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Abstract. We study secure multiparty computation (MPC) in the dishonest majority
setting providing security with identifiable abort, where if the protocol aborts, the
honest parties can agree upon the identity of a corrupt party. All known constructions
that achieve this notion require expensive zero-knowledge techniques to obtain active
security, so are not practical.
In this work, we present the first efficient MPC protocol with identifiable abort. Our
protocol has an information-theoretic online phase with message complexity O(n2) for
each secure multiplication (where n is the number of parties), similar to the BDOZ
protocol (Bendlin et al., Eurocrypt 2011), and a factor in the security parameter lower
than the identifiable abort protocol of Ishai et al. (Crypto 2014). A key component of our
protocol is a linearly homomorphic information-theoretic signature scheme, for which
we provide the first definitions and construction based on a previous non-homomorphic
scheme. We then show how to implement the preprocessing for our protocol using
somewhat homomorphic encryption, similarly to the SPDZ protocol (Damg̊ard et al.,
Crypto 2012) and other recent works with applicable efficiency improvements.
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1 Introduction

Multiparty Computation (MPC) deals with the problem of jointly computing a function among a
set of mutually distrusting parties with some security guarantees such as correctness of the output
and privacy of the input. MPC has been an interesting topic in cryptography for the last 30 years,
but while in the past efficiency was the main bottleneck and MPC was exclusively the subject of
academic studies, the situation has steadily improved and now even large circuits can be evaluated
with acceptable costs in terms of time and space. A key example of this progress is the recent
line of work that began with the BDOZ [BDOZ11] and SPDZ [DPSZ12,DKL+13] protocols. These
protocols are based on a secret-sharing approach and can provide active security against a dishonest
majority, where any number of the parties may be corrupt.

The SPDZ-style protocols work in the preprocessing model (or offline/online setting), with an
offline phase that generates random correlated data independent of the parties’ inputs and the
function, and an online phase, in which this correlated randomness is used to perform the actual
computation. The key advantage of the preprocessing model in SPDZ lies in the efficiency of the
online phase, which only uses information-theoretic techniques.

It is a well-known fact that, in the dishonest majority setting, successful termination of protocols
cannot be guaranteed, so these protocols simply abort if cheating is detected. It was also shown by
Cleve in [Cle86] that, unless an honest majority is assumed, it is impossible to obtain protocols for
MPC that provide fairness and guaranteed output delivery . Fairness is a very desirable property
and intuitively means that either every party receives the output, or else no-one does.

In this scenario SPDZ-style protocols, and in general all known efficient MPC protocols that
allow dishonest majority, are vulnerable to Denial-of-Service attacks, where one or more dishonest
parties can force the protocol to abort, so that honest parties never learn the output. They can even
do this after learning the output, whilst remaining anonymous to the honest parties, which could
be a serious security issue in some applications. This motivates the notion of MPC with identifiable
abort (ID-MPC) [CL14,IOZ14]. Protocols with identifiable abort either terminate, in which case
all parties receive the output of the computation, or abort, such that all honest parties agree on
the identity of at least one corrupt party. It is clear that, while this property neither guarantees
fairness nor output delivery (as it does not prevent a corrupt party from aborting the protocol by
refusing to send messages) at the same time it discourages this kind of behaviour because, upon
abort, at least one corrupt party will be detected and can be excluded from future computations.

Why Efficient ID-MPC is not Trivial. It is easy to see that the SPDZ protocol is not ID-
MPC: Each party holds an additive share xi of each value x and similarly an additive share m(x)i
of an information-theoretic MAC on x. To open a share, all parties first provide their shares of
both the value and the MAC, and then check validity of the MAC. A dishonest party Pi can make
the protocol abort by sending a share x∗i 6= xi or m(x)∗i 6= m(x)i. However, since the underlying
value x is authenticated, and not the individual shares, Pi is neither committed to xi nor m(x)i,
so other parties cannot identify who caused the abort. At first glance, it seems that the [BDOZ11]
protocol might satisfy identifiable abort. In this protocol, instead of authenticating x, pairwise
MACs are set up so that each party holds a MAC on every other party’s share. However, the
following counterexample (similar to [Sey12, Sec. 3.6]), depicted in Fig. 1, shows that this is not
sufficient.

Let the adversary control parties P1 and P2. P1 sends the correct value x1 to both remaining
parties P3, P4, but only the correct MAC m(x1)3 to P3. To P4, he sends an incorrect MAC m(x1)∗4.

3



P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4

x1

m(x1)
∗
4

x2

m(x2)
∗
3

(Abort, P2) (Abort, P1)

P̂1 P̂2

P3 P4

x1

m(x1)3

x2

m(x2)4

x1

m(x1)
∗
4

x2

m(x2)
∗
3

Fig. 1. Counterexample for identifiable abort with pairwise MACs

Conversely, P2 will send the incorrect MAC m(x2)∗3 of his share x2 to P3 and the correct m(x2)4
to P4. Now both honest parties P3, P4 can agree that some cheating happened, but as they do
not agree on the identity of the corrupt party they are unable to reliably convince each other who
cheated. (Note that a corrupt party could also decide to output (Abort, P3), confusing matters even
further for the honest P2, P3.) We conclude that, with an approach based on secret-sharing, special
care must be taken so that all honest parties can agree upon the correctness of an opened value.

Our Contributions. In this work we present an efficient MPC protocol in the preprocessing model
that reactively computes arithmetic circuits over a finite field, providing security with identifiable
abort against up to n − 1 out of n malicious parties. The online phase relies only on efficient,
information-theoretic primitives and a broadcast channel, with roughly the same complexity as
the BDOZ protocol [BDOZ11]. The offline phase, which generates correlated randomness, can be
instantiated using somewhat homomorphic encryption based on ring-LWE, and allows use of all
the relevant optimisations presented in [DPSZ12,DKL+13,BDTZ16].

A first building block towards achieving this goal is our definition of homomorphic information-
theoretic signatures (HITS). Information-theoretic signature schemes [CR91] cannot have a public
verification key (since otherwise an unbounded adversary can easily forge messages), but instead
each party holds a private verification key. The main security properties of IT signatures are un-
forgeability and consistency, meaning that no-one can produce a signature that verifies by one
honest party but is rejected by another. Swanson and Stinson [SS11] were the first to formally
study and provide security proofs for IT signatures, and demonstrated that many subtle issues can
arise in definitions. On the other hand, homomorphic signature schemes [BFKW09,CJL09] feature
an additional homomorphic evaluation algorithm, which allows certain functions to be applied to
signatures. The verification algorithm is then given a signature, a message m and a description of
a function f , and verifies that m is the output of f , applied to some previously signed inputs. We
give the first definition of HITS, and the first construction of HITS for affine functions, which is
based on the (non-homomorphic) construction from [HSZI00] (proven secure in [SS11]), and has
essentially the same complexity.

Our definition of HITS is slightly different to [SS11], as we only consider a single, honest signer,
instead of allowing any user to sign messages. This simplifies the definitions, but requires taking
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some additional care in proving the consistency property, which in our case is no longer implied by
unforgeability.

We then show how to build ID-MPC in the preprocessing model, based on any HITS with some
extra basic properties. Our basic protocol is similar to the online phase of SPDZ and BDOZ, based
on a correlated randomness setup that produces random shared multiplication triples, authenticated
using HITS with an unknown signing key. The downside of this approach is the need for a secure
broadcast channel in every round of the protocol. Since broadcast with up to n−1 corrupted parties
requires Ω(n) rounds of communication 1 [GKKO07] (assuming a PKI setup), this leads to a round
complexity of Ω(n ·D), for depth D arithmetic circuits, and a message complexity of Ω(n3) field
elements per multiplication gate. We show that the number of broadcast rounds can be reduced
to just two — and the total number of rounds to O(n+D) — by using an insecure broadcast for
each multiplication gate, and then verifying the insecure broadcasts at the end of the protocol in a
single round of authenticated broadcast. Additionally, by batching the signature verification at the
end of the protocol, we can reduce the message complexity per multiplication to O(n2). Overall,
this gives on online phase that is only around n times slower than the SPDZ protocol, or similar
to BDOZ.

In addition, we present a preprocessing protocol that uses somewhat homomorphic encryption
to compute the correlated randomness needed for the online phase of our protocol, obtaining secu-
rity with identifiable abort. The method for creating multiplication triples is essentially the same
as [DPSZ12], but creating the additional HITS data is more complex.

In Section 8, we present a simple modification of our ID-MPC scheme that implies public
verifiability : In the ID-MPC setting, the honest parties agree upon which party is corrupt, but they
are not able to convince anyone outside of the computation of this fact. We sketch how our scheme
can be modified so that this in fact is possible, using a public bulletin board. In 9, we present an
information-theoretic MPC protocol in the preprocessing model that is optimised for a different
range of field sizes and which is related to the MiniMACS protocol [DZ13]. This MPC protocol also
uses HITS but can tolerate lower security guarantees than our main protocol.

Comparison to Existing Work. The model of identifiable abort was first explicitly defined in the
context of covert security, by Aumann and Lindell [AL10]. Cohen and Lindell [CL14] considered
the relationships between broadcast, fairness and identifiable abort, and showed that an MPC
protocol with identifiable abort can be used to construct secure broadcast. The classic GMW
protocol [GMW87] (and many protocols based on this) satisfies the ID-MPC property, but is highly
impractical due to the non-black box use of cryptographic primitives.

The most relevant previous work is by Ishai et al. [IOZ14], who formally studied constructing
identifiable abort, and presented a general compiler that transforms any semi-honest MPC protocol
in the preprocessing model into a protocol with identifiable abort against malicious adversaries.
Their protocol is information-theoretic, and makes use of the ‘MPC-in-the-head’ technique of Ishai
et al. [IKOS07] for proving the correctness of each message in zero-knowledge. Although recent work
by Giacomelli et al. [GMO16] shows that this technique can be efficient for certain applications, we
show that when applied to ID-MPC as in [IOZ14], the resulting protocol is around O(σ) times less
efficient than ours, to achieve soundness error 2−σ. Note that Ishai et al. also use IT signatures for
authenticating values, similarly to our usage, but without the homomorphic property that allows

1This is not needed in SPDZ, because a simple ‘broadcast with abort’ technique can be performed in just two
rounds.
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our protocol to be efficient. For the preprocessing stage, they describe an elegant transformation
that converts any protocol for implementing any correlated randomness setup in the OT-hybrid
model into one with identifiable abort, which makes black-box use of an OT protocol. Again,
unfortunately this method is not particularly practical, mainly because it requires the OT protocol
to be secure against an adaptive adversary, which is much harder to achieve than statically secure
OT [LZ13].

Several other works have used similar primitives to information-theoretic signatures for various
applications. In [CDD+99], a primitive called IC signatures is used for adaptively secure multiparty
computation. These are very similar to what we use and their construction is linearly homomorphic,
but the opening stage requires every party to broadcast values, whereas in our HITS only the sender
broadcasts a message. Moreover, IC signatures are required to handle the case of a corrupted
dealer (which we do not need, due to trusted preprocessing), and this leads to further inefficiencies.
In [IOS12], a unanimously identifiable commitment scheme is presented, which is used to construct
identifiable secret sharing; this has similarities to a simplified form of IC signatures, but is not
linear.

Finally, we note that when the number of parties is constant, it is possible to achieve a relaxed
notion of fairness, called partial fairness, in the dishonest majority setting by allowing a non-
negligible distinguishing probability by the environment [BLOO11].

Organisation. In Section 2, we describe the model and some basic preliminaries, and also discuss
the need for and use of a broadcast channel in our protocols. Section 3 introduces the definition
of homomorphic information-theoretic signatures, and Section 4 describes our construction. Our
information-theoretic ID-MPC protocol in the preprocessing model is presented in Section 5, fol-
lowed by the preprocessing using SHE in Section 6. In Section 7 we evaluate the efficiency of our
protocols, compared with the previous state of the art. In Section 8 we show how to upgrade the
security of our ID-MPC protocol to be publicly verifiable by an external party, and we give an
ID-MPC construction over small fields in Section 9.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by κ and λ the statistical, resp. computational, security pa-
rameters, and we use the standard definition of negligible (denoted by negl(κ)) and overwhelming
function from [Gol01]. We use bold lower case letters for vectors, i.e. v and refer to the ith element
of a vector v as v|i. The notation x← S will be used for the uniform sampling of x from a set S, and
by [n] we mean the set {1, . . . , n}. The n parties in the protocol are denoted as P = {P1, . . . , Pn},
while the adversary is denoted by A, and has control over a subset I ⊂ [n] of the parties. We also
sometimes let P denote the index set [n], depending on the context.

2.2 Model

We prove our protocols secure in the universal composability (UC) model of Canetti [Can01], with
which we assume the reader has some familiarity. Our protocols assume a single static, active
adversary, who can corrupt up to n − 1 parties at the beginning of the execution of a protocol,
forcing them to behave in an arbitrary manner. We assume a synchronous communication model,
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where messages are sent in rounds, and a rushing adversary, who in each round, may receive the
honest parties’ messages before submitting theirs.

We use the UC definition of MPC with identifiable abort, or ID-MPC, from Ishai et al. [IOZ14].
Given any UC functionality F , define

[
F
]ID
⊥ to be the functionality with the same behaviour as F ,

except that at any time the adversary may send a special command (Abort, Pi), where i ∈ I, which
causes

[
F
]ID
⊥ to output (Abort, Pi) to all parties.

Definition 1 ([IOZ14]). Let F be a functionality and
[
F
]ID
⊥ the corresponding functionality with

identifiable abort. A protocol Π securely realises F with identifiable abort if Π securely realises the
functionality

[
F
]ID
⊥ .

As noted in [IOZ14], the UC composition theorem [Can01] naturally extends to security with
identifiable abort, provided that the higher-level protocol always respects the abort behaviour of
any hybrid functionalities.

2.3 Broadcast Channel

Our protocols require use of a secure broadcast channel. Since Cohen and Lindell showed that MPC
with identifiable abort can be used to construct a broadcast channel [CL14], and it is well known
that secure broadcast is possible if and only if there are fewer than n/3 corrupted parties, it is not
surprising that we require this (the protocols in [IOZ14] require the same).

In practice, we suggest the broadcast primitive is implemented using authenticated broadcast,
which exists for any number of corrupted parties, assuming a PKI setup. For example, the classic
protocol of Dolev and Strong [DS83] uses digital signatures to achieve this, and Pfitzmann and
Waidner [PW92] extended this method to the information-theoretic setting. Both of these protocols
have complexity O(`n2) when broadcasting `-bit messages. Hirt and Raykov [HR14] presented a
protocol that reduces the communication cost to O(`n) when ` is large enough. We are not aware of
any works analysing the practicality of these protocols, so we suggest this as an important direction
for future research.

3 Homomorphic Information-Theoretic Signatures

In this section, we define the notion of homomorphic information-theoretic signatures (HITS).
It differs slightly from standard cryptographic signatures: First and foremost, in the information-
theoretic setting, a signature2 scheme must have a distinct, private verification key for each verifying
party. This is because we define security against computationally unbounded adversaries, hence
a verifier could otherwise easily forge signatures. Secondly, allowing homomorphic evaluation of
signatures requires taking some additional care in the definitions. To prevent an adversary from
exploiting the homomorphism to produce arbitrary related signatures, the verification algorithm
must be given a function, and then verifies that the signed message is a valid output of the function
on some previously signed messages.

With this in mind, our definition therefore combines elements from the IT signature defini-
tion of Swanson and Stinson [SS11], and (computational) homomorphic signature definitions such
as [BFKW09,CJL09,GVW15].

2We want to put forward that the name signature for the primitive in question can be somewhat misleading, as
it shares properties with commitments and MACs. Nevertheless we decided to use the term for historical reasons.
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Definition 2 (Homomorphic Information-Theoretic Signature). A homomorphic information-
theoretic signature (HITS) scheme for the set of verifiers P = {P1, . . . , Pn}, function class F and
message space M, consists of a tuple of algorithms (Gen,Sign,Ver,Eval) that satisfy the following
properties:

(sk,vk)← Gen(1κ, w) takes as input the (statistical) security parameter κ and an upper bound
w ∈ N on the number of signatures that may be created, and outputs the signing key sk and
vector of the parties’ (private) verification keys, vk = (vk1, . . . , vkn).

σ ← Sign(m, sk) is a deterministic algorithm that takes as input a message m ∈ M and signing
key sk, and outputs a signature σ.

σ ← Eval(f, (σ1, . . . , σ`)) homomorphically evaluates the function f ∈ F on a list of signatures
(σ1, . . . , σ`).

0/1← Ver(m,σ, f, vkj) takes as input a message m, a signature σ, a function f and Pj’s verifi-
cation key vkj, and checks that m is the valid, signed output of f .

Remark 1. HITS schemes can generally be defined to operate over data sets. Multiple data sets
can be handled by tagging each dataset with a unique identifier and restricting operations to apply
only to signatures with the same tag. However, for our application we only require a single dataset,
which simplifies the definition.

Remark 2. To streamline the definition even more, we consider a setting where there is only one
signer, who is honest. This leads to a definition that is conceptually simpler than the IT signature
definition of Swanson and Stinson [SS11], which considers a group of users who can all sign and
verify each others’ messages.

We then define security as follows:

Definition 3 (w, τ-security). A HITS scheme (Gen,Sign,Ver,Eval) is (w, τ)-secure for a class of
functions F and message space M if it satisfies the following properties:

Signing correctness: Let ` ≤ w and define for i ∈ [`] the projection function πi(m1, . . . ,m`) =
mi. Then we require that for every pair (sk,vk) output by Gen, for any (m1, . . . ,m`) ∈M`, and
for all i ∈ [`], j ∈ [n],

Ver(mi, Sign(mi, sk), πi, vkj) = 1.

Evaluation correctness: For every pair sk,vk output by Gen, for every function f ∈ F , for
all messages (m1, . . . ,m`) ∈M`, and for all j ∈ [n],

Ver (f (m1, . . . ,m`) ,Eval (f, (Sign(m1, sk), . . . ,Sign(m`, sk))) , f, vkj) = 1.

Unforgeability: Let I ( [n] be an index set of corrupted verifiers, and define the following
game between a challenger C and an adversary A:
1. C computes (sk,vk)← Gen(1κ, w) and sends {vki}i∈I to the adversary.
2. A may query C adaptively up to a maximum of w times for signatures. Let m1, . . . ,mw′ be

the list of messages queried to C.
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3. A outputs a function f ∈ F , a list of indices {i1, . . . , i`} ⊆ [w′] in ascending order, a target
message m∗ and a signature σ∗.

4. A wins if m∗ 6= f(mi1 , . . . ,mi`) and there exists j ∈ [n] \ I for which

Ver(m∗, σ∗, f, vkj) = 1.

A scheme is unforgeable if for any subset of corrupted verifiers I ( [n] and for any adversary
A,

Pr[A wins] ≤ τ(|M|, κ).

Consistency: The security game for consistency is identical to the unforgeability game, except
for the final step (the winning condition), which becomes:

4. A wins 3 if there exist i, j ∈ [n] \ I such that

Ver(m∗, σ∗, f, vki) = 1 and Ver(m∗, σ∗, f, vkj) = 0.

A scheme satisfies consistency if for any set I ( [n] and for any A playing the above modified
game,

Pr[A wins] ≤ τ(|M|, κ).

Note that evaluation correctness implies signing correctness, but we state two separate properties
for clarity. The consistency (or transferability) property guarantees that a corrupted party cannot
create a signature σ that will be accepted by one (honest) verifier but rejected by another. In [SS11],
a reduction from consistency to unforgeability is given. However, their definition of IT signatures
considers a group of users who are all signers and verifiers, any of whom may be corrupted. In our
setting, there is a single, honest signer, so consistency is no longer implied and must be defined
separately.

Additionally, we require that signatures output by the Eval algorithm do not reveal any infor-
mation on the input messages m1, . . . ,m` other than that given by f(m1, . . . ,m`). This is similar
to the concept of context hiding [GVW15] in the computational setting, and is captured by the
following definition.

Definition 4 (Evaluation privacy). A HITS scheme (Gen,Sign,Eval,Ver) is evaluation private
if there exists a PPT algorithm Sim that, for every (sk,vk) ← Gen, for every function f ∈ F , for
all messages m1, . . . ,m` with m = f(m1, . . . ,m`), σi = Sign(mi, sk) and σ = Eval(f, σ1, . . . , σ`),
computes

Sim(sk,m, f) = σ.

Intuitively, this means that any valid signature that comes from Eval can also be computed without
knowing the original inputs to f , so is independent of these. This definition is simpler than that
of [GVW15], as our signing algorithm is restricted to be deterministic, so we require equality rather
than an indistinguishability-based notion.

3Note there is no requirement that m∗ 6= f(mi1 , . . . ,mi`).
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4 Construction of HITS

We now describe our construction of homomorphic information-theoretic signatures. The message
spaceM is a finite field F. We restrict the function class F to be the set of all affine transformations
f : Fw → F (where w is the maximum number of signatures that can be produced). The general
case of affine functions with fewer than w inputs can be handled by using a default value, ⊥, for
the unused input variables. Note also that the signing algorithm is stateful, and must keep track of
how many messages have been signed previously.

Gen(1κ, w): The key generation algorithm is as follows:
1. Sample α̂1, . . . , α̂n ← F and β̂i,1, . . . , β̂i,n ← F for each i ∈ [w].
2. For each verifier Pj , sample vj = (vj,1, . . . , vj,n)← Fn and compute

αj =
n∑
r=1

α̂r · vj,r and βj,i =
n∑
r=1

β̂i,r · vj,r for i ∈ [w].

3. Output sk =
({
α̂r, {β̂i,r}i∈[w]

}n
r=1

)
,vk =

(
vj , αj , {βj,i}i∈[w]

)n
j=1

.

Sign(m, sk): To sign the i-th message, m, (for i ≤ w) the signer computes the vector

σi =
(
α̂r ·m+ β̂i,r

)n
r=1

.

Eval(f, (σ1, . . . ,σw)): Let f : Fw → F be defined by

f(x1, ..., xw) = µ1 · x1 + · · ·+ µw · xw + c,

with µi, c ∈ F. The new signature σ is obtained by evaluating f , excluding the constant term,
over every component of the input signatures:

σ = µ1 · σ1 + · · ·+ µw · σw ∈ Fn.

Ver(m,σ, f, vkj): First use f to compute the additional verification data

βj =
w∑
i=1

µi · βj,i − c · αj .

Then check that

βj + αj ·m =
n∑
r=1

σ|r · vj,r,

where σ|r indicates the rth component of σ. If the check passes output 1, otherwise 0.

Theorem 1. Let κ ∈ N be the security parameter, F be a finite field. Moreover, define M := F
and F be the the set of affine maps from Fw to F, then the tuple of algorithms (Gen,Sign,Eval,Ver)
is a (w, 2/|F|)-secure HITS with evaluation privacy.

As an immediate consequence of the previous theorem, we have:

Corollary 1. Let |F| > 2κ, w = poly(κ) then (Gen,Sign,Eval,Ver) is a
(poly(κ), negl(κ))-secure HITS with evaluation privacy.
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4.1 Security of Theorem 1

Proof (of Theorem 1). We prove that our construction satisfies all the properties required for a
HITS (Definitions 3 and 4).

Signing and evaluation correctness. Signing correctness is implied by evaluation correctness for
f = πi, so we show the latter.

Let w, n ∈ N+ and j ∈ [n] be arbitrarily chosen. Moreover, let (sk,vk) ← Gen(1κ, w), take
arbitrary (m1, ...,mw) ∈ Mw and let f ∈ F be defined by f(m1, ...,mw) =

∑w
i=1 µi ·mi + c, for

some µ1, ..., µw, c ∈ F. Applying the Sign algorithm for i = 1, . . . , w, we obtain

σi =
(
α̂r ·mi + β̂i,r

)n
r=1

.

Using these signatures and f , Eval then computes σf =
∑w

i=1 µi · σi. The verification algorithm
will compute

βj =
w∑
i=1

µi · βj,i − c · αj =
w∑
i=1

µi

n∑
r=1

β̂i,r · vj,r − c · αj .

Therefore

βj + αj · f(m1, ...,mw) =
w∑
i=1

µi

n∑
r=1

β̂i,r · vj,r − c · αj +

n∑
r=1

α̂r · vj,r
w∑
i=1

µi ·mi + αj · c

=
w∑
i=1

µi

n∑
r=1

vj,r ·
(
β̂i,r + α̂r ·mi

)
=

n∑
r=1

vj,r

w∑
i=1

µi · σi|r

=
n∑
r=1

vj,r · σf |r

and the algorithm will output 1.

Unforgeability. Before we start proving the unforgeability and consistency of the scheme, we prove
a bound on the adversary’s uncertainty about sk. In particular, we show that there are always at
least |F| vectors (α̂′1, ..., α̂′n) that are consistent with the adversary’s view, and all are equally likely.

Lemma 1. Let I ( [n] be an index set of corrupted verifiers, and define the following game between
a challenger C and an adversary A:

1. C samples (sk,vk)← Gen(1κ, w) and sends {vkj}j∈I to the adversary.
2. A may query C adaptively up to a maximum of w times for signatures.
3. A outputs (α̂′1, . . . , α̂′n).
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Then Pr[(α̂′1, . . . , α̂′n) = (α̂1, . . . , α̂n)] ≤ 1/|F| when the probability is taken over the randomness of
Gen and A.

Proof. In Step 1 of the game, A obtains

{vkj}j∈I = {vj,1, ..., vj,n, αj , {βj,i}i∈[w]}j∈I .

It then in Step 2 provides messages m1, ...,mw ∈ F and obtains

(σi)i∈[w] =
((
α̂r ·mi + β̂i,r

)n
r=1

)
i∈[w]

.

Collect all of A’s information about the α̂r, β̂i,r into a system of linear equations. For simplicity,
consider the setting where w = 1 and I = {1, ..., n− 1}. We obtain

v1,1 · · · v1,n 0 · · · 0
v2,1 · · · v2,n 0 · · · 0

...
. . .

...
...

. . .
...

vn−1,1 · · · vn−1,n 0 · · · 0
0 · · · 0 v1,1 · · · v1,n
...

. . .
...

...
. . .

...
0 · · · 0 vn−1,1 · · · vn−1,n

m · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · m 0 · · · 1



·



α̂1
...
α̂n
β̂1,1

...
β̂1,n


=



α1
...

αn−1

β1,1
...

βn−1,1

σ1|1
...

σ1|n


The system has 3n − 2 equations but only 2n variables. Fortunately the matrix on the left is not
full-rank: Assuming m 6= 0, the first n − 1 rows can be used to obtain the next n − 1 rows using
the last n rows, so we can safely remove them. 4 If m = 0, then the n leftmost columns are 0 for
the last 2n− 1 rows, out of which at most n can be linearly independent.

Therefore, the matrix has rank at most 2n−1 for 2n unknowns and A cannot recover the correct
sk. Instead, by fixing a certain α̂′i there exists at least one (α̂′1, . . . , α̂′n) compatible with this choice.
The same applies in the case of w signatures where A will obtain a matrix with (w + 1) · n − 1
independent rows, but has to solve for (w + 1) · n unknown values. Since all the α̂i were chosen
uniformly at random each such choice of α̂′i yields a candidate vector that is equally likely. ut

In the definition of the unforgeability game, A chooses a function f by fixing µ1, ..., µl, c. It is
easy to see that the choice of c does not make any difference, so assume that c = 0 for simplicity.
Let mi1 , . . . ,mil be the messages queried to C and σi1 , . . . ,σil the responses. We conclude that, for
all j ∈ [n] \ I, the equation

βfj + αj ·mf =
n∑
r=1

vj,r · σf |r, (1)

with

σf =
l∑

k=1

µk · σik and mf =
l∑

k=1

µk ·mik and βfj =
l∑

k=1

µk · βj,ik ,

4Multiply the first row with −m, the 2n− 1st row with v1,1 and add these together. Then continue with row 2n,
2n+ 1, etc.
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must hold due to evaluation correctness. Now A picks m∗ ∈ F such that m∗ 6= f(mi1 , ...,mil) and
a signature σ∗, and assume for the sake of contradiction that A wins the game with probability
p > 1/|F|. Then

βfj + αj ·m∗ =
n∑
r=1

vj,r · σ∗|r (2)

holds for some j ∈ [n] \ I. We can subtract (2) from (1) and obtain

0 =
n∑
r=1

vj,r ·
(
σf |r − σ∗|r
mf −m∗

)
− αj

=
n∑
r=1

vj,r ·
(
σf |r − σ∗|r
mf −m∗

− α̂r
)
. (3)

A can make Equation 3 hold by either providing the trivial solution or another vector in the
kernel of the map. In Lemma 1 we established that the view of A contains at least |F| candidates
for (α̂1, ..., α̂n), all of which being equally likely. Therefore, finding the trivial solution with prob-
ability > 1/|F| contradicts Lemma 1. On the other hand, by the rank nullity theorem, the linear
map induced by the right-hand side of (3) has a kernel of dimension n − 1. All vj,1, ..., vj,n were
chosen uniformly at random and are unknown by A, so Equation (3) will hold with probability
|Fn−1|/|Fn| = 1/|F|. Hence the overall probability is 2/|F| − 1/|F|2.

Consistency. Assume that A can break consistency with probability p > 1/|F|. By definition of
the game, it must then hold that at least one of σ∗ 6=

∑k
k=1 µk · σik or m∗ 6= f(mi1 , ...,mil): If

m∗ = f(mi1 , ...,mil) and σ∗ =
∑l

k=1 µk · σik then by evaluation correctness, Ver(m∗,σ∗, f, vkj) =
1,∀j ∈ [n], which contradicts the winning condition.

First suppose that m∗ = f(m1, ...,ml), so σ∗ 6=
∑l

k=1 µk · σik . Then by the winning condition,
it must hold that

0 =
n∑
r=1

vj,r ·
(
σ∗|r − (m∗ − c) · α̂r −

l∑
k=1

µk · β̂ik,r︸ ︷︷ ︸
=xr

)
, (4)

for at least one j ∈ [n] \ I. Suppose at least one of the values x1, ..., xn is non-zero. Then due to
the random choice of the vj,r the above sum will only be 0 with probability at most 1/|F| (as in
the Unforgeability proof). Thus, it must hold that x1 = x2 = ... = xn = 0 and therefore

∀r ∈ [n] : (m∗ − c) · α̂r +
l∑

k=1

µk · β̂ik,r = σ∗|r.

Hence for every r it must hold that

σ∗|r = α̂r · (m∗ − c) +
l∑

k=1

µk · β̂ik,r

= α̂r · (f(mi1 , ...,mil))− c) +
l∑

k=1

µk · β̂ik,r
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= α̂r · (µ1 ·mi1 + . . . µl ·mil) +
l∑

k=1

µk · β̂ik,r

=
l∑

k=1

µk · (α̂r ·mik + β̂ik,r)

=
l∑

k=1

µk · σik |r,

which contradicts the assumption. We therefore observe that the cheating probability in this case
can be bounded by 1/|F|.

Consider the case where m∗ 6= f(mi1 , ...,mil), then the setting equals the Unforgeability game
for which we upper-bounded the success of A as 1/|F| as well. Hence the overall probability if
3/|F| − 1/|F|2.

Evaluation privacy. Let (sk,vk)← Gen(1κ, w) and f : Fl → F be any linear map defined by:

f(x1, . . . , xl) =
l∑

i=1

µi · xi + c.

Suppose m = f(m1, . . . ,ml) for some messages m1, . . . ,ml ∈ M. Then the algorithm Sim, when
given sk,m, f , creates a signature on m, f as follows:

1. Compute, for r ∈ [n],
σ∗|r =

∑
i∈[l]

µi · β̂i,r + α̂r · (m− c).

2. Output σ∗.

Now let σi ← Sign(sk,mi), for i ∈ [l], and σ = Eval(f,σ1, ...,σl). Note that m− c =
∑

i µi ·mi,
and then we have, for all r ∈ [n],

σ∗|r =
∑
i∈[l]

µi ·
(
β̂i,r + α̂r ·mi

)
=
∑
i∈[l]

µi · σi|r = σ|r,

as required. ut

4.2 Lower Bounds on IT Signatures

After the first impractical unconditionally secure signature scheme proposed by Chaum et al.
[CR91], there have been many attempts to modify unconditionally secure authentication codes
(A-codes) adding to them the extra security properties required by signature schemes. The re-
lation between A-codes and unconditionally secure signatures have been extensively studied by
Safavi-Naini et al. [SMY04]. A particular interesting extension of A-codes is given by multi-receiver
authentication codes (MRA), introduced by Desmedt et al. [DFY92].

Roughly, a MRA-code consists of three sets of participants, a trusted authority (TA), a single
honest sender (S) and a set of receivers (R1, . . . , Rn). The TA generates secret information s and
r1, . . . rn for S and R1, . . . , Rn, respectively. In order to send a message m to R1, . . . , Rn, S generates
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an authenticated message (m, τ) by using the secret s, and then transmits it to the receivers. Each
receiver Ri can individually verify the authenticity of the received message using their private key
ri.

An (ε, t, n)-MRA-code is a multi-receiver authentication code where n is the number of receivers,
and for which the probability of success for up to t colluding corrupt receivers is ε. The formal
security definition for MRA-codes considers two types of attacks:

- A substitution attack, in which an adversary substitutes an authenticated message (m, τ) with
a different message (m∗, τ∗) while m 6= m∗.

- An impersonation attack, in which an adversary creates a new message (m∗, τ∗) without seeing
any messages from the sender.

Information theoretic bounds on the success probability of attacks and combinatorial bounds on
the sizes of the key and code spaces are given in [SW99,Sim85]. We can use these bounds to have a
measure of the efficiency of our HITS construction. It is indeed possible to prove that HITS satisfies
all the conditions for an MRA-code, but with stronger cryptographic properties like consistency,
non-repudiation and evaluation privacy.

Proposition 1. Let SG,SK and VK be the domains of the signatures, signing and verification
keys, respectively. Our HITS has the following memory sizes:

|SG| = |F|n, |SK| = |F|n(w+1), |VF| = |F|n(w+3).

In terms of the memory size of signatures, our scheme is n-bits close to the bound of optimal
MRA-codes. This follows from the fact that our definition of unforgeability implies security against
substitution and impersonation attacks, and from Theorem 3.5 in [SW99] instantiated with PD ≤
2
|F| .

Note that the scheme of [SS11], which is not homomorphic, requires the same memory size as
HITS for signatures and signing keys, but slightly smaller verification keys (|F|n(w+2)−1). We do
not know if the signature schemes described in [SS11] and our HITS are optimal in terms of the
memory size of the keys, or if the need for larger verification keys in HITS is due to the homomorphic
property of the scheme.

5 Online Phase for Efficient MPC with Identifiable Abort

In this section we describe our information-theoretic protocol for secure multiparty computation
with identifiable abort in the preprocessing model. We assume a set of n parties {P1, . . . , Pn}, and
any HITS scheme HITS = (Gen, Sign,Eval,Ver) that satisfies (w, negl(κ))-security and evaluation
privacy from Section 3, and supports homomorphic evaluation of linear functions over a message
space of a finite field F.

Our protocol performs reactive computation of arithmetic circuits over F, using correlated ran-
domness from a preprocessing setup, similarly to the BDOZ and SPDZ protocols [BDOZ11,DPSZ12].
Correctness, privacy and identifiable abort are guaranteed by the security properties of HITS. The
functionality that we implement is FMPC, shown in Fig. 2. Note that FMPC already contains an
explicit command for identifiable abort in the output stage, since it models an unfair execution
where the adversary can abort after learning the output. The modified functionality

[
FMPC

]ID
⊥ then

extends this abort to be possible at any time.
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Functionality FMPC

Let I be the set of indices of corrupt parties.

Input: On input (Input, Pi, id , x) from Pi and (Input, Pi, id) from all other parties, with id a fresh identifier and
x ∈ F, store (id , x).

Add: On input (Add, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve (id1, x),
(id2, y) and store (id3, x+ y).

Multiply: On input (Mult, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve (id1, x),
(id2, y) and store (id3, x · y).

Output: On input (Output, id) from all parties (where id is present in memory), retrieve (id , y) and send y to
the adversary. Wait for the adversary to input either Deliver or (Abort, Pi) for some i ∈ I. If the adversary
sends Deliver then output y to all honest parties, otherwise output (Abort, Pi).

Fig. 2. Ideal functionality for reactive MPC in the finite field F.

Authenticated secret sharing. Our protocol is based on authenticated additive secret sharing
over the finite field F, and we use the following notation to represent a shared value a:

JaK =
(
ai, σai

)
i∈P ,

where party Pi holds ai ∈ F and σai = Sign(ai, sk), such that
∑

i∈P ai = a.
By the linearity of the secret sharing scheme and HITS we can easily define addition of two

shares, JzK = JxK + JyK, as follows:

1. Compute zi = xi + yi.
2. Compute σzi = Eval(f, (σxi , σyi)), where f(a, b) = a+ b.
3. Output JzK =

(
zi, σzi

)
i∈P .

Note that if σxi , σyi are already outputs of the Eval algorithm, then f should instead be defined to
include the linear function that was applied to these inputs previously, and Eval applied to those
inputs. However, this is just a technicality and in practice, each homomorphic addition can be
computed on-the-fly. We can also define addition or multiplication of shared values by constants,
using Eval in a similar way. 5

Open(JaK):
1. Every party Pi ∈ P broadcasts (ai, σai).

2. Each party Pi runs Ver(aj , σaj , f, vki), for each j 6= i. If for some j the check fails, Pi outputs (Abort, Pj),
otherwise it outputs a =

P
i∈P ai.

Fig. 3. Procedure for opening an authenticated, shared value

In Fig. 3 we define the basic subprotocol used to open authenticated, shared values. Each
time the command Open is called, parties check the correctness of the opened value using the Ver
algorithm. For each share, the intuition is that if the corresponding signature is verified, then the
share is correct with overwhelming probability due to the unforgeability of the scheme; on the

5For addition with a constant, only one party (say P1) needs to adjust their share. Signatures stay the same, as
the verification algorithm accounts for the constant term in the affine function.
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contrary, if there exists an index j ∈ P \ I, where I denotes the set of corrupt parties, for which
the check does not go through, then the same happens for all honest parties, due to the consistency
of HITS.

Preprocessing requirements. The preprocessing functionality, FPrep, is shown in Fig. 4. It
generates a set of HITS keys (sk,vk) and gives each party a verification key, whilst no-one learns
the signing key. The functionality then computes two kinds of authenticated data, using sk:

- Input tuples: Random shared values JrK, such that one party, Pi, knows r. This is used so
that Pi can provide input in the online phase.

- Multiplication triples: Random shared triples JaK, JbK, JcK, where a, b← F and c = a · b.

Note that corrupted parties can always choose their own shares of authenticated values, instead
of obtaining random shares from the functionality.

Protocol. Our protocol, shown in Fig. 5, is based on the idea of securely evaluating the circuit
gate by gate in a shared fashion, using the linearity of the J·K-representation for computing all linear
gates, preprocessed multiplication triples for multiplication using Beaver’s technique [Bea91], and
preprocessed input tuples for the inputs.

Functionality FPrep

Let I be the set of indices of corrupt parties. The functionality is parametrised by the statistical security
parameter, κ.

Initialise: On input (Init, w) from all parties, do the following:
1. Compute (sk,vk)← Gen(1κ, w)

2. Send vki to party Pi and store sk.

Macro Bracket: On input (Bracket, x), create the representation JxK as follows:

1. Receive shares xi for i ∈ I from the adversary.

2. Sample random shares xi ← F, for i /∈ I, subject to the constraint that x = x1 + · · ·+ xn.

3. For i = 1, . . . , n, compute σxi = Sign(xi, sk) and return {xi, σxi}i∈[n].

Input: On input (Input, Pi) from all parties, sample a random r ← F and run (Bracket, r) to obtain JrK. Output
(rj , σrj ) to each party Pj , and also r to Pi.

Triple: On input (Triple) from all parties, do the following:
1. Sample a, b← F and let c = a · b.
2. Run the macro (Bracket) on input a, b and c to obtain JaK, JbK, JcK. Output (ai, bi, ci, σai , σbi , σci) to each

party Pi.

Fig. 4. Ideal functionality for the preprocessing phase.

5.1 Security

Theorem 2. In the FPrep-hybrid model, the protocol ΠOnline implements
[
FMPC

]ID
⊥ with statistical

security against any static active adversary corrupting up to n− 1 parties.
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Protocol ΠOnline

Let nM be the number of secure multiplications to be performed and nI the total number of inputs.

Initialise: The parties call FPrep with (Init, n · (3nM + nI)). If FPrep outputs (Abort, Pi), the parties output
(Abort, Pi) and halt.

Input: For party Pi to input x ∈ F, the parties call FPrep with (Input, Pi) to obtain a mask value JrK, and Pi
also obtains r:
1. Pi sets m = r − x and broadcasts m.

2. All parties locally compute JxK = JrK−m.

Add: On input (JxK, JyK), parties locally compute Jx+ yK = JxK + JyK.

Multiply: On input (JxK, JyK), the parties do the following:
1. Take one multiplication triple (JaK, JbK, JcK) from FPrep, compute JεK = JxK− JaK, JρK = JyK− JbK.
2. Call Open(JεK) and Open(JρK).
3. Locally compute JzK = JcK + ε · JbK + ρ · JaK + ε · ρ

Output: To output a share JyK, the parties call Open(JyK). If for some i ∈ P the check fails, output (Abort, i)
and halt, otherwise accept y as a valid output.

Fig. 5. Operations for Secure Function Evaluation with Identifiable Abort

Proof. Let A be a malicious PPT real adversary attacking the protocol ΠOnline, we construct an
ideal adversary S with access to FMPC which simulates a real execution of ΠOnline with A such
that no environment Z can distinguish the ideal process with S and FMPC from a real execution of
ΠOnline with A. S starts by invoking a copy of A and running a simulated interaction of A with Z.

After describing the simulator we will argue indistinguishability of the real and ideal worlds.
Let I be the index set of corrupt parties, simulation proceeds as follows:

Simulating the Initialise step. The simulator S honestly emulates FPrep towards the adversary A.
Note that S knows all the data given to the adversary and the simulated signing key sk∗ of HITS,
so can generate a valid signature for any message.

Simulating the Input step. We distinguish two cases:

- For i ∈ P \ I, S emulates towards A a broadcast of a random value m ∈ F, and proceeds
according to the protocol with the next simulated random input tuple, r. Thereafter, S computes
x = r −m and stores x, the dummy, random input for honest Pi.

- For i ∈ I, S receives from the adversary the message m, and retrieves the next random input
tuple r. It then computes x = r −m and inputs it to the

[
FMPC

]ID
⊥ .

Simulating the Circuit Evaluation. For linear gates, the simulator does not have to simulate any
message on the behalf of the honest parties. S updates the internal shares and calls the respective
procedure in

[
FMPC

]ID
⊥ .

In a multiplication gate, for each call to Open, S receives all the corrupt shares (t∗j , σt∗j ) from A,
and computes and sends the shares and signatures for the dummy honest parties as in the protocol.
Let (tj , σtj ) be the values that S expects from the dishonest Pj , based on previous computations
and the simulated preprocessing data. S checks for all the (t∗j , σt∗j ) received from A and for all
i ∈ P \ I that tj = t∗j and σtj = σt∗j . If the check does not pass for some j ∈ I then S sends

(Abort, Pj) to
[
FMPC

]ID
⊥ . Otherwise it proceeds. 6

6If there is more than invalid share then we always abort with the smallest index where the check fails.
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Simulating the Output step. The simulator sends (Output) to the functionality and gets the re-
sult y back. Let y′ be the output value that the simulator has computed using dummy, random
inputs on behalf of the honest parties. Then it picks an honest party Pi0 , and modifies its share as
y∗i0 = yi0 + (y − y′), then uses the evaluation privacy algorithm to compute σy∗i0 = Sim(sk∗, y∗i0 , f),
where f is the same linear function that has been applied to obtain σyi0 , and sends the honest shares
and signatures to the adversary. It then receives (y∗j , σy∗j )j∈I from the adversary, while expecting
yj , σyj . If yj = y∗j and σyj = σy∗j for all j ∈ I then S sends Deliver to the functionality; otherwise it
sends (Abort, Pj) for the lowest j that failed and halts.

Indistinguishability. Now we prove that the all the simulated transcripts and the honest parties’
outputs are identically distributed to the real transcripts and output in the view of the environment
Z, except with probability negl(κ).

During initialisation, the simulator honestly runs an internal copy of FPrep, so the simulation
of this step is perfect. In the input step, the values m broadcast by honest parties are uniformly
random in both cases, as they are masked by a one-time uniformly random value from FPrep that
is unknown to Z.

In the multiplication step, the parties call the command Open. Honest shares and signatures are
simulated as in the protocol, using the simulated data from the emulation of FPrep, and applying
the Eval algorithm. The broadcast shares are all uniformly distributed in both worlds, as the shares
are always masked by fresh random values from FPrep, so are perfectly indistinguishable. To argue
indistinguishability of the signatures, we need to use the evaluation privacy property. We must
prove that

σti
s
≈ σt∗i ,

where {σt∗i }i 6∈I are the simulated ideal-world signatures, and {σti}i 6∈I are the real-world signatures,
for some honest parties’ shares {ti}i/∈I .

Since σti and σt∗i are both valid signatures output from Eval, evaluation privacy guarantees that
there exists an algorithm Sim such that:

σti = Sim(sk, ti, g) and σt∗i = Sim(sk∗, t∗i , g),

where g is the linear function evaluated to get the values ti and t∗i , and sk and sk∗ are respectively
the real-world and ideal-world secret keys. Since (ti, sk) and (t∗i , sk

∗) are identically distributed
in both the executions, then the same holds for σti and σt∗i . Note that it is crucial here that
S computes σt∗i using Eval and the function g, rather than creating a fresh signature using sk∗,
otherwise indistinguishability would not hold.

We also must consider the abort behaviour of the Open procedure in the two worlds. If during
any opening, A attempts to open a fake value then it will always be caught in the simulation,
whereas it succeeds if it is able to forge a corresponding signature in the real protocol. Hence, if the
ideal protocol aborts with the identity of some corrupt party Pi, then the same happens in the real
world, except with negligible probability due to unforgeability. The consistency property of HITS
ensures that if one honest party outputs (Abort, Pi) in the protocol, then all the honest parties will
output the same, except with negligible probability.

Now, if the real or simulated protocol proceeds to the last step, Z observes the output value
y, and the corresponding honest parties’ shares, together with their signatures. The honest shares
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are consistent with y and the signatures are correctly generated in both worlds. Again, to argue
indistinguishability of the signatures we can use the evaluation privacy property of HITS. Hence
Z’s view of the honest parties’ messages in the last step has the same distribution in the real and
hybrid execution.

Finally, we must argue indistinguishability of the outputs in both worlds. In the ideal world, the
output y is a correct evaluation on the inputs, so the only way the environment can distinguish is
to produce an incorrect output in the real world. This can only happen if a corrupt party sending
an incorrect share that is successfully verified. However, as we have seen before, if the adversary
attempts to open a fake value, during the input, multiplication or output step, then it will be caught
with overwhelming probability, by the unforgeability and consistency properties of HITS. ut

5.2 An Optimised Protocol

When instantiated with our HITS scheme from Section 4, the online phase protocol above requires
O(n2) field elements to be broadcasted per secure multiplication. Since each authenticated broadcast
requires O(n) rounds, this gives a communication complexity of at least O(n3) field elements per
multiplication and O(D · n) rounds overall, where D is the multiplicative depth of the arithmetic
circuit. We now describe an optimised variant of our protocol, which reduces the number of rounds
to O(D + n) and the communication cost per multiplication to O(n2).

Reducing the Number of Broadcasts. Let Πbc be the UC protocol for authenticated broadcast
used in the protocol. We make the following assumption about its structure: in the first round of
Πbc, the sender (with input x) sends x, and nothing more, to all parties. 7 Let the remainder of
the protocol be denoted Π ′bc.

We now modify the protocol ΠOnline so that whenever a party Pi is supposed to broadcast a
value xi in the Open subprotocol, Pi instead sends xi to all parties, and appends xi to a list Bi.
Note that the Input stage still requires broadcast, as otherwise it seems difficult for the simulator
to extract a corrupted party’s input. The Output stage is then modified so that first, each party
runs Π ′bc(Bi) to complete the broadcasts that were initialised in the previous rounds. With this
change, there are only two broadcast rounds and each multiplication gate requires just one round
of communication, reducing the overall number of rounds to O(D + n).

Batching the Signature Verification. We can reduce the number of field elements sent during
a multiplication to n − 1 per party by checking all signatures together in the Output stage of
the protocol, rather than during the circuit evaluation. This means that during the computation,
the parties only send shares without the corresponding signatures. We then check a random linear
combination of each parties’ signatures just before every output stage.

The complete protocol for the optimised output stage is given in Fig. 6. Since there are only
two authenticated broadcast rounds, the number of rounds for computing a depth D circuit with

7Almost any broadcast protocol can be easily converted into this form. For example, the Dolev-Strong broad-
cast [DS83] begins with the sender sending (x,Sign(x)) to all parties; we split this up into one round for x and one
round for Sign(x).
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one output gate in the optimised protocol is O(D + n). The total number of field elements sent
over the network is no more than 8

nI · bc(1) + 2n(n− 1) · nM + n · bc(n+ 2nM + 1),

where nI is the total number of private inputs, nM the number of secure multiplications and bc(m)
the cost of broadcasting m elements using Πbc. Meanwhile, the storage cost (for the preprocessing
data) is O(n(nM + nI)) per party.

Protocol Output(JyK)

Let Bi be the list of shares sent by a party Pi in all input and multiplication steps since the last Output invocation.

OutputCheck: Run the following, for each party Pi:
1. Pi sends the share yi to all other parties, and appends yi to Bi.

2. Write Bi = (a1, . . . , at).

3. Sample (r1, . . . , rt) ∈ Ft using FRand

4. Pi computes σ = Eval(f, (σa1 , . . . , σat)), where the linear function f is defined as f(x1, . . . , xt) = r1 ·
x1 + · · ·+ rt · xt.

5. Pi invokes Πbc(σ) and Π ′bc(a1, . . . , at) to broadcast σ and complete the broadcast of the shares a1, . . . , at.
If the broadcast fails, output (Abort, Pi).

6. Every party Pj (for j 6= i) computes f(a1, . . . , at) = a and checks if Ver(a, σ, f, vkj) = 1. If the check
fails, output (Abort, Pi).

Output: Each party computes y =
Pn
i=1 yi and outputs y.

Fig. 6. Output stage of the optimised online protocol

Functionality FRand(F)

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform r ∈ F and outputs (rand, r)
to all parties.

Fig. 7. Functionality FRand

5.3 Security

We now argue security of the new online protocol, describing the key differences compared with
the previous protocol. In the simulation, the simulator S now cannot determine whether a corrupt
party has sent the correct message during the Multiply command, since the signatures are not
sent here. Instead, this must be detected in the output stage when the broadcasts and signatures
are checked.

In the OutputCheck stage, S first calls the functionality
[
FMPC

]ID
⊥ to obtain the result y, then

adjusts one honest party’s share and signature (using the evaluation privacy algorithm) to fix the

8Excluding the cost of FRand, which can be implemented using standard techniques such as a hash-based commit-
ment scheme in the random oracle model.
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correct output as before, and sends the honest shares to the adversary. For the remainder of this
stage, the simulator acts as in the protocol for the honest parties, computing the random linear
combination of signatures using Eval, and then runs the simulator of Πbc for each broadcast. If
any broadcast fails for a corrupt sender Pj then S sends (Abort, Pj) to

[
FMPC

]ID
⊥ . If all broadcasts

succeed, S checks the signatures and sends (Abort, Pj) if the signature of Pj does not verify. Note
that an incorrect broadcast can lead to an honest party’s signature being incorrect, so it is important
that the broadcasts are checked first here.

Indistinguishability of all shares sent up until the Output stage follows from uniformity of
the preprocessing data, as in the previous protocol. The security of the Πbc simulator guarantees
indistinguishability of step 5, in particular that all parties agree upon the sets of shares Bi that
were sent by each party Pi during the protocol.

If the broadcasts succeed then the honest parties’ signatures will always be correctly generated,
and the evaluation privacy property of HITS guarantees they are identically distributed. The envi-
ronment therefore can only distinguish between the worlds by causing the output, y, to be incorrect.
Suppose a corrupt party Pi broadcasts the values B′i = (a′1, . . . , a′t) in the protocol, and aj 6= a′j
for at least one j, where aj is the original signed value that Pi was supposed to send. Then if the
verification in step 5 of the output stage succeeds, the correctness and security properties of HITS
guarantee that:

t∑
i=1

(ai − a′i) · ri = 0,

It is easy to see that the probability of this check passing is 1/|F|, as the values ri are unknown to the
adversary at the time of choosing a′i, so the check prevents an incorrect output with overwhelming
probability.

6 Preprocessing with Identifiable Abort

This section describes a practical protocol for securely implementing FPrep with identifiable abort,
based on somewhat homomorphic encryption. The protocol is based on the SPDZ preprocess-
ing [DPSZ12,DKL+13], but the cost is around n2 times higher due to the larger amount of prepro-
cessing data needed for the HITS data in our online phase.

We first explain in more detail why the generic preprocessing method of Ishai et al. [IOZ14] does
not lead to an efficient protocol. They presented a method to transform any protocol for a correlated
randomness setup in the OT-hybrid model into a protocol that is secure with identifiable abort.
Although their compiled protocol only requires black-box use of an OT protocol, it is impractical
for a number of reasons:

- The protocol to be compiled is assumed to consist only of calls to an ideal OT functionality
and a broadcast channel. This means that any pairwise communication must be performed via
the OT functionality and so is very expensive.

- The transformation requires first computing an authenticated secret sharing of the required
output, and then opening this to get the output. In our case, the output of FPrep is already
secret shared and authenticated, so intuitively, this step seems unnecessary.

- Their security proof requires the underlying OT protocol to be adaptively secure. This is much
harder to achieve in practice, and rules out the use of efficient OT extensions [LZ13].
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6.1 Modified Functionality F∗
Prep

The FPrep functionality from Section 5 is completely black-box with respect to the HITS scheme
used. In this section, we implement preprocessing specifically for the scheme HITS from Section 4.
We also make one small modification to the initialisation of FPrep, shown in Fig. 8, which simplifies
our preprocessing protocol by not requiring the adversary’s verification data, vj , to be uniformly
random. The following proposition shows that the scheme, and therefore online phase, remain secure
with this modification.

On input (Init, nM , nI) from all parties, set w = n · (nM + nI) and do the following:

1. Wait for the adversary to input vj ∈ Fn, for each j ∈ I.

2. Compute (sk,vk) ← HITS.Gen(1κ, w), except using the provided values {vj}j∈I to compute {vkj}j∈I ,
instead of sampling fresh values.

3. Send vki to party Pi and store sk.

Fig. 8. Initialise command of F∗Prep

Proposition 2. The scheme HITS remains secure when Gen is modified to allow adversarial inputs,
as in F∗Prep.

Proof. This easily follows by inspection of the scheme. Notice that the signing and verification
algorithms for honest parties are independent of the values {vj}j∈I , so changing the distribution of
these cannot cause an honest party to accept an invalid signature or reject a valid signature. ut

We now show how to use somewhat homomorphic encryption scheme to perform the prepro-
cessing with identifiable abort.

6.2 SHE Scheme Requirements

As in SPDZ, we use a threshold somewhat homomorphic encryption scheme SHE = (Gen,Enc,Dec,�,�)
to generate the preprocessing data. The scheme must have a message space of F, and we represent
ciphertexts known to all parties with the notation 〈x〉 = Enc(x). The binary operators �,� then
guarantee that

〈x+ y〉 = 〈x〉� 〈y〉 and 〈x · y〉 = 〈x〉� 〈y〉,

for some suitable choice of randomness in the output ciphertexts. For our purposes, these homo-
morphic operations only need to support evaluation of circuits with polynomially many additions
and multiplicative depth 1. As was shown in [DPSZ12,DKL+13], a ring-LWE variant of the BGV
scheme [BGV12] is practical for this purpose, and this also allows homomorphic operations to be
batched for greater efficiency.

In addition, we require the following interactive protocols that will be used for the preprocessing.

Zero Knowledge Proof of Plaintext Knowledge. A protocol ΠZKPoK, which is a public-coin zero-
knowledge proof of knowledge of the message and randomness that makes up a ciphertext. When
used in our preprocessing protocol, all parties will sample the public verifier’s messages with a
coin-tossing functionality FRand (see Fig. 7), so that the proofs are verified by all parties.
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Distributed Key Generation and Decryption. The distributed key generation protocol outputs a
public key to all parties, and an additively shared secret key. The distributed decryption protocol
then allows the parties to decrypt a public ciphertext so that all parties obtain the output. These
requirements are modelled in the functionality FKeyGenDec (Fig. 9). To achieve security with iden-
tifiable abort in our preprocessing protocol, note that the distributed decryption method modelled
in FKeyGenDec always outputs a correct decryption, unlike the method in SPDZ [DPSZ12], which
allows a corrupted party to introduce additive errors into the output. The SPDZ method can easily
be modified to achieve this, by including a zero-knowledge proof, similar to the ΠZKPoK proof used
for ciphertext generation. Efficient ZK proofs for actively secure LWE-based key generation and
distributed decryption were also given in [AJL+12], which can be adapted to the ring-LWE setting.

Functionality FKeyGenDec

KeyGen(1λ): Let (sk, pk)← SHE.Gen(1λ). Store sk and output pk to all parties.

DistDec(〈m〉): On input a ciphertext 〈m〉 from all parties, output

m = Dec(〈m〉, sk)

to all parties, where m may be a valid message or an invalid ciphertext symbol, ⊥.

Fig. 9. SHE distributed key generation and decryption functionality

6.3 Basic Subprotocols

In Fig. 10 we describe some basic subprotocols for generating and decrypting ciphertexts. The
RandShCtxt subprotocol creates n public ciphertexts encrypting uniformly random shares, where
each party holds one share. The ShareDec subprotocol takes a public ciphertext 〈m〉, encrypting m,
and performs distributed decryption in such a way that each party learns only a random, additive
share of m. If the flag new ctxt is set to 1 then ShareDec additionally outputs a fresh encryption
of the message m to all parties. This is used to ensure that SHE only needs to evaluate circuits of
multiplicative depth 1. The PrivateDec subprotocol is another variant of distributed decryption that
decrypts the ciphertext 〈x〉 to only Pi. Note that the private decryption protocol used in [DPSZ12]
is not suitable here, as it involves parties all sending a single message to Pj ; in the identifiable
abort setting, this would allow Pj to claim that an honest party Pi sent an invalid message, as the
messages are not verifiable by all parties. To get around this, our PrivateDec protocol only uses
broadcasted messages that are verifiable by all parties using the public-coin zero-knowledge proofs.

6.4 Creating the Preprocessing Data

The complete preprocessing protocol is shown in Fig. 11 and Fig. 12. To create a multiplication
triple, each party must obtain random, additive shares (ai, bi, ci) such that c = a·b, along with signa-
tures on these shares. Creating shares of triples is essentially identical to the method in [DPSZ12],
except we use the correct distributed decryption command of FKeyGenDec, instead of a possibly
faulty method. This means that there is no way the adversary can introduce errors into triples, so
we avoid the need for the pairwise sacrificing procedure from [DPSZ12], where half of the triples
are wasted to check correctness. The main other difference in our protocol, compared to [DPSZ12],
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is that we need to setup verification keys for the signature scheme and create signatures on every
share, which is more complex than setting up simple MACs.

Subprotocol RandShCtxt():
1. Each party samples a random share xj ∈ F and computes 〈xj〉 = SHE.Encpk(xj)

2. Each party broadcasts 〈xj〉 and runs the protocol ΠZKPoK to prove that 〈xj〉 is correctly generated.

3. Each party Pj outputs xj , 〈x1〉, . . . , 〈xn〉.

Subprotocol ShareDec(〈m〉, new ctxt):
1. Run RandShCtxt so that each Pj obtains a share rj and ciphertexts 〈r1〉, . . . , 〈rn〉 that encrypt the shares.

2. Homomorphically compute
〈m+ r〉 = 〈m〉� 〈r1〉� · · ·� 〈rn〉.

3. Call FKeyGenDec.DistDec to decrypt 〈m+ r〉 so all parties learn m+ r, where r = r1 + · · ·+ rn.

4. P1 outputs m1 = (m+ r)− r1 and for all j 6= 1, Pj outputs mj = −rj .
5. If new ctxt = 1, each party Pi also outputs 〈m∗〉 = SHE.Encpk(m+r)−〈r〉, where a default, public value

is used for the randomness in Enc.

Subprotocol PrivateDec(〈x〉, Pj):
1. Pj samples a random mask K ← F, broadcasts 〈K〉 ← SHE.Encpk(K) and runs ΠZKPoK to prove its

correctness.

2. All parties homomorphically compute

〈x+K〉 = 〈x〉� 〈K〉.

3. Run FKeyGenDec.DistDec(〈x+K〉) so that all parties obtain the plaintext x+K.

4. Pj recovers and outputs x.

Fig. 10. Subprotocols for the preprocessing protocol using SHE

The setup phase begins by using RandShCtxt to create random, additive shares of the signing key
values α̂r, β̂r,i, and each party Pj ’s private verification values vj,r, along with ciphertexts encrypting
the signing key shares and verification data, in steps 2–3. Next, in steps 4–5, the homomorphism
of SHE is used to compute ciphertexts encrypting the signing key, and then ciphertexts encrypting
the verification key values αj , βj,i for party Pj , for i ∈ [w]. These verification keys are then privately
decrypted to each party.

Given encryptions of the signing key, an encrypted share can be authenticated by homomorphic
evaluation of the signing algorithm, followed by private decryption of the signature to the relevant
party, as seen in the subprotocol Auth (Fig. 11). Recall that in our scheme, a signature on xj is
given by

σ =
(
α̂r · xj + β̂r

)n
r=1

,

where α̂r, β̂r are uniformly random elements of the secret key. (Note we have dropped the subscript
i on β̂ here.) For party Pj to obtain a signature on the share xj , where all parties already know the
ciphertext 〈xj〉, all parties homomophically compute

〈σ|r〉 = (〈αr〉� 〈xj〉) � 〈βr〉,

for r ∈ [n], and use private distributed decryption to output σ to Pj .

Theorem 3. The protocol ΠPrep (Fig. 11 and Fig. 12) securely realises F∗Prep (Fig. 8 and Fig. 4)
with identifiable abort in the FKeyGenDec-hybrid model, with computational security.
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Protocol ΠPrep

To create nM triples and nI input values for n parties, set the parameter w := n · (3nM + nI).

Setup: Creates the verification keys and ciphertexts encrypting the signing key.
1. Run FKeyGenDec.KeyGen to obtain an SHE public key pk.

2. Run RandShCtxt() 2n times, so each party Pj obtains random elements α̂jr, vj,r, for r = 1, . . . , n, and
everyone obtains ciphertexts 〈α̂jr〉, 〈vj,r〉 encrypting these.

3. Run RandShCtxt() w(n) times, so party Pj obtains β̂jr,i, for r ∈ [n] and i ∈ [w], and everyone gets the
corresponding ciphertexts.

4. Homomorphically compute, for r ∈ [n]:

〈α̂r〉 = 〈α̂1
r〉� · · ·� 〈α̂nr 〉

〈β̂r,i〉 = 〈β̂1
r,i〉� · · ·� 〈β̂nr,i〉 for i ∈ [w]

5. Now compute the encrypted verification keys, for j ∈ [n]:

〈αj〉 =

n

�
r=1

(〈α̂r〉� 〈vj,r〉)

〈βj,i〉 =

n

�
r=1

“
〈β̂j,r〉� 〈vj,r〉

”
6. Run the subprotocol PrivateDec(〈αj〉, Pj) and PrivateDec(〈βj,i〉, Pj) for i ∈ [w] and j ∈ [n], so that each

party Pj gets their verification key vkj .

7. All parties store the ciphertexts 〈α̂r〉, 〈β̂r,i〉, for r ∈ [n] and i ∈ [w], and their private verification keys,
vkj = (vj , αj , {βj,i}i∈[w].

Fig. 11. Preprocessing protocol with identifiable abort (Setup)

6.5 Security of Theorem 3

As in [DPSZ12], to simplify the proof of security for our protocol we make the following assumption
about the underlying SHE scheme. Note that this holds for the BGV scheme and its variants, under
the (ring)-LWE assumption, and trivially implies the standard notion of IND-CPA security.

Definition 5. We say the scheme SHE has the meaningless keys property if there exists an algo-
rithm Gen∗ that outputs a meaningless public key, pk∗, such that for pk← Gen(1λ), pk∗ ← Gen∗(1λ)
and any message x:

Enc(pk∗, x)
s
≈ Enc(pk∗, 0)

pk
c
≈ pk∗,

where the distributions are taken over the randomness of Gen,Gen∗, and
s
≈,

c
≈ are the usual defini-

tions of statistical and computational indistinguishability.

Proof. (of Theorem 3) We give a sketch of the mechanics of a simulator S, such that no environment
Z can distinguish between an interaction with the real protocol ΠPrep, and an interaction with S
and the ideal functionality

[
F∗Prep

]ID
⊥ . There are two main components to the argument for indis-

tinguishability. Firstly, all of the SHE ciphertexts must be indistinguishable in both worlds; this
is similar to the proof of [DPSZ12, Thm. 3], and uses the meaningless keys property of SHE. The
second, main component of the proof is to show that the signatures and verification keys received
by the parties are indistinguishable in both worlds.
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Protocol ΠPrep (continued)

Subprotocol Auth(xj , 〈xj〉, Pj): Authenticates the share xj held by party Pj , where 〈xj〉 is a (public) SHE
encryption of xj . Start by initialising a counter cnt := 1.
1. All parties homomorphically compute, for r ∈ [n],

〈σ|r〉 = 〈α̂r〉� 〈xj〉� 〈β̂r,cnt〉

2. Run PrivateDec(〈σr〉, Pj) for r ∈ [n] so that Pj obtains the signature on xj ,

σ = (α̂1 · xj + β̂1,cnt, . . . , α̂n · xj + β̂n,cnt)

3. Set cnt := cnt + 1

Triple: Creates a single, authenticated multiplication triple.
1. The parties run RandShCtxt twice to obtain additive shares aj , bj and public ciphertexts 〈aj〉, 〈bj〉 that

encrypt the shares.

2. The parties homomorphically compute the ciphertext

〈c〉 = (〈a1〉� · · ·� 〈an〉) � (〈b1〉� · · ·� 〈bn〉)

3. The parties run ShareDec(〈c〉, 1) to obtain decrypted, random shares of c and a fresh ciphertext 〈c〉.
4. For each j ∈ [n] and for each symbol x ∈ {a, b, c}, run Auth(xj , 〈xj〉, Pj) so Pj obtains σxj = Sign(xj , sk).

5. Output the authenticated triple (JaK, JbK, JcK).

Input(Pi): Creates a random, authenticated value JrK, where r is known to Pi.
1. Run RandShCtxt to obtain additive shares rj , and public ciphertexts 〈rj〉 that encrypt these shares, for

j ∈ [n].

2. Run Auth(rj , 〈rj〉, Pj) for every j ∈ [n] to obtain JrK.
3. Comput 〈r〉 = 〈r1〉� · · ·� 〈rn〉 and run PrivateDec(〈r〉, Pi) so that Pi learns r.

Fig. 12. Preprocessing protocol with identifiable abort (authentication and triple generation)

The simulator S first generates an SHE key pair (pk, SHE.sk) ← SHE.Gen(1λ) and sends pk to
all parties. Simulate the rest of the setup phase by honestly following the protocol, until it comes
to the final stage of simulating calls to FKeyGenDec.PrivateDec, to decrypt the verification keys. At
this point, use the SHE key sk to decrypt the adversary’s ciphertexts containing the verification
data vj for j ∈ I, and send these to

[
F∗Prep

]ID
⊥ . Receive from

[
F∗Prep

]ID
⊥ the remaining verification

data αj , {βj,i}i∈[w] and send this to the adversary, simulating the output of FKeyGenDec.PrivateDec
in step 6.

Simulating the triple and input generation protocols (and their subroutines) proceeds similarly:
the simulator sends ciphertexts on behalf of honest parties as in the protocol, and decrypts the
adversary’s ciphertexts containing shares of triples ai, bi and sends these to F∗Prep, along with the
shares of ci that are extracted from ciphertexts received in the ShareDec procedure. In response, the
simulator receives from F∗Prep signatures on all corrupted parties’ shares, and uses these to simulate
the final calls to FKeyGenDec.ΠPubDec during the Auth subroutine.

To ensure security with identifiable abort, we require that if at any stage during the simulation,
a proof of correct ciphertext generation (ΠZKPoK) fails for Pj where j ∈ I, then S sends (Abort, Pj)
to
[
F∗Prep

]ID
⊥ and halts. Since ΠZKPoK is the only place in which the protocol can abort, we do not

need to consider identifiable abort elsewhere.

Indistinguishability. The argument for indistinguishability of the triple shares, SHE keys and ci-
phertexts in the two worlds is similar to that in [DPSZ12], which shows how to use an algorithm
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that distinguishes between the two worlds with non-negligible probability to break the meaningless
keys property of the SHE scheme. Since our usage of SHE with zero-knowledge proofs is almost
identical to that work, we do not describe the reduction here. Note that our scenario is slightly
simpler than [DPSZ12], as our distributed decryption method is guaranteed to be correct, so we do
not have to handle any errors there.

We must also show that the verification keys and signatures generated are indistinguishable in
both worlds. In the setup phase, the signing key values α̂j , β̂j,i are never seen by the environment;
also, since each of these values is calculated as the sum of random shares contributed by all parties,
they will be uniformly distributed, even if the adversarial shares are not. This means the under-
lying signing key is identically distributed in both worlds, and hence so are the honest parties’
verification keys. The corrupted parties’ verification keys are also identically distributed, because
the adversary’s contributions, vj , are sent to the functionality in the ideal world so that the keys
are computed in exactly the same way.

Finally, we must consider the distributions of the signatures. It is easy to see by inspection of
the protocol that in the real world, all signatures are correctly generated according to the Sign
algorithm, using the underlying signing key that is unknown to all parties. On the other hand,
in the ideal world, the signatures are generated by

[
FPrep

]ID
⊥ using Sign and the signing key of[

FPrep

]ID
⊥ . Since we have already shown that the signature keys are identically distributed in both

worlds, it follows that the distributions of signatures are the same also, and so all signatures will
correctly verify in both worlds. ut

7 Efficiency Evaluation

We now evaluate the concrete efficiency of our protocol, and compare it with the BDOZ [BDOZ11]
and SPDZ [DPSZ12] protocols — which only offer security with abort — and the IOZ proto-
col [IOZ14], which achieves identifiable abort. First we discuss the complexity of broadcast in the
two settings, then we compare the online phases of each protocol, and finally discuss the prepro-
cessing.

Cost of Broadcast. For MPC with identifiable abort, we denote the cost of broadcasting m
field elements by bc(m). To be able to identify a cheater, this must be done using authenticated
broadcast, which requires a PKI setup. The classic Dolev-Strong broadcast [DS83] has message
complexity O(mn2), or a more recent protocol by Hirt and Raykov costs O(mn) for large enough
messages [HR14]. Note that any authenticated broadcast protocol requires Ω(n) rounds of commu-
nication if up to n − 1 parties may be corrupt [GKKO07], which is considerably more expensive
than the standard abort setting.

When security with (non-unanimous) abort is allowed (here, for SPDZ and BDOZ), a simple
“broadcast with abort” protocol suffices [GL05]. Here, the broadcaster sends x to everyone, then
all other parties resend x and check they received the same value. This can be further optimised by
performing trivial, insecure broadcasts, and then at the end of the protocol, doing a single broadcast
of the hash of all sent values to verify correctness [DKL+12]. This means each broadcast costs O(n)
messages, with a one-time O(n2) cost to verify these at the end.

When opening shared values (such as during multiplication) a more efficient method was de-
scribed in [DPSZ12], where each party first sends their share to P1, who then computes the sum
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and sends the result to all parties. This gives a cost of 2(n − 1) messages per opening, instead of
n(n−1) for the previous method (again, the actual broadcast is verified at the end of the protocol).

SPDZ. In the SPDZ protocol (as in [DKL+13]), an authenticated secret share consists of n additive
shares on the secret and n MAC shares, so each party stores two field elements. The preprocessing
consists of one authenticated share per input, and three per multiplication triple. In the online
phase, each input requires one party to broadcast a single value, for a communication cost of
n− 1 field elements. A multiplication consists of two openings, each of which requires all parties to
broadcast a share at a cost of 2n(n− 1) messages using the protocol described above.

In the output phase of SPDZ, first the shares are opened, then a random linear combination of
the MACs is checked, and finally all broadcasts must be checked. The MAC and broadcast checking
methods both have a communication cost in O(n2).

BDOZ. In the BDOZ protocol, each party first obtains a fixed, global MAC key αi. This is fixed
for all shared values, so we ignore this cost. For each shared representation [a], party Pi also stores
the share ai, n local MAC keys βia1

, . . . , βian and n MAC values m1(ai), . . . ,mn(ai). Each of these
are a single field element, so we get a total storage cost of 2n+ 1 field elements per party for each
authenticated shared value.

If we assume an optimised version of the original protocol, so that all parties open their shares
ai using the SPDZ broadcast and then delay MAC checking until the Output stage, then the online
communication costs are essentially the same as SPDZ.

IOZ. The IOZ online phase takes any semi-honest MPC protocol (with preprocessing), and com-
piles it to a malicious protocol with identifiable abort, simililarly to the GMW paradigm [GMW87].
The compiled protocol has a preprocessing phase that outputs the original semi-honest preprocess-
ing data, authenticated using IT signatures, as well as additional data for ZK proofs using MPC-
in-the-head, which are required for each round of the semi-honest protocol. Using a semi-honest
GMW protocol with multiplication triples as a base, the preprocessing data already contains the
same number of IT signatures as our protocol, before taking into account the ZK proofs.

Each ZK proof requires storing m IT signatures as preprocessing, where m is the number of
parties in the MPC-in-the-head method. In [IOZ14], they choose m = O(σ) for statistical security
σ, whereas [GMO16] use m = 3, but require repeating the proof σ times to get negligible soundness
error. Since repeating the proof requires extra preprocessing for each repetition, we obtain a very
rough lower bound of storing σ signatures (or σ · n field elements) per proof with either approach.

For the communication costs, we only take into account the cost for every party to broadcast
one proof, plus the (at least) two signatures that are broadcast in the ΠSCP protocol of [IOZ14].
According to [GMO16, Sec. 4.2], the proof size is at least 2 ·σ · log2(|F|), for a proof with soundness
2−σ, generously ignoring the size of the circuit representing the NP-relation being proven and other
constant factors. If the IOZ version of MPC-in-the-head is used instead, each proof still requires
broadcasting t = O(σ) field elements in the Π1SCP protocol, so would not have significantly better
complexity.

Comparison of the Online Phases. The complexities in Table 1 for our protocol can be derived
from the analysis in Section 5.2. We have ignored storage costs for the vj , αj parts of the verification
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keys, as these are independent of the number of signatures. Our protocol is roughly a factor of n
times worse than SPDZ in terms of storage and communication cost, and has similar costs to BDOZ,
bar the requirement for two rounds of authenticated broadcast. Compared with the IOZ protocol,
we improve by at least a multiplicative factor in the security parameter, as well as a greatly reduced
number of broadcast rounds.

Protocol Prep. storage Online Comms. Rounds

Input Mult. Input Mult. Output

SPDZ 2 6 n− 1 4(n− 1) O(n2) O(D)
BDOZ 2n+ 1 6n+ 3 n− 1 4(n− 1) O(n2) O(D)

IOZ (at least) σn σn σ · bc(1) σn · bc(1) + 2n ·
bc(n)

σn · bc(1) + 2n ·
bc(n)

O(D · n)

Ours 2n+ 1 6n+ 3 bc(1) 2n(n− 1) n · bc(n+
2NM + 1)

O(D + n)

Table 1. Comparison of the storage and communication costs of the protocols, measured in number of field elements.
N = NI + 2NM (where NI is number of inputs, NM is number of multiplications), D is the multiplicative depth of
the circuit, and σ is a statistical security parameter.

7.1 Preprocessing Cost

For preprocessing, the main factor affecting computation and communication costs in [DPSZ12,DKL+13]
is the number of zero-knowledge proofs of correct ciphertext generation that are required, so this
is what we measure in our protocol.

The main cost of our preprocessing protocol, compared with [DPSZ12], is to produce the signa-
tures and verification keys for each shared value, instead of MACs as in SPDZ. The Setup phase of
our protocol (Fig. 11) generates verification keys, whose size depends on the number of signatures.
Ignoring any costs independent of the number of signatures, this requires n calls to RandShCtxt for
each signature. Each RandShCtxt call requires n ZK proofs, and since there are n signatures per
shared value (one per share) this gives a total of O(n3) ZK proofs per multiplication triple or input
tuple. This dominates the cost of creating the n signatures for each shared value, which is in O(n2).

In contrast, SPDZ shared MAC values only require O(n) proofs each, so our protocol requires
O(n2) more proofs than SPDZ in the preprocessing phase. It as an interesting problem to see if
this can be reduced, although it seems that with IT signatures a factor of at least O(n) is inherent,
due to the signature size.

For comparison, note that the IOZ preprocessing transformation, which is based on any protocol
in the OT-hybrid model, uses a verifiable OT protocol which broadcasts a message for every message
of the OT protocol, adding an O(n) overhead on top of the OT-hybrid protocol. When accounting
for producing the larger amount of preprocessing data needed for the online phase, this gives an
overall overhead of O(n2), the same as ours. However, it seems unlikely that an OT-based protocol
for FPrep could be much more efficient than using SHE, mainly because the need for adaptive
security in IOZ prevents the use of efficient OT extensions [LZ13].
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8 From MPC with Identifiable Abort to MPC with Public Verifiability.

In a practical setting, it can be necessary to raise the deterrent to malicious behavior by e.g.
allowing so-called public verifiability (see e.g. [AO12] ). That means that an honest party can
convince an external third party (e.g. a judge) that another party cheated in the computation (that
is called accountability), whereas a dishonest party cannot blame an honest party (a property named
defamation-freeness). In addition, we require that the third party does not learn anything about
the inputs of the honest parties (in case that it is controlled by A), which we call privacy-preserving.

In more formal terms, let Π(P,A, I, 1κ, (xk)k 6∈I) denote the random variable describing a tran-
script for a protocol with n parties P = {P1, ..., Pn}, out of which the ones in I are controlled by
A and where the honest parties have inputs xk as mentioned above. We assume that there exists a
PPT algorithm Jud that, on input (n, 1κ, π, j), outputs a bit b and has the following properties:

Accountability: If i ∈ P \ I, j ∈ I then

Pr
[
Jud(n, 1κ, π, j) = 1 | π ← Π(P,A, I, 1κ, (xk)k 6∈I)∧

Pi outputs (Abort, Pj)
]

= 1− negl(κ)

Defamation-Free: If j 6∈ I then

Pr
[
Jud(n, 1κ, π, j) = 0 | π ← Π(P,A, I, 1κ, (xk)k 6∈I)

]
= 1− negl(κ)

Moreover, no corrupt Jud′ should be able to learn anything about the parties’ inputs:

Privacy-Preserving: For all k 6∈ I let x̂k ←M be drawn uniformly at random from the message
space. Then, for any PPT algorithm Jud′ and i 6∈ I it holds that

Pr[Jud′(n, 1κ, π, ·) = xi | π ← Π(P,A, I, 1κ, (xk)k 6∈I)] = 1
≈

Pr[Jud′(n, 1κ, π, ·) = xi | π ← Π(P,A, I, 1κ, (x̂k)k 6∈I)] = 1

This third property is necessary to exclude the trivial solution where a party Pi allows Jud to check
the transcript by opening a commitment to its key vki, as this would reveal the input Pi to Jud.

This notion of public verifiability extends the idea of [BDO14] where the external party (which
the authors call the Auditor) can inspect the transcript for correctness after the computation is
done. In their model and protocol, one is not able to identify a dishonest party, whereas we will
now sketch how to modify our protocol such that this indeed can be done.

In a first step, replace the broadcast channel with a bulletin board9 B. That means that there is
a resource available to which each party can send messages, such that these sent messages cannot
be altered after they have been published. Moreover, B must be publicly readable in particular by
Jud, and each message must be accompanied by a signature of the sending party. This transcript
of all messages does not yield privacy problems, since Jud only obtains information that A learns
as well.

Now, the Ver algorithm will be run such that it generates verification keys for 2n parties. As
before, we privately give vki to Pi but additionally post commitments to vkn+1, ..., vk2n on B. The

9Such a bulletin board can be constructed e.g. using the blockchain of Bitcoin.
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opening information to the commitment of vkn+i is given to Pi. Moreover, we demand that each
commitment is signed by all parties (this can be done during the offline phase). We want to point
out that only having one such additional key is not sufficient, because this key would then be known
to A and the consistency of the HITS only applies when such an additional key is unknown.

If a party Pi detects cheating of some Pj , Pi can simply send the opening information for vkn+i

to Jud, which by the consistency of the HITS will end up with the same conclusion as Pi. Moreover,
the same property ensures that a dishonest Pj cannot defamate an honest Pi. As for privacy, this is
ensured because the only information that A controlling Jud can obtain is the same as for a HITS
instance with 2n parties, where 2n− 1 can be corrupted.

We leave a more detailed description of such a protocol as future work.

9 Efficient MPC with Identifiable Abort over Small Fields

In Section 5 we introduced an MPC protocol whose security relies on the size of the field F. In
particular, Corollary 1 requires that log |F| − 2 ≥ κ if all properties of the HITS scheme should
hold with overwhelming probability. A standard approach over smaller fields is to extend the J·K-
representation to contain multiple signatures with different keys. This construction unfortunately
does not work well in conjunction with small fields: If |F| = O(1) then one necessarily needs Ω(κ)
signatures on each share to achieve error probability < 2−κ.

We will now show how to adapt a technique due to Damg̊ard and Zakarias [DZ13] that uses a
dedicated preprocessing to work with HITS. Their approach only works for circuits that are not too
thin (i.e. they need a certain number of gates that can be evaluated in parallel) but then permits (in
the best case) constant overhead for MPC without identifiable abort. They assume that the circuit
comes in layers, where each layer only consists of addition or multiplication gates only. We now
revisit and extend their construction and obtain ID-MPC over small fields with O(1) signatures
per share.

9.1 Packing Shares into Codewords

We assume that the field F permits the construction of an [m, k, d] linear systematic block code
(where m, k, d = O(κ)). That means that we can represent each vector x ∈ Fk using the efficiently
computable monomorphism C : Fk → Fm such that ∀x,y ∈ Fk : x 6= y ⇒ #(C(x) − C(y)) ≥ d
where #(·) is the Hamming weight of a vector. This map is systematic if x appears in C(x) in the
first k coordinates. We moreover assume that there exists a poly(κ)-time procedure to decide for a
given c ∈ Fm if c lies in the image of C. If so, then we will denote this as c ∈ C or say that c is a
codeword. Note that we will denote with C both the map and the image of it.

An interesting notion to study is the so-called Schur transform of a code, for which we consider
C∗ = span{C(x)�C(y) | x,y ∈ Fk} where � is the coordinate-wise product of two vectors. C∗ is
itself a linear [m, k′, d′] code where k′ ≥ k, d′ ≤ d. We make the assumption that d, d′ ∈ O(κ). Codes
that allow for such parameters are e.g. the Reed-Solomon code or Algebraic Geometry codes.

Similar to our previous definition of the J·K-representation we will now introduce the J·Km-
representation as follows: Assume that there are m sets of keys {(skt, (vk1,t, ..., vkn,t))}t∈[m] for m
independent instances of HITS. We will represent a vector x ∈ Fk by letting x1, ...,xn be chosen
uniformly at random subject to the constraint that x =

∑
i xi. Each party Pi will secretly hold xi.

Then
JxKm :=

(
C(x1), ..., C(xn), (σskt(C(x1)|t), ..., σskt(C(xn)|t))t∈[m]

)
.
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In this representation one puts a signature σskt(C(xi))|t on each coordinate of C(xi) that Pi holds,
where (as in Section 5) Pi also holds this signature.

It is immediate that addition of two such representations JxKm, JyKm can be done by a coordinate-
wise addition. We obtain the following algorithm, where each party Pi does the following:

1. Set zi = xi + yi
2. For t ∈ [m] compute σski(C(zi)|t)← Eval(f, (σski(C(xi)|t), σski(C(yi)|t))) where f(a, b) = a+ b

3. Output JzKm :=
(
C(z1), ..., C(zn), (σskt(C(z1)|t), ..., σskt(C(zn)|t))t∈[m]

)
To add a constant vector c ∈ Fk to JxKm we let a fixed party (let’s assume P1) set C(x1) ←

C(c)+C(x1). Afterwards, all parties use Eval to add the constant C(c)|t by adjusting σsk1(C(x1)|t)
and the function they evaluate during Ver.

Given a random representation JrKm, where r is known to Pi, this already allows a party Pi, to
privately input a vector x into the computation as in our original ID-MPC scheme (this JrKm will
come from the preprocessing, as before).

We can moreover repurpose the Open algorithm to work on JxKm:

1. Every party Pi broadcasts (C(xi), (σskt(C(xi)|t))t∈[m]).
2. Each party Pi runs Ver(C(xj)|t, σskt(C(xj)|t), f, vki,t), for each j 6= i, t ∈ [m] and checks that
C(xi) is a codeword of C. If for some j, t the check fails or the vector is not a codeword, Pi
outputs (Abort, Pj).

3. Output x =
∑

i∈P xi where xi is obtained from decoding C(xi).

The opening is now successful iff Pj has verified all signatures and if C(xi) is indeed a codeword
of C. As in [DZ13] we obtain correctness since A must have successfully forged signatures for at
least d positions (the minimal distance of C). Due to our choice, the probability of successfully
forging d signatures is |F|−d = |F|−O(κ). As before, the properties of the HITS allow us to identify
a cheater in case of abort.

9.2 Evaluating the Circuit

Following the approach of Section 5 we want to be able to multiply constant vectors c into a
J·Km-representation, which then permits multiplication of these representations using the Beaver
circuit randomization technique. This can be done by coordinate-wise multiplication of the vectors
of JxKm with C(c) plus carefully adjusting the signatures. But the resulting representation does
not have codewords from C, but from C∗ instead. Let us write JxK∗m in the case where we have
a J·Km-representation where the codewords are in the Schur transform. In order to continue the
computation we have to turn each such J·K∗m back into a J·Km-representation containing the exact
same value. To achieve this we assume that the preprocessing outputs pairs (JrK∗m, JrKm), where
r was chosen uniformly at random. This gives rise to an interactive multiplication protocol for
constants that is similar to the multiplication protocol of ΠOnline:

1. Each Pi sets zi ← C(xi)� C(c)
2. For t ∈ [m] each Pi computes σski(zi|t)← Eval(fC(ci)|t , (σski(C(xi)|t))) where fb(a) = b · a

3. Set JzK∗m ←
(
z1, ...,zn, (σskt(z1|t), ..., σskt(zn|t))t∈[m]

)
4. Open JzK∗m − JrK∗m using the above algorithm and reconstruct x− r. If Open fails then abort.
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5. Compute Jc� xKm ← C(x− r) + JrKm.

As outlined in ΠOnline this protocol can now be used to multiply J·Km-representations using multi-
plication triples.

An additional complication (in comparison to ΠOnline) is that we may have to reorder values
inside JxKm or between multiple representations (or duplicate them), due to the wiring between
layers of the circuit. For simplicity, we assume that all values of a layer fit into one representation
(but the generalization is straightforward): Observe that each such rewiring corresponds to applying
a linear transformation f to the vector of the representation. We demand from the preprocessing
to obtain a pair (JrKm, Jf(r)Km) for each such layer. To compute Jf(x)Km we then use the following
algorithm:

1. Compute and open Jx − rKm using the above open algorithm and reconstruct x − r. If Open
fails then abort.

2. Each party locally computes y ← f(x− r).
3. Set Jf(x)Km ← y + Jf(r)Km.

In order to generate these pairs (JrKm, Jf(r)Km) the preprocessing must be aware of the actual circuit
that is evaluated in the online phase. This dependence can be resolved by using programmable
sorting networks (see [DZ13] for details) instead of the fixed maps from the actual circuit.

9.3 Identifiable Abort and Efficiency

A careful inspection shows that our above protocol follows the same outline as ΠOnline and that
the subprotocols use similar techniques, with the difference being the representation switching
and the inter-layer permutation. Both of these are variants of the Mult protocol of ΠOnline. Hence,
security again reduces to being able to securely perform Open. As we argued above, with a sufficient
parameter choice we can ensure that opening J·Km, J·K∗m-representations can be done such that
cheating is detected, based on d, d′ being large enough.

Concerning the efficiency of the sketched scheme, we observe that it only performs O(n)
worse than the original construction by Damg̊ard and Zakarias. Namely, the storage per J·Km-
representation is < 3nm field elements (including the m verification keys), whereas [DZ13] stores
3m elements from F. For each unreliable open of [DZ13] one uses broadcast n times on m field
elements each, whereas we use n times broadcast on m + m · n values due to the signatures that
we have to open.

The analysis of the network communication of [DZ13] can equally be applied to our setting by
plugging in the different overhead from our construction. Using Reed-Solomon codes we achieve a
network overhead of O(n · polylog(κ)), whereas [DZ13] has O(polylog(κ)).
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