack succeeds with probability 1, injecting a fixed number of
emails.) We compare our attacks to our own implementation of the attacks by Cash et al. [4]
(CGPR15). We do not compare with the attacks of Islam et al. [10] (IKK12), since their results
are strictly dominated by those of CGPR15.

5.1 Setup

For our experiments we use the Enron email dataset [1], consisting of 30,109 emails from the “sent
mail” folder of 150 employees of the Enron corporation that were sent between 2000–2002. We
extracted keywords from this dataset as in CGPR15: words were first stemmed using the standard
Porter stemming algorithm [18], and we then removed 200 stop words such as “to,” “a,” etc. Doing
so results in approximately 77,000 keywords in total. In our experiments, we chose the top 5,000
most frequent keywords as our keyword universe (as in CGPR15).

We assumed the threshold countermeasure with T = 200. As discussed earlier, only 3% of the
files contained more than this many keywords.

We could not find real-world query datasets for email. Therefore, in our experiments we choose
the client’s queries uniformly from the keyword universe, as in CGPR15. (However, our attacks do
not use any information about the distribution of the queries.) Leaked files are chosen uniformly
from the base set of 30,109 emails, and the percentage of leaked files was varied from 1% to 100%.
For each value of the file-leakage percentage, we repeat the attack on 100 uniform sets of queries
(containing either one token or 100 tokens) and 10 uniformly sampled sets of leaked files of the
appropriate size; we report the average. We do not include error bars in our figures, but have
observed that the standard deviation in our experiments is very small (less than 3% of the average).

5.2 Recovery of a Single Token

The performance of our attack for recovering the keyword associated with a single token (described
in Section 4.2.1) is displayed in Figure 6. The server only needs to inject dlog 2T e = 9 files in order

11

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)
Our attack
CGPR15

(a)

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
in

je
ct

ed
fil

es

(b)

Figure 7: Recovering the keywords corresponding to 100 tokens. (a) Fraction of keywords recovered
and (b) number of files injected as a function of the percentage of files leaked.

to carry out the attack. It can be observed that our attack performs quite well even with only a
small fraction of leaked files, e.g., recovering the keyword about 70% of the time once only 20% of
the files are leaked, and achieving 30% recovery rate even when given only 1% of the files.

Neither the IKK12 attack nor the CGPR15 attack applies when the server is given the search
results of only a single token. To provide a comparison with our results, we run the CGPR15 attack
by giving it the search results of 100 tokens (corresponding to uniformly chosen keywords) and then
measure the fraction of keywords recovered. As shown in Figure 6, the CGPR15 attack recovers a
keyword with probability less than 20% even when 95% of the client’s files are leaked. Of course,
our attack model is stronger than the one considered in CGPR15.

5.3 Recovery of Multiple Tokens

We have also implemented our attack from Section 4.2.2 which can be used to recover the keywords
corresponding to multiple tokens. In our experiments, we target the recovery of the keywords
associated with m = 100 tokens; we choose n = 10, and set δ as described in Section 4.2.2.

Figure 7a tabulates the fraction of keywords recovered by our attack, and compares it to the
fraction recovered by the CGPR15 attack. (As noted in the previous section, the CGPR15 attack
inherently requires search results for multiple tokens; this explains why the results for the CGPR15
attack in Figure 7a are almost identical to the results for their attack in Figure 6.) Both attacks
do well when the fraction of leaked files is large, however the recovery rate of the CFPR15 attack
drops dramatically as the fraction of leaked files decreases. In contrast, our attack continues to
perform well, recovering 65% of the keywords given access to 50% of the client’s files, and still
recovering 20% of the keywords when only 10% of the client’s files have been leaked. We stress
that in our attack the server knows which keywords have been recovered correctly and which have
not, something that is not the case for prior attacks.

Figure 7b shows the number of files that need to be injected in order to carry out our attack.
The number of files injected never exceeds 40, and in many cases it is even less than that. We
also highlight that the number of files injected to recover the keywords associated with 100 tokens
is more than an order-of-magnitude smaller than 100× the number of files injected to recover the
keyword associated with a single token in the previous section.

12

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

30

40

50

60

70

80

90

100

R
ec

ov
er

y
ra

te
(%

)
Our attack, no padding
Our attack, β = 0.2

Our attack, β = 0.4

Our attack, β = 0.6

Figure 8: Recovering the keyword corresponding
to a single token when keyword padding is used.

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack, no padding
Our attack, β = 0.2

Our attack, β = 0.4

Our attack, β = 0.6

Figure 9: Recovering the keywords correspond-
ing to 100 tokens when keyword padding is used.

The number of files injected by our attack first increases with the fraction of leaked files, and
then decreases; we briefly explain why. The number of files injected in step 1 of our attack is
independent of the fraction of leaked files. The number of files injected in step 2 of the attack
depends on both the number of unrecovered tokens (i.e., the size of t2) and the average size of
the candidate universe for each unrecovered token t′ (i.e., the size of Kt′). When the fraction of
leaked files is very small, the estimated joint frequencies are far from the true frequencies and,
in particular, most estimated joint frequencies are 0; thus, many keywords are removed from Kt′

and hence the size of Kt′ is low. The net result is that the recovery rate is small, but so is the
number of injected files. As the fraction of leaked files increases, more keywords are included in
Kt′ , leading to higher recovery rate but also more injected files. When the fraction of leaked files
becomes very high, however, the estimated frequencies are very close to the true frequencies and
so more keywords are recovered in step 1 of the attack. This leaves fewer unrecovered tokens in
step 2, leading to fewer injected files overall even as the recovery rate remains high.

6 Ineffectiveness of Keyword Padding

Prior work [10, 4] suggests keyword padding as another potential countermeasure for attacks that
exploit the file-access pattern. The basic idea is to distort the real frequency of each keyword k by
randomly associating files that do not contain that keyword with k; this is done at setup time, when
the client uploads its encrypted files to the server. One version of the countermeasure [4] ensures
that the number of files returned in response to any search result is a multiple of an integer λ. A
stronger version of the countermeasure [10] involves performing the padding in such a way that
for any keyword k there are at least α − 1 other keywords having the same frequency. These
countermeasures defeat the attacks in prior work, but we show that they have little effect on our
attacks.

We remark that keyword padding seems difficult to apply in the dynamic setting, where new
files are uploaded after the initial setup done by the client. The dynamic case is not discussed
in [10, 4].

13

6.1 Binary-/Hierarchical-Search Attacks

Even when keyword padding is used, our binary-search and hierarchical-search attacks will recover
the keyword k corresponding to some token t unless one of the injected files that does not contain k
is returned in response to the search using t. We show that the probability of this bad event is
small, focusing on the binary-search attack for concreteness. Say ` of the files contain k and that,
after keyword padding, an additional β · ` random and independently chosen files (in expectation)
that do not contain k are returned in response to the search using t. (By setting parameters
appropriately, this roughly encompasses both the countermeasures described above.) Now consider
some file injected as part of the binary-search attack that does not contain k. The probability that
this file is chosen as one of the spurious files returned in response to the search using t is β`/(F −`),
where F is the total number of files (including the injected files). Since dlog |K|e files are injected,
the overall probability that the bad event occurs is at most

1−
(

1− β`

(F − `)

)dlog |K|e
.

In fact, this is an over-estimate since if k is uniform then on average only half the injected files
contain k.

For the Enron dataset with |K| = 5, 000, F = 30, 109, ` = 560, and β = 0.6, and assuming half
the injected files contain the keyword in question, the probability that the binary-search attack
succeeds is 0.93. (In fact, β = 0.6 is quite high, as this means that more than 1/3 of the files
returned in response to a query do not actually contain the searched keyword.) With β = 0.6 the
IKK12 and CGPR15 attacks recover no keywords at all.

6.2 Attacks with Partial File Leakage

Although our attacks with partial file leakage use information about keyword frequencies and joint
frequencies, they are still not significantly affected by the padding countermeasures. The reason
is that although the padding ensures that a given frequency no longer suffices to uniquely identity
a keyword, the frequency of any particular keyword doesn’t change very much. Thus, the exact
frequency and the estimated frequency of any keyword remain close even after the padding is done,
and the underlying keyword is still likely to be included in the candidate universe of a target token.
As long as this occurs, the search step recovers the token with high probability as discussed in the
previous section. This is even more so the case with regard to joint frequencies, since these do not
change unless two keywords are both associated with the same random file that contains neither of
those keywords, something that happens with low probability.

To validate our argument, we implement the padding countermeasure proposed in [4] and repeat
the experiments using our attacks. As shown in Figures 8 and 9, the recovery rate of our attacks
degrades only slightly when keyword padding is used.

Figure 10 compares the effectiveness of our attack to the CGPR15 attack when keyword padding
is used. The recovery rate of the CGPR15 attack drops dramatically in the presence of this
countermeasure. In particular, it recovers only 57% of the tokens even with 100% file leakage when
β = 0.2, and recovers nothing even with 100% file leakage when β = 0.6. In contrast, our attack
still recovers almost the same number of keywords as when no padding is used.

14

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)
Our attack
CGPR15

(a) β = 0.2

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

(b) β = 0.4

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

(c) β = 0.6

Figure 10: Recovering the keywords corresponding to 100 tokens when keyword padding is used,
plotted for different β.

7 Extensions to Conjunctive SE

SE schemes supporting conjunctive queries allow the client to request all files containing some
collection of keywords k1, k2, . . . , kd. The naive way to support conjunctive queries is to simply
have the client issue queries for each of these keywords individually; the server can compute the
set of file identifiers Si containing each keyword ki and then take their intersection to give the
final result. Such an approach leaks more information than necessary: specifically, it leaks each of
S1, . . . , Sd rather than the final result ∩Si alone. We refer to ∩Si as the ideal access-pattern leakage
for a conjunctive query, and show attacks based only on such ideal leakage. We remark, however,
that no known efficient SE scheme achieves ideal leakage. For example, the scheme by Cash et
al. [6] leaks S1, S1 ∩ S2, S1 ∩ S3, . . . , S1 ∩ Sd. Such additional leakage can only benefit our attacks.

Throughout this section, we assume the threshold countermeasure is not used and so injected
files can contain any number of keywords. (Our attacks here could be generalized as done previously
in case the threshold countermeasure is used.)

15

7.1 Queries with Two Keywords

We first present a non-adaptive attack to recover the keywords used in a conjunctive query involving
two keywords. As in the non-adaptive attacks in prior sections, the attacker can recover the
keywords corresponding to any future queries after injecting some initial set of files.

The idea is the following. Say the conjunctive search query involves keywords k1 and k2, and we
can partition the universe of keywords into two sets K1 and K2 with k1 ∈ K1 and k2 ∈ K2. We can
then use a variant of the binary-search attack in which we inject files generated by Inject Files(K1),
where we additionally include all keywords in K2. Since these files always contain k2, the search
results of the conjunctive query on these injected files is exactly the same as the search results of
k1 on these files, and we can thus recover k1 as before. We can proceed analogously to recover k2.

The problem with the above is that we do not know, a priori, how to partition K into sets
K1,K2 as required. Instead, we generate a sequence of log |K| partitions {(Ki

1,K
i
2)} such that for

some partition i it holds that k1 ∈ Ki
1 and k2 ∈ Ki

2. This is done by simply letting Ki
1 be the set

of all keywords whose ith bit is 0, and Ki
2 be the complement. Since k1 and k2 are distinct, they

must differ on at least one position, say i, and satisfy the desired separation property on the ith
partition. By repeating the attack described earlier for each partition, we obtain an attack using
log2 |K| + log |K| injected files (after removing duplicates). The attack is described in detail in
Figure 11.

Let q be a conjunctive query with two keywords.

Algorithm F← Inject Files Disjoint(K1,K2)

1: F← Inject Files(K1).
2: Include all keywords in K2 in every file in F.

Algorithm F← Inject Files Conjunctive(K)

1: for i = 1, 2, . . . , log |K| do
2: Let Ki

1 contain keywords whose ith bit is 0, and let Ki
2 = K \Ki

1.
3: Generate file F i1 that contains all keywords in Ki

1 and file F i2 that contains all keywords in
Ki

2.

4: Fi
1 ← Inject Files Disjoint(Ki

1,K
i
2).

5: Fi
2 ← Inject Files Disjoint(Ki

2,K
i
1).

6: Output F = {F i1, F i2,Fi
1,F

i
2, for all i}.

Algorithm k← Recover Conjunctive(q,K,F)

1: Let Rq = {ri1, ri2, Ri1, Ri2} for i = 1, . . . , log |K| be the search result of query q on the files F
described above.

2: Find i such that neither F i1 nor F i2 is in the search result (i.e., ri1 = ri2 = 0).
3: k1 ← Recover(Ri1,K

i
1).

4: k2 ← Recover(Ri2,K
i
2).

5: Output (k1, k2).

Figure 11: Non-adaptive attack for a conjunctive query involving two keywords.

Given ideal access-pattern leakage, the above attack above only works for conjunctive queries
involving two keywords. For conjunctive searches using the SE scheme of Cash et al. [6], though,

16

the above attack can be extended to work for conjunctive queries involving any number of keywords
since the pairwise intersections are leaked as described earlier.

7.2 Queries with Multiple Keywords

The attack in Section 7.1 only works for conjunctive queries involving two keywords, and uses
O(log2 |K|) injected files. Here we present a non-adaptive attack that can recover conjunctive
queries involving any number of keywords using only O(log |K|) injected files, and still assuming
only ideal access-pattern leakage. In contrast to the previous attack, however, this attack does not
always succeed.

Consider a conjunctive query q involving d keywords. The basic idea is to inject n files, each
containing L keywords selected uniformly and independently from the keyword universe. If pa-
rameters are set appropriately, the search result on q will include some of the injected files with
high probability. By definition, each of those files contains all d keywords involved in the query,
and hence the intersection of those files also contains all those keywords. We claim that when pa-
rameters are set appropriately, the intersection contains no additional keywords. Thus, the server
recovers precisely the d keywords involved in the query by simply taking the intersection of the
injected files returned in response to the query. The following theorem formalizes this idea.

Theorem 1. Let L = (12)1/d|K| and n = (2 + ε)d log |K| with ε ≥ 0. Then the success probability

of the attack is roughly e−1/|K|
ε/4

.

Proof. Fix some conjunctive query q involving d keywords. The probability that any particular
injected file matches the query is approximately (L/|K|)d = 1/2 since each of the d keywords is
included in the file with probability roughly L/|K|. Since each file is generated independently, the
expected number of files that match the query is n/2; moreover, the number n′ of files that match
the query follows a binomial distribution and so the Chernoff bound implies

Pr

[∣∣∣n′ − n

2

∣∣∣ ≥ θ√n
2

]
≤ e−θ2/2.

Setting θ = ε
√
n

2(2+ε) , we have

Pr
[
n′ ≤

(
1 +

ε

4

)
d log |K|

]
≤ e−

θ2

2 .

Thus, n′ > (1 + ε
4)d log |K| with overwhelming probability.

The probability that any other keyword is in all these n′ files is extremely low. Specifically, for
any fixed keyword not involved in the query, the probability that it lies in all n′ files is (L/|K|)n′ .
Thus, the probability that no other keyword lies in all n′ files is(

1−
(
L

|K|

)n′)|K|−d
≈
(

1− 1

|K|1+ε/4

)|K|
(assuming d� |K|). The above simplifies to e−1/|K|

ε/4
.

Note that for any ε > 0 the bound given by the theorem approaches 1 as |K| tends to infinity.
We experimentally verified the bound in the theorem for |K| = 5, 000 and d = 3. For example,

17

setting ε = 1 we obtain an attack in which the server injects n = 110 files with L = 3, 969
keywords each, and recovers all keywords involved in the conjunctive query with probability 0.97.
For completeness, we remark that the server can tell whether it correctly recovers all the keywords
or not, assuming d is known.

7.3 An Adaptive Attack

We can further reduce the number of injected files using an adaptive attack. The idea is to recover
the keywords involved in the query one-by-one, starting with the lexicographically largest, using
an adaptive binary search for each keyword. The server first injects a file containing the first |K|/2
keywords. There are two possibilities:

1. If this file is in the search result for the query, the server learns that all the keywords involved
in the query have index at most |K|/2. It will next inject a file containing the first |K|/4
keywords.

2. If this file is not in the search result for the query, the server learns that at least one keyword
involved in the query has index greater than |K|/2. It will next inject a file containing the
first 3|K|/4 keywords.

Proceeding in this way, the server learns the lexicographically largest keyword using log |K| injected
files. Once that keyword kd is recovered, the server repeats this attack but with kd always included
in the injected files to learn the next keyword, and so on. See Figure 12.

The number of injected files is d log |K|. We remark that d need not be known in advance, since
the attacker can determine d during the course of the attack. It is also worth observing that the
number of injected files is essentially optimal for a deterministic attack with success probability 1,
because the search results on d log |K| files contain at most d log |K| bits of information, which is
roughly the entropy of a conjunctive search involving d keywords from a universe of size |K|.

8 Additional (Potential) Countermeasures

In this section, we briefly discuss some other potential countermeasures against our attacks.

Semantic filtering. One may be tempted to think that the files injected by our attacks will not
“look like” normal English text, and can therefore be filtered easily by the client. We argue that
such an approach is unlikely to prevent our attacks. First, although as described our attacks inject
files containing arbitrary sets of keywords, the server actually has some flexibility in the choice of
keywords; e.g., the binary-search attack could be modified to group sets of keywords that appear
naturally together. Second, within each injected file, the server can decide the order and number
of occurrences of the keywords, can choose variants of the keywords (adding “-ed” or “-s,” for
example), and can freely include non-keywords (“a,” “the,” etc.) There are several tools (e.g., [21])
that can potentially be adapted to generate grammatically correct text from a given set of keywords
by ordering keywords based on n-grams trained from leaked files and simple grammatical rules. A
detailed exploration is beyond the scope of our paper.

Batching updates. As mentioned in Section 2, even if the client shuffles the file identifiers and
pads all files to the same length, the server can identify an injected file based on the time at which
it is inserted by the client. This suggests a (partial) countermeasure that can be used in dynamic

18

Let q be a conjunctive query with keyword k1, . . . , kd.

Algorithm k← Attack Conjunctive(q,K)

1: Initialize k = ∅.
2: for i = d, . . . , 1 do
3: Set Ki = K \ k, set b = |Ki|/2.
4: for j = 2, . . . , log |Ki| do
5: Inject F that contains the first b keywords

in Ki and all keywords in k.

6: Let Rq be the search result of query q on F .
7: if Rq = 1 then
8: b = b− |Ki|/2j .
9: else

10: b = b+ |Ki|/2j .
11: Inject F that contains the first b keywords in Ki and all keywords in k.
12: Let Rq be the search result of query q on F .
13: if Rq = 1 then
14: Recover ki as the bth keyword in Ki.
15: else
16: Recover ki as the (b+ 1)th keyword in Ki.

17: k = k ∪ {ki}.

Figure 12: An adaptive attack for conjunctive queries involving d keywords.

SE schemes that support updates: rather than uploading each new file as it arrives, the client
should wait until there are several (say, B) new files and then upload this “batch” of B files at
once. Assuming only one of those files was injected by the server, this means the server only learns
that the injected file corresponds to one of B possibilities.

This countermeasure can be trivially circumvented if the server can inject B files before any
other new files arrive. (If the server additionally has the ability to mount chosen-query attacks—
something we have not otherwise considered in this paper—then the total number of injected files
remains the same.) Even if the server can inject only B′ < B identical3 files into a single “batch,”
the server knows that if fewer than B′ files from this batch are returned in response to some query,
then the injected files do not match that query. Finally, even if the server can only inject a single
file per “batch,” the server can inject the same file repeatedly and with high confidence determine
based on the search results whether the file matches some query. We leave a more complete analysis
of this countermeasure for future work.

9 Conclusions

Our paper shows that file-injection attacks are devastating for query privacy in searchable en-
cryption schemes that leak file-access patterns. This calls into question the utility of searchable
encryption, and raises doubts as to whether existing SE schemes represent a satisfactory tradeoff

3The files need not be identical; they only need to contain an identical set of keywords.

19

between their efficiency and the leakage they allow. Nevertheless, we briefly argue that searchable
encryption may still be useful in scenarios where file-injection attacks are not a concern, and then
suggest directions for future research.

We have argued that file-injection attacks would be easy to carry out in the context of searching
email. But in “closed systems,” where a client is searching over records generated via some other
process, file-injection attacks may not be possible or may be much more difficult to carry out.
Additionally, there may be settings—e.g., when all files have the same length because they share
some particular format—where even though the server can inject files, it may not be able to
associate file identifiers with specific files it has injected. It is worth noting also that there may
be applications of SE in which the server is trusted (and so, in particular, can be assumed not to
carry out file-injection attacks), and the threat being defended against is an external attacker who
compromises the server.4

Our work and previous work [10, 4] demonstrate that leaking file-access patterns in their en-
tirety is dangerous, and can be exploited by an attacker to learn a significant amount of sensitive
information. We suggest, therefore, that future research on searchable encryption focus on reducing
or eliminating this leakage rather than accepting it as the default. Our work also highlights the
need to design efficient schemes satisfying forward privacy. Addressing these challenges may require
exploring new directions, such as interactive protocols [17] or multiple servers. It would also be
of interest to explore lower bounds on the efficiency that searchable encryption can achieve as a
function of how much about the file-access pattern is leaked.

References

[1] Enron email dataset. https://www.cs.cmu.edu/~./enron/. Accessed: 2015-12-14.

[2] Pmail. https://github.com/tonypr/Pmail, 2014.

[3] Adamic, L. A., and Huberman, B. A. Zipfs law and the internet. Glottometrics 3, 1 (2002), 143–150.

[4] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks against searchable encryption.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (2015), ACM,
pp. 668–679.

[5] Cash, D., Jaeger, J., Jarecki, S., Jutla, C. S., Krawczyk, H., Rosu, M.-C., and Steiner, M. Dynamic
searchable encryption in very-large databases: Data structures and implementation. IACR Cryptology ePrint
Archive 2014 (2014), 853.

[6] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., and Steiner, M. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 353–373. Full version available at http://eprint.iacr.org.

[7] Chang, Y.-C., and Mitzenmacher, M. Privacy preserving keyword searches on remote encrypted data. In
Applied Cryptography and Network Security (2005), Springer, pp. 442–455.

[8] Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. Searchable symmetric encryption: improved
definitions and efficient constructions. In Proceedings of the 13th ACM conference on Computer and communi-
cations security (2006), ACM, pp. 79–88.

[9] Goh, E.-J., et al. Secure indexes. IACR Cryptology ePrint Archive 2003 (2003), 216.

[10] Islam, M. S., Kuzu, M., and Kantarcioglu, M. Access pattern disclosure on searchable encryption: Ram-
ification, attack and mitigation. In 19th Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012 (2012).

4Though even here one must be careful since an external attacker might have the ability to inject files, and/or be
able to learn file-access patterns from the client-server communication (e.g., based on file lengths) without compro-
mising the server.

20

[11] Kamara, S., and Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In Financial
cryptography and data security. Springer, 2013, pp. 258–274.

[12] Kamara, S., Papamanthou, C., and Roeder, T. Dynamic searchable symmetric encryption. In the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012
(2012), pp. 965–976.

[13] Lau, B., Chung, S., Song, C., Jang, Y., Lee, W., and Boldyreva, A. Mimesis aegis: A mimicry privacy
shield–a systems approach to data privacy on public cloud. In 23rd USENIX Security Symposium (USENIX
Security 14) (2014), pp. 33–48.

[14] Liu, C., Zhu, L., Wang, M., and Tan, Y.-a. Search pattern leakage in searchable encryption: Attacks and
new construction. Information Sciences 265 (2014), 176–188.

[15] Naveed, M. The fallacy of composition of oblivious ram and searchable encryption. Tech. rep., Cryptology
ePrint Archive, Report 2015/668, 2015.

[16] Naveed, M., Prabhakaran, M., and Gunter, C. A. Dynamic searchable encryption via blind storage. In
Security and Privacy (SP), 2014 IEEE Symposium on (2014), IEEE, pp. 639–654.

[17] Popa, R. A., Li, F. H., and Zeldovich, N. An ideal-security protocol for order-preserving encoding. In
Security and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE, pp. 463–477.

[18] Porter, M. F. An algorithm for suffix stripping. Program 14, 3 (1980), 130–137.

[19] Song, D. X., Wagner, D., and Perrig, A. Practical techniques for searches on encrypted data. In Security
and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on (2000), IEEE, pp. 44–55.

[20] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable encryption with small leakage.
In NDSS (2014), vol. 14, pp. 23–26.

[21] Uchimoto, K., Isahara, H., and Sekine, S. Text generation from keywords. In Proceedings of the 19th inter-
national conference on Computational linguistics-Volume 1 (2002), Association for Computational Linguistics,
pp. 1–7.

21

